
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó=
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

NPS-LM-13-C10P05R08-066

=
=
=
=
=
=

bñÅÉêéí=Ñêçã=íÜÉ=

mêçÅÉÉÇáåÖë=
çÑ=íÜÉ=

qÉåíÜ=^ååì~ä=^Åèìáëáíáçå=
oÉëÉ~êÅÜ=póãéçëáìã=

içÖáëíáÅë=j~å~ÖÉãÉåí=

Improving Multi-Component Maintenance
Acquisition With a Greedy Heuristic Local

Algorithm

Sifat Kalam and Kash Barker, University of Oklahoma
Jose Emmanuel Ramirez-Marquez, Stevens Institute of Technology

Published April 1, 2013

Approved for public release; distribution is unlimited.
Prepared for the Naval Postgraduate School, Monterey, CA 93943.

Disclaimer: The views represented in this report are those of the authors and do not reflect the official policy
position of the Navy, the Department of Defense, or the federal government.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó=
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

The research presented in this report was supported by the Acquisition Research Program
of the Graduate School of Business & Public Policy at the Naval Postgraduate School.

To request defense acquisition research, to become a research sponsor, or to print
additional copies of reports, please contact any of the staff listed on the Acquisition
Research Program website (www.acquisitionresearch.net).

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=i -

=

Preface & Acknowledgements

Welcome to our Tenth Annual Acquisition Research Symposium! We regret that this
year it will be a “paper only” event. The double whammy of sequestration and a continuing
resolution, with the attendant restrictions on travel and conferences, created too much
uncertainty to properly stage the event. We will miss the dialogue with our acquisition
colleagues and the opportunity for all our researchers to present their work. However, we
intend to simulate the symposium as best we can, and these Proceedings present an
opportunity for the papers to be published just as if they had been delivered. In any case, we
will have a rich store of papers to draw from for next year’s event scheduled for May 14–15,
2014!

Despite these temporary setbacks, our Acquisition Research Program (ARP) here at
the Naval Postgraduate School (NPS) continues at a normal pace. Since the ARP’s
founding in 2003, over 1,200 original research reports have been added to the acquisition
body of knowledge. We continue to add to that library, located online at
www.acquisitionresearch.net, at a rate of roughly 140 reports per year. This activity has
engaged researchers at over 70 universities and other institutions, greatly enhancing the
diversity of thought brought to bear on the business activities of the DoD.

We generate this level of activity in three ways. First, we solicit research topics from
academia and other institutions through an annual Broad Agency Announcement,
sponsored by the USD(AT&L). Second, we issue an annual internal call for proposals to
seek NPS faculty research supporting the interests of our program sponsors. Finally, we
serve as a “broker” to market specific research topics identified by our sponsors to NPS
graduate students. This three-pronged approach provides for a rich and broad diversity of
scholarly rigor mixed with a good blend of practitioner experience in the field of acquisition.
We are grateful to those of you who have contributed to our research program in the past
and encourage your future participation.

Unfortunately, what will be missing this year is the active participation and
networking that has been the hallmark of previous symposia. By purposely limiting
attendance to 350 people, we encourage just that. This forum remains unique in its effort to
bring scholars and practitioners together around acquisition research that is both relevant in
application and rigorous in method. It provides the opportunity to interact with many top DoD
acquisition officials and acquisition researchers. We encourage dialogue both in the formal
panel sessions and in the many opportunities we make available at meals, breaks, and the
day-ending socials. Many of our researchers use these occasions to establish new teaming
arrangements for future research work. Despite the fact that we will not be gathered
together to reap the above-listed benefits, the ARP will endeavor to stimulate this dialogue
through various means throughout the year as we interact with our researchers and DoD
officials.

Affordability remains a major focus in the DoD acquisition world and will no doubt get
even more attention as the sequestration outcomes unfold. It is a central tenet of the DoD’s
Better Buying Power initiatives, which continue to evolve as the DoD finds which of them
work and which do not. This suggests that research with a focus on affordability will be of
great interest to the DoD leadership in the year to come. Whether you’re a practitioner or
scholar, we invite you to participate in that research.

We gratefully acknowledge the ongoing support and leadership of our sponsors,
whose foresight and vision have assured the continuing success of the ARP:

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=ii -

=

 Office of the Under Secretary of Defense (Acquisition, Technology, &
Logistics)

 Director, Acquisition Career Management, ASN (RD&A)
 Program Executive Officer, SHIPS
 Commander, Naval Sea Systems Command
 Program Executive Officer, Integrated Warfare Systems
 Army Contracting Command, U.S. Army Materiel Command
 Office of the Assistant Secretary of the Air Force (Acquisition)
 Office of the Assistant Secretary of the Army (Acquisition, Logistics, &

Technology)
 Deputy Director, Acquisition Career Management, U.S. Army
 Office of Procurement and Assistance Management Headquarters,

Department of Energy
 Director, Defense Security Cooperation Agency
 Deputy Assistant Secretary of the Navy, Research, Development, Test, &

Evaluation
 Program Executive Officer, Tactical Aircraft
 Director, Office of Small Business Programs, Department of the Navy
 Director, Office of Acquisition Resources and Analysis (ARA)
 Deputy Assistant Secretary of the Navy, Acquisition & Procurement
 Director of Open Architecture, DASN (RDT&E)
 Program Executive Officer, Littoral Combat Ships

James B. Greene Jr. Keith F. Snider, PhD
Rear Admiral, U.S. Navy (Ret.) Associate Professor

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=465 -

=

Logistics Management

Fully-Burdened Cost of Supply in Self-Sustaining Logistics Networks

Eva Regnier, Jay Simon, Daniel Nussbaum, Aruna Apte, and John Khawam
Naval Postgraduate School

Platform Design for Fleet-Level Efficiency: Application for Air Mobility Command
(AMC)

Jung Hoon Choi, Parithi Govindaraju, Navindran Davendralingam, and William A.
Crossley
Purdue University

Improving DoD Energy Efficiency: Combining MMOWGLI Social-Media
Brainstorming With Lexical Link Analysis (LLA) to Strengthen the Defense
Acquisition Process

Ying Zhao, Don Brutzman, and Douglas J. MacKinnon
Naval Postgraduate School

Addressing Counterfeit Parts in the DoD Supply Chain

Jacques S. Gansler, William Lucyshyn, and John Rigilano
University of Maryland

Wave Release Strategies to Improve Service in Order Fulfillment Systems

Erdem Çeven and Kevin Gue
Auburn University

Issues and Challenges in Self-Sustaining Response Supply Chains

Aruna Apte, John Khawam, Eva Regnier, Jay Simon, and Daniel Nussbaum
Naval Postgraduate School

Lead Time Demand Modeling in Continuous Review Supply Chain Models

Barry R. Cobb, Virginia Military Institute
Alan W. Johnson, Air Force Institute of Technology

Improving Multi-Component Maintenance Acquisition With a Greedy Heuristic
Local Algorithm

Sifat Kalam and Kash Barker, University of Oklahoma
Jose Emmanuel Ramirez-Marquez, Stevens Institute of Technology

An Internal, Demand-Side Approach Toward Implementing Strategic Sourcing:

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=466 -

=

Political, Legal, and Economic Considerations

John Fallon, University of Maryland, University College
Timothy Reed, Beyond Optimal Strategic Solutions

Optimizing Causes of Procurement Cost Through Strategic Sourcing: The Impact of
Rate, Process, and Demand

Timothy Reed, Beyond Optimal Strategic Solutions
Michael E. Knipper, United States Air Force
John Fallon, University of Maryland, University College

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=550 -

=

Improving Multi-Component Maintenance Acquisition With
a Greedy Heuristic Local Algorithm

Sifat Kalam—Kalam received her BS in industrial engineering from the University of Oklahoma in
2010 and will complete her MS degree in May 2013. She is currently on educational leave of absence
from The Boeing Company and will be joining Boeing Defense, Space & Security (BDS) as a supply
chain specialist after completion of her MS degree. Her current research is in heuristics and meta-
heuristics based algorithms to model acquisition and preventive maintenance frameworks for multi-
component systems. [lipa0335@ou.edu]

Kash Barker—Barker is an assistant professor in the School of Industrial and Systems Engineering
at the University of Oklahoma. Dr. Barker and his students in the Risk-Based Decision Making
Laboratory are primarily interested in (i) modeling the reliability, resilience, and interdependent
economic impacts of disruptions to critical infrastructure networks and (ii) enhancing data-driven
decision making for large-scale system sustainment. He received his PhD in systems engineering
from the University of Virginia, where he worked in the Center for Risk Management of Engineering
Systems. [kashbarker@ou.edu]

Jose Emmanuel Ramirez-Marquez—Ramirez-Marquez is an associate professor in the School of
Systems and Enterprises at the Stevens Institute of Technology and the director of the School’s
Engineering Management program. As director of the Systems Development and Maturity Laboratory,
Dr. Ramirez-Marquez’s work advances systems management and assessment for optimal
development of a system through its lifecycle. His other interests include reliability analysis, network
resilience, and optimization. He received his PhD in industrial engineering from Rutgers University.

Abstract
As many large-scale DoD systems age, and due to budgetary and performance efficiency
concerns, there is a need to improve the decision making process for system sustainment,
including maintenance, repair, and overhaul (MRO) operations and the acquisition of MRO
parts. To help address the link between sustainment policies and acquisition, this work
develops a greedy heuristic–based local search algorithm to provide a system maintenance
schedule for multi-component systems, coordinating recommended component maintenance
times to reduce system downtime costs thereby enabling effective acquisition.

Introduction

Large organizations such as the Department of Defense (DoD) have to devote a
significant amount of their budgets to system maintenance. According to a 2007
Government Accountability Office (GAO) report, the DoD spends approximately 40% of its
budget on operations and management (O&M) activities to ensure system readiness
($209.5 billion in 2005). GAO reported that since fiscal year 2001, the DoD’s O&M costs are
increasing, and the Air Force, in particular, had to increase its O&M cost by 29%. As many
large-scale DoD systems age, and due to budgetary and performance efficiency concerns,
there is a need to improve the decision making process for system sustainment, including
maintenance, repair, and overhaul (MRO) operations and the acquisition of MRO parts.

The DoD’s acquisition costs have seen growth in recent years (GAO, 2013). The
GAO (2013) recommended that the DoD improve its strategic management plan to make
maintenance supply chain operations more cost effective. Further, the DoD was advised to
“link acquisition and sustainment policies” for depot maintenance improvement and ultimate
cost efficiency (GAO, 2011). To help address the link between sustainment policies and
acquisition, this work develops a framework to provide a system maintenance schedule for
multi-component systems. As the multiple components of a system have their own

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=551 -

=

lifecycles, an efficient means to schedule overall system maintenance should consider these
individual components to maximize long-term availability of the system. This framework
coordinates recommended maintenance times, such as those found as a result of reliability
centered maintenance (RCM) or from original equipment manufacturer (OEM) suggestions,
to formulate a system-level maintenance schedule for a finite time horizon. Such a
framework will increase the acquisition efficiency of components with a more effective
system-level maintenance schedule.

With the recent computational advances, several preventive maintenance models
have been proposed for complex multi-component systems considering component
interactions. In the preventive maintenance scheduling problem (PMSP), different kinds of
component interactions are taken into account. Interaction among components can be
economic dependence, structural dependence, and/or stochastic dependence (Thomas,
1986). In a basic sense, economic dependence among system components means that the
cost of joint repair is different from cost of individual repair (Dekker, Wildeman, & van der
Duyn Schouten, 1997), suggesting that performing repair operations for multiple
components at once can be done with less expense than for single components.

Researchers have considered different model formulations, as well as solution
techniques, to address preventive maintenance decision making. Stinson and Khumawala
(1987) formulated a heuristics-based mixed integer linear program (MILP) model for a finite
horizon preventive maintenance problem for maintaining machines in series. Budai,
Huisman, and Dekker (2006) proposed a heuristics-based MILP solution for scheduling
railroad network maintenance. Other few noteworthy approaches are Bayesian network
model (Celeux, Corset, Lannoy, & Ricard, 2006), goal programming for a multi-objective
problem (Bertolini & Bevilacqua, 2006), and dynamic programming (Dekker, Wildeman, &
Van Egmond, 1996).

In terms of algorithm development, Dekker, Smit, and Losekoot (1991) presented an
optimal maintenance model using a set-partitioning algorithm for multiple maintenance
activities. One downside of their model was that they considered each activity time to be
negligible relative to the total planning horizon. Later Dekker et al. (1996) solved the above-
mentioned problem with a dynamic programming formulation, concluding that the dynamic
algorithm is a good heuristic for rolling horizon–based problems which can incorporate
short-term system information for decision support. Dekker et al. (1997) provided a review of
maintenance models for multi-component systems, which covered economically dependent
systems. The Markov decision chain–based approach was also studied by Dekker et al.
(1996) for the multi-activities maintenance problem which was applicable to systems
consisting of many components. Previous Markov chain–based models were limited to few
components. An opportunistic maintenance policy was modeled by Gürler and Kaya (2002)
and van der Duyn Schouten and Vanneste (1993) for identical multi-component systems.
Sheu et al. (1996) modeled a similar kind of problem with a two-stage opportunistic policy. In
the case of non-identical components maintenance, the tradeoff between the repair cost of
one component versus another should be considered, including the resulting increase in the
complexity of the model.

PMSP remains a very active area of research. Little work in this field has used
heuristics and meta-heuristics based methodologies to model preventive maintenance
framework (Nicolai & Dekker, 2008). A new meta-heuristic based on a genetic algorithm was
applied in train maintenance scheduling problems by Sriskandarajah, Jardine, and Chan
(1998), primarily optimizing cost. Nicolai and Dekker (2008) presented a review of
preventive maintenance and recommended that more researches need to be done in this
area developing more heuristic and meta-heuristic approaches like simulated annealing and

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=552 -

=

local search. Meta-heuristic based algorithms have proven very successful for flowshop
scheduling problems (Pan & Ruiz, 2012), which have similar characteristics to preventive
maintenance scheduling.

This work presents a greedy heuristic–based local search algorithm for preventive
maintenance of multiple components which would be a new contribution in this field of
research. We develop a local search–based algorithm to minimize the total maintenance
cost of a system over a finite planning horizon. This paper is organized as follows. The
Methodological Development section provides a detailed description of the different
components and procedure of our proposed schedule algorithm for a multi-component
system. The next section, Greedy Heuristic with Local Search Algorithm, provides
experimental results for a presented multi-component scheduling problem. We conclude our
paper with the Experimental Results section and some concluding remarks.

Methodological Development

Here we develop a new formulation and solution algorithm to address preventive
maintenance scheduling for a multi-component system. It is assumed that maintenance
results in a “good as new” condition.

Baseline individual component maintenance times for planning horizon T (i.e.,
system-in-use time) are known and recommended based on a mean time between failure
(MTBF) calculation (e.g., by RCM or OEM calculations). We assume these component
maintenance times are given in their in-use-time or up-time. Our goal is to suggest to alter
the recommended maintenance schedule for a multi-component system in a joint manner for
as many components as possible. Performing many individual maintenance events at
recommended schedules can potentially lead to cost savings due to reduced setup costs
and reduced downtime. However, varying too far from recommended MTBF guidance can
lead to unnecessary maintenance (in the earliness situation) and risk of failure (in the
tardiness situation). Earliness refers to the performance of maintenance earlier than
recommended, with tardiness representing the performance of maintenance at a time later
than recommended. As such, there are penalties associated with both earliness and
lateness, as well as a penalty for system downtime while maintenance is being performed.

Different potential maintenance schedules can be compared and evaluated using a
penalty function approach (Yousefi & Yosuff, 2013). In this approach, a penalty function can
be achieved by quantifying setup-related costs into setup penalties, downtime costs into
downtime penalties, related expense (i.e., costs of unnecessary maintenance) of earliness
into earliness penalties, and potential failure costs of tardiness situation into tardiness
penalties. By implementing this approach, a maintenance schedule can be found which will
minimize these penalties. These penalties, as well as other notation, are defined as follows:

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=553 -

=

Decision variables for the scheduling formulation include the following:

Performing joint repair has the potential to save maintenance cost because for many
multi-component systems it is possible to perform component maintenance simultaneously.
Thus total repair time for joint maintenance depends on individual instance and can be
predicted from previous system maintenance data. Considering all these penalties, our goal
is to develop an algorithm that will schedule system maintenance time such that total
penalties of system maintenance are minimized over the given planning horizon T. The
basic optimization problem is conceptualized in Equation 1, where ܥௌ	ܴ represents total
setup penalties for planning horizon T, and ܥ௟

௝represents penalties associated with jth

system repair of component l. ܥ௟
௝ includes penalties for downtime, earliness, and tardiness

for component l during jth system maintenance. Decision variable ݖ௟
௝ determines whether

component l will be repaired at jth system maintenance.

T Planning horizon
n Number of components in the system

CS System setup penalty per maintenance
ܶ݉ ,݈
݇ kth maintenance time for component l

CE,l Earliness penalty for component l, per unit time
CL,l Tardiness penalty for component l, per unit time
CD System downtime penalty per unit time

݈,ݎܶ Component maintenance duration for component l
δ Construction phase time-span parameter where δ ϵ (0, 1]
γ Joint maintenance time parameter γ ϵ (0, 1]
∆j Deviation of individual component maintenance times from jth system maintenance
ܶ݉ ݔܽ Maximum time-span of construction phase
ܶ	ܿ Construction phase time-span
ܶ݉1 Set of first component maintenance time
ܶ݉2 Set of second component maintenance time
ܿߨ Candidate solution
݀ߨ Discard solution
ܵܿ Candidate combination set
ܵ݀ Discard set
ܵ Algorithm solution vector

݉ݐ
݆ jth system maintenance time
R Total number of system maintenance events scheduled in planning horizon T

݈ݔ	
݆ If feature earliness is present in component l for maintenance j (݈ݔ

݆ ൌ 1) or not (݈ݔ
݆ ൌ 0)

݈ݕ
݆ If feature tardiness is present in component l for maintenance j (݈ݕ

݆ ൌ 1) or not (݈ݕ
݆ ൌ 0)

݈ݖ
݆ If component l should be repaired at time ݉ݐ

݆ ݈ݖ)
݆ ൌ 1) or not (݈ݖ

݆ ൌ 0)

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=554 -

=

Equation 2 presents the actual objective function and constraints for the problem above.

One of the decision variables is the system-in-use time at which system maintenance should
be performed. As maintenance scheduling is multistage (e.g., maintenance is a repeated
event), the time at which maintenance is scheduled for iteration j is ݐ௠

௝ This work will solve

Equation 2 over a finite time horizon for several MRO stages, finding a series of ݐ௠
௝ values at

which maintenance should occur. OEM-recommended individual component maintenance
times are denoted by ௠ܶ,௟

௞ . Here ݐ௠
௝ values attempt to coordinate the downtime of several

components to maximize long-term availability of the system. Equation 2 conceptualizes an
availability cost problem, where ݖ௟

௝ determines whether component l should be repaired at

time ݐ௠
௝ according to the cost function which penalizes unavailability. Equation 2 also

attempts to improve upon ௠ܶ,௟
௞ to minimize the deviation of individual component

maintenance times from system maintenance time, found in the neighborhood of ௠ܶ,௟
௞ . As

such, this work provides the maintenance schedule for the system, whether the jth
maintenance operation will repair an optimal subset of the n components in the system.

Elements of the above formulation are given more detail as follows. The actual
structure of the penalty function here can vary due to decision maker preferences.

Penalty Function

Our objective is to minimize total system maintenance penalty over a finite time
horizon T. Our penalty function is the presented objective function in Equation 2. This total
penalty function consists of system setup penalty, system downtime time penalty, and
penalty for any deviation of individual component maintenance times from system
maintenance time. Note that we are not penalizing for the cost of performing actual repair,
including the cost of acquisition and the cost of labor, among others, under the assumption
that this cost is the same for individual repair and joint repair.

min
݈ݖ
݆
ܥܵ 	ܴ ൅෍ ෍ ݈ܥ

݆
ܴ

݆ൌ1
݈ݖ
݆

݊

݈ൌ1

s. t. ݈ݖ
݆ ∈ ሼ0,1ሽ
MRO requirement constraints

			

(1)

min
݉ݐ
݆
	 ܥܵ 	ܴ ൅෍ ෍ หܶ݉ ,݈

݇ െ ݉ݐ
݆ ห

ܴ

݆
݈,ܧܥ ݈ݔ

݆
݊

݈ൌ1

൅෍ ෍ ൫ܶ݉ ,݈
݇ െ ݉ݐ

݆ ൯
2ܴ

݆
݈ݔ	݈,ܮܥ

݆ ൅ 	෍ ෍ ߛܦܥ
ܴ

݆
݈ݖ݈,ݎܶ

݆
݊

݈

݊

݈ൌ1

s. t. ܴ ൐ 0
݉ݐ
݆ ൐ 0

݈ݔ
݆ ∈ ሼ0,1ሽ

݈ݕ
݆ ∈ ሼ0,1ሽ

݈ݖ
݆ ∈ ሼ0,1ሽ
γ ∈ ሺ0,1ሿ

(2)

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=555 -

=

System Setup Penalty

The setup penalty component in Equation 3 accounts for the time to arrange for
system maintenance. A system setup penalty penalizes all associated costs for
maintenance setup, charged only once regardless of the number of multiple components
involved in a maintenance work. Not included is component setup time, as that is not
expected to be a factor in determining individual or joint maintenance; any maintenance
performed on a component would require component setup time. Fixed system penalty per
maintenance work ܥௌ	 is known.

Earliness Penalty

There is a penalty for executing the component maintenance at a time other than the
maintenance recommended by the OEM. If system maintenance is scheduled earlier than
recommended individual component maintenance, then there is a penalty for early
maintenance work for that component. This penalty attempts to penalize the performance of
maintenance unnecessarily too far in advance of the OEM recommendation, and it is a
function of (i) the total amount of earliness determined by ห ௠ܶ,௟

௞ 	െ ௠ݐ
௝ ห (ii) the earliness

penalty ܥா,௟, and (iii) whether component l maintenance is performed early, determined by

௟ݔ
௝.

Tardiness Penalty Cost

If system maintenance is scheduled later than individual component maintenance,
then there is a penalty for late maintenance work for that component. This penalty is a
function of the deviation of recommended individual component maintenance times from the
actual system maintenance time. The penalty is higher for tardiness than earliness here due
to aversion to performing maintenance later than recommended. This is represented, in part,

by the square on the amount of tardiness time, ൫ ௠ܶ,௟
௞ 	െ ௠ݐ

௝ ൯
ଶ
. Other elements include

tardiness penalty ܥ௅,௟ and whether component l maintenance is performed after the OEM

suggested maintenance time, determined by ݕ௟
௝.

System Downtime Cost

There is a cost associated with system downtime due to an unproductive or idle
system. The system downtime penalty per unit time ܥ஽ is known. Expected component
maintenance duration for component l is parameterized as ௥ܶ,௟. Parameter ߛ represents the
percentage of total expected component maintenance duration (i.e., ∑ ௥ܶ,௟ for all l that are
present in jth system maintenance) that would be the expected joint maintenance duration
for jth system repair. We assume this ߛ value to be constant for all iterations. The value of
joint maintenance time parameter ߛ can be chosen from the historical data of a related
system such that ߛ	߳	ሺ0, 1ሿ. The higher the ߛ parameter value, the higher the downtime
maintenance cost would be. Higher ߛ means less time savings in joint repair compared to

System setup penalty ൌ ܥܵ ܴ (3)

Earliness penalty ൌ ෍ ෍ หܶ݉ ,݈
݇ െ ݉ݐ

݆ ห
ܴ

݆
݈ݔ݈,ܧܥ

݆ 	
݊

݈ൌ1
 (4)

Tardiness penalty ൌ ෍ ෍ ൫ܶ݉ ,݈
݇ െ ݉ݐ

݆ ൯
2ܴ

݆
݈,ܮܥ ݈ݕ	

݆
݊

݈ൌ1
 (5)

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=556 -

=

separate maintenance. ߛ	reaches a value of 1 when the expected joint repair time is equal to
the summation of individual component repair times; those are present in jth joint repair. In
other words, the expected downtimes are the same for joint repair and separate repair when
ߛ ൌ 1.

This value defines joint maintenance times for a multi-component system. The term
௟ݖ
௝ determines whether the jth maintenance operation for component l is performed.

Construction Phase Time-Span Parameter (ࢾ)

At the beginning, construction phase time-span parameter delta ሺࢾሻ is chosen such
that ࢾ	߳	ሺ0, 1ሿ. This ࢾ value is kept constant throughout the algorithm. Discussed later, the
algorithm solution is very sensitive to this delta value and needs to be tuned according to
individual instance. A detailed sensitivity analysis and tuning recommendation of ࢾ are
presented later.

Weibull Distribution

The recommended individual maintenance times are assumed here to be the MTBF
from a two-parameter Weibull distribution. The Weibull distribution is well known in reliability
analysis in describing the time between failures for components. MTBF for a Weibull
distribution is found in Equation 7, where ߚ is the shape parameter, ߟ	is the scale parameter,
and	Γ is the gamma function.

Greedy Heuristic With Local Search Algorithm

The maintenance optimization model described previously is solved with a proposed
iterative Greedy Heuristic with Local Search Algorithm (GHLSA). The proposed algorithm is
similar to the generic structure of the Greedy Randomized Adaptive Search Procedure
(GRASP; Feo & Resende, 1995]. In contrast to the two phases of GRASP, our proposed
algorithm has three phases: (1) a construction phase, (2) an improvement phase, and (3) a
local search phase. In the GRASP algorithm, the initial solution is constructed using a
randomized sampling technique, whereas our algorithm uses a greedy heuristic to construct
an initial partial solution. We also use an additional improvement phase, where the greedy
heuristic–based improvement ends. An overview of the proposed algorithm is presented in
Figure 1.

System downtime cost ൌ ෍ ෍ ߛܦܥ
ܴ

݆
݈ݖ݈,ݎܶ

݆
݊

݈
 (6)

MTBF ൌ ሺ1߁ߟ ൅
1
ߚ
ሻ (7)

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=557 -

=

 Pseudo-Code Overview of the Proposed Greedy Heuristic With
Local Search Algorithm (GHLSA)

In brief, the three phases of the algorithm achieve the following:

1. The construction phase determines how many components in the system
should be initially examined to include in system maintenance of multiple
components and an initial estimate for the time at which that multi-component
maintenance operation should occur.

2. The improvement phase improves the construction phase result by dividing
the set of multiple components into two sets (a candidate set and a discard
set) to determine whether dividing the maintenance operation will produce a
lower penalty than the construction phase. This phase iterates by removing a
component out of the candidate set one at a time and placing it in the discard
set and calculating penalty improvement.

3. The local search phase focuses on the resulting candidate set from the
improvement phase and iterates across the different times associated with
recommended component maintenance to balance the penalties of earliness
and tardiness of individual components.

These three phases are performed at each iteration j, thereby resulting in the set of
components involved in the jth system maintenance operation and the time at which the jth
system maintenance operation should be performed. The algorithm stopping criterion is the
pre-determined planning horizon T. Let I be the set of discrete time periods where each
element represents recommended (e.g., from RCM or OEM suggestions) repair times of a
component during planning horizon T.

The final solution of this algorithm is essentially an R × 1 vector for all system
maintenance operations, where each element of the vector represents the recommended jth
system maintenance. The result of each iteration j is referred to as the jth partial solution of
the over final solution. Each element of the algorithm solution is comprised of two parts: ߨ௝

[0] refers to the set of repair times ቄ ௠ܶ,୅భ
௔భ , … , ௠ܶ,୅೙

௔೙ ቅ of components to be performed jointly at

the jth system maintenance operation (where ௠ܶ,୅೙
௔೙ is the ܽ௡ maintenance operation for

component A௡), and 	ߨ௝[1] refers to the recommended time ݐ௠
௝ at which the jth system

procedure GHLSA ()

 begin

 I ← InputInstance { };

 for GHLSA stopping criterion not satisfied →

݆ߨ
0 ← InitialPartialSolution (I,δ);

݆ߨ
′ ← GHBI (݆ߨ

0);

݆ߨ
" ← LocalSearch (݆ߨ

′);

 UpdateSolution (݆ߨ
");

 endfor

 return OptimalSolutionFound;

 end GHLSA;

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=558 -

=

maintenance is to be performed. For example, ߨ௝ ൌ ቂ	ߨ௝ሾ0ሿ, ௝ሾ1ሿቃߨ ൌ ൣ൛ ௠ܶ,୅
௔ , ௠ܶ,୆

௕ , ௠ܶ,େ
௖ ൟ, ௠ݐ

௝ ൧

suggests that the ath maintenance operation of component A, the bth maintenance of
component B, and the cth maintenance of component C will all be performed jointly at time
t௠
௝ , the time chosen for the jth system maintenance operation to occur. Thus during each

iteration of this algorithm, it finds an element which we refer to as a partial solution for
algorithm solution set. At each iteration j, the three phases of the algorithm are performed,
each of which is explained in detail subsequently. Through these three phases of
construction and improvement, a partial solution is found, and this partial solution is then
added to the solution set to update the algorithm solution for the scheduling maintenance
problem. This iterative process is completed when the solution is found for the given
planning horizon.

Using input instance I and chosen value ߜ, an initial partial solution ߨ௝
଴ is created in

the construction phase. During the improvement phase, this initial partial solution ߨ௝
଴ is

improved using greedy heuristic–based procedure GHBI. This improved partial solution is
represented by ߨ௝

ᇱ.. During the local search phase of the ݆th iteration, partial solution ߨ௝
ᇱ.is

further improved using the LocalSearch procedure, and the third phase returns the final
partial solution ߨ௝

". After finding the best partial solution ߨ௝
" in the third phase, we need to

update the existing algorithm solution S and input set I. This partial solution '' is then added
as the ݆th element to solution vector S, to update the algorithm solution. All scheduled
component maintenance times ௠ܶ,௟

௞ at iteration j are removed from set I for the next ሺ݆	 ൅
	1ሻst iteration, and the rest of the unscheduled component repair times of set I are updated
according to their earliness or tardiness deviation for jth system maintenance.

Phase 1: Initial Partial Solution Construction

At each iteration j, the first phase is a construction phase where the initial partial
solution is generated. General pseudo-code for this partial solution construction phase is
presented in Figure 2. ୫ܶୟ୶ is the time duration which expresses the maximum time-span
which includes all the component repair times to be initially considered for repair during jth
system maintenance. The construction phase time-span is selected according to the ߜ
value, which reduces the length of time originally considered by proportion ߜ. All component
repair times ௠ܶ,௟

௞ during time-span Tc are included in the joint repair component set for the
initial partial solution ߨ௝

଴	 for iteration j. This constructs the first part of the initial partial

solution, ߨ௝
଴[0].

Step 1.1. Calculate ࢞ࢇ࢓ࢀ

The maximum time-span of construction phase ୫ܶୟ୶ needs to be calculated. This
୫ܶୟ୶ value represents the time duration between the recommended time for the earliest first

repair of all components and the recommended time for the earliest second repair. Let the
sets of first and second repair times of each component out of all unscheduled maintenance
times be ௠ܶଵ and ௠ܶଶ, respectively. The minimum value of set ௠ܶଵ is denoted by
EarliestFirstRepairTime, and the minimum value of set ௠ܶଶ is expressed by
EarliestSecondRepairTime in the pseudo-code in Figure 2. The absolute value of their
difference is the value of time-span ୫ܶୟ୶

Step 1.2. Calculate ࢉࢀ
Construction phase time-span ௖ܶcan be calculated by multiplying the value of the

maximum time-span of construction phase ୫ܶୟ୶ by ߜ. In a sense, ߜ is the scope of
granularity. A small value of ߜ suggests a tight granularity of the maintenance option set,

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=559 -

=

meaning that a shorter time frame will be considered for ௖ܶ with which to consider multiple
component maintenance options. For a larger value of ߜ, ୫ܶୟ୶ approaches ୫ܶୟ୶ value. And
௖ܶ is equal to ୫ܶୟ୶ when ߜ	 ൌ 1.

Step 1.3. Partial Solution Component Set

Insert all recommended component maintenance times ௠ܶ,௟
௞ that are originally

scheduled during construction phase time-span ௖ܶ into the joint repair component set ߨ௝
଴[0]

of the initial partial solution ߨ௝
଴. If there are ݊௠ଵ elements in set ௠ܶଵ, then it would take ݊௠ଵ

iterations to construct the initial partial solution component set.

The time at which system maintenance is performed on the components in ߨ௝
଴[0]

constitutes the second part of the initial partial solution, ߨ௝
଴[1], which can be chosen

according to several heuristics including

 the mid-point of time-span ௖ܶ,

 a component repair time of component set ߨ௝
଴[0] where the deviation ∆௝ is

minimized, or

 the earliest component repair time (i.e., the minimum value of component set
௝ߨ
଴ [0]).

In our implementation, the third heuristic above is used to construct the later part of
the initial partial solution. That is, the second part of the initial partial solution, ߨ௝

଴ [1], is
chosen according to the heuristic convention of scheduling system repairs at the earliest
component repair time. Thus, this phase schedules all possible component maintenance
during time-span ௖ܶ 	at the earliest possible time to produce an initial partial solution.

 Pseudo-Code for GHLSA Phase 1, the Partial Solution Construction
Phase

Phase 2: Greedy Heuristic-Based Improvement (GHBI)

During the second phase of iteration j, the algorithm improves the initial partial
solution ߨ௝

଴ constructed in Phase 1, focusing primarily on the components in ߨ௝
଴[0] to be

repaired jointly (e.g., ൛ ௠ܶ,୅
௔ , ௠ܶ,୆

௕ , ௠ܶ,େ
௖ ൟ). A search is performed in the neighborhood of ߨ௝

଴ to

procedure InitialPartialSolution (I,δ)

 begin

݆ߨ
0 ← { };

 ܶ݉ ݔܽ ← |EarliestFirstRepairTime - EarliestSecondRepairTime |;

 ݊݉1 ← |ܶ݉ 1|

 ܶܿ ߜ ← ∗ ܶ݉ ݔܽ

 for i ← 1 to ݊݉1 do

 if ܶ݉ 1ሾ݅ሿ < ܶܿ then

݆ߨ
݆ߨ ← 0

0 U ݉ܶ1ሾ݅ሿ ;

 endif

 endfor

 return ݆ߨ
0;

end InitialPartialSolution;

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=560 -

=

find a better partial solution. This combination of component repair times is improved
according to a greedy heuristic of removing the last-one-out (i.e., latest component repair
time) from existing combinations.

Let the initial partial solution ߨ௝
଴ be the existing partial solution ߨ௝

ᇱ (i.e., jth solution

element). If there are ݊௣ elements in the joint repair component set (ߨ௝
଴[0]) of the existing

partial solution, then there would be ݊௣ possible combinations of component sets that can be
created according to the last-one-out greedy heuristic. The best combination set among ݊௣

possible combinations is selected in (݊௣ െ 1) iterations. At each iteration of the (݊௣ െ 1), two
temporary partial solution elements called candidate solution ߨ௖ and discard solution ߨௗ
(i.e., temporary jth and (j+1)st) are generated from existing partial solution ߨ௝

ᇱ. The best
candidate solution is selected as the new existing partial solution ߨ௝

ᇱ according to an
acceptance criterion. Each iteration of this greedy heuristic–based improvement method,
which is the ImproveCombination procedure in Figure 3, is described below.

Step 2.1. Determining ࢐࣊
ᇱሾ૙ሿ

The first part of a solution element presents the component repair times to be
repaired jointly. Improved combination of this joint repair component set is searched using
the last-one-out heuristic. To generate an improved combination of the jth solution element,
two sets (i.e., candidate combination set ܵ௖ and discard set ܵௗ) are created from the existing
joint repair component set. The candidate set will eventually be repaired during the jth
iteration, and the discard set will be saved for the (j + 1)st iteration or beyond. Let the
existing joint repair component set be the initial value of candidate combination set ܵ௖. By
applying the last-one-out greedy heuristic (i.e., latest component repair time), a new discard
set ܵௗ is created. To generate the discard set ܵௗ, the latest component repair time (i.e., max
ܵ௖) is removed from candidate solution set ܵ௖ and inserted into discard set ܵௗ. Candidate
set ܵ௖ and discard set ܵௗ construct the first part of the candidate solution ߨ௖ and discard
solution ߨௗ respectively (i.e., ߨ௖ሾ0ሿ and ߨௗሾ0ሿ).

Step 2.2. Determining ࢐࣊
ᇱሾ૚ሿ

The time at which the elements of the candidate solution ߨ௖ሾ0ሿ are repaired is found
from the earliest component repair time heuristic for the set (i.e., min ܵ௖). This time of repair
is ߨ௖ሾ1ሿ. Similarly, the components in discard solution ߨௗሾ0ሿ are repaired at ߨௗሾ1ሿ, or min ܵௗ.
Other heuristics that could be used in this step were presented in step 3 of the previous
phase.

Step 2.3. Acceptance Criterion

The candidate solution is selected as the existing partial solution ߨ௝
ᇱ, according to the

acceptance criterion of the minimum penalty function. The existing candidate solution is
chosen as the partial solution ߨ௝

ᇱ if the combined penalty function value of candidate and
discard solutions is less than the penalty function value of the existing partial solution ߨ௝

ᇱ.

Figure 3 presents the procedure of developing new combination set according to the
greedy heuristic.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=561 -

=

 Pseudo-Code for Improving Combination Stage

As long as the number of elements ݊௣ of existing partial solution ߨ௝
ᇱ is greater than 1

and minimizes the penalty function value, ߨ௝
ᇱ is divided into two new parts: candidate

solution ߨ௖ and discard solution ߨௗ. This iterative improvement is performed in the while
loop presented in procedure GHBI. Figure 4 describes the procedure GHBI using pseudo-
code.

procedure ImproveCombination (݆ߨ
0)

 begin

CurrentPenalty ← PenaltyFunction (݆ߨ
0);

݆ߨ
′ ݆ߨ ←

0 ;

ܿߨ ← [] ;

݀ߨ ← [] ;

ܵܿ ݆ߨ ←
0ሾ	0	ሿ;

ܵ݀ ← { };

݌݊ ݆ߨ| ←
0ሾ	0	ሿ|;

for i ← 1 to (݊݌ -1) do

ܵܿ ← remove last component repair time and insert it in 	ܵ݀ ;

ܿߨ ← [{ ܵܿ }, min (ܿܵ)] ;

݀ߨ ← [{ ܵ݀ }, min (ܵ݀)] ;

NewPenalty ← PenaltyFunction (ܿߨ)+ PenaltyFunction (݀ߨ);

if NewPenalty < CurrentPenalty then % Acceptance criterion

݆ߨ
′ ܿߨ ← ;

CurrentPenalty ← PenaltyFunction (ܿߨ) ;

endif

endfor

return 	݆ߨ
′ ;

 end ImproveCombination ;

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=562 -

=

 Pseudo-Code for GHLSA Phase 2, the Greedy Heuristic-Based
Improvement Phase

Phase 3: Local Search-Based Improvement

In the last phase of system maintenance iteration j, an improved partial solution is
selected by searching the neighborhood of current partial solution ߨ௝

ᇱ, building the best
candidate set of components repair at the jth iteration. Let this improved partial solution be
௝ߨ
ᇱᇱ and its initial value be ߨ௝

ᇱ. Emphasis in this third phase is placed primarily on searching

different values of ݐ௠
௝ in the neighborhood of ߨ௝

ᇱሾ1ሿ to determine when the jth maintenance
operation should occur. The pseudo-code for this local search phase is shown in Figure 5.
During this improvement phase, ݐ௠

௝ iteratively takes the values of component maintenance
time generated from the final combination set ߨ௝	

ᇱ ሾ0ሿ during the previous phase and creates a
temporary partial solution. During this iterative process, the partial solution is updated
according to the penalty function in Equation 2. According to our selected method, it takes
݊௣ iterations to search the neighborhood of ߨ௝

ᇱሾ1ሿ, if the number of elements in combination
set ߨ௝

ᇱሾ0ሿ is ݊௣. At each iteration of ݊௣, a new temporary partial solution called temp is
generated. Steps of each iteration are as follows.

Step 3.1. Determining ࢐࣊
ᇱᇱሾ૙ሿ

The joint repair component set comprising ߨ௝
ᇱᇱሾ0ሿ takes the value of the final

combination set (i.e., ߨ௝
ᇱሾ0ሿ) found in the second phase.

Step 3.2. Determining ࢐࣊
ᇱᇱሾ૚ሿ

During this improvement phase ݌݉݁ݐሾ1ሿ (i.e., t௠
௝) iteratively takes the values of the

component maintenance time generated from the final combination set ߨ௝	
ᇱ ሾ0ሿ during the

previous phase. At iteration ݊௣, ݐ௠
௝ would take the value of ݊௣th element of combination set

	௝ߨ
ᇱ ሾ0ሿ.

procedure GHBI (݆ߨ
0)

begin

݆ߨ
′ ݆ߨ ←

0 ;

 CurrentPenalty ← PenaltyFunction (݆ߨ
0);

݌݊ ݆ߨ| ←
0[0]|;

 NewPenalty ← 0;

 while (NewPenalty < CurrentPenalty and ݊݌ > 1) do

 CurrentPenalty ← PenaltyFunction (݆ߨ
′);

݆ߨ
′ ← ImproveCombination (݆ߨ

′); % Using greedy heuristic last-one-
out

 NewPenalty ← PenaltyFunction (݆ߨ
′);

݌݊ ݆ߨ	| ←
′ ሾ0ሿ| ;

endwhile

 return ݆ߨ 	
′ ;

end GHBI;

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=563 -

=

Step 3.3. Acceptance Criterion

The acceptance criterion is the value of the penalty function presented in Equation 2.
At each iteration of ݊௣, the temporary partial solution temp is selected as the new existing
partial solution only if the new temporary partial solution minimizes the penalty function
value.

At the end of ݊௣ iterations, the LocalSearch procedure returns the best value found in
the search. The return value, ߨ௝

ᇱᇱ, of this local search–based improvement is the partial
solution representing the jth element of the final solution vector.

 Pseudo-Code for the GHLSA Phase 3, the Local Search Phase

Experimental Results

An example problem briefly illustrates the algorithm.

Problem Specification

Our example problem addresses 10 components in a multi-component system. We
assume the initial start time TNOW is zero. We assumed the earliness penalty and tardiness
penalty values to be equal and same for all components (i.e., deviation penalty Cp).
Maintenance duration ௥ܶ,௟ is assumed to be 5 time units for all components. The
recommended individual maintenance times of these components are assumed here to be
the MTBF from a two-parameter Weibull distribution with shape parameters (ߚ) and scale
parameters (ߟ). The assumed values of planning horizon, setup cost, downtime cost per unit
time, earliness penalty, and tardiness penalty are presented in Table 1.

procedure LocalSearch (݆ߨ
′)

 begin

݆ߨ
݆ߨ ← " 	

′ ;

 CurrentPenalty ← PenaltyFunction (݆ߨ
′);

 NoOfElement ← |݆ߨ
′ [0]|;

 if NoOfElement > 1 then

 for i ← 1 to NoOfElement do

 temp ← ݆ߨ
" ;

݆ߨ ← [1] ݌݉݁ݐ
′ [0] [i];

 NewPenalty ← PenaltyFunction (݌݉݁ݐ);

 if NewPenalty < CurrentPenalty then

݆ߨ
݆ߨ ← [1] "

′ [0] [i];

 CurrentPenalty = PenaltyFunction (݆ߨ
");

 endif;

 endfor;

 endif;

 return ݆ߨ
" ;

 end LocalSearch;

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=564 -

=

Original Case

The original case follows a simple procedure for maintenance. Each system
maintenance operation is performed at the earliest component repair time (i.e., min ௠ܶ,௟

௞) out
of unscheduled component maintenance times. It is assumed that all repair times are in the
system repair window (i.e., min [௠ܶ,௟

௞ +	 ௥ܶ,௟ሿ) and will be scheduled to be repaired at the same
time. We used the same penalty function to calculate the objective function value for the
original case. Note that the tardiness penalty will always be zero in the original case
instance, as system maintenance is done at the earliest component repair time and there is
no push back of component maintenance.

 Parameters of the Illustrative Example

Experimental Evaluation

We solved the above-mentioned problem with our proposed algorithm (GHLSA) and
performed a comparative study between the original case results and GHLSA results.
Generated experimental penalty function data were transformed into percent deviation value
(PD). We calculated the PD of objective function value resulting from proposed algorithm
implementation, from the original case result using the following equation, where Obj	୓୰୧୥୧୬ୟ୪
represents penalty function value for original case and Obj	ୋୌ୐ୗ୅ represents penalty function
value produced using GHLSA procedure. Positive PD means the objective function value
has improved (i.e., minimized) using the proposed algorithm and vice versa.

All calculated results for given instance for different delta values are presented in
Table 2.

Sensitivity Analysis on ࢽ

Table 2 shows that for a given instance, the proposed algorithm produced a very
high objective function value which resulted in negative PD value for lower ߛ value (i.e., ߛ =
0.1 to 0.3 = ߛ). For γ value greater than 0.3, calculated PD resulted in positive values. So for
higher γ values (i.e., for 0.3 < ߛ), the best solutions found using proposed GHLSA improved
the objective function value of the original case. As ߛ increased, the PD value decreased for
both positive and negative deviation trends. This trend was true for any ߛ value (Figure 6).
Collected data were not very sensitive to ߛ value. Trend of the PD remained the same, and
objective function value changed a little bit with a change in ߛ.

Component ߟ ߚ Other values
A 15 2 TNOW =0
B 20 3 T = 200 time unit
C 15 3 CS =30,000
D 17 4 CD =5,000
E 23 5 Cp=CE,l= CL,l=500, for all l
F 37 4 ܶ5500 =݈,ݎ, for all l
G 30 7
H 22 3
I 19 2
J 26 4

Percentage	Deviation ሺPDሻ ൌ
Obj Original െ Obj GHLSA

Obj Original
ൈ 100 (8)

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=565 -

=

Sensitivity Analysis on δ

For all ߛ values, the objective function percent deviation change was logarithmic with
 ߜ GHLSA produced some negative deviation. As ,ߜ For lower values of .(Figure 6) ߜ
increased, it generated positive deviation, as the objective function value decreased with
higher ߜ value.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=566 -

=

 Objective Function and PD Values for Given Instance

δ
 γ=0.2 γ=0.3 γ=0.4 γ=0.5 γ=0.6 γ=0.7 γ=0.8 γ=0.9 γ=1 0.1=ߛ

 Original
1100101.52 1355101.52 1610101.52 1865101.52 2120101.52 2375101.52 2630101.52 2885101.52 3140101.52 3395101.52

0.1 GHLSA
-799063 -799063 -799063 -799063 -799063 -799063 -799063 -799063 -799063 -799063

PD
-72.64 -58.97 -49.63 -42.84 -37.69 -33.64 -30.38 -27.70 -25.45 -23.54

0.2
GHLSA

-165297 -165297 -165297 -165297 -165297 -165297 -165297 -165297 -165297 -165297

PD
-15.03 -12.20 -10.27 -8.86 -7.80 -6.96 -6.28 -5.73 -5.26 -4.87

0.3
GHLSA

-74705 -74705 -74705 -74705 -74705 -74705 -74705 -74705 -74705 -74705

PD
-6.79 -5.51 -4.64 -4.01 -3.52 -3.15 -2.84 -2.59 -2.38 -2.20

0.4
GHLSA

61451 61451 61451 61451 61451 61451 61451 61451 61451 61451

PD
5.59 4.53 3.82 3.29 2.90 2.59 2.34 2.13 1.96 1.81

0.5
GHLSA

119326 119326 119326 119326 119326 119326 119326 119326 119326 119326

PD
10.85 8.81 7.41 6.40 5.63 5.02 4.54 4.14 3.80 3.51

0.6
GHLSA

186958 186958 186958 186958 186958 186958 186958 186958 186958 186958

PD
16.99 13.80 11.61 10.02 8.82 7.87 7.11 6.48 5.95 5.51

0.7
GHLSA

172660 172660 172660 172660 172660 172660 172660 172660 172660 172660

PD
15.69 12.74 10.72 9.26 8.14 7.27 6.56 5.98 5.50 5.09

0.8
GHLSA

226176 226176 226176 226176 226176 226176 226176 226176 226176 226176

PD
20.56 16.69 14.05 12.13 10.67 9.52 8.60 7.84 7.20 6.66

0.9
GHLSA

226176 226176 226176 226176 226176 226176 226176 226176 226176 226176

PD
20.56 16.69 14.05 12.13 10.67 9.52 8.60 7.84 7.20 6.66

1
GHLSA

226176 226176 226176 226176 226176 226176 226176 226176 226176 226176

PD
20.56 16.69 14.05 12.13 10.67 9.52 8.60 7.84 7.20 6.66

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=567 -

=

Comparative Study

We performed a comparative study of the original case and the GHLSA-based
results by generating different instances by changing given value of ܥ௦, ܥ஽,and ܥ௉.

Sensitivity Analysis on Setup Penalty ࢙࡯
Produced results for the original case and the GHLSA case for different generated

instances for six different setup costs are presented in Table 3. The presented values are
the calculated PD values for the best objective function value found using the proposed
GHLSA for each instance.

 Change in PD Value With Delta

For all generated 60 instances, GHLSAs were able to improve (i.e., positive PD
values) the original case penalty function value (Table 3). Improvement ranged from 1.08%
to 20.56% in minimizing the objective function value compared to the original case. For a
given Cୱ, penalty function value increased as γ decreased. It showed an increasing trend in
PD value with increasing Cୱ, for any given γ. It shows the potential of this research algorithm
for multi-component system maintenance where setup cost is comparatively high.

 PD Values for Different Setup Costs

Setup γ=0.1 γ=0.2 γ=0.3 γ=0.4 γ=0.5 γ=0.6 γ=0.7 γ=0.8 γ=0.9 γ=1
30k 20.56 16.69 14.05 12.13 10.67 9.52 8.60 7.84 7.20 6.66
25k 18.07 14.32 11.86 10.12 8.83 7.83 7.03 6.38 5.84 5.39
20k 14.84 11.42 9.28 7.81 6.75 5.94 5.30 4.79 4.37 4.01
15k 10.51 7.77 6.17 5.11 4.37 3.81 3.38 3.03 2.75 2.52
10k 6.39 4.49 3.46 2.81 2.37 2.05 1.80 1.61 1.45 1.33
5k 6.32 4.12 3.05 2.42 2.01 1.72 1.50 1.33 1.19 1.08

 Sensitivity on Downtime Penalty ࡰ࡯

We generated 100 instances for 10 different Cୈ values ranging from 1k to 10k. The
calculated PD values are representative of the best solution found using proposed GHLSA
at granularity level 0.1 (Table 4). The proposed GHLSAs were able to improve the PD

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=568 -

=

values of all 100 instances for different Cୈ. PD values ranged from 3.80 to 25.24. For all ߛ,
PD value decreased with higher Cୈ.

 PD Values for Different Downtime Costs

Downtime
Cost γ=0.1 γ=0.2 γ=0.3 γ=0.4 γ=0.5 γ=0.6 γ=0.7 γ=0.8 γ=0.9 γ=1
1k 25.24 23.88 22.66 21.56 20.56 19.65 18.82 18.05 17.34 16.69
2k 23.88 21.56 19.65 18.05 16.69 15.52 14.51 13.62 12.83 12.13
3k 22.66 19.65 17.34 15.52 14.05 12.83 11.80 10.93 10.18 9.52
4k 21.56 18.05 15.52 13.62 12.13 10.93 9.95 9.13 8.44 7.84
5k 20.56 16.69 14.05 12.13 10.67 9.52 8.60 7.84 7.20 6.66
6k 19.65 15.52 12.83 10.93 9.52 8.44 7.57 6.87 6.28 5.79
7k 18.82 14.51 11.80 9.95 8.60 7.57 6.76 6.11 5.57 5.12
8k 18.05 13.62 10.93 9.13 7.84 6.87 6.11 5.50 5.01 4.59
9k 17.34 12.83 10.18 8.44 7.20 6.28 5.57 5.01 4.55 4.16
10k 16.69 12.13 9.52 7.84 6.66 5.79 5.12 4.59 4.16 3.80

Sensitivity on Deviation Penalty ࡼ࡯

Different ܥ௉ values, ranging from 100 to 1,000, were used to generate 100
experimental instances. All calculated PD values of the original case and the GHLSA case
are in Table 5.

 PD Values for Different Deviation Penalty Values

Deviation
Penalty γ=0.1 γ=0.2 γ=0.3 γ=0.4 γ=0.5 γ=0.6 γ=0.7 γ=0.8 γ=0.9 γ=1

100 27.85 22.30 18.59 15.94 13.95 12.41 11.17 10.15 9.31 8.59
200 25.93 20.84 17.42 14.96 13.11 11.67 10.51 9.56 8.77 8.10
300 24.08 19.41 16.27 14.00 12.28 10.94 9.86 8.98 8.24 7.62
400 22.29 18.03 15.14 13.05 11.47 10.23 9.23 8.41 7.72 7.14
500 20.56 16.69 14.05 12.13 10.67 9.52 8.60 7.84 7.20 6.66
600 18.89 15.39 12.98 11.22 9.88 8.83 7.98 7.28 6.69 6.19
700 17.28 14.12 11.93 10.33 9.11 8.15 7.37 6.73 6.19 5.73
800 15.72 12.88 10.91 9.46 8.35 7.48 6.77 6.18 5.69 5.27
900 14.42 11.85 10.06 8.74 7.72 6.92 6.27 5.73 5.27 4.89
1000 12.75 10.51 8.93 7.77 6.88 6.17 5.59 5.11 4.71 4.37

In all experimental instances for deviation penalty ܥ௉, our presented GHLSAs were
successfully able to minimize the penalty function value. For all 100 instances, the found PD
values were positive, which means improvement of the objective function value compared to
the original case study. For different ܥ௉ values, the resulting PD values ranged from 4.37 to
27.85. PD value decreased with higher ܥ௉ for all ߛ (see Table 5).

Optimal ࢾ Value

Tables 6 and 7 present the optimal ߜ values at granularity level 0.1, for generated
instances for ܥௌ and ܥ௉. Note that optimal ߜ values for downtime instances were not

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=569 -

=

reported in the tables. For all 100 instances for Cୈ, the generated optimal delta value was
0.8–1.0 at granularity level 0.1. For setup cost, all instances for cost ranging from 15k to
30k, optimal ߜ was 0.8–1.0. For 10k setup cost instances, the optimal delta value was 1.0,
and it decreased to 0.5 for the lowest setup cost 5k.

 Optimal ࢾ Values for Different Setup Cost Instances

SetupCost γ=0.1 γ=0.2 γ=0.3 γ=0.4 γ=0.5 γ=0.6 γ=0.7 γ=0.8 γ=0.9 γ=1

5k 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

10k 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

15k–30k 0.8–1.0 0.8–1.0 0.8–1.0 0.8–1.0 0.8–1.0 0.8–1.0 0.8–1.0 0.8–1.0 0.8–1.0 0.8–1.0

 Optimal ࢾ Values for Different Deviation Penalty Cost Instances

DeviationPenalty γ=0.1 γ=0.2 γ=0.3 γ=0.4 γ=0.5 γ=0.6 γ=0.7 γ=0.8 γ=0.9 γ=1

100–800 0.8–1.0 0.8–1.0 0.8–1.0 0.8–1.0 0.8–1.0 0.8–1.0 0.8–1.0 0.8–1.0 0.8–1.0 0.8–1.0

900 0.7–1.0 0.7–1.0 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

1000 0.8–1.0 0.8–1.0 0.8–1.0 0.8–1.0 0.8–1.0 0.8–1.0 0.8–1.0 0.8–1.0 0.8–1.0 0.8–1.0

For deviation penalty instances, this optimal ߜ value was constant for all values of
 value for best found ߜ values (i.e., γ = 0.1–0.2), the ߛ ௉ = 900, for lowerܥ ௉, except 900. Forܥ
results was 0.7–1.0 and for the rest of ߛ values, it was 0.7. According to the PD analysis, ߜ
is a significant factor in finding a good solution by implementing this greedy heuristic–based
methodology. The experimental results of the presented 260 instances shows that a higher
value of ߜ, at granularity level 0.1, is a safer choice when the penalty function for all the ߜ
values cannot be evaluated. In those cases, our recommended ߜ value would be 0.5–1.0, at
granularity level 0.1.

Tuning Parameter ࢾ

The presented results were very sensitive to ߜ. Tuning of this granularity parameter
depends on the system configuration (i.e., the number of components) and available
computation power. If possible, the initial tuning can be done at granularity level 0.1.
Granularity level 0.1 means to change the scope of granularity ߜ value by 0.1. With a
granularity level of 0.1, in 10 runs the algorithm would generate the best solution possible
with the proposed method. If the granularity level needs to be smoother, that depends on
the input instance (i.e., the input values of ௠ܶ,௟

௞). If ௠ܶ,௟
௞ values result in a very small

௠ܶ௔௫,	then a higher granularity level may not produce any better result, as a number of
components repair times may remain the same for resulting construction phase time-span
ܶ	௖.

Concluding Remarks and Future Work
In this paper, we proposed a greedy heuristic local search algorithm for multi-

component preventive maintenance scheduling problems. This scheduling algorithm is
based on some greedy heuristics and a local search method. This new algorithm has proven
to make significant improvement of the objective function criterion, compared to presented
original case results. We have implemented the presented GHLSA for 260 generated

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=570 -

=

instances and found remarkable results. Deviation analysis showed significant improvement
of the objective function value for all 260 problem instances. The presented greedy
heuristics–based algorithm looks very promising in solving some real life preventive
maintenance scheduling problems.

Future work includes the addition of another objective to the algorithm: the effect on
system reliability at iteration j. Currently, only a cost parameter is considered when
determining the earliness or tardiness of a particular component maintenance operation
when coordinating system maintenance. However, it is hypothesized that a system reliability
objective may change the maintenance schedule, particularly when the system schedule
suggests that some components be maintained after their recommended maintenance times
(tardiness), potentially resulting in an undesired system reliability.

References
Bertolini, M., & Bevilacqua, M. (2006). A combined goal programming–AHP approach to maintenance

selection problem. Reliability Engineering and System Safety, 91(7), 839–848.

Budai, G., Huisman, D., & Dekker, R. (2006). Scheduling preventive railway maintenance activities.
Journal of the Operational Research Society, 57(9), 1035–1044.

Celeux, G., Corset, F., Lannoy, A., & Ricard, B. (2006). Designing a Bayesian network for preventive
maintenance from expert opinions in a rapid and reliable way. Reliability Engineering and
System Safety, 91(7), 849–856.

Dekker, R., Smit, A., & Losekoot, J. (1991). Combining maintenance activities in an operational
planning phase: A set-partitioning approach. IMA Journal of Management Mathematics, 3(4),
315–331.

Dekker, R., Wildeman, R. E., & Van Egmond, R. (1996). Joint replacement in an operational planning
phase. European Journal of Operational Research, 91(1), 74–88.

Dekker, R., Wildeman, R. E., & van der Duyn Schouten, F. A. (1997). A review of multi-component
maintenance models with economic dependence. Mathematical Methods of Operations
Research, 45(3), 411–435.

El-Amin, I., Duffuaa, S., & Abbas, M. (2000). A Tabu Search algorithm for maintenance scheduling of
generating units. Electric Power Systems Research, 54(2), 91–99.

Feo, T. A., & Resende, M. G. (1995). Greedy randomized adaptive search procedures. Journal of
Global Optimization, 6(2), 109–133.

GAO. (2007). Defense budget: Trends in operation and maintenance costs and support services
contracting (GAO-07-631). Washington, DC: Author.

GAO. (2011). Defense logistics: DOD input needed on implementing depot maintenance study
recommendations (GAO-13-267). Washington, DC: Author.

GAO. (2013). Defense business transformation: Improvements made but additional steps needed to
strengthen strategic planning and assess progress (GAO-13-267). Washington, DC: Author.

Gürler, Ü., & Kaya, A. (2002). A maintenance policy for a system with multi-state components: An
approximate solution. Reliability Engineering and System Safety, 76(2), 117–127.

Higgins, A. (1998). Scheduling of railway track maintenance activities and crews. Journal of the
Operational Research Society, 49(10), 1026–1033.

Nicolai, R. P., & Dekker, R. (2008). Optimal maintenance of multi-component systems: A review. In K.
A. H. Kobbacy & D. N. P. Murthy (Eds.), Complex system maintenance handbook (pp. 263–286).
London, England: Springer London.

Pan, Q. K., & Ruiz, R. (2012). Local search methods for the flowshop scheduling problem with
flowtime minimization. European Journal of Operational Research, 222(1), 31–43.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=571 -

=

Papadakis, I. S., & Kleindorfer, P. R. (2005). Optimizing infrastructure network maintenance when
benefits are interdependent. OR Spectrum, 27(1), 63–84.

Sriskandarajah, C., Jardine, A., & Chan, C. (1998). Maintenance scheduling of rolling stock using a
genetic algorithm. Journal of the Operational Research Society, 49(11), 1130–1145.

Stinson, J. P., & Khumawala, B. M. (1987). The replacement of machines in a serially dependent
multi-machine production system. International Journal of Production Research, 25(5), 677–688.

van der Duyn Schouten, F. A., & Vanneste, S. G. (1993). Two simple control policies for a
multicomponent maintenance system. Operations Research, 41(6), 1125–1136.

Visser, J. K. (1998). Modelling maintenance performance: A practical approach. In Proceedings
of IMA Conference (pp. 1–13). Edinburgh, Scotland.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=
RRR=aóÉê=oç~ÇI=fåÖÉêëçää=e~ää=
jçåíÉêÉóI=`^=VPVQP=

www.acquisitionresearch.net=

