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Preface & Acknowledgements 

Welcome to our Tenth Annual Acquisition Research Symposium! We regret that this 
year it will be a “paper only” event. The double whammy of sequestration and a continuing 
resolution, with the attendant restrictions on travel and conferences, created too much 
uncertainty to properly stage the event. We will miss the dialogue with our acquisition 
colleagues and the opportunity for all our researchers to present their work. However, we 
intend to simulate the symposium as best we can, and these Proceedings present an 
opportunity for the papers to be published just as if they had been delivered. In any case, we 
will have a rich store of papers to draw from for next year’s event scheduled for May 14–15, 
2014! 

Despite these temporary setbacks, our Acquisition Research Program (ARP) here at 
the Naval Postgraduate School (NPS) continues at a normal pace. Since the ARP’s 
founding in 2003, over 1,200 original research reports have been added to the acquisition 
body of knowledge. We continue to add to that library, located online at 
www.acquisitionresearch.net, at a rate of roughly 140 reports per year. This activity has 
engaged researchers at over 70 universities and other institutions, greatly enhancing the 
diversity of thought brought to bear on the business activities of the DoD.  

We generate this level of activity in three ways. First, we solicit research topics from 
academia and other institutions through an annual Broad Agency Announcement, 
sponsored by the USD(AT&L). Second, we issue an annual internal call for proposals to 
seek NPS faculty research supporting the interests of our program sponsors. Finally, we 
serve as a “broker” to market specific research topics identified by our sponsors to NPS 
graduate students. This three-pronged approach provides for a rich and broad diversity of 
scholarly rigor mixed with a good blend of practitioner experience in the field of acquisition. 
We are grateful to those of you who have contributed to our research program in the past 
and encourage your future participation. 

Unfortunately, what will be missing this year is the active participation and 
networking that has been the hallmark of previous symposia. By purposely limiting 
attendance to 350 people, we encourage just that. This forum remains unique in its effort to 
bring scholars and practitioners together around acquisition research that is both relevant in 
application and rigorous in method. It provides the opportunity to interact with many top DoD 
acquisition officials and acquisition researchers. We encourage dialogue both in the formal 
panel sessions and in the many opportunities we make available at meals, breaks, and the 
day-ending socials. Many of our researchers use these occasions to establish new teaming 
arrangements for future research work. Despite the fact that we will not be gathered 
together to reap the above-listed benefits, the ARP will endeavor to stimulate this dialogue 
through various means throughout the year as we interact with our researchers and DoD 
officials.  

Affordability remains a major focus in the DoD acquisition world and will no doubt get 
even more attention as the sequestration outcomes unfold. It is a central tenet of the DoD’s 
Better Buying Power initiatives, which continue to evolve as the DoD finds which of them 
work and which do not. This suggests that research with a focus on affordability will be of 
great interest to the DoD leadership in the year to come. Whether you’re a practitioner or 
scholar, we invite you to participate in that research. 

We gratefully acknowledge the ongoing support and leadership of our sponsors, 
whose foresight and vision have assured the continuing success of the ARP:  
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 Program Executive Officer, SHIPS 
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 Office of Procurement and Assistance Management Headquarters, 

Department of Energy 
 Director, Defense Security Cooperation Agency 
 Deputy Assistant Secretary of the Navy, Research, Development, Test, & 

Evaluation 
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 Director, Office of Small Business Programs, Department of the Navy 
 Director, Office of Acquisition Resources and Analysis (ARA) 
 Deputy Assistant Secretary of the Navy, Acquisition & Procurement 
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Sifat Kalam—Kalam received her BS in industrial engineering from the University of Oklahoma in 
2010 and will complete her MS degree in May 2013. She is currently on educational leave of absence 
from The Boeing Company and will be joining Boeing Defense, Space & Security (BDS) as a supply 
chain specialist after completion of her MS degree. Her current research is in heuristics and meta-
heuristics based algorithms to model acquisition and preventive maintenance frameworks for multi-
component systems. [lipa0335@ou.edu] 

Kash Barker—Barker is an assistant professor in the School of Industrial and Systems Engineering 
at the University of Oklahoma. Dr. Barker and his students in the Risk-Based Decision Making 
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Abstract 
As many large-scale DoD systems age, and due to budgetary and performance efficiency 
concerns, there is a need to improve the decision making process for system sustainment, 
including maintenance, repair, and overhaul (MRO) operations and the acquisition of MRO 
parts. To help address the link between sustainment policies and acquisition, this work 
develops a greedy heuristic–based local search algorithm to provide a system maintenance 
schedule for multi-component systems, coordinating recommended component maintenance 
times to reduce system downtime costs thereby enabling effective acquisition.  

Introduction 

Large organizations such as the Department of Defense (DoD) have to devote a 
significant amount of their budgets to system maintenance. According to a 2007 
Government Accountability Office (GAO) report, the DoD spends approximately 40% of its 
budget on operations and management (O&M) activities to ensure system readiness 
($209.5 billion in 2005). GAO reported that since fiscal year 2001, the DoD’s O&M costs are 
increasing, and the Air Force, in particular, had to increase its O&M cost by 29%. As many 
large-scale DoD systems age, and due to budgetary and performance efficiency concerns, 
there is a need to improve the decision making process for system sustainment, including 
maintenance, repair, and overhaul (MRO) operations and the acquisition of MRO parts.        

The DoD’s acquisition costs have seen growth in recent years (GAO, 2013). The 
GAO (2013) recommended that the DoD improve its strategic management plan to make 
maintenance supply chain operations more cost effective. Further, the DoD was advised to 
“link acquisition and sustainment policies” for depot maintenance improvement and ultimate 
cost efficiency (GAO, 2011). To help address the link between sustainment policies and 
acquisition, this work develops a framework to provide a system maintenance schedule for 
multi-component systems. As the multiple components of a system have their own 
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lifecycles, an efficient means to schedule overall system maintenance should consider these 
individual components to maximize long-term availability of the system. This framework 
coordinates recommended maintenance times, such as those found as a result of reliability 
centered maintenance (RCM) or from original equipment manufacturer (OEM) suggestions, 
to formulate a system-level maintenance schedule for a finite time horizon. Such a 
framework will increase the acquisition efficiency of components with a more effective 
system-level maintenance schedule.     

With the recent computational advances, several preventive maintenance models 
have been proposed for complex multi-component systems considering component 
interactions. In the preventive maintenance scheduling problem (PMSP), different kinds of 
component interactions are taken into account. Interaction among components can be 
economic dependence, structural dependence, and/or stochastic dependence (Thomas, 
1986). In a basic sense, economic dependence among system components means that the 
cost of joint repair is different from cost of individual repair (Dekker, Wildeman, & van der 
Duyn Schouten, 1997), suggesting that performing repair operations for multiple 
components at once can be done with less expense than for single components.   

Researchers have considered different model formulations, as well as solution 
techniques, to address preventive maintenance decision making. Stinson and Khumawala 
(1987) formulated a heuristics-based mixed integer linear program (MILP) model for a finite 
horizon preventive maintenance problem for maintaining machines in series. Budai, 
Huisman, and Dekker (2006) proposed a heuristics-based MILP solution for scheduling 
railroad network maintenance. Other few noteworthy approaches are Bayesian network 
model (Celeux, Corset, Lannoy, & Ricard, 2006), goal programming for a multi-objective 
problem (Bertolini & Bevilacqua, 2006), and dynamic programming (Dekker, Wildeman, & 
Van Egmond, 1996).   

In terms of algorithm development, Dekker, Smit, and Losekoot (1991) presented an 
optimal maintenance model using a set-partitioning algorithm for multiple maintenance 
activities. One downside of their model was that they considered each activity time to be 
negligible relative to the total planning horizon. Later Dekker et al. (1996) solved the above-
mentioned problem with a dynamic programming formulation, concluding that the dynamic 
algorithm is a good heuristic for rolling horizon–based problems which can incorporate 
short-term system information for decision support. Dekker et al. (1997) provided a review of 
maintenance models for multi-component systems, which covered economically dependent 
systems. The Markov decision chain–based approach was also studied by Dekker et al. 
(1996) for the multi-activities maintenance problem which was applicable to systems 
consisting of many components. Previous Markov chain–based models were limited to few 
components. An opportunistic maintenance policy was modeled by Gürler and Kaya (2002) 
and van der Duyn Schouten and Vanneste (1993) for identical multi-component systems. 
Sheu et al. (1996) modeled a similar kind of problem with a two-stage opportunistic policy. In 
the case of non-identical components maintenance, the tradeoff between the repair cost of 
one component versus another should be considered, including the resulting increase in the 
complexity of the model. 

PMSP remains a very active area of research. Little work in this field has used 
heuristics and meta-heuristics based methodologies to model preventive maintenance 
framework (Nicolai & Dekker, 2008). A new meta-heuristic based on a genetic algorithm was 
applied in train maintenance scheduling problems by Sriskandarajah, Jardine, and Chan 
(1998), primarily optimizing cost. Nicolai and Dekker (2008) presented a review of 
preventive maintenance and recommended that more researches need to be done in this 
area developing more heuristic and meta-heuristic approaches like simulated annealing and 
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local search. Meta-heuristic based algorithms have proven very successful for flowshop 
scheduling problems (Pan & Ruiz, 2012), which have similar characteristics to preventive 
maintenance scheduling.   

This work presents a greedy heuristic–based local search algorithm for preventive 
maintenance of multiple components which would be a new contribution in this field of 
research. We develop a local search–based algorithm to minimize the total maintenance 
cost of a system over a finite planning horizon. This paper is organized as follows. The 
Methodological Development section provides a detailed description of the different 
components and procedure of our proposed schedule algorithm for a multi-component 
system. The next section, Greedy Heuristic with Local Search Algorithm, provides 
experimental results for a presented multi-component scheduling problem. We conclude our 
paper with the Experimental Results section and some concluding remarks. 

Methodological Development 

Here we develop a new formulation and solution algorithm to address preventive 
maintenance scheduling for a multi-component system. It is assumed that maintenance 
results in a “good as new” condition. 

Baseline individual component maintenance times for planning horizon T (i.e., 
system-in-use time) are known and recommended based on a mean time between failure 
(MTBF) calculation (e.g., by RCM or OEM calculations). We assume these component 
maintenance times are given in their in-use-time or up-time. Our goal is to suggest to alter 
the recommended maintenance schedule for a multi-component system in a joint manner for 
as many components as possible. Performing many individual maintenance events at 
recommended schedules can potentially lead to cost savings due to reduced setup costs 
and reduced downtime. However, varying too far from recommended MTBF guidance can 
lead to unnecessary maintenance (in the earliness situation) and risk of failure (in the 
tardiness situation). Earliness refers to the performance of maintenance earlier than 
recommended, with tardiness representing the performance of maintenance at a time later 
than recommended. As such, there are penalties associated with both earliness and 
lateness, as well as a penalty for system downtime while maintenance is being performed.  

Different potential maintenance schedules can be compared and evaluated using a 
penalty function approach (Yousefi & Yosuff, 2013). In this approach, a penalty function can 
be achieved by quantifying setup-related costs into setup penalties, downtime costs into 
downtime penalties, related expense (i.e., costs of unnecessary maintenance) of earliness 
into earliness penalties, and potential failure costs of tardiness situation into tardiness 
penalties. By implementing this approach, a maintenance schedule can be found which will 
minimize these penalties. These penalties, as well as other notation, are defined as follows: 
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Decision variables for the scheduling formulation include the following: 

 

Performing joint repair has the potential to save maintenance cost because for many 
multi-component systems it is possible to perform component maintenance simultaneously. 
Thus total repair time for joint maintenance depends on individual instance and can be 
predicted from previous system maintenance data. Considering all these penalties, our goal 
is to develop an algorithm that will schedule system maintenance time such that total 
penalties of system maintenance are minimized over the given planning horizon T. The 
basic optimization problem is conceptualized in Equation 1, where ܥௌ	ܴ represents total 
setup penalties for planning horizon T, and ܥ௟

௝represents penalties associated with jth 

system repair of component l. ܥ௟
௝  includes penalties for downtime, earliness, and tardiness 

for component l during jth system maintenance. Decision variable ݖ௟
௝ determines whether 

component l will be repaired at jth system maintenance.   

T Planning horizon 
n Number of components in the system 

CS System setup penalty per maintenance 
ܶ݉ ,݈
݇  kth maintenance time for component l 

CE,l Earliness penalty for component l, per unit time 
CL,l Tardiness penalty for component l, per unit time 
CD System downtime penalty per unit time 

݈,ݎܶ  Component maintenance duration for component l 
δ Construction phase time-span parameter where δ ϵ (0, 1] 
γ Joint maintenance time parameter γ ϵ (0, 1] 
∆j Deviation of individual component maintenance times from jth system maintenance 
ܶ݉ ݔܽ  Maximum time-span of construction phase 
ܶ	ܿ    Construction phase time-span  
ܶ݉1 Set of first component maintenance time 
ܶ݉2 Set of second component maintenance time 
ܿߨ  Candidate solution 
݀ߨ  Discard solution 
ܵܿ  Candidate combination set 
ܵ݀  Discard set 
ܵ Algorithm solution vector 

 

݉ݐ
݆   jth system maintenance time 
R Total number of system maintenance events scheduled in planning horizon T 

݈ݔ	
݆  If feature earliness is present in component l for maintenance j (݈ݔ

݆ ൌ 1) or not (݈ݔ
݆ ൌ 0)

݈ݕ
݆  If feature tardiness is present in component l for maintenance j (݈ݕ

݆ ൌ 1) or not (݈ݕ
݆ ൌ 0)

݈ݖ
݆  If component l should be repaired at time ݉ݐ

݆ ݈ݖ)
݆ ൌ 1) or not (݈ݖ

݆ ൌ 0) 
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Equation 2 presents the actual objective function and constraints for the problem above. 

One of the decision variables is the system-in-use time at which system maintenance should 
be performed. As maintenance scheduling is multistage (e.g., maintenance is a repeated 
event), the time at which maintenance is scheduled for iteration j is ݐ௠

௝  This work will solve 

Equation 2 over a finite time horizon for several MRO stages, finding a series of ݐ௠
௝  values at 

which maintenance should occur. OEM-recommended individual component maintenance 
times are denoted by ௠ܶ,௟

௞ .  Here ݐ௠
௝  values attempt to coordinate the downtime of several 

components to maximize long-term availability of the system. Equation 2 conceptualizes an 
availability cost problem, where ݖ௟

௝ determines whether component l should be repaired at 

time ݐ௠
௝  according to the cost function which penalizes unavailability. Equation 2 also 

attempts to improve upon ௠ܶ,௟
௞  to minimize the deviation of individual component 

maintenance times from system maintenance time, found in the neighborhood of ௠ܶ,௟
௞ . As 

such, this work provides the maintenance schedule for the system, whether the jth 
maintenance operation will repair an optimal subset of the n components in the system.      

Elements of the above formulation are given more detail as follows. The actual 
structure of the penalty function here can vary due to decision maker preferences. 

Penalty Function   

Our objective is to minimize total system maintenance penalty over a finite time 
horizon T. Our penalty function is the presented objective function in Equation 2. This total 
penalty function consists of system setup penalty, system downtime time penalty, and 
penalty for any deviation of individual component maintenance times from system 
maintenance time. Note that we are not penalizing for the cost of performing actual repair, 
including the cost of acquisition and the cost of labor, among others, under the assumption 
that this cost is the same for individual repair and joint repair.    

min
݈ݖ
݆
ܥܵ 	ܴ ൅෍ ෍ ݈ܥ

݆
ܴ

݆ൌ1
݈ݖ
݆

݊

݈ൌ1
 

s. t. ݈ݖ
݆ ∈ ሼ0,1ሽ
MRO requirement constraints

			 

(1)

 

min
݉ݐ
݆
	 ܥܵ 	ܴ ൅෍ ෍ หܶ݉ ,݈

݇ െ ݉ݐ
݆ ห

ܴ

݆
݈,ܧܥ ݈ݔ

݆
݊

݈ൌ1

൅෍ ෍ ൫ܶ݉ ,݈
݇ െ ݉ݐ

݆ ൯
2ܴ

݆
݈ݔ	݈,ܮܥ

݆ ൅ 	෍ ෍ ߛܦܥ
ܴ

݆
݈ݖ݈,ݎܶ

݆
݊

݈

݊

݈ൌ1
 

s. t. ܴ ൐ 0
݉ݐ
݆ ൐ 0

݈ݔ
݆ ∈ ሼ0,1ሽ

݈ݕ
݆ ∈ ሼ0,1ሽ

݈ݖ
݆ ∈ ሼ0,1ሽ
γ ∈ ሺ0,1ሿ

 

(2)
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System Setup Penalty  

The setup penalty component in Equation 3 accounts for the time to arrange for 
system maintenance. A system setup penalty penalizes all associated costs for 
maintenance setup, charged only once regardless of the number of multiple components 
involved in a maintenance work. Not included is component setup time, as that is not 
expected to be a factor in determining individual or joint maintenance; any maintenance 
performed on a component would require component setup time. Fixed system penalty per 
maintenance work ܥௌ	 is known. 

 

Earliness Penalty  

There is a penalty for executing the component maintenance at a time other than the 
maintenance recommended by the OEM. If system maintenance is scheduled earlier than 
recommended individual component maintenance, then there is a penalty for early 
maintenance work for that component. This penalty attempts to penalize the performance of 
maintenance unnecessarily too far in advance of the OEM recommendation, and it is a 
function of (i) the total amount of earliness determined by ห ௠ܶ,௟

௞ 	െ ௠ݐ
௝ ห (ii) the earliness 

penalty ܥா,௟, and (iii) whether component l maintenance is performed early, determined by 

௟ݔ
௝.   

 

Tardiness Penalty Cost  

If system maintenance is scheduled later than individual component maintenance, 
then there is a penalty for late maintenance work for that component. This penalty is a 
function of the deviation of recommended individual component maintenance times from the 
actual system maintenance time. The penalty is higher for tardiness than earliness here due 
to aversion to performing maintenance later than recommended. This is represented, in part, 

by the square on the amount of tardiness time, ൫ ௠ܶ,௟
௞ 	െ ௠ݐ

௝ ൯
ଶ
. Other elements include 

tardiness penalty ܥ௅,௟ and whether component l maintenance is performed after the OEM 

suggested maintenance time, determined by ݕ௟
௝. 

 

System Downtime Cost  

There is a cost associated with system downtime due to an unproductive or idle 
system. The system downtime penalty per unit time ܥ஽ is known. Expected component 
maintenance duration for component l is parameterized as ௥ܶ,௟.  Parameter ߛ represents the 
percentage of total expected component maintenance duration (i.e., ∑ ௥ܶ,௟ for all l that are 
present in jth system maintenance) that would be the expected joint maintenance duration 
for jth system repair. We assume this ߛ value to be constant for all iterations. The value of 
joint maintenance time parameter ߛ can be chosen from the historical data of a related 
system such that ߛ	߳	ሺ0, 1ሿ. The higher the ߛ parameter value, the higher the downtime 
maintenance cost would be. Higher ߛ means less time savings in joint repair compared to 

System setup penalty ൌ ܥܵ ܴ (3)
 

Earliness penalty ൌ ෍ ෍ หܶ݉ ,݈
݇ െ ݉ݐ

݆ ห
ܴ

݆
݈ݔ݈,ܧܥ

݆ 	
݊

݈ൌ1
 (4)

 

Tardiness penalty ൌ ෍ ෍ ൫ܶ݉ ,݈
݇ െ ݉ݐ

݆ ൯
2ܴ

݆
݈,ܮܥ ݈ݕ	

݆
݊

݈ൌ1
 (5)

 



 

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=556 - 

=

separate maintenance. ߛ	reaches a value of 1 when the expected joint repair time is equal to 
the summation of individual component repair times; those are present in jth joint repair. In 
other words, the expected downtimes are the same for joint repair and separate repair when 
ߛ ൌ 1.     

This value defines joint maintenance times for a multi-component system. The term 
௟ݖ
௝ determines whether the jth maintenance operation for component l is performed.  

 

Construction Phase Time-Span Parameter (ࢾ) 

At the beginning, construction phase time-span parameter delta ሺࢾሻ is chosen such 
that ࢾ	߳	ሺ0, 1ሿ. This ࢾ value is kept constant throughout the algorithm. Discussed later, the 
algorithm solution is very sensitive to this delta value and needs to be tuned according to 
individual instance. A detailed sensitivity analysis and tuning recommendation of ࢾ are 
presented later.   

Weibull Distribution   

The recommended individual maintenance times are assumed here to be the MTBF 
from a two-parameter Weibull distribution. The Weibull distribution is well known in reliability 
analysis in describing the time between failures for components. MTBF for a Weibull 
distribution is found in Equation 7, where ߚ is the shape parameter, ߟ	is the scale parameter, 
and	Γ is the gamma function.   

 

Greedy Heuristic With Local Search Algorithm 

The maintenance optimization model described previously is solved with a proposed 
iterative Greedy Heuristic with Local Search Algorithm (GHLSA). The proposed algorithm is 
similar to the generic structure of the Greedy Randomized Adaptive Search Procedure 
(GRASP; Feo & Resende, 1995]. In contrast to the two phases of GRASP, our proposed 
algorithm has three phases: (1) a construction phase, (2) an improvement phase, and (3) a 
local search phase. In the GRASP algorithm, the initial solution is constructed using a 
randomized sampling technique, whereas our algorithm uses a greedy heuristic to construct 
an initial partial solution. We also use an additional improvement phase, where the greedy 
heuristic–based improvement ends. An overview of the proposed algorithm is presented in 
Figure 1.  

System downtime cost ൌ ෍ ෍ ߛܦܥ
ܴ

݆
݈ݖ݈,ݎܶ

݆
݊

݈
 (6)

 

MTBF ൌ ሺ1߁ߟ ൅
1
ߚ
ሻ (7)
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 Pseudo-Code Overview of the Proposed Greedy Heuristic With 
Local Search Algorithm (GHLSA) 

In brief, the three phases of the algorithm achieve the following: 

1. The construction phase determines how many components in the system 
should be initially examined to include in system maintenance of multiple 
components and an initial estimate for the time at which that multi-component 
maintenance operation should occur.  

2. The improvement phase improves the construction phase result by dividing 
the set of multiple components into two sets (a candidate set and a discard 
set) to determine whether dividing the maintenance operation will produce a 
lower penalty than the construction phase. This phase iterates by removing a 
component out of the candidate set one at a time and placing it in the discard 
set and calculating penalty improvement. 

3. The local search phase focuses on the resulting candidate set from the 
improvement phase and iterates across the different times associated with 
recommended component maintenance to balance the penalties of earliness 
and tardiness of individual components. 

These three phases are performed at each iteration j, thereby resulting in the set of 
components involved in the jth system maintenance operation and the time at which the jth 
system maintenance operation should be performed. The algorithm stopping criterion is the 
pre-determined planning horizon T. Let I be the set of discrete time periods where each 
element represents recommended (e.g., from RCM or OEM suggestions) repair times of a 
component during planning horizon T.     

The final solution of this algorithm is essentially an R × 1 vector for all system 
maintenance operations, where each element of the vector represents the recommended jth 
system maintenance. The result of each iteration j is referred to as the jth partial solution of 
the over final solution. Each element of the algorithm solution is comprised of two parts: ߨ௝ 

[0] refers to the set of repair times ቄ ௠ܶ,୅భ
௔భ , … , ௠ܶ,୅೙

௔೙ ቅ of components to be performed jointly at 

the jth system maintenance operation (where ௠ܶ,୅೙
௔೙  is the ܽ௡ maintenance operation for 

component A௡), and  	ߨ௝[1] refers to the recommended time ݐ௠
௝  at which the jth system 

procedure GHLSA () 

 begin  

  I ← InputInstance { }; 

  for GHLSA stopping criterion not satisfied →  

݆ߨ   
0 ← InitialPartialSolution (I,δ); 

݆ߨ   
′  ← GHBI (݆ߨ

0); 

݆ߨ   
" ← LocalSearch (݆ߨ

′ ); 

   UpdateSolution (݆ߨ
"); 

  endfor 

  return OptimalSolutionFound; 

 end GHLSA;   
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maintenance is to be performed. For example, ߨ௝ ൌ ቂ	ߨ௝ሾ0ሿ, ௝ሾ1ሿቃߨ ൌ ൣ൛ ௠ܶ,୅
௔ , ௠ܶ,୆

௕ , ௠ܶ,େ
௖ ൟ, ௠ݐ

௝ ൧ 

suggests that the ath maintenance operation of component A, the bth maintenance of 
component B, and the cth maintenance of component C will all be performed jointly at time 
t௠
௝ , the time chosen for the jth system maintenance operation to occur. Thus during each 

iteration of this algorithm, it finds an element which we refer to as a partial solution for 
algorithm solution set. At each iteration j, the three phases of the algorithm are performed, 
each of which is explained in detail subsequently. Through these three phases of 
construction and improvement, a partial solution is found, and this partial solution is then 
added to the solution set to update the algorithm solution for the scheduling maintenance 
problem. This iterative process is completed when the solution is found for the given 
planning horizon. 

Using input instance I and chosen value ߜ, an initial partial solution ߨ௝
଴ is created in 

the construction phase. During the improvement phase, this initial partial solution ߨ௝
଴ is 

improved using greedy heuristic–based procedure GHBI. This improved partial solution is 
represented by ߨ௝

ᇱ.. During the local search phase of the ݆th iteration, partial solution ߨ௝
ᇱ.is 

further improved using the LocalSearch procedure, and the third phase returns the final 
partial solution ߨ௝

". After finding the best partial solution ߨ௝
" in the third phase, we need to 

update the existing algorithm solution S and input set I. This partial solution '' is then added 
as the ݆th element to solution vector S, to update the algorithm solution. All scheduled 
component maintenance times ௠ܶ,௟

௞  at iteration j are removed from set I for the next ሺ݆	 ൅
	1ሻst iteration, and the rest of the unscheduled component repair times of set I are updated 
according to their earliness or tardiness deviation for jth system maintenance.   

Phase 1: Initial Partial Solution Construction 

At each iteration j, the first phase is a construction phase where the initial partial 
solution is generated. General pseudo-code for this partial solution construction phase is 
presented in Figure 2. ୫ܶୟ୶ is the time duration which expresses the maximum time-span 
which includes all the component repair times to be initially considered for repair during jth 
system maintenance. The construction phase time-span is selected according to the ߜ 
value, which reduces the length of time originally considered by proportion ߜ. All component 
repair times ௠ܶ,௟

௞ during time-span Tc are included in the joint repair component set for the 
initial partial solution ߨ௝

଴	 for iteration j. This constructs the first part of the initial partial 

solution, ߨ௝
଴[0]. 

Step 1.1. Calculate ࢞ࢇ࢓ࢀ 

The maximum time-span of construction phase  ୫ܶୟ୶ needs to be calculated. This  
୫ܶୟ୶ value represents the time duration between the recommended time for the earliest first 

repair of all components and the recommended time for the earliest second repair. Let the 
sets of first and second repair times of each component out of all unscheduled maintenance 
times be ௠ܶଵ and ௠ܶଶ, respectively. The minimum value of set ௠ܶଵ is denoted by 
EarliestFirstRepairTime, and the minimum value of set ௠ܶଶ is expressed by 
EarliestSecondRepairTime in the pseudo-code in Figure 2. The absolute value of their 
difference is the value of time-span ୫ܶୟ୶ 

Step 1.2. Calculate ࢉࢀ    
Construction phase time-span ௖ܶcan be calculated by multiplying the value of the 

maximum time-span of construction phase ୫ܶୟ୶ by ߜ. In a sense, ߜ is the scope of 
granularity. A small value of ߜ suggests a tight granularity of the maintenance option set, 
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meaning that a shorter time frame will be considered for ௖ܶ with which to consider multiple 
component maintenance options. For a larger value of ߜ, ୫ܶୟ୶ approaches ୫ܶୟ୶ value. And 
௖ܶ is equal to ୫ܶୟ୶ when ߜ	 ൌ 1.   

Step 1.3. Partial Solution Component Set 

Insert all recommended component maintenance times  ௠ܶ,௟
௞  that are originally 

scheduled during construction phase time-span ௖ܶ  into the joint repair component set ߨ௝
଴[0] 

of the initial partial solution ߨ௝
଴. If there are ݊௠ଵ elements in set ௠ܶଵ, then it would take ݊௠ଵ 

iterations to construct the initial partial solution component set.         

The time at which system maintenance is performed on the components in ߨ௝
଴[0] 

constitutes the second part of the initial partial solution, ߨ௝
଴[1], which can be chosen 

according to several heuristics including 

 the mid-point of time-span ௖ܶ, 

 a component repair time of component set ߨ௝
଴[0] where the deviation ∆௝ is 

minimized, or 

 the earliest component repair time (i.e., the minimum value of component set 
௝ߨ
଴ [0]). 

In our implementation, the third heuristic above is used to construct the later part of 
the initial partial solution. That is, the second part of the initial partial solution, ߨ௝

଴ [1], is 
chosen according to the heuristic convention of scheduling system repairs at the earliest 
component repair time. Thus, this phase schedules all possible component maintenance 
during time-span ௖ܶ 	at the earliest possible time to produce an initial partial solution.   

 

 Pseudo-Code for GHLSA Phase 1, the Partial Solution Construction 
Phase 

Phase 2: Greedy Heuristic-Based Improvement (GHBI)   

During the second phase of iteration j, the algorithm improves the initial partial 
solution ߨ௝

଴ constructed in Phase 1, focusing primarily on the components in ߨ௝
଴[0] to be 

repaired jointly (e.g., ൛ ௠ܶ,୅
௔ , ௠ܶ,୆

௕ , ௠ܶ,େ
௖ ൟ). A search is performed in the neighborhood of ߨ௝

଴ to 

procedure InitialPartialSolution (I,δ) 

 begin  

݆ߨ  
0 ← { }; 

  ܶ݉ ݔܽ  ← |EarliestFirstRepairTime - EarliestSecondRepairTime |; 

                       ݊݉1 ← |ܶ݉ 1|         

                       ܶܿ ߜ ←  ∗ ܶ݉ ݔܽ  

  for  i  ← 1 to ݊݉1 do 

   if  ܶ݉ 1ሾ݅ሿ  <  ܶܿ  then          

݆ߨ    
݆ߨ ← 0

0  U  ݉ܶ1ሾ݅ሿ  ; 

   endif 

  endfor 

  return  ݆ߨ
0; 

end  InitialPartialSolution; 
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find a better partial solution. This combination of component repair times is improved 
according to a greedy heuristic of removing the last-one-out (i.e., latest component repair 
time) from existing combinations. 

Let the initial partial solution ߨ௝
଴ be the existing partial solution ߨ௝

ᇱ (i.e., jth solution 

element). If there are ݊௣ elements in the joint repair component set (ߨ௝
଴[0]) of the existing 

partial solution, then there would be ݊௣ possible combinations of component sets that can be 
created according to the last-one-out greedy heuristic. The best combination set among ݊௣ 

possible combinations is selected in (݊௣ െ 1) iterations. At each iteration of the (݊௣ െ 1), two 
temporary partial solution elements called candidate solution ߨ௖ and discard solution ߨௗ 
(i.e., temporary jth and (j+1)st) are generated from existing partial solution ߨ௝

ᇱ. The best 
candidate solution is selected as the new existing partial solution ߨ௝

ᇱ according to an 
acceptance criterion. Each iteration of this greedy heuristic–based improvement method, 
which is the ImproveCombination procedure in Figure 3, is described below.   

Step 2.1. Determining ࢐࣊
ᇱሾ૙ሿ  

The first part of a solution element presents the component repair times to be 
repaired jointly. Improved combination of this joint repair component set is searched using 
the last-one-out heuristic. To generate an improved combination of the jth solution element, 
two sets (i.e., candidate combination set ܵ௖ and discard set ܵௗ) are created from the existing 
joint repair component set. The candidate set will eventually be repaired during the jth 
iteration, and the discard set will be saved for the (j + 1)st iteration or beyond. Let the 
existing joint repair component set be the initial value of candidate combination set ܵ௖. By 
applying the last-one-out greedy heuristic (i.e., latest component repair time), a new discard 
set ܵௗ is created. To generate the discard set ܵௗ, the latest component repair time (i.e., max 
ܵ௖ ) is removed from candidate solution set ܵ௖ and inserted into discard set ܵௗ. Candidate 
set ܵ௖ and discard set ܵௗ construct the first part of the candidate solution ߨ௖ and discard 
solution ߨௗ respectively (i.e., ߨ௖ሾ0ሿ and ߨௗሾ0ሿ).   

Step 2.2. Determining ࢐࣊
ᇱሾ૚ሿ 

The time at which the elements of the candidate solution ߨ௖ሾ0ሿ are repaired is found 
from the earliest component repair time heuristic for the set (i.e., min ܵ௖). This time of repair 
is ߨ௖ሾ1ሿ. Similarly, the components in discard solution ߨௗሾ0ሿ are repaired at ߨௗሾ1ሿ, or min ܵௗ. 
Other heuristics that could be used in this step were presented in step 3 of the previous 
phase.  

Step 2.3. Acceptance Criterion 

The candidate solution is selected as the existing partial solution ߨ௝
ᇱ, according to the 

acceptance criterion of the minimum penalty function. The existing candidate solution is 
chosen as the partial solution ߨ௝

ᇱ if the combined penalty function value of candidate and 
discard solutions is less than the penalty function value of the existing partial solution ߨ௝

ᇱ.          

Figure 3 presents the procedure of developing new combination set according to the 
greedy heuristic. 
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 Pseudo-Code for Improving Combination Stage 

As long as the number of elements ݊௣ of existing partial solution ߨ௝
ᇱ is greater than 1 

and minimizes the penalty function value, ߨ௝
ᇱ is divided into two new parts: candidate 

solution ߨ௖ and discard solution ߨௗ. This iterative improvement is performed in the while 
loop presented in procedure GHBI. Figure 4 describes the procedure GHBI using pseudo-
code.      

procedure ImproveCombination ( ݆ߨ
0) 

 begin 

CurrentPenalty ← PenaltyFunction (݆ߨ
0); 

݆ߨ
′ ݆ߨ  ←  

0 ; 

ܿߨ   ←  [   ] ; 

݀ߨ   ← [   ] ; 

ܵܿ ݆ߨ  ← 
0ሾ	0	ሿ; 

ܵ݀   ←  {   };   

݌݊ ݆ߨ| ←  
0ሾ	0	ሿ|; 

for i ← 1 to  (݊݌  -1) do 

ܵܿ   ←  remove last component repair time and insert it in 	ܵ݀  ; 

ܿߨ   ← [{ ܵܿ  }, min ( ܿܵ  ) ] ; 

݀ߨ   ← [{ ܵ݀  }, min ( ܵ݀  ) ] ; 

NewPenalty ←  PenaltyFunction (ܿߨ  )+ PenaltyFunction (݀ߨ); 

if NewPenalty < CurrentPenalty then   % Acceptance criterion 

݆ߨ
′ ܿߨ ←    ; 

CurrentPenalty ← PenaltyFunction (ܿߨ ) ; 

endif 

endfor 

return  	݆ߨ
′  ; 

 end  ImproveCombination ; 

 



 

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=562 - 

=

 

 Pseudo-Code for GHLSA Phase 2, the Greedy Heuristic-Based 
Improvement Phase 

Phase 3: Local Search-Based Improvement   

In the last phase of system maintenance iteration j, an improved partial solution is 
selected by searching the neighborhood of current partial solution ߨ௝

ᇱ, building the best 
candidate set of components repair at the jth iteration. Let this improved partial solution be 
௝ߨ
ᇱᇱ and its initial value be ߨ௝

ᇱ. Emphasis in this third phase is placed primarily on searching 

different values of ݐ௠
௝  in the neighborhood of ߨ௝

ᇱሾ1ሿ to determine when the jth maintenance 
operation should occur. The pseudo-code for this local search phase is shown in Figure 5. 
During this improvement phase, ݐ௠

௝  iteratively takes the values of component maintenance 
time generated from the final combination set ߨ௝	

ᇱ ሾ0ሿ during the previous phase and creates a 
temporary partial solution. During this iterative process, the partial solution is updated 
according to the penalty function in Equation 2. According to our selected method, it takes 
݊௣ iterations to search the neighborhood of ߨ௝

ᇱሾ1ሿ, if the number of elements in combination 
set ߨ௝

ᇱሾ0ሿ is ݊௣. At each iteration of ݊௣, a new temporary partial solution called temp is 
generated. Steps of each iteration are as follows.   

Step 3.1. Determining ࢐࣊
ᇱᇱሾ૙ሿ 

The joint repair component set comprising ߨ௝
ᇱᇱሾ0ሿ takes the value of the final 

combination set (i.e., ߨ௝
ᇱሾ0ሿ	) found in the second phase.   

Step 3.2. Determining ࢐࣊
ᇱᇱሾ૚ሿ 

During this improvement phase ݌݉݁ݐሾ1ሿ (i.e., t௠
௝ ) iteratively takes the values of the 

component maintenance time generated from the final combination set ߨ௝	
ᇱ ሾ0ሿ during the 

previous phase. At iteration ݊௣, ݐ௠
௝  would take the value of ݊௣th element of combination set 

	௝ߨ
ᇱ ሾ0ሿ.    

procedure GHBI (݆ߨ
0) 

begin 

݆ߨ  
′ ݆ߨ ← 

0 ; 

 CurrentPenalty ← PenaltyFunction (݆ߨ
0); 

݌݊  ݆ߨ| ← 
0[0]|; 

  NewPenalty ← 0;  

 while (NewPenalty < CurrentPenalty and ݊݌   > 1 ) do 

                         CurrentPenalty ← PenaltyFunction ( ݆ߨ
′  ); 

݆ߨ
′  ← ImproveCombination ( ݆ߨ

′ );                         % Using greedy heuristic last-one-
out 

  NewPenalty ← PenaltyFunction ( ݆ߨ
′  ); 

݌݊                                 ݆ߨ	| ← 
′ ሾ0ሿ| ; 

endwhile 

 return  ݆ߨ 	
′ ; 

end GHBI; 
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Step 3.3. Acceptance Criterion 

The acceptance criterion is the value of the penalty function presented in Equation 2. 
At each iteration of ݊௣, the temporary partial solution temp is selected as the new existing 
partial solution only if the new temporary partial solution minimizes the penalty function 
value.  

At the end of ݊௣ iterations, the LocalSearch procedure returns the best value found in 
the search. The return value, ߨ௝

ᇱᇱ, of this local search–based improvement is the partial 
solution representing the jth element of the final solution vector.   

 

 

 Pseudo-Code for the GHLSA Phase 3, the Local Search Phase 

Experimental Results 

An example problem briefly illustrates the algorithm. 

Problem Specification 

Our example problem addresses 10 components in a multi-component system. We 
assume the initial start time TNOW is zero. We assumed the earliness penalty and tardiness 
penalty values to be equal and same for all components (i.e., deviation penalty Cp). 
Maintenance duration ௥ܶ,௟ is assumed to be 5 time units for all components. The 
recommended individual maintenance times of these components are assumed here to be 
the MTBF from a two-parameter Weibull distribution with shape parameters (ߚ) and scale 
parameters (ߟ). The assumed values of planning horizon, setup cost, downtime cost per unit 
time, earliness penalty, and tardiness penalty are presented in Table 1. 

 

procedure LocalSearch (݆ߨ
′ ) 

 begin 

݆ߨ  
݆ߨ ← " 	

′  ; 

  CurrentPenalty ← PenaltyFunction (݆ߨ
′ ); 

  NoOfElement ← |݆ߨ
′ [0]|; 

  if NoOfElement  > 1 then 

   for i ← 1 to NoOfElement do 

    temp ← ݆ߨ
" ; 

݆ߨ ← [1] ݌݉݁ݐ    
′ [0] [ i ]; 

    NewPenalty ← PenaltyFunction (݌݉݁ݐ); 

    if NewPenalty < CurrentPenalty  then 

݆ߨ     
݆ߨ ← [1] "

′ [0] [ i ]; 

     CurrentPenalty = PenaltyFunction (݆ߨ
");  

    endif; 

   endfor; 

  endif; 

                      return ݆ߨ
" ;  

 end LocalSearch;   
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Original Case 

The original case follows a simple procedure for maintenance. Each system 
maintenance operation is performed at the earliest component repair time (i.e., min ௠ܶ,௟

௞ ) out 
of unscheduled component maintenance times. It is assumed that all repair times are in the 
system repair window (i.e., min [ ௠ܶ,௟

௞  +	 ௥ܶ,௟ሿ) and will be scheduled to be repaired at the same 
time. We used the same penalty function to calculate the objective function value for the 
original case. Note that the tardiness penalty will always be zero in the original case 
instance, as system maintenance is done at the earliest component repair time and there is 
no push back of component maintenance.  

 Parameters of the Illustrative Example 

 

Experimental Evaluation 

We solved the above-mentioned problem with our proposed algorithm (GHLSA) and 
performed a comparative study between the original case results and GHLSA results. 
Generated experimental penalty function data were transformed into percent deviation value 
(PD). We calculated the PD of objective function value resulting from proposed algorithm 
implementation, from the original case result using the following equation, where Obj	୓୰୧୥୧୬ୟ୪ 
represents penalty function value for original case and Obj	ୋୌ୐ୗ୅ represents penalty function 
value produced using GHLSA procedure. Positive PD means the objective function value 
has improved (i.e., minimized) using the proposed algorithm and vice versa. 

 

All calculated results for given instance for different delta values are presented in 
Table 2.   

Sensitivity Analysis on ࢽ  

Table 2 shows that for a given instance, the proposed algorithm produced a very 
high objective function value which resulted in negative PD value for lower ߛ value (i.e., ߛ = 
0.1 to 0.3 = ߛ). For γ value greater than 0.3, calculated PD resulted in positive values. So for 
higher γ values (i.e., for 0.3 < ߛ), the best solutions found using proposed GHLSA improved 
the objective function value of the original case. As ߛ increased, the PD value decreased for 
both positive and negative deviation trends. This trend was true for any ߛ value (Figure 6). 
Collected data were not very sensitive to ߛ value. Trend of the PD remained the same, and 
objective function value changed a little bit with a change in ߛ.  

Component ߟ ߚ Other values 
A 15 2 TNOW =0 
B 20 3 T = 200 time unit    
C 15 3 CS =30,000 
D 17 4 CD =5,000 
E 23 5 Cp=CE,l= CL,l=500, for all l 
F 37 4 ܶ5500 =݈,ݎ, for all l 
G 30 7  
H 22 3  
I 19 2  
J 26 4  

 

Percentage	Deviation ሺPDሻ ൌ
Obj Original െ Obj GHLSA

Obj Original
ൈ 100 (8)
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Sensitivity Analysis on δ  

For all ߛ values, the objective function percent deviation change was logarithmic with 
 ߜ GHLSA produced some negative deviation. As ,ߜ For lower values of .(Figure 6) ߜ
increased, it generated positive deviation, as the objective function value decreased with 
higher ߜ value.  
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 Objective Function and PD Values for Given Instance 

δ   
 γ=0.2 γ=0.3 γ=0.4 γ=0.5 γ=0.6 γ=0.7 γ=0.8 γ=0.9 γ=1 0.1=ߛ

  Original 
1100101.52 1355101.52 1610101.52 1865101.52 2120101.52 2375101.52 2630101.52 2885101.52 3140101.52 3395101.52 

0.1 GHLSA 
-799063 -799063 -799063 -799063 -799063 -799063 -799063 -799063 -799063 -799063 

PD 
-72.64 -58.97 -49.63 -42.84 -37.69 -33.64 -30.38 -27.70 -25.45 -23.54 

0.2 
GHLSA 

-165297 -165297 -165297 -165297 -165297 -165297 -165297 -165297 -165297 -165297 

PD 
-15.03 -12.20 -10.27 -8.86 -7.80 -6.96 -6.28 -5.73 -5.26 -4.87 

0.3 
GHLSA 

-74705 -74705 -74705 -74705 -74705 -74705 -74705 -74705 -74705 -74705 

PD 
-6.79 -5.51 -4.64 -4.01 -3.52 -3.15 -2.84 -2.59 -2.38 -2.20 

0.4 
GHLSA 

61451 61451 61451 61451 61451 61451 61451 61451 61451 61451 

PD 
5.59 4.53 3.82 3.29 2.90 2.59 2.34 2.13 1.96 1.81 

0.5 
GHLSA 

119326 119326 119326 119326 119326 119326 119326 119326 119326 119326 

PD 
10.85 8.81 7.41 6.40 5.63 5.02 4.54 4.14 3.80 3.51 

0.6 
GHLSA 

186958 186958 186958 186958 186958 186958 186958 186958 186958 186958 

PD 
16.99 13.80 11.61 10.02 8.82 7.87 7.11 6.48 5.95 5.51 

0.7 
GHLSA 

172660 172660 172660 172660 172660 172660 172660 172660 172660 172660 

PD 
15.69 12.74 10.72 9.26 8.14 7.27 6.56 5.98 5.50 5.09 

0.8 
GHLSA 

226176 226176 226176 226176 226176 226176 226176 226176 226176 226176 

PD 
20.56 16.69 14.05 12.13 10.67 9.52 8.60 7.84 7.20 6.66 

0.9 
GHLSA 

226176 226176 226176 226176 226176 226176 226176 226176 226176 226176 

PD 
20.56 16.69 14.05 12.13 10.67 9.52 8.60 7.84 7.20 6.66 

1 
GHLSA 

226176 226176 226176 226176 226176 226176 226176 226176 226176 226176 

PD 
20.56 16.69 14.05 12.13 10.67 9.52 8.60 7.84 7.20 6.66 
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Comparative Study 

We performed a comparative study of the original case and the GHLSA-based 
results by generating different instances by changing given value of ܥ௦, ܥ஽,and ܥ௉. 

Sensitivity Analysis on Setup Penalty ࢙࡯ 
Produced results for the original case and the GHLSA case for different generated 

instances for six different setup costs are presented in Table 3. The presented values are 
the calculated PD values for the best objective function value found using the proposed 
GHLSA for each instance.  

 

 Change in PD Value With Delta 

For all generated 60 instances, GHLSAs were able to improve (i.e., positive PD 
values) the original case penalty function value (Table 3). Improvement ranged from 1.08% 
to 20.56% in minimizing the objective function value compared to the original case. For a 
given Cୱ, penalty function value increased as γ decreased. It showed an increasing trend in 
PD value with increasing Cୱ, for any given γ. It shows the potential of this research algorithm 
for multi-component system maintenance where setup cost is comparatively high. 

 PD Values for Different Setup Costs 

Setup γ=0.1 γ=0.2 γ=0.3 γ=0.4 γ=0.5 γ=0.6 γ=0.7 γ=0.8 γ=0.9 γ=1 
30k 20.56 16.69 14.05 12.13 10.67 9.52 8.60 7.84 7.20 6.66 
25k 18.07 14.32 11.86 10.12 8.83 7.83 7.03 6.38 5.84 5.39 
20k 14.84 11.42 9.28 7.81 6.75 5.94 5.30 4.79 4.37 4.01 
15k 10.51 7.77 6.17 5.11 4.37 3.81 3.38 3.03 2.75 2.52 
10k 6.39 4.49 3.46 2.81 2.37 2.05 1.80 1.61 1.45 1.33 
5k 6.32 4.12 3.05 2.42 2.01 1.72 1.50 1.33 1.19 1.08 

 
 Sensitivity on Downtime Penalty ࡰ࡯      

We generated 100 instances for 10 different Cୈ values ranging from 1k to 10k. The 
calculated PD values are representative of the best solution found using proposed GHLSA 
at granularity level 0.1 (Table 4). The proposed GHLSAs were able to improve the PD 
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values of all 100 instances for different Cୈ. PD values ranged from 3.80 to 25.24. For all ߛ, 
PD value decreased with higher Cୈ.  

 PD Values for Different Downtime Costs 

Downtime 
Cost γ=0.1 γ=0.2 γ=0.3 γ=0.4 γ=0.5 γ=0.6 γ=0.7 γ=0.8 γ=0.9 γ=1 
1k 25.24 23.88 22.66 21.56 20.56 19.65 18.82 18.05 17.34 16.69
2k 23.88 21.56 19.65 18.05 16.69 15.52 14.51 13.62 12.83 12.13
3k 22.66 19.65 17.34 15.52 14.05 12.83 11.80 10.93 10.18 9.52 
4k 21.56 18.05 15.52 13.62 12.13 10.93 9.95 9.13 8.44 7.84 
5k 20.56 16.69 14.05 12.13 10.67 9.52 8.60 7.84 7.20 6.66
6k 19.65 15.52 12.83 10.93 9.52 8.44 7.57 6.87 6.28 5.79 
7k 18.82 14.51 11.80 9.95 8.60 7.57 6.76 6.11 5.57 5.12
8k 18.05 13.62 10.93 9.13 7.84 6.87 6.11 5.50 5.01 4.59 
9k 17.34 12.83 10.18 8.44 7.20 6.28 5.57 5.01 4.55 4.16
10k 16.69 12.13 9.52 7.84 6.66 5.79 5.12 4.59 4.16 3.80 

 

 

Sensitivity on Deviation Penalty ࡼ࡯ 

Different ܥ௉ values, ranging from 100 to 1,000, were used to generate 100 
experimental instances. All calculated PD values of the original case and the GHLSA case 
are in Table 5. 

 PD Values for Different Deviation Penalty Values 

Deviation 
Penalty γ=0.1 γ=0.2 γ=0.3 γ=0.4 γ=0.5 γ=0.6 γ=0.7 γ=0.8 γ=0.9 γ=1 

100 27.85 22.30 18.59 15.94 13.95 12.41 11.17 10.15 9.31 8.59 
200 25.93 20.84 17.42 14.96 13.11 11.67 10.51 9.56 8.77 8.10 
300 24.08 19.41 16.27 14.00 12.28 10.94 9.86 8.98 8.24 7.62 
400 22.29 18.03 15.14 13.05 11.47 10.23 9.23 8.41 7.72 7.14 
500 20.56 16.69 14.05 12.13 10.67 9.52 8.60 7.84 7.20 6.66 
600 18.89 15.39 12.98 11.22 9.88 8.83 7.98 7.28 6.69 6.19 
700 17.28 14.12 11.93 10.33 9.11 8.15 7.37 6.73 6.19 5.73 
800 15.72 12.88 10.91 9.46 8.35 7.48 6.77 6.18 5.69 5.27 
900 14.42 11.85 10.06 8.74 7.72 6.92 6.27 5.73 5.27 4.89 
1000 12.75 10.51 8.93 7.77 6.88 6.17 5.59 5.11 4.71 4.37 

 
 

In all experimental instances for deviation penalty ܥ௉, our presented GHLSAs were 
successfully able to minimize the penalty function value. For all 100 instances, the found PD 
values were positive, which means improvement of the objective function value compared to 
the original case study. For different ܥ௉ values, the resulting PD values ranged from 4.37 to 
27.85. PD value decreased with higher ܥ௉ for all ߛ (see Table 5). 

Optimal ࢾ Value 

Tables 6 and 7 present the optimal ߜ values at granularity level 0.1, for generated 
instances for ܥௌ and ܥ௉. Note that optimal ߜ values for downtime instances were not 
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reported in the tables. For all 100 instances for Cୈ, the generated optimal delta value was 
0.8–1.0 at granularity level 0.1. For setup cost, all instances for cost ranging from 15k to 
30k, optimal ߜ was 0.8–1.0. For 10k setup cost instances, the optimal delta value was 1.0, 
and it decreased to 0.5 for the lowest setup cost 5k.    

 Optimal ࢾ Values for Different Setup Cost Instances 

SetupCost γ=0.1 γ=0.2 γ=0.3 γ=0.4 γ=0.5 γ=0.6 γ=0.7 γ=0.8 γ=0.9 γ=1 

5k 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 

10k 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

15k–30k  0.8–1.0  0.8–1.0  0.8–1.0  0.8–1.0  0.8–1.0  0.8–1.0  0.8–1.0  0.8–1.0  0.8–1.0  0.8–1.0 

 

 Optimal ࢾ Values for Different Deviation Penalty Cost Instances 

DeviationPenalty γ=0.1 γ=0.2 γ=0.3 γ=0.4 γ=0.5 γ=0.6 γ=0.7 γ=0.8 γ=0.9 γ=1 

100–800  0.8–1.0  0.8–1.0  0.8–1.0  0.8–1.0  0.8–1.0  0.8–1.0  0.8–1.0  0.8–1.0  0.8–1.0  0.8–1.0 

900 0.7–1.0 0.7–1.0 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 

1000  0.8–1.0  0.8–1.0  0.8–1.0  0.8–1.0  0.8–1.0  0.8–1.0  0.8–1.0  0.8–1.0  0.8–1.0  0.8–1.0 

For deviation penalty instances, this optimal ߜ value was constant for all values of 
 value for best found ߜ values (i.e., γ = 0.1–0.2), the ߛ ௉ = 900, for lowerܥ ௉, except 900. Forܥ
results was 0.7–1.0 and for the rest of ߛ values, it was 0.7. According to the PD analysis, ߜ 
is a significant factor in finding a good solution by implementing this greedy heuristic–based 
methodology. The experimental results of the presented 260 instances shows that a higher 
value of ߜ, at granularity level 0.1, is a safer choice when the penalty function for all the ߜ 
values cannot be evaluated. In those cases, our recommended ߜ value would be 0.5–1.0, at 
granularity level 0.1. 

Tuning Parameter ࢾ 

The presented results were very sensitive to ߜ. Tuning of this granularity parameter 
depends on the system configuration (i.e., the number of components) and available 
computation power. If possible, the initial tuning can be done at granularity level 0.1. 
Granularity level 0.1 means to change the scope of granularity ߜ value by 0.1. With a 
granularity level of 0.1, in 10 runs the algorithm would generate the best solution possible 
with the proposed method. If the granularity level needs to be smoother, that depends on 
the input instance (i.e., the input values of ௠ܶ,௟

௞ ). If ௠ܶ,௟
௞  values result in a very small 

௠ܶ௔௫,	then a higher granularity level may not produce any better result, as a number of 
components repair times may remain the same for resulting construction phase time-span 
ܶ	௖.   

Concluding Remarks and Future Work 
In this paper, we proposed a greedy heuristic local search algorithm for multi-

component preventive maintenance scheduling problems. This scheduling algorithm is 
based on some greedy heuristics and a local search method. This new algorithm has proven 
to make significant improvement of the objective function criterion, compared to presented 
original case results. We have implemented the presented GHLSA for 260 generated 
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instances and found remarkable results. Deviation analysis showed significant improvement 
of the objective function value for all 260 problem instances. The presented greedy 
heuristics–based algorithm looks very promising in solving some real life preventive 
maintenance scheduling problems.    

Future work includes the addition of another objective to the algorithm: the effect on 
system reliability at iteration j. Currently, only a cost parameter is considered when 
determining the earliness or tardiness of a particular component maintenance operation 
when coordinating system maintenance. However, it is hypothesized that a system reliability 
objective may change the maintenance schedule, particularly when the system schedule 
suggests that some components be maintained after their recommended maintenance times 
(tardiness), potentially resulting in an undesired system reliability. 
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