
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó=
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

NPS-SE-13-C10P07R05-075

=
=
=
=
=
=

bñÅÉêéí=Ñêçã=íÜÉ=

mêçÅÉÉÇáåÖë=
çÑ=íÜÉ=

qÉåíÜ=^ååì~ä=^Åèìáëáíáçå=
oÉëÉ~êÅÜ=póãéçëáìã=

póëíÉã=çÑ=póëíÉãë=j~å~ÖÉãÉåí=

Computer-Aided Process and Tools for Mobile
Software Acquisition

Christopher Bonine, Man-Tak Shing, and Thomas W. Otani
Naval Postgraduate School

Published April 1, 2013

Approved for public release; distribution is unlimited.
Prepared for the Naval Postgraduate School, Monterey, CA 93943.

Disclaimer: The views represented in this report are those of the authors and do not reflect the official policy
position of the Navy, the Department of Defense, or the federal government.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó=
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

The research presented in this report was supported by the Acquisition Research Program
of the Graduate School of Business & Public Policy at the Naval Postgraduate School.

To request defense acquisition research, to become a research sponsor, or to print
additional copies of reports, please contact any of the staff listed on the Acquisition
Research Program website (www.acquisitionresearch.net).

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=i -

=

Preface & Acknowledgements

Welcome to our Tenth Annual Acquisition Research Symposium! We regret that this
year it will be a “paper only” event. The double whammy of sequestration and a continuing
resolution, with the attendant restrictions on travel and conferences, created too much
uncertainty to properly stage the event. We will miss the dialogue with our acquisition
colleagues and the opportunity for all our researchers to present their work. However, we
intend to simulate the symposium as best we can, and these Proceedings present an
opportunity for the papers to be published just as if they had been delivered. In any case, we
will have a rich store of papers to draw from for next year’s event scheduled for May 14–15,
2014!

Despite these temporary setbacks, our Acquisition Research Program (ARP) here at
the Naval Postgraduate School (NPS) continues at a normal pace. Since the ARP’s
founding in 2003, over 1,200 original research reports have been added to the acquisition
body of knowledge. We continue to add to that library, located online at
www.acquisitionresearch.net, at a rate of roughly 140 reports per year. This activity has
engaged researchers at over 70 universities and other institutions, greatly enhancing the
diversity of thought brought to bear on the business activities of the DoD.

We generate this level of activity in three ways. First, we solicit research topics from
academia and other institutions through an annual Broad Agency Announcement,
sponsored by the USD(AT&L). Second, we issue an annual internal call for proposals to
seek NPS faculty research supporting the interests of our program sponsors. Finally, we
serve as a “broker” to market specific research topics identified by our sponsors to NPS
graduate students. This three-pronged approach provides for a rich and broad diversity of
scholarly rigor mixed with a good blend of practitioner experience in the field of acquisition.
We are grateful to those of you who have contributed to our research program in the past
and encourage your future participation.

Unfortunately, what will be missing this year is the active participation and
networking that has been the hallmark of previous symposia. By purposely limiting
attendance to 350 people, we encourage just that. This forum remains unique in its effort to
bring scholars and practitioners together around acquisition research that is both relevant in
application and rigorous in method. It provides the opportunity to interact with many top DoD
acquisition officials and acquisition researchers. We encourage dialogue both in the formal
panel sessions and in the many opportunities we make available at meals, breaks, and the
day-ending socials. Many of our researchers use these occasions to establish new teaming
arrangements for future research work. Despite the fact that we will not be gathered
together to reap the above-listed benefits, the ARP will endeavor to stimulate this dialogue
through various means throughout the year as we interact with our researchers and DoD
officials.

Affordability remains a major focus in the DoD acquisition world and will no doubt get
even more attention as the sequestration outcomes unfold. It is a central tenet of the DoD’s
Better Buying Power initiatives, which continue to evolve as the DoD finds which of them
work and which do not. This suggests that research with a focus on affordability will be of
great interest to the DoD leadership in the year to come. Whether you’re a practitioner or
scholar, we invite you to participate in that research.

We gratefully acknowledge the ongoing support and leadership of our sponsors,
whose foresight and vision have assured the continuing success of the ARP:

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=ii -

=

 Office of the Under Secretary of Defense (Acquisition, Technology, &
Logistics)

 Director, Acquisition Career Management, ASN (RD&A)
 Program Executive Officer, SHIPS
 Commander, Naval Sea Systems Command
 Program Executive Officer, Integrated Warfare Systems
 Army Contracting Command, U.S. Army Materiel Command
 Office of the Assistant Secretary of the Air Force (Acquisition)
 Office of the Assistant Secretary of the Army (Acquisition, Logistics, &

Technology)
 Deputy Director, Acquisition Career Management, U.S. Army
 Office of Procurement and Assistance Management Headquarters,

Department of Energy
 Director, Defense Security Cooperation Agency
 Deputy Assistant Secretary of the Navy, Research, Development, Test, &

Evaluation
 Program Executive Officer, Tactical Aircraft
 Director, Office of Small Business Programs, Department of the Navy
 Director, Office of Acquisition Resources and Analysis (ARA)
 Deputy Assistant Secretary of the Navy, Acquisition & Procurement
 Director of Open Architecture, DASN (RDT&E)
 Program Executive Officer, Littoral Combat Ships

James B. Greene Jr. Keith F. Snider, PhD
Rear Admiral, U.S. Navy (Ret.) Associate Professor

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=624 -

=

System of Systems Management

Acquisition Management for System of Systems: Affordability Through Effective
Portfolio Management

Navindran Davendralingam and Daniel DeLaurentis
Purdue University

Identifying Governance Best Practices in Systems-of-Systems Acquisition

David J. Berteau, Guy Ben-Ari, Joshua Archer, and Sneha Raghavan
Center for Strategic and International Studies

The Making of a DoD Acquisition Lead System Integrator (LSI)

Paul Montgomery, Ron Carlson, and John Quartuccio
Naval Postgraduate School

Innovating Naval Business Using a War Game

Nickolas Guertin and Brian Womble, United States Navy
Paul Bruhns, ManTech International Corporation

Computer-Aided Process and Tools for Mobile Software Acquisition

Christopher Bonine, Man-Tak Shing, and Thomas W. Otani
Naval Postgraduate School

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=685 -

=

Computer-Aided Process and Tools for Mobile Software
Acquisition

Christopher Bonine—Bonine is a lieutenant in the United States Navy. He is currently assigned to
the Navy Cyber Defense Operations Command in Norfolk, VA. He has served as information warfare
officer onboard the USS Sampson and as N51 division officer at the Navy Cyber Warfare
Development Group. His current interests are in the development and implementation of cyber
security policy. Bonine has a master’s in computer science from the Naval Postgraduate School.
[cbbonine@nps.edu]

Man-Tak Shing—Shing is an associate professor at the Naval Postgraduate School. His research
interests include the engineering of software intensive systems. He is on the program committees of
several software engineering conferences. He was the program co-chair of the Rapid System
Prototyping Workshop in 2004 prior to being the general co-chair for the symposium in 2008. He also
served as the program co-chair of the IEEE System of Systems Engineering Conference in 2010 and
2011. He received his PhD in computer science from the University of California, San Diego, and is a
senior member of IEEE. [shing@nps.edu]

Thomas W. Otani—Otani is an associate professor of computer science at the Naval Postgraduate
School. His main research interests include object-oriented programming, mobile and web application
development, and database design. He received his PhD in computer science from the University of
California, San Diego, in 1983. [twotani@nps.edu]

Abstract
Mobile devices have, in many ways, replaced traditional desktops in usability, usefulness,
and availability. Many companies are scrambling to develop enterprise strategies to provide
mobile devices and application support for their employees, and the DoD is taking the point in
the federal government’s campaign to deploy mobile devices. A successful DoD mobile
software acquisition program requires efficient and effective means to assure the proper
functioning of the applications. As the majority of future mobile apps will be developed by
small companies (or crowdsourcing individuals) and have relatively short development
cycles, a traditional software verification process that relies on the testing of source code is
not effective for vetting mobile apps. The paper presents a new approach for vetting mobile
software. It allows subject matter experts to specify desirable and undesirable behaviors of
the mobile apps as executable statecharts and to verify the target software by running the
automatically generated statechart code against the execution trace of the mobile apps using
log file–based runtime verification. A case study of formally specifying, validating, and
verifying a set of requirements for an iPhone application that tracks the movement of the
iPhone user is used to demonstrate the new approach.

Introduction

In an April 23, 2012, blog post, analyst Frank E. Gillett of Forrester Research
predicted that “tablets will become our primary computing device” in the near future, with
“global tablet sales to reach 375 million units, with one-third purchased by businesses and
two-fifths (or 40 percent) by emerging markets” by 2016 (Gillett, 2012). Many companies are
scrambling to develop enterprise strategies to provide mobile devices and application
support for their employees, and the DoD “is taking the point in the federal government’s
campaign to deploy mobile devices” (Kenyon, 2012a). The Defense Information Systems
Agency (DISA) has opened a program office and issued a request for information to solicit
ideas from industry for ways to provide the mobile device management (MDM) services and
to run an applications store (Kenyon, 2012b), and the Army has established the Army

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=686 -

=

Software Marketplace, a prototype online storefront for Army-wide distribution of mobile
software.

As the DoD is charging forward with its mobile programs, it must find ways to
address its concerns in security, authentication, and logistics in managing and deploying the
rapidly growing number of mobile applications and devices with varying degrees of access
across the DoD enterprise. The Space and Naval Warfare (SPAWAR) Atlantic System
Center is working with DISA and the National Institute of Standards and Technology (NIST)
to provide warfighters with access to unclassified information from their handheld devices
via the cloud-based mobility-as-a-service, and the recent adoption of a hardened kernel for
the Android mobile operating system is another major step towards providing a secure base
for the development of trustworthy mobile software. Moreover, the DoD needs an efficient
and effective process to ensure the proper functioning of the mobile software (commonly
referred to as mobile apps), so that the software does what it promises to do and does so
without hidden or emergent malicious behaviors.

Mobile apps shrink the software programs that were once only available on a
desktop computer, making them usable on smart phones and mobile devices. The app
market has been growing at an unprecedented rate. The app world, which consisted of
8,000 Apple titles in 2008, had reached 1 million titles in 2011 (Freierman, 2011). As the
majority of mobile apps are developed by small companies (or crowdsourcing individuals)
and have relatively short development cycles, traditional software verification processes that
rely on testing of source code are not effective for vetting mobile software. The DoD needs
better means to ensure the proper functioning of mobile apps without source code or other
detailed information about the software’s implementation.

This paper presents a new approach for vetting mobile software. It allows subject
matter experts to specify desirable and undesirable behaviors of the mobile apps as
executable statecharts and to verify the target software by running the automatically
generated statechart code against the execution trace of the mobile apps using log file–
based runtime verification.

The rest of the paper is organized as follows. The V&V of Mobile Apps section
provides a summary of the current state of verification and validation (V&V) of mobile apps.
The Formal Specification and Validation of Mobile Apps section presents an overview of
statechart assertions, our formal specification language of choice, and the proposed
computer-aided process for the V&V of mobile apps. The section Case Study presents a
case study involving the formal specification, validation, and verification of a set of
requirements for an iPhone application that tracks the movement of the iPhone user. The
last section is the conclusion, which provides a summary and draws some conclusions.

The V&V of Mobile Apps

Verification and Validation (V&V) is a software evaluation process to ensure proper
and expected operation. As stated in Michael, Drusinsky, Otani, and Shing (2011),

Verification refers to activities that ensure the product is built correctly by
assessing whether it meets its specifications. Validation refers to activities
that ensure the right product is built by determining whether it meets
customer expectations and fulfills specific user-defined intended purposes.

Simply stated, the purpose of V&V is to ensure the software does what it is required to do,
and nothing more.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=687 -

=

Difficulties in Testing Mobile Apps

New mobile devices, especially phones, have such short development times that the
devices have barely been on the market long enough to work out existing bugs before the
new device with new software is ready to release. As an example, Apple releases a new
iPhone model every year, and has developed six generations of iOS. The Android operating
system had eight versions in three years. This high turnover of mobile devices is created not
only by demand and competition, but also capability increases of computing power, battery
life, and screen size. As new capabilities are added to the devices and applications in each
development cycle, new automated V&V techniques are needed to keep up with the fast
pace of mobile application development.

Additional difficulties in the testing of mobile applications are due to limitations of the
hardware. At this time, other than operating system tasks, iPhone can only run a single
application at a single point in time. The purpose is to conserve the limited computing power
of the device as well as reduce power consumption. The negative aspect is that there is little
or no application interaction on a single device. This prevents useful testing applications
from running on mobile devices to analyze the real-time behavior of applications. Even if
such an ability were possible, the small screen size would create difficulties in analyzing the
data while on the device. Android devices have the ability for third-party developers to
create multiprocessing applications, which could allow analytics to be conducted directly on
the device, but the same screen size limitation would impede analysis of the data (see
Muccini, Francesco, & Esposito [2012] for a detailed discussion of the challenges in testing
mobile apps.)

These limitations make testing done off the device more amenable. There are two
possible options: use device-specific emulators, or use specially altered software code to
allow offloading of real data from the device onto a computer for analysis. While the
emulators will do a good job creating a proper environment to test an application, it has the
limitation of being stuck in place, and does not recreate the ever-changing environment in
which mobile devices exist. The other method could potentially include such a robust
environment; the currently existing techniques require a cable connection to a computer,
tethering the mobile device to an immobile one. The current techniques also require an
instrumented version of the original code to provide a mechanism to offload the required
information to properly evaluate the operation of the application.

Current Solutions to V&V of Mobile Apps

Monkeyrunner enables the writing of unit tests to test software at a functional level
(“Monkeyrunner,” n.d.). Monkeyrunner uses Python to run testing code on one or more
devices, or an emulator. It can send commands and keystrokes, and record screenshots.
Monkeyrunner allows for the repetition of test results, but element location in the recorded
screenshots is the basis for comparing two test results. This limits comparisons to a single
screen size.

Android Robotium is a Java-based tool for writing unit tests (“User Scenario Testing,”
n.d.). Similar to Monkeyrunner, it is designed to run as a black-box testing tool and can run
as an emulator, as well as run on the actual device, although it is limited to a single device.
Robotium allows for testing of pre-install software as well. The big difference between
Robotium and Monkeyrunner is that Robotium has a more robust test result comparison.
Rather than using a location-based method, Robotium uses identifiers to recognize
elements. This allows devices of different types and sizes to be compared to ensure
consistency.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=688 -

=

Lesspainful.com provides a way for customers to run software and unit tests on
physical devices without the cost of owning the devices (Lesspainful Device Lab, n.d.). The
customers use the programming language Cucumber to write an English description of the
test they would like to run on their software. Once the devices to be tested on are chosen,
the tests are automated in a cloud-like system with results from each mobile device
presented to the customer to allow for easy comparison.

Testquest 10 is a software suite, created by Bsquare, which enables unit tests in a
device emulator and enables the collaboration of geographically dispersed teams (Bsquare,
2003). It utilizes an extensive use of image recognition to determine device state as well as
the location of applications and features on the screen. An interesting feature is that if the
GUI design is changed and an application or feature is moved from one location to another,
this suite is able to locate and use the feature.

Bo, Xiang, and Xiaopeng (2007) introduced an approach for testing a device and
software by using what they called sensitive-events. Their approach reduces the need for
screenshot comparisons by capturing these events, such as inbox full, to determine state
change. The software will then evaluate these state changes and, if the events indicate
desired conditions, the tests will continue.

All of the aforementioned software tools are for testing an application to ensure
proper functionality and operations. What they are missing is the ability to map the operation
of the phone directly to a set of requirements. The above tools all require some form of
script writing, which can lead to missing software test cases. When writing scripts to cover
unit tests, the programmer must understand the requirements and determine boundary
(edge) cases in order to properly test for them. The tools are also limited in their ability to
handle context-aware features. Another limitation is that, due to the limitation of the
hardware and the software testing suites, only one application at a time can be tested.

Delamaro, Vincenzi, and Maldonado (2006) used an extension to the JaBUTi, called
JaBUTi/ME. The extension takes JaBUTi, which is a Java byte code analysis tool, and adds
the ability to run instrumented-code on a mobile device that creates trace data, and then
pass the trace data to a desktop computer for analysis. By using a method of creating trace
data, this solution is conceptually similar to the idea presented in this paper. However, this
method still requires test cases to be manually written to evaluate the resulting trace file.
Additionally, as stated by the authors, the code instrumentation would vary based on the
hardware device the code is being tested on. This is due to the potential differences in
network connectivity needed to transmit the trace data back.

Formal Specification and Validation of Mobile Apps

Michael et al. (2011) pointed out that

Software engineers have become competent at verification: we can build
portions of systems to their applicable specifications with relative success.
However, we still build systems that don’t meet customers’ expectations and
requirements. This is because people mistakenly combine V&V into one
element, treating validation as the user’s operational evaluation of the
system, resulting in the discovery of requirement errors late in the
development process, when it’s costly, if not impossible, to fix those errors
and produce the right product.

Hence, first and foremost, we need a means for analysts to describe the desirable
and undesirable behaviors of the mobile apps. Typically, the requirements-discovery
process begins with constructing scenarios involving the system and its environment. From

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=689 -

=

these scenarios, analysts informally express their understanding of the system’s expected
behavior or properties using natural language and then translate them into a specification.
Specification based on natural language statements can be ambiguous. For example,
consider the following requirement for a project management software: The software shall
generate a project status report once every month. Will the software meet the customer’s
expectation if it generates one report each calendar month? Does it matter if the software
generates one report in the last week of May and another in the first week of June? What
happens if a project lasts only 15 days? Does the software have to generate at least one
report for such a project?

Research has shown that formal specifications and methods help improve the clarity
and precision of requirements specifications (Easterbrook et al., 1998). However, formal
specifications are useful only if they match the true intent of the customer’s requirements.
Because only the subject matter expert (SME) who supplied the requirements can answer
these questions, the analyst must validate his or her own cognitive understanding of the
requirements with the SME to ensure that the specification is correct. For example, consider
the security requirement R1: If there are more than two invalid logins within any 15-second
interval, then the mobile device will remain unavailable for 10 minutes. Whether the scenario
shown in Figure 1 violates R1 depends on the interpretation of the starting time of 10-minute
timeout interval.

 Example of Requirements Ambiguity

The best way to validate and disambiguate complex behavioral requirements is to
walk through the different scenarios with the stakeholders and ask them to confirm or clarify
the requirements analyst’s cognitive understanding of the natural language requirements.
Drusinsky, Shing, and Demir (2007) proposed the iterative process for assertion validation
shown in Figure 2. This process encodes requirements as Unified Modeling Language
(UML) statecharts augmented with Java action statements and validates the assertions by
executing a series of scenarios against the statechart-generated executable code to
determine whether the specification captures the intended behavior.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=690 -

=

 Iterative Process for Assertion Validation
(based on Drusinsky, Shing, & Demir, 2007)

Statechart Assertions

A statechart assertion is a UML statechart-based formal specification for use in
prototyping, runtime monitoring, and execution-based model checking (Drusinsky, 2011). It
extends the Harel statechart formalism (Harel, 1987) and is supported by StateRover, a
plug-in for the Eclipse integrated development environment (IDE; see
www.timerover.com/staterover.pdf). StateRover provides support for design entry, code
generation, and visual debug animation for UML statecharts combined with flowcharts.

The statechart assertion extends Harel statecharts by adding a bSuccess Boolean
flag and by enabling non-determinism. Statechart assertions are formulated from an external
observer’s perspective. Though the bSuccess Boolean is a simple mechanism, it is
instrumental in determining if an assertion ever fails. The Boolean indicates whether the
assertion was violated by the system being analyzed. A statechart assertion assumes the
requirement it is based on is met (bSuccess = true), and it will retain that assumption unless
a sequence of events leading to the violation of the requirement specified by the statechart
assertion is observed. Once an assertion fails (i.e., reaches an error state), bSuccess
becomes false and will stay false for the remainder of the execution. Since the statecharts
are simple, it is easy to identify the assertion that failed and the cause.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=691 -

=

 A Statechart Assertion for Requirement R1

Figure 3 shows a statechart assertion for the requirement R1, where the 10-minute
interval starts immediately at the detection of the third invalidLogin event within a 15-second
interval according to the analyst’s interpretation of the natural language requirement. The
statechart is written from the standpoint of an observer, who is interested in the proper
sequencing of two system events: invalidLogin and deviceUnlock. It uses two timers to keep
track of the timing constraints in R1. Starting out in the Init state, the statechart transitions to
the flowchart-action box StartTimer when it observes an invalidLogin event. It increments
the counter nCnt and starts the 15-second timer, and then checks to see if the counter nCnt
exceeds 2. If nCnt  2, it enters the Count state. Whenever the statechart observes an
invalidLogin event in the Count state, it increments the counter nCnt and then checks to see
if the counter nCnt exceeds 2. The statechart will remain in the Count state until either the
15-second timer expires, or until nCnt > 2. If nCnt > 2, the statechart enters the LockDevice
state and starts the 10-minute timer. The statechart will remain in the LockDevice state until
either the 10-minute timer expires, or until it observes a deviceUnlock event. It the statechart
observes a deviceUnlock event in the LockDevice state, it enters the Error state. The entry
action for the Error state sets bSuccess to false, meaning that the requirement R1 has been
violated.

The StateRover supports the specification of complex requirements using non-
deterministic statecharts. While deterministic statechart assertions suffice for the
specification of many requirements, theoretical results show that non-deterministic
statecharts are exponentially more succinct than deterministic Harel statecharts (Drusinsky
& Harel, 1994). Non-deterministic statechart assertions provide a very intuitive way for
designers to specify behaviors involving a sliding time window. In the statechart assertion
shown in Figure 3, there is an apparent next-state conflict when an event invalidLogin is
observed in the Init state. StateRover uses a special code generator to create a plurality of
state-configuration objects for non-deterministic statechart assertions, one per possible
computation in the assertion statechart. Non-deterministic statechart assertions use an
existential definition of the isSuccess method, where if there exists at least one state-
configuration that detects an error (assigns bSuccess = false), then the isSuccess method
for the entire non-deterministic assertion returns false. Likewise, terminal state behavior is
existential; if at least one state configuration is in a terminal state, then the non-deterministic
statechart assertion wrapper considers itself to be in a terminal state.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=692 -

=

For example, the statechart assertion in Figure 3 will generate four state-
configuration objects for the test scenario shown in Figure 4 at runtime, one for each
invalidLogin event. The state-configuration object that starts with the second invalidLogin
event will end up in the Error state, causing the isSuccess method to return false to the test
driver.

 An Exception Test Scenario for the Statechart Assertion R1

Validation of Statechart Assertions

StateRover’s Code generator generates a Java class R1 for the statechart assertion
file. The generated code is designed to work with the JUnit Java testing framework (Beck &
Gamma, 1998; see Figure 5).

 Validating Statechart Assertion via Scenario-Based Testing

To assure that the statechart assertion works as specified in R1, we test its behavior
using the JUnit test cases corresponding to the different scenarios shown in Figure 6 and
the one shown in Figure 4.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=693 -

=

 Test Scenarios for the Statechart Assertion R1

Test Scenarios 1 and 2 in Figure 6 represent two typical “happy” scenarios. Test
Scenario 1 expects the system to detect the three invalidLogin events within a 15-second
interval and then lock the device for 10 minutes. Test Scenario 2 expects the system to keep
the device open since it only observes two invalidLogin events within a 15-second interval.
Test Scenario 3 represents an exception scenario, where the system allows the device to be
unlocked too early, causing the statechart assertion to enter the Error state, thereby
signaling that the assertion detected a requirement violation.

Log File–Based Runtime Verification of Mobile Apps

Alves, Drusinsky, Michael, and Shing (2011) presented an end-to-end process that
begins with a system requirement as a natural language specification, followed by the
creation and computer-aided validation of UML statechart-formal specification assertions,
and ending with the log file–based runtime verification of the target system. These log files
were executed as JUnit tests against the assertions. They applied the process to the
specification, validation, and verification (SV&V) of the critical time-constrained requirements
of the Brazilian Satellite Launcher flight software, and uncovered several inaccuracies in the
requirements understanding and implementation.

Computer-Aided Process for the V&V of Mobile Apps

We shall apply similar process to conduct the V&V of mobile apps, which consists of
the following steps:

1. Subject matter experts determine the properties of interest and the metrics to
verify/measure those properties in the lab.

2. The properties are then expressed precisely as statechart assertions, whose
correctness is validated via runtime verification.

3. The mobile devices and applications are then instrumented, if needed, for
data collection and log file generation.

4. The instrumented codes are deployed to the field via mobile apps downloads.
Metric data are collected in log files while the mobile devices are being used

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=694 -

=

in the tactical environment, and the log files are uploaded back to the lab
while the mobile devices are being recharged.

5. The log files are then converted into JUnit tests, and the tests are run against
the statechart assertions in the lab. The test results are analyzed and
reported.

Using log files produced by mobile apps brings two benefits: (1) it captures the
behavior of the application on an actual, physical device and (2) the data contained in the
file will represent the behavior of the application as it executes. Log files collected by the
application in execution on a device that is fully mobile hold data that is representative of the
expected normal operation of the application. Therefore, we can analyze the log files to
determine if the behavior was correct based on the requirements. As demonstrated in the
next section, we do not need to instrument the mobile device or its software if the events of
interest are derivable from the output data of the mobile apps.

Case Study

The case study involves a smartphone application that uses a GPS to track the
location and speed of a person in motion. A log of the collected GPS data must be kept in
the smartphone until it can be uploaded to a server via a Wi-Fi connection. GPS applications
can consume a lot of power and storage space and since mobile devices have limited
amounts of both, minimizing the consumption of both is important.

Due to the limited available storage space on the mobile device, we must minimize
the amount of GPS data stored. The method chosen to accomplish this is to adjust the rate
at which the GPS updates occur to be based on the speed at which the user is traveling. An
additional requirement is that the log file must be able to be transmitted from the device to a
server by a Wi-Fi connection only. This is because many of the users will not have wired
connectors for the devices. If at any point Wi-Fi connectivity is lost and there is an active
transmission, it must be terminated. The application has a limit of 30 seconds to transmit the
log file, after which, if not successful, the user must be notified of the failed transmission
within five seconds. Additionally, a log file must not be transmitted within one hour of a
previous log transmission. Both the use of a time-limited transmission window for the log file
as well as an infrequent upload of the log file will aid in reducing the amount of power and
bandwidth the application consumes.

Specification and Validation of the Statechart Assertions

When a user is traveling at a slow speed like walking, frequent updates are
unnecessary because significant distance changes do not happen quickly. If the user is
traveling at a faster pace, then more updates allow for more consistent tracking. When the
user is traveling at less than or equal to two meters per second, the application should
average five seconds or more per update. This is approximately the walking speed of a
human (Carey, 2005). If the user is traveling at greater than two meters per second, but less
than or equal to five meters per second, then there must be an average of between two and
five seconds between updates. This is considered running speed. If traveling greater than
five meters per second, then there must be an average of less than two seconds between
updates. This is driving speed.

We decided to use an average of seconds between updates due to the typically less-
than-accurate GPS data provided by mobile devices. A requirement for an average over a
minimum of five GPS update events will be included to reduce the effects of any lack of
precision in the GPS data from the mobile device. Table 1 lists the requirements.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=695 -

=

 Speed-Based Requirements

Drusinsky, Michael, and Shing (2007) stated that a model-based specification that
uses a single, intertwined representation of the software requirements (e.g., as a single
statechart) can become complex and difficult to understand due to the interaction of each
requirement with others. They advocated the use of assertion-based specification, which
allows the requirements to be decomposed into their simplest forms, and then create a
formal representation (e.g., a statechart assertion) for each requirement. This decomposition
allows a one-to-one connection between a statechart assertion and a customer requirement.
A significant benefit of this connection is that it simplifies the development, analysis, and
testing of the statechart assertions. Other benefits include the following:

1. Reduction of the statechart assertion complexity: Since the complexity of the
statechart assertions is minimized, the statechart assertions are much easier
to test for correctness.

2. The one-to-one connection between a statechart assertion and a customer
requirement simplifies the changes that need to be made to the assertions
when the requirements change.

3. Statechart assertions can be made to represent a test for both negative and
positive behaviors, whereas a model-based specification usually only
captures positive behaviors.

4. Tracing unexpected behaviors to the one or more requirements that they
violate is simpler because there is a one-to-one mapping.

Hence, we refine the speed-based GPS Update requirement into three requirements.
Figures 7, 8, and 9 show the statechart assertions for each of the three speed categories of
the speed-based GPS Update requirement.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=696 -

=

 Statechart Assertion for Speed Less Than or Equal to 2 Meters per Second

 Statechart Assertion for Speeds Between 2 and 5 Meters per Second

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=697 -

=

 Statechart Assertion for Speeds Greater Than 5 Meters per Second

Figure 10 shows the statechart assertion for the requirement that a log file can only
be transmitted when the device is connected to a Wi-Fi access point. Note that this
statechart assertion only covers the requirement that a transmission cannot start when not
connected to Wi-Fi, but does not capture the requirements that log files cannot be
transmitted within an hour of each other, nor does it cover what needs to be done when the
Wi-Fi connection is lost during a transmission. We chose to capture the latter with three
other statechart assertions (Figures 11, 12, and 13), thus simplifying the complexity of each
statechart assertion.

 Statechart Assertion for Wi-Fi–Only Transmission

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=698 -

=

 Statechart Assertion Limiting Log File Transmission Time to 30 Seconds

 Five Seconds to Notify User of Transmission Failure

 One-Hour Time Out Between Successive Log File Transmissions

We tested each of the above statecharts with different scenarios to ensure that they
correctly capture the intent of the natural language requirements.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=699 -

=

Log File Preprocessing and Runtime Verification

The GPS application generates log files with the data format shown in Figure 14,
which is different from those required by StateRover, like those shown in Figure 15.

 GPS Application Generated Data Format

 StateRover Required Log File Format

In order to test the log file produced by the GPS application against the statechart
assertions, we need to convert the original log into a log that can be read by the StateRover
tool. We developed a Python script to convert the application log file into what we shall call a
StateRover log file. Using StateRover’s log file–to–JUnit converter, the StateRover log file
was imported into the off-line verification environment and converted into an equivalent
JUnit Java class. This class contained the log file–based verification test for the statechart
assertions. Using StateRover’s namespace mapping tool, we created a namespace
mapping that linked the JUnit Java class’s name space (events as defined in the log files) to
the assertion repository’s namespace (events of the statechart assertions). The
StateRover’s namespace mapping in Figure 16 depicts on the left-side tree (denoted the
source tree) events taken from a log file and, on the right-side tree (denoted the target tree),
events from all assertions in the assertion repository. Connections between the source and
the target trees can be done manually using the user interface, or automatically using a
built-in matching algorithm.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=700 -

=

 Namespace Mapping for Runtime Verification

Once this is complete, the test can be run by pressing the Run button in the toolbar.
Figure 17 shows the desired result after testing one or more statechart assertions. If an
assertion failure exists (i.e., a bSuccess variable in one of the assertions was set to false),
the statechart assertion where it occurs will be listed on the left side under the header
Statechart Assertion Failures.

 Test Result With Zero Failure

To validate the correct operation of the statechart assertions, we manually generated
some log files containing errors. The log file in Figure 18 is an example snippet of such a log
file.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=701 -

=

 Sample Log File Containing Erroneous Events

 Failures After Using the Log File

Conclusion

This paper presented a method for performing V&V on a mobile application using
statechart assertion and log file–based runtime verification. The environment that the DoD
frequently operates in is abnormal, to say the least, and is tough to emulate when
attempting to perform V&V in a lab environment. It is important that an application is
evaluated in the environment in which it is expected to operate, especially since the
programmers are probably unfamiliar with that environment. Log files provide direct insight
into the operation of the application, and when used in the expected environment, can
ensure a thorough and valid set of V&V tests. Combining the use of application log files and
statechart assertions allows testers to evaluate the behavior of an application as it pertains
to its adherence to the stated requirements. Statechart assertions provide a mechanism to
represent application requirements in an easy-to-follow diagram that will be used by
StateRover to automatically produce executable evaluators to evaluate the application log

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=702 -

=

files. The modeling of the requirements independent of the implementation allows for
multiple applications to be evaluated against the same set of requirements.

We demonstrated the method with a case study involving the V&V of a GPS mobile
app. There are two different services one can use to get the user’s current location: the
standard location service and the significant-change location service. The standard location
service is a configurable, general-purpose solution and is supported in all versions of iOS.
The significant-change location service offers a low-power location service that is available
only in iOS 4.0 and later, and that can also wake up an app that is suspended. Initially in our
case study, we attempted to use the significant-change location service to generate the log
file, but this resulted in failure of the statechart assertions for the speed-based GPS update
requirements. After switching to the standard location service with highest accuracy to
generate the GPS updates, we were able to produce a new log file that satisfies the
statechart assertions. Note that it would be very labor intensive and difficult to manually
determine if the new log file meets the requirements any better than the previous version.
The StateRover’s log file–to–JUnit converter and the namespace mapping tool significantly
ease the task of the checking of test results; we can quickly see that the new log file (and
hence the new implementation) does indeed meet the requirements, once we have imported
the log file into StateRover. The methods for testing mobile apps, as discussed in The V&V
of Mobile Apps in this paper, all require the manual evaluation of test results. The method
put forth in this paper not only automates the checking of test results, it also allows testing of
the application in the expected environment of operation. The case study provides a non-
trivial example of how the use of log files and statechart assertions provide a significant
improvement in the V&V process of applications.

References
Alves, M. C. B., Drusinsky, D., Michael, J. B., & Shing, M. (2011). Formal validation and verification of

space flight software using statechart-assertions and runtime execution monitoring. In
Proceedings of the Sixth International Conference on System of Systems Engineering (pp. 155–
60).

Beck, K., & Gamma, E. (1998). Test infected: Programmers love writing tests. Java Report, 3(7), 37–
50.

Bo, J., Xiang, L., & Xiaopeng, G. (2007). Mobile Test: A tool supporting automatic black box test for
software on smart mobile devices. In Proceedings of the Second International Workshop on
Automation of Software Test (p. 8).

Bsquare. (2003). TestQuest automated testing. Retrieved from
http://www.bsquare.com/products/testquest-automated-testing-platform

Carey, N. (2005). Establishing pedestrian walking speeds. Portland, OR: Portland State University.
Manuscript in preparation. Retrieved from
http://www.westernite.org/datacollectionfund/2005/psu_ped_summary.pdf

Delamaro, M. E., Vincenzi, A. M. R., & Maldonado, J. C. (2006). A strategy to perform coverage
testing of mobile applications. In Proceedings of the 2006 International Workshop on Automation
of Software Test (pp. 118–124).

Drusinsky, D. (2011). Practical UML-based specification, validation, and verification of mission-critical
software. Dog Ear Publishing.

Drusinsky, D., & Harel, D. (1994). On the power of bounded concurrency I: Finite Automata. Journal
of the ACM, 41(3), 517–539.

Drusinsky, D., Michael, J. B., & Shing, M. (2007). The three dimensions of formal validation and
verification of reactive system behaviors (Technical report NPS-CS-07–008). Monterey, CA:
Naval Postgraduate School, Monterey.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=703 -

=

Drusinsky, D., Shing, M., & Demir, K. (2007). Creating and validating embedded assertion
statecharts. IEEE Distributed Systems Online, 8(5), 3.

Easterbrook, S., Lutz, R., Covington, R., Kelly, J., Ampo, Y., & Hamilton, D. (1998). Experiences
using lightweight formal methods for requirements modeling. IEEE Transactions on Software
Engineering, 24(1), 4–11.

Freierman, S. (2011, December 12). One million mobile apps, and counting at a fast pace. New York
Times. Retrieved from http://www.nytimes.com/2011/12/12/technology/one-million-apps-and-
counting.html

Gillett, F. (2012, April 23). Why tablets will become our primary computing device [Blog post]. Frank
Gillett’s Blog. Retrieved on June 12, 2012, from http://blogs.forrester.com/frank_gillett/12-04-23-
why_tablets_will_become_our_primary_computing_device?cm_mmc=RSS-_-IT-_-71-_-
blog_154

Harel, D. (1987). Statecharts: A visual approach to complex systems. Science of Computer
Programming, 8(3), 231–274.

Kenyon, H. (2012a, January 12). Army sets tone for government’s mobile enterprise with Android.
Defense Systems. Retrieved from http://defensesystems.com/articles/2012/01/16/army-mobile-
secure-android-authentication.aspx

Kenyon, H. (2012b, January 27). DISA office to manage mobile devices, online app store.
Government Computer News. Retrieved from http://gcn.com/articles/2012/01/27/disa-launches-
program-office-to-manage-mobile-devices.aspx

Lesspainful Device Lab. (n.d.). Retrieved from https://www.lesspainful.com/documentation

Michael, J. B., Drusinsky, D., Otani, T. W., & Shing, M. (2011, November–December). Verification
and validation for trustworthy software systems. IEEE Software, 28(6), 86–92.

Monkeyrunner [API toolkit]. (n.d.). Retrieved from
http://developer.android.com/tools/help/monkeyrunner_concepts.html

Muccini, H., Francesco, A. D., & Esposito, P. (2012). Software testing of mobile applications:
Challenges and future research directions. In Proceedings of the Seventh International
Workshop on Automation of Software Test (pp. 29–35).

User scenario testing for Android. (n.d.). Robotium test framework. Retrieved from
http://code.google.com/p/robotium

Acknowledgements

This work was supported in part by the NPS Acquisition Research Program—
OUSD_13 (Project #F13-010, JON: R8G59). The views and conclusions in this paper are
those of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the U.S. Government.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=
RRR=aóÉê=oç~ÇI=fåÖÉêëçää=e~ää=
jçåíÉêÉóI=`^=VPVQP=

www.acquisitionresearch.net=

