Modeling Uncertainty and Its Implications in Complex Interdependent Networks

Anita Raja, Mohammad Hasan (UNL), Rob Flowe (OSD), Brendan Fernes

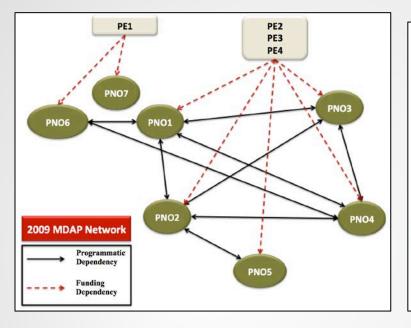
Presenter: Anita Raja Professor of Computer Science, The Cooper Union, NY

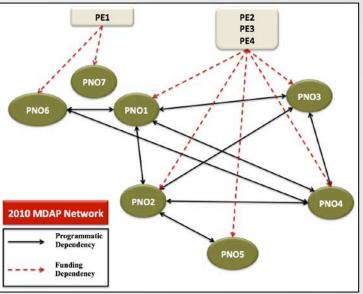
Motivation

Joint Capabilities Integration and Development System (JCIDS) Planning, Programming, Budgeting, and Execution (PPBE) Process

- Background:
 - Joint Capabilities.
 - Operating environment: uncertainty, complexity, rapid change and persistent conflict.
 - Integrated approach (WSARA 2009).
- Definition:
 - Cascading risk: Propagation of programmatic issues across networked programs due to the interdependency of one program upon the other.
- Research Question:
 - Study and quantify the impact of network characteristics on cascading risk.

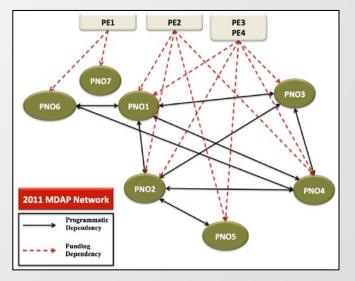
Main Contributions

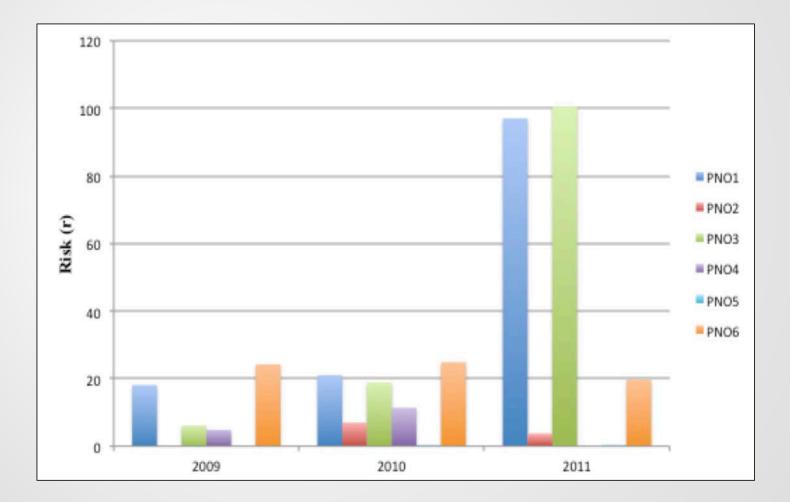

Hypothesis: The programmatic interdependencies between MDAPs have a profound influence on large-scale network performance over an extended period of time.


- 1. Define a metric to quantify influence of network characteristics on program performance.
- 1. Determine if it is possible to formulate mathematical models that capture dynamics of complex networks and provide prescriptive actions.

Task 1: Risk Computation

- Probabilistic Risk Analysis (Lewis 2009) :
 - Compute risk to identify and manage critical nodes.
 - Why critical nodes?
 - Leverage network topology (extended PRA)
 - Extended risk for n-node network is $r_{ext} = \Sigma^n_{i=1} g_i V_i C_i$ where
 - g: Degree
 - V: Vulnerability
 - C: Consequence

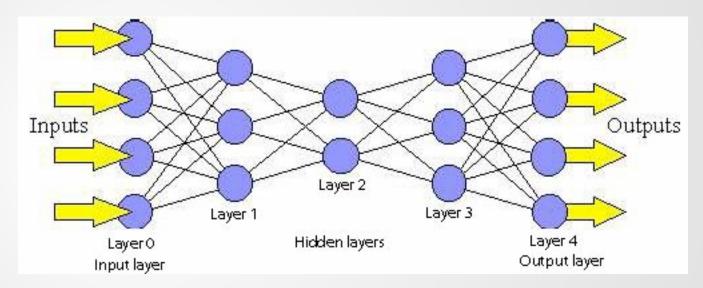

Case Study of a multiplex network



Critical Node Analysis for multiplex network

	Risk (r)		
	2009	2010	2011
PNO1	18.11	21.02	97.05
PNO2	0	6.97	3.75
PNO3	6.16	18.89	100.52
PNO4	4.88	11.39	0
PNO5	0	0.17	0.48
PNO6	24.22	24.9	19.7

Critical Node Analysis



Task 1: Observations

- Network-centric approach helps capture exogenous effects on program performance.
 - Underscores importance of addressing multiplex network relationship among MDAPs.
 - Uses data from various reports (DAES, SAR, R Docs) to define multiplex network and vulnerability parameter for PRA analysis.
- Extended PRA technique
 - identifies critical (risky) programs in the multiplex network.
 - could be used to forecast a program's performance and avoid negative cascading effects.

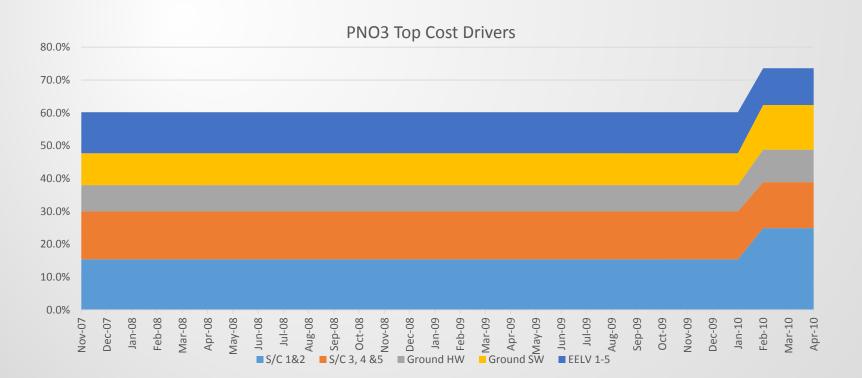
Task 2: Feasibility Study

 Modeling interdependent networks as a coupled dynamical system and potentially adapting related algorithms.

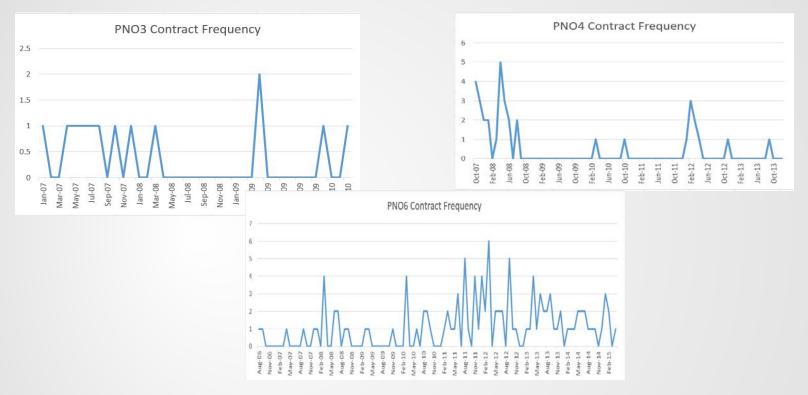
- Does the system have any attractive equilibria?
- If good equilibria were discovered, an outcome could be to recommend a funding strategy that maintains equilibrium or guarantees a rapid convergence toward it.
 - Ack: Prof. Stan Minchev, Eui Seong Han.

Methodology

Goal: Determine a network model


- Centrality measure.
- Strength of network connections including a precise form of the coupling formalism.
- State features and action options (as in Raja 2012).
- Reward optimization model capturing network dynamics.

Process:


- Determine variables that evolve over time and can be measured numerically, i.e., real numbers on a well-defined scale
- Find time series of data on the variables chosen above.

E.g.: Top Cost Driver

- Data source:
 - DAES reports of several MDAPS collected over a decade
 - Program Status, Top Cost Drivers, KPPs, Finley Charts.

Churn in Contract Data

- July 2008: new cost and schedule breach occurred per the PNO6 DAES data. We are investigating if spikes in the contract churn data predict a future breach.
- Missing data problem.
- 2009, 2010, 2011 PNO6 SARS show Schedule and Cost RDT&E APB breaches with varying levels of explanations.

Task 2 Observations

- Allusions that various DAES and SARS quantities are quantitatively obtainable through formulas or calculations. However unclear
 - how this is actually done;
 - what the numerical values/ranges would be;
 - whether these definitions are consistent across all programs.
- Given time lag (DAES reports are generated monthly) and the level of data captured, often there was not variation in the data from one month to the next.
- Churn data has the evolutionary characteristics that could facilitate network modeling process.

Future Work

- Risk computation: Further study the impact of network topology on risk propagation and our methodology to quantify it.
- Delve further into contract data and investigate effect on future performance wrt breaches.