

NAVAL Postgraduate School

### Naval Combat System Product Line Economics

Ray Madachy, John (Mike) Green Naval Postgraduate School {rjmadach, jmgreen}@nps.edu

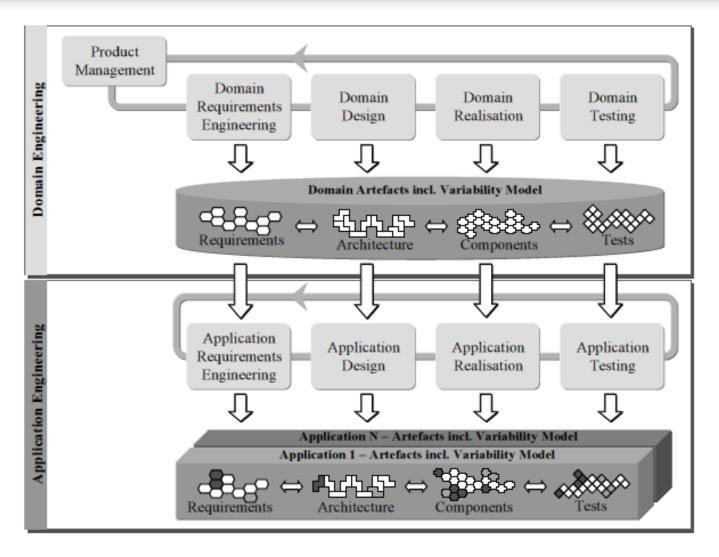
16th Annual Acquisition Research Symposium May 9, 2019 Montere

Monterey, California WWW.NPS.EDU



- A Model-Based Systems Engineering (MBSE) approach has been developed that integrates parametric cost and product modeling methods for economic tradeoff analysis of system product lines.
- The modeling framework includes a reference architecture and cost model for a general combat system product line that is extensible to other DoD and government domains.
- It is being applied to assess the economics of Navy combat system product line architecture approaches in coordinated case studies.




- Navy combat systems are currently ship class dependent and acquired as stovepipes, yet there is much commonality among them.
  - This disaggregated nature leads to suboptimal designs and exorbitant costs throughout the system's lifecycle.
- Product line approaches may reduce acquisition costs, increase mission effectiveness, enable more rapid deployment and other benefits across the DoD.
  - 2013 Navy Surface Warfare Center (NSWC) outlined the importance of "development of reusable product line components into a single combat system architecture"
- Product Line: A set of systems that share a **common, managed set of features that satisfy the specific needs** of a particular market segment or mission and that are developed from a common set of core assets in a prescribed way.
- Product Line Engineering involves planned reuse of common system components including software and hardware
  - Improvements in development time, cost, quality, and engineering productivity



企

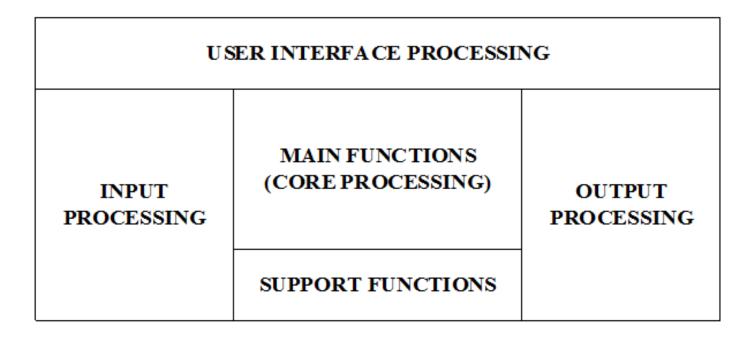
-----

### Example Software Product Line Approach



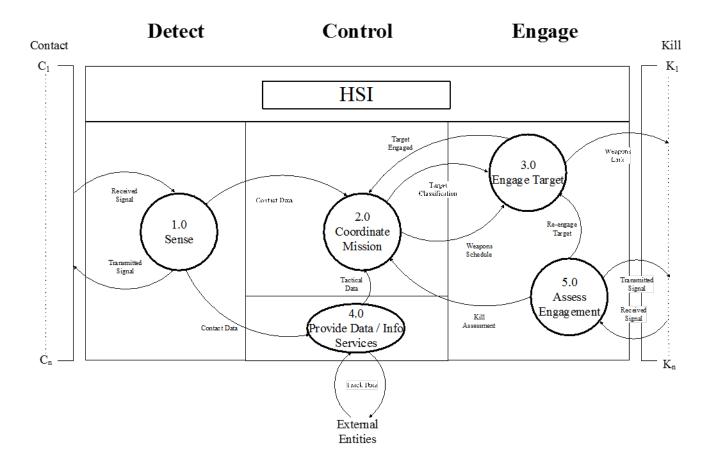


- Describe a general domain model of the given system with common elements
  - Combat systems architectures including sensors, weapons, and hardware/software are formally modeled to identify common functions and variations for different case studies.
- Develop a reference product architecture with variation points
  - Variation points are identified for sensors, HSI / consoles, weapons, and data links with alternative choices for a combat system product line which also serve as cost model inputs.
- Map existing systems to the reference architecture
- Collect empirical costs and map them to system elements from above
  - Empirical cost data from Naval weapons systems programs is allocated to the system functions in the architecture models to calibrate and populate cost model for specific system configurations.
- Tailor the System Constructive Product Line Investment Model (COPLIMO) framework for the reference architecture or develop new cost models for each application, as necessary.




# **Method Overview (Cont.)**

- Use cost model to assess product line economic decisions for the given system.
  - The value of investing in product-line flexibility is quantified using Return-On-Investment (ROI) and Total Ownership Cost (TOC) vs. traditional one-off designs for specific systems and their constituent elements.
- Coordinated case studies are being performed by student capstone teams and on individual theses.
  - Completed
    - 3 Tier Cruise Missile System
  - In-progress:
    - Aegis ship class software product line economics.
    - Ship bridge system product line architecting.
    - ASW product lines for air, surface, and subsurface applications at Newport News.
- An overall business case analysis as a synthesis of case studies for product line practices will be performed with recommendations.




• The architecture modeling uses the Hatley-Pirbhai methodology and an associated architecture template applicable to general DoD combat systems.






• An Enhanced Data Flow Diagram (EDFD) and related architectural flow diagram (AFD) describe the functional and physical behavior of the combat system.





- The Architectural Flow Diagram (AFD) provides a structure for variation point identification necessary for orthogonal variability modeling (OVM) in a product line construct.
  - Variation points are identified for sensors, HSI / consoles, weapons, and data links with alternative choices for a combat system product line which also serve as cost model inputs.





- Total Ownership Cost (TOC) product line models allow decision makers to analyze the economic consequences of alternative system acquisition approaches.
  - They demonstrate that if total life cycle costs are considered for development and maintenance, product lines can have a considerably larger payoff, as there is a smaller base to undergo corrective, adaptive, and perfective maintenance.
- This research uses a system-level parametric model framework adapted from the Constructive Product Line Investment Model (COPLIMO) to assess the value of investing in product-line flexibility using Return-On-Investment (ROI) and TOC.
- Product line investment modeling addresses two sources of cost investment or savings:
  - <u>The Relative Cost of Developing for Product Lines</u>: The added effort of developing flexible product line architectures to be most cost-effectively reused across a product line family of applications, relative to the cost of developing a single system.
  - <u>The Relative Cost of Reuse</u>: The cost of reusing system architecture in a new product line family application relative to developing new systems

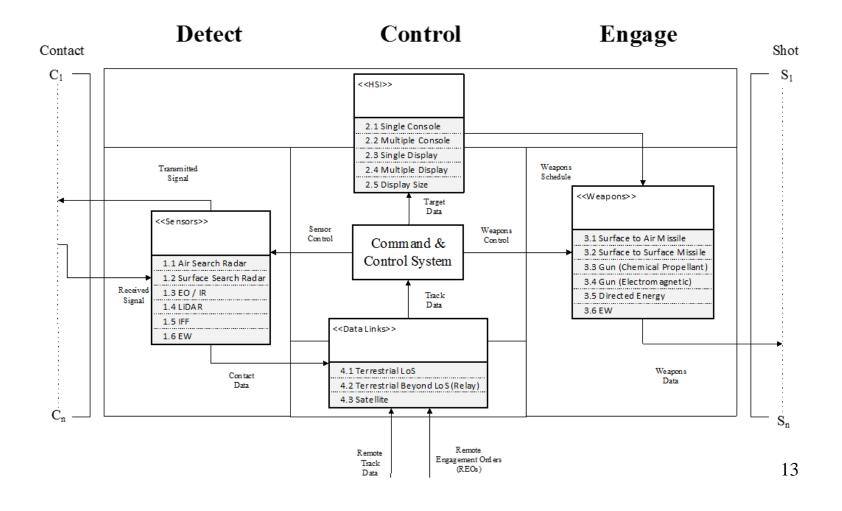


## System COPLIMO Inputs/Outputs

### For Set of Products:

- Average Product Cost or Size
- Annual Change Cost
- Ownership Time
- Percent Mission-Unique, Adapted, Reused
- Relative Cost of
  Developing for PL
  Flexibility via Reuse
- Relative Costs of Reuse

System Product Line Investment Model








- 1. Conducted an architectural analysis of current combat systems (scoped to surface combatant applications)
- 2. Determined necessary architectural functions and commonalities
- 3. Modeled a case study 3 Tier Cruise Missile Product Line with increasing capability in each Tier while still utilizing architectural component commonalities
- 4. Used identified commonalities to determine percentage of unique, reused, and adapted components.
- 5. Applied percentages to System COPLIMO to determine return on investment of a Product Line approach

NAVAL POSTGRADUATA Allocated Architectural Flow Diagram

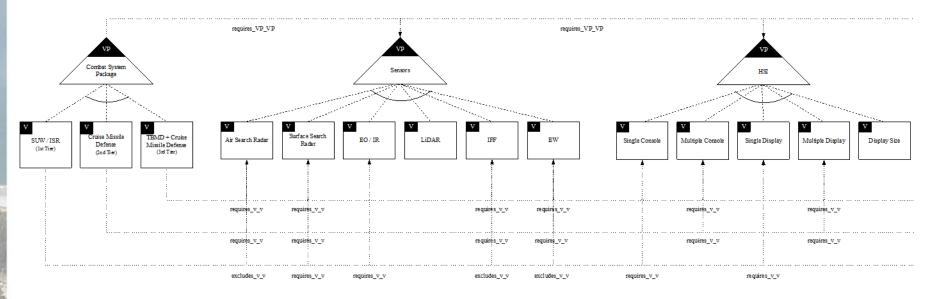


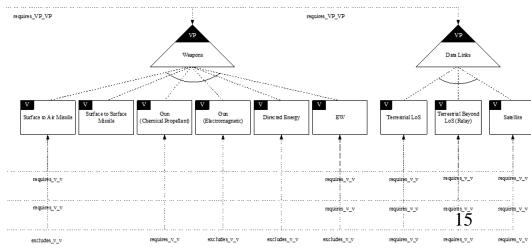
企

a mu



### **Example Variation Points**


| Variation Point | riation Point The console / HSI shall be equipped with |  |  |  |  |  |
|-----------------|--------------------------------------------------------|--|--|--|--|--|
|                 |                                                        |  |  |  |  |  |
| Variant         | either single                                          |  |  |  |  |  |
| Variant         | or multiple consoles                                   |  |  |  |  |  |
| Variant         | and single                                             |  |  |  |  |  |
| Variant         | or multiple displays                                   |  |  |  |  |  |
| Variant         | and allow for various display sizes.                   |  |  |  |  |  |


| Variation Point | The weapons shall have the ability to                     |
|-----------------|-----------------------------------------------------------|
|                 |                                                           |
| Variant         | target and engage air targets at long range               |
| Variant         | and target and engage surface targets at long range       |
| Variant         | and target and engage air / surface targets a short range |
| Variant         | and provide long range naval surface fire support         |
| Variant         | and provide supportability for future weapons technology  |
| Variant         | and provide offensive capability in the EM spectrum.      |

| Variation Point | The data links shall have the ability to             |  |  |  |  |  |
|-----------------|------------------------------------------------------|--|--|--|--|--|
|                 |                                                      |  |  |  |  |  |
| Variant         | transfer data with assets within line of sight (LoS) |  |  |  |  |  |
| Variant         | and transfer data with assets beyond LoS             |  |  |  |  |  |
| Variant         | and transfer data via satellite                      |  |  |  |  |  |
|                 |                                                      |  |  |  |  |  |
|                 |                                                      |  |  |  |  |  |



.....





Model



# **Product Line Components**

|                                | Variation Point: Sensors      |                                                                                                       |  |  |  |  |  |  |
|--------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Product Line<br>Classification | Variant                       | Justification                                                                                         |  |  |  |  |  |  |
| Adapted                        | Air Search<br>Radar           | Power, beam forming, and search / track functions different for 2nd and 3rd tier packaged variants.   |  |  |  |  |  |  |
| Adapted                        | EW                            | Power and physical size requirements may be different<br>for 2nd and 3rd tier packaged variants.      |  |  |  |  |  |  |
| Reused                         | Surface Search<br>Radar       | Physical size and capabilities of sensor can be used for<br>1st, 2nd, and 3rd tier packaged variants. |  |  |  |  |  |  |
| Reused                         | EO / IR Sensor                | See Surface Search Radar justification.                                                               |  |  |  |  |  |  |
| Reused                         | LiDAR                         | See Surface Search Radar justification.                                                               |  |  |  |  |  |  |
| Reused                         | IFF                           | Hardware and interfaces are the same for 2nd and 3rd tier packaged variants.                          |  |  |  |  |  |  |
|                                | V                             | ariation Point: HSI                                                                                   |  |  |  |  |  |  |
| Product Line<br>Classification | Variant                       | Justification                                                                                         |  |  |  |  |  |  |
| Reused                         | Single Console                | Consoles common across 1st, 2nd, and 3rd tier<br>packaged variants.                                   |  |  |  |  |  |  |
| Reused                         | Multiple<br>Console           | See Single Console justification.                                                                     |  |  |  |  |  |  |
| Reused                         | Single Display                | Displays common across 1st, 2nd, and 3rd tier<br>packaged variants.                                   |  |  |  |  |  |  |
| Reused                         | Multiple<br>Display           | See Single Display justification.                                                                     |  |  |  |  |  |  |
| Adapted                        | Display Size                  | Displays are common but size can be specified by customer.                                            |  |  |  |  |  |  |
|                                | Varia                         | tion Point: Data Links                                                                                |  |  |  |  |  |  |
| Product Line<br>Classification | Variant                       | Justification                                                                                         |  |  |  |  |  |  |
| Reused                         | Terrestrial LoS               | Data links standardized across US and NATO                                                            |  |  |  |  |  |  |
|                                |                               | platforms, therefore they will also be common across                                                  |  |  |  |  |  |  |
|                                |                               | 1st, 2nd, and 3rd tier packaged variants.                                                             |  |  |  |  |  |  |
| Reused                         | Terrestrial<br>Beyond LoS     | See Terrestrial LoS justification.                                                                    |  |  |  |  |  |  |
| Reused                         | Satellite                     | See Terrestrial LoS justification.                                                                    |  |  |  |  |  |  |
|                                | Vari                          | iation Point: Weapons                                                                                 |  |  |  |  |  |  |
| Product Line<br>Classification | Variant                       | Justification                                                                                         |  |  |  |  |  |  |
| Mission Unique                 | Surface to Air<br>Missile     | Ranges and kill mechanisms are different for 2nd and 3rd tiers.                                       |  |  |  |  |  |  |
| Mission Unique                 | Surface to<br>Surface Missile | Ranges and size of missile different for 1 st, 2nd and<br>3rd tiers based on mission and ship size.   |  |  |  |  |  |  |
| Mission Unique                 | Gun<br>Electro-<br>Magnetic   | Power and size constraints dependent on ship size and cost for 2nd and 3rd tiers.                     |  |  |  |  |  |  |



### System COPLIMO Inputs

• Model Input for Tier 3 Combat System Product Line

| System COPLIMO Input Summary (3rd Tier Packaged Variant) |                   |                                    |  |  |  |  |  |  |
|----------------------------------------------------------|-------------------|------------------------------------|--|--|--|--|--|--|
| Input                                                    | Value             | Rationale                          |  |  |  |  |  |  |
| System Costs                                             |                   |                                    |  |  |  |  |  |  |
| Average Product                                          | -                 |                                    |  |  |  |  |  |  |
| Development                                              |                   | (FY) 2017 President's Budget       |  |  |  |  |  |  |
| Cost                                                     |                   | Submission 2016, 127-138           |  |  |  |  |  |  |
| Annual Change                                            | 10 %              | Estimate                           |  |  |  |  |  |  |
| Cost                                                     |                   |                                    |  |  |  |  |  |  |
| Ownership Time                                           | 40 years          | DoD Selected Acquisition Report    |  |  |  |  |  |  |
|                                                          |                   | 2015, 48                           |  |  |  |  |  |  |
| Interest Rate                                            | 2.625 %           | Bureau of the Fiscal Service, U.S. |  |  |  |  |  |  |
|                                                          |                   | Department of the Treasury 2018    |  |  |  |  |  |  |
| Product Line Percentages                                 |                   |                                    |  |  |  |  |  |  |
| Mission Unique 20 % From system architecture analy       |                   |                                    |  |  |  |  |  |  |
| Adapted                                                  | 25 %              | From system architecture analysi   |  |  |  |  |  |  |
| Reused                                                   | 55 %              | From system architecture analysis  |  |  |  |  |  |  |
|                                                          | <b>Relative</b> C | ost of Reuse                       |  |  |  |  |  |  |
| Relative Cost of                                         | 40 %              | COPLIMO default                    |  |  |  |  |  |  |
| Reuse for                                                |                   |                                    |  |  |  |  |  |  |
| Adapted                                                  |                   |                                    |  |  |  |  |  |  |
| Relative Cost of                                         | 5 %               | COPLIMO default                    |  |  |  |  |  |  |
| Reuse for Reused                                         |                   |                                    |  |  |  |  |  |  |
| Investment Cost                                          |                   |                                    |  |  |  |  |  |  |
| Relative Cost of                                         | 1.7               | COPLIMO default                    |  |  |  |  |  |  |
| Developing for                                           |                   |                                    |  |  |  |  |  |  |
| PL Flexibility via                                       |                   |                                    |  |  |  |  |  |  |
| Reuse                                                    |                   |                                    |  |  |  |  |  |  |

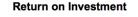


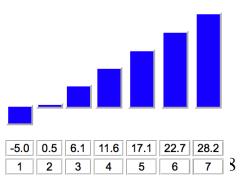
### **Cost and Investment Results**

• Results for Tier 3 Cruise Missile Product Line

### System COPLIMO

#### System Costs


| Average Product Developme                  | nt Cost (Burdened \$M) | 322       | Ownership Time (Years)   | 40  |  |
|--------------------------------------------|------------------------|-----------|--------------------------|-----|--|
| Annual Change Cost (% of Development Cost) |                        |           | Interest Rate (Annual %) | 2.6 |  |
| Product Line Percentages                   | Relative Costs of Reu  | se (%)    |                          |     |  |
| Unique % 20                                | Relative Cost of Reuse | ed 40     |                          |     |  |
| Adapted % 25                               | Relative Cost of Reuse | for Reuse | ed 5                     |     |  |
| Reused % 55                                |                        |           |                          |     |  |
|                                            |                        |           |                          |     |  |


#### **Investment Cost**

Relative Cost of Developing for PL Flexibility via Reuse 1.7

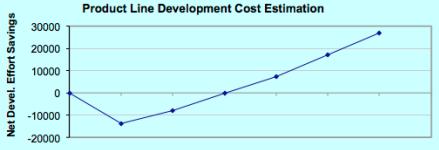
Calculate Monte Carlo Off \$

| Results                         |           |           |           |           |           |           |           |  |
|---------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|
| # of Products                   | 1         | 2         | 3         | 4         | 5         | 6         | 7         |  |
| Development Cost (\$M)          | \$457.2   | \$172.3   | \$172.3   | \$172.3   | \$172.3   | \$172.3   | \$172.3   |  |
| Ownership Cost (\$M)            | \$1,829.0 | \$689.1   | \$689.1   | \$689.1   | \$689.1   | \$689.1   | \$689.1   |  |
| Cum. PL Cost (\$M)              | \$2,286.2 | \$3,147.5 | \$4,008.9 | \$4,870.2 | \$5,731.6 | \$6,593.0 | \$7,454.3 |  |
| PL Flexibility Investment (\$M) | \$135.2   | \$0       | \$0       | \$0       | \$0       | \$0       | \$0       |  |
| PL Effort Savings               | (\$676.2) | \$72.5    | \$821.1   | \$1,569.8 | \$2,318.4 | \$3,067.0 | \$3,815.7 |  |
| Return on Investment            | -5.00     | 0.54      | 6.07      | 11.61     | 17.14     | 22.68     | 28.21     |  |





Product #




#### NAVAL POSTGRADUATE Aegis Case Study Preliminary Results SCHOOL

### COPLIMO for Aegis Output Summary

#### Summary of Inputs: **AVPROD** 163 AVSIZE 2E+06 (SLOC) UNIQ% N/A (%) ADAP% N/A (%) RUSE% N/A (%) **RCR-UNIQ** 100 (%) **RCR-ADAP** 40 (%) **RCR-RUSE** 5 (%) RCWR 1.78

#### Aegis CSL Product Line Effort Savings:



Aegis Baselines Over Time

#### Table of Results:

| # of Products           | 0 | 1       | 2       | 3       | 4       | 5       | 6       |  |
|-------------------------|---|---------|---------|---------|---------|---------|---------|--|
| Aegis Baseline          |   | Α       | В       | С       | D       | E       | F*      |  |
| Unique SLOC             | 0 | 33575   | 202466  | 411861  | 197600  | 396499  | 190855  |  |
| Adapted SLOC            | 0 | 561755  | 622495  | 746053  | 805333  | 924283  | 981539  |  |
| Reused SLOC             | 0 | 1277188 | 1250023 | 1328931 | 1681511 | 1760161 | 2099404 |  |
| Total Non-PL SLOC       | 0 | 1066689 | 2321131 | 3898714 | 5493417 | 7398031 | 9319753 |  |
| Non-PL Effort (PM)      | 0 | 6544    | 14240   | 23918   | 33702   | 45387   | 57176   |  |
| 1-Product Equiv. SLOC   | 0 | 3306894 | 322136  | 322136  | 322136  | 322136  | 322136  |  |
| 1-Product Equiv. Effort | 0 | 20288   | 1976    | 1976    | 1976    | 1976    | 1976    |  |
| Cum. Equiv. PL SLOC     | 0 | 3306894 | 3629030 | 3951166 | 4273303 | 4595439 | 4917576 |  |
| Cum. PL Effort          | 0 | 20288   | 22264   | 24240   | 26217   | 28193   | 30169   |  |
| PL Effort Savings       | 0 | -13744  | -8024   | -322    | 7485    | 17194   | 27007   |  |
| PL Reuse Investment     | 0 | 13744   |         |         |         |         |         |  |
| Return on Investment    |   | -1      | -58.38% | -2.34%  | 54.46%  | 125.10% | 196.51% |  |





- High level system architecture design for future U.S. Navy combat systems should focus on the product line, instead of platform specific combat systems.
   Plan for the reuse of system components over time.
- System COPLIMO provides a trade space for determining initial investment and future return on investment (ROI) with respect to product line systems versus non-product line systems.
- Initial case study results indicate a strong ROI when using a product line approach for Naval combat systems.
- Applying the engineering product line methodology to combat system architecture design and development needs to happen at the earliest stage of design.





- Develop engineering product line models for additional warfare areas such as Anti-Submarine Warfare (ASW), Electronic Warfare (EW), Cyber Warfare, and others.
- Functional and physical architectural hierarchy can be further decomposed into third and fourth levels to provide greater level of detail at the subsystem level.
- Test Enhanced Data Flow and Architectural Flow Diagrams in simulation software, following the detect, control, engage paradigm for different mission scenarios.
- Collect more empirical data to further validate COPLIMO at a system level, instead of using software engineering default calibrations.
- Continue improving cost estimation fidelity
  - Accounting for individual component complexities in effort model.
  - Using product-specific inputs for subsequent products vs. homogeneity of change percentages.



### References

Apple Inc. 2018. "Compare iPhone Models." Accessed May 1, 2018. https://www.apple.com/iphone/compare

Bureau of the Fiscal Service, U.S. Department of the Treasury. "Prompt Pay Interest Rate History." Accessed April 16, 2018. https://www.fiscal.treasury.gov/fsservices/ gov/pmt/promptPayment/rates.htm

Boehm, Barry, A. Windsor Brown, Ray Madachy, and Ye Yang. 2004. "A Software Product Line Life Cycle Cost Estimation Model." Proceedings of the 2004 International Symposium on Empirical Software Engineering.

Clements, Paul, Susan P. Gregg, Charles Krueger, Jeremy Lanman, Jorge Rivera, Rick Scharadin, James T. Shepherd, and Andrew J. Winkler. "Second Generation Product Line Engineering Takes Hold in the DoD." Biglever Software Inc, Austin, TX, 2014.

Department of Defense Fiscal Year (FY) 2017 President's Budget Submission. 2016. "Navy Justification Book Volume 1 of 1 Shipbuilding and Conversion, Navy." Accessed April 17, 2018. http://www.secnav.navy.mil/fmc/fmb/Documents/17pres/SCN\_Book.pdf

DoD Selected Acquisition Report. 2015. "DDG 51 Arleigh Burke Class Guided Missile Destroyer (DDG 51) As of FY 2016 President's Budget Defense Acquisition Management Information Retrieval (DAMIR)." Accessed May 04, 2018. http://www.esd.whs.mil/Portals/54/Documents/FOID/Reading%20Room/ Selected\_Acquisition\_ Reports/15-F-0540\_DDG\_51\_SAR\_Dec\_2014.PDF

Guertin, Nicholas, and Paul Clements. "Comparing acquisition strategies: Open architecture versus product lines." Program Executive Office Integrated Warfare Systems, Washington DC, 2010.

Hatley, Derek, Peter Hruschka, and Imtiaz Pirbhai. 2000. "Process for System Architecture and Requirements Engineering." New York, NY: Dorset House Publishing.



### References

Lockheed Martin Corporation. 2010. "COMBATSS-21 Scalable combat management system for the world's navies." Washington, DC: Lockheed Martin Mission Systems & Sensors (MS2).

Murphy, Alvin, David S. Richardson, and Terence Sheehan. 2013. "The Importance of System-of-Systems Integration." Leading Edge, February. Accessed August 9, 2017. http://www.navsea.navy.mil/Portals/103/Documents/NSWC\_Dahlgren/ LeadingEdge/CSEI/CombSys.pdf.

Pohl, Klaus, Günter Böckle, and Frank van der Linden. 2005. "Software Product Line Engineering, Foundations, Principles, and Techniques." Berlin Heidelberg, Germany: Springer-Verlag.

Richardson, John, ADM USN. Chief of Naval Operations. 2017. "The Future Navy." Accessed January 9, 2018. http://www.navy.mil/ navydata /people/cno/Richardson/Resource/TheFutureNavy.pdf

SERC RT18. 2012. "Valuing Flexibility Phase II." A013 Final Technical Report SERC-2012-TR-10-2.

Threston, Joseph T. 2009. "The Story of AEGIS: The AEGIS Weapon System." American Society of Naval Engineers. 85-108.

Ukrainsky, Orest, and Travis Nix. 1998. "White Paper for: COMBATSS Combat Management System (CMS)." Lockheed Martin, International Business Development. Naval Electronics & Surveillance Systems-Surface Systems. 1-11.

Whitely, John E. Jr. 2001. "An Introduction to SSDS Concepts and Development." Johns Hopkins APL Technical Digest, Volume 22, Number 4: 516-522.