

An Evaluation of Mature Performance-Based Logistics Programs

William Lucyshyn

Director of Research and Research Professor Center for Public Policy and Private Enterprise School of Public Policy University of Maryland

> 16th Annual Acquisition Research Symposium Naval Postgraduate School May 9th, 2019

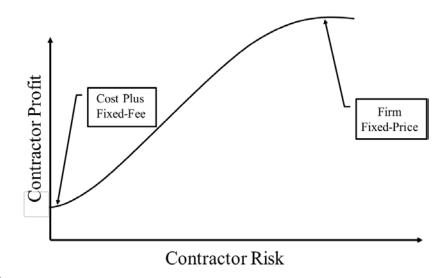
Agenda

- **→** Introduction
- Cases
 - HIMARS
 - Navy Tires
 - Apache Modernized Target Acquisition
 Designation Sight/Pilot Night Vision Sensor (M-TADS/PNVS)
- Conclusion
- **→** Recommendations

Introduction

- Since 2001 Performance-Based Logistics (PBL) has been DoD's preferred approach for product support
- ➡ When used, PBL has reduced system sustainment costs, while improving reliability
 - "the essence of performance-based logistics is buying performance outcomes, not the individual parts and repair the new focus is on buying a predetermined level of availability to meet the [customer's] objectives" (DAU)
- In spite of this performance the dollars obligated to PBL contracts peaked in 2013, and have decreased through 2016
- Our objective was to determine whether a "steady-state" PBL—one that generates continuous value to the customer—can be achieved, and if so, how to structure the optimal arrangement

DoD is not aggressively pursuing PBLs


<u>Advantages of PBL</u>

- Delineates outcome performance goal
 - Buy measurable outcomes based on warfighter performance requirements
- → Ensures responsibilities are assigned
 - PBL metrics clearly define the suppliers' responsibilities.
- → Reduces cost of ownership
 - Reduced inventories, improved supply chain efficiency, replacement of low-reliability components, and increased system availability.
- → Provides incentives for attaining performance goal
 - Aligns the interest of the supplier with that of the customer, provides incentives for the supplier to improve design and processes and implement commercial best practices

PBL Contract Trajectory, Cont.

- → Life cycle of a PBL
 - PBLs can be implemented at component, subsystem, or system level
 - As program matures, transition from cost-plus contract to fixed-price
 - Reliability appears to be correlated with the ownership of spare parts—when the supplier owns a larger portion of spare parts, reliability is higher

Criticisms of PBL

- ➡ Initially, critics argued
 - Gov't loses some control, allowing contractors too much flexibility and contractors may become unreliable
 - Contractors may not support contingency operations, putting the operation at risk
- → More recent belief that PBLs may offer diminishing returns once "low hanging fruit" has been picked

Can PBLs provide continuous value to the customer, over time?

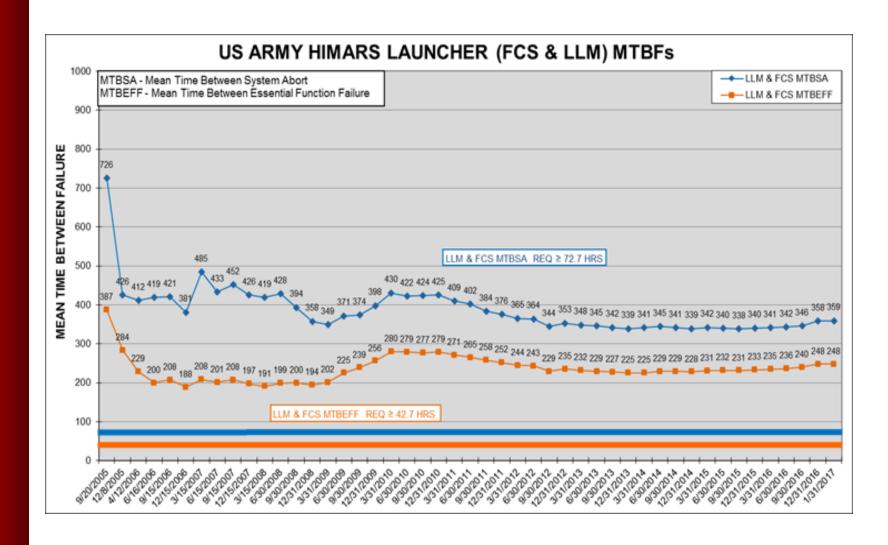
Case: HIMARS

HIMARS

- → The High-Mobility Artillery Rocket System (HIMARS) is a wheeled, agile, rocket and guided missile launcher fixed to an armored truck
- → LM program office coordinates suppliers, depot repairs, inventory, and manages program database
- → LM also employs 31 field service reps who operate with deployed HIMARS units and offer product support on the ground

HIMARS PBL Strategy

- → Three PBL contracts awarded to Lockheed Martin
 - Life Cycle Contractor Support (LCCS I and II), 2004 -2014
 - Life Cycle Launcher Support (LCLS), 2014 -2018
- → LM was responsible for the full support responsibilities for the performance-based product support of the 420 HIMARS and 223 M270 A1 (MLRS)
- **→** Performance metrics:
 - Customer Wait Time (CWT)—Time to fill and ship requisitions
 - Repair Turn Around Time (TAT)—Time required to perform repairs on items to restore them to a serviceable condition



Performance for FY 2017

Customer Wait Time						
CONUS						
Issue Priority	Required (Hours)	Percentage Required	Q1	Q2	Q3	Q4
1	48	Greater than 92%	99.6%	97.3%	99.1%	96.1%
2	72	Greater than 91%	100%	95.5%	98.9%	97.4%
3	96	Greater than 90%	100%	100%	100%	100%
oconus						
Issue Priority	Required (Hours)	Percentage Required	Q1	Q2	Q3	Q4
1	96	Greater than 92%	100%	100%	100%	100%
2	120	Greater than 91%	100%	100%	100%	100%
3	144	Greater than 90%	N/A	N/A	N/A	N/A
Repair Turnaround Time						
Bands	Repair TAT in Days	Percentage Required	Q1	Q2	Q3	Q4
Band 1	1-35 Days	Equal to or greater than 65%	78.4%	84.4%	74.8%	77.8%
Band 2	>90 Days	-25% per occurrence	0.0%	0.0%	0.0%	0.0%

Program also Tracked System Reliability

HIMARS PBL Performance

- → The HIMARS PBL program met or exceeded all performance metrics
 - Deployed FSRs enabled a reduction in test units from 6 to 1, at each battalion
 - Also enabled a "fix forward" capability
 - 99% average system readiness rate
 - Mandated field analysis reports found that reliability peaked in correlation with the number of operational hours for deployed units
- → HIMARS program transitioned to cost-plus fixed fee contract in 2014, transferring inventory management to government
 - The contract specifies "stock objectives"
 - Shifts risk back to the government—and limits the contractor's flexibility to leverage economic efficiencies buying spares
 - Reduced incentives to invest in program improvements

Case: Navy Tires

Navy Tires Background

- → Navy Inventory Control Point (NAVICP) managed aircraft tires as a commodity, maintained a 60,000 tire inventory, long lead-times, and high overall cost
- → After success with PBLs to transform other supply chains, NAVICP adopted a PBL strategy for tire inventory management in 2000

Navy Tires PBL Strategy

- → 5 year FFP PBL contract (with two five year options) was awarded to Michelin in 2001
 - Michelin was prime contractor, manufacturer, and supplier
 - Lockheed served as a sub-contractor, handling supply chain services: demand forecasting, order fulfillment, and inventory management
- Initial Contract required:
 - 95% on-time fill rate—48 hours CONUS, 96 hours OCONUS
 - Reduce retail inventories to a 90-day operating level
 - Maintain a surge capability at a rate of up to twice the monthly demand rate of each tire type
- ➡ In 2016 LM was awarded a FFP contract, with the same requirements

Navy Tires PBL Performance

- ► LM provided a service center the Lifetime Support Command Center (LSCC), that was available 24/7
- → Contractor exceeded the on-time delivery metric of 95%
 - On-time delivery of 98.2% CONUS and 98.7% OCONUS
- Navy inventory of wholesale tires was reduced from 60,000 tires to zero
- → High level of availability and reduced delivery timeframes reduced the need for local retail customer inventory levels—they were reduced by 66%
- → Contractor also assumed responsibility for retrograde pick-ups and disposal of scrapped tires

AH-64 Apache M-TADS/PNVS

Modernized-Target Acquisition and Designation Sight/Pilot Night Vision Sensor (M-TADS/PNVS) system

- → AH-64 Apache is a high-powered attack helicopter
- ★ Key to the AH-64 capability is M-TADS/PNVS system
- → The M-TADS/PNVS is a modular system, requiring faulty components to be sent off-site for repairs
- → The Army transitioned to PBL contract in 2007 to improve efficiency

M-TADS/PNVS PBL Strategy

- → Apache PBL program is made up of three major functions
 - Repair operations: performed at five special repair activities (SRAs)—Largest is a PPP with Letterkenny Army Depot
 - Logistics operations: oversee assets, distribution of repair parts, packing, handling, shipping, and transportation, and operation of storage facilities
 - Continuous improvement areas: Contractor does demand planning, obsolescence management, and work to improve reliability and maintainability
- → PBL supports 670 aircrafts worldwide
- → Performance is based on supply availability and FFP contract tied to number of flight hours in nine flight hour bands, separated by approximately 20,000 hours
 - Band 1 is maximum of 87,000 hours
 - Band 10 is a maximum of 240,000hrs

M-TADS/PNVS PBL Performance

- → Under the Apache PBL program, LM decreased sustainment costs, improved supply availability, and lowered logistics and maintenance costs
 - As of August, 2018, supply availability exceeds
 99%
 - Average time between system failures has increased by 70%
 - Annual sustainment costs dropped by 58%

Program efficiencies enabled the Army to negotiate a price reduction of approximately 10% in the most recent contract awarded in 2016

Conclusions

- → PBL is still not being aggressively pursued throughout the DoD
- → PBL contracts have the potential to dramatically reduce the costs of sustaining weapon systems, and incentivizing higher levels of performance throughout the system's life-cycle
- → However, the power of PBL lies in affording the provider the discretion and flexibility to select the optimal mix of inventory levels, maintenance activities, and technology upgrades
- ➡ Shifting one or more of these functions to the government can distort the PBL paradigm and may lead to reductions in performance, innovation, and cost savings

Recommendation 1

- **▶** Promote PBLs as proven strategy for weapons systems throughout the life-cycle
 - The benefits of PBL contracts continue to accrue as systems age; technological refresh and modernization initiatives create new opportunities as systems age
 - PBL contracts may also be perceived as more expensive than support provided through a more traditional, transactional approach--however, aggregated at the fleet level, costs decrease as reliability improves
 - The DoD should renew its commitment to PBL in order to improve weapon system operations and reduce costs

Recommendation 2

- **▶** Ensure acquisition workforce is educated and trained to execute successful PBL contracts
 - PBL arrangements can be more challenging to develop and manage than the more traditional transactional contracts
 - It can be especially challenging to structure contracts with the appropriate incentives and penalties to motivate industry to provide superior support while reducing costs
 - The acquisition workforce must be trained on how to structure PBL contracts with suitable metrics and incentives to achieve program objectives

Recommendation 3

→ Structure PBL contracts appropriately

- Ensure proper alignment of government objectives and provider incentives
- Consider scalability and usage requirements in developing product support strategy—when possible, PBL contracts should tie price to actual system usage
- Use contract length to incentivize suppliers to improve reliability and reduce costs