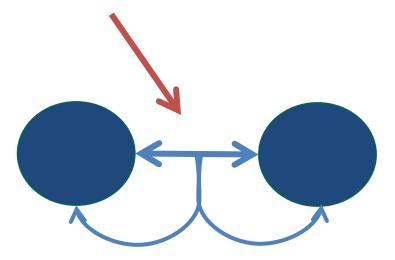

Acquisition in a World of Joint Capabilities


Defining Acquisition as a Complex System

A Complex System...

- A relational property among three or more interdependent entities
- That demands adaptation and adjustment when state changes occur in any one of the entities
- Complexity is in the relations

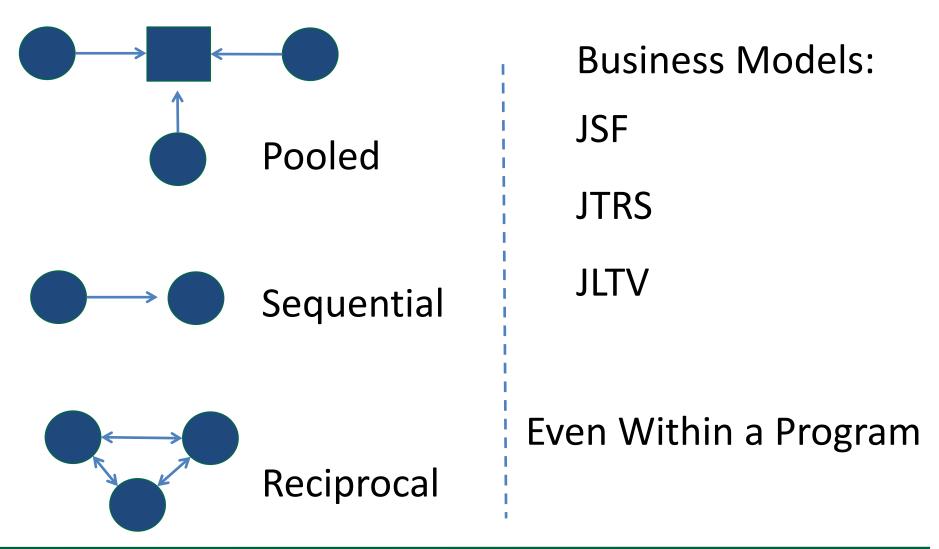
Interrelations & Complexity

Program Networks

- Inescapable Technological Superiority
- Take many forms ranging from simple supply chains to more complex joint activities (JSF versus JTRS)
- Form (business model) determines cost and risk
- Often includes contractors
- Based on an Interdependency

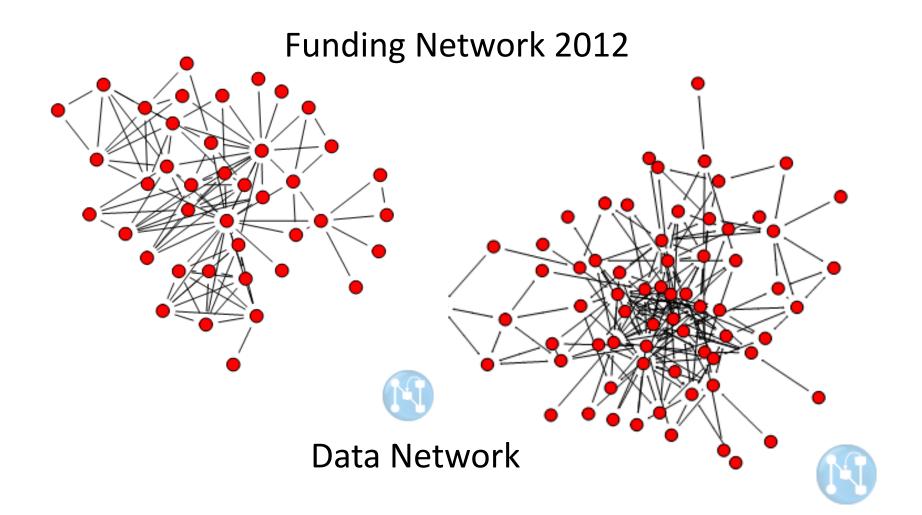
Program Interdependency

Interdependency is defined as dependence on an


external source for:

- data,
- money,
- staff,
- facilities, or
- requirements

beyond the normal acquisition workflow



Basic Network Configurations

DoD Networks

Does the Program Manager Matter? (Eckerd and Snider)

Interdependency Research is Fragmented & Contradicting

lead to cost and schedule growth due to adaptation requirements

Complex Behavior

- Nonlinear
- Emergent
- Self-organization
- Adaptive Capacity
- Collective Behavior
 - Contagion

Better Buying Power

Focus Areas that Program Networks Influence

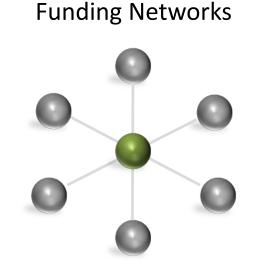
- Achieve Affordable Programs
- Control Costs Throughout the Product Lifecycle
- Eliminate Unproductive Processes and Bureaucracy

Current Study

longitudinal study testing:

- Multilevel Modeling,
- State Transition Modeling,
- Structural Equation Modeling,
- Contagion Modeling, and
- Exponential Random Graph Modeling

Methods


- 1. Examined performance over the 2009-2014 time period
 - Funding network connections vary over time
- 2. Measures
 - PAUC cost growth
 - Cost Variance
 - Number of Connections
 - Exposure rates
- 3. Unit of Analyses
 - Network Level
 - MDAP level

Shared Funding Sources

Funding Networks were established through the trackto-budget field of the SAR. Any given program element (R Doc) funds multiple MDAPS

Method of Analysis

Hierarchical or Mixed-Effects Model

- Random intercept model
- Random effect is the network cluster or network community

Basic formulas

$$\begin{aligned} & \text{Model 1: } y_i = \alpha_{ji} + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \beta_4 X_{i4} + \beta_5 X_{i5} \\ & + \delta_k X_k + \epsilon_i \\ & \alpha_j = \mu_\alpha + \eta_j \end{aligned}$$

Variables in the model of MDAP Total Cost Variance (y_i)

			Diversity of network partners rank			
X_1	Number of network partners	X_2	abundance curve			
	Percent of partners that are		Percent of network partners in			
Х ₃	considered joint	X ₄	production			
	Total Cost Variance of all network		Vector of fixed effects for years 2009-			
Х ₅	partners	X _k	2014			
	Intercept that is a function of the mean of network communities and their					
α_{ij}	variance					

Basic formulas (cont.)

- Model 2:
$$y_i = \alpha_{ji} + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \beta_4 X_{i4} + \beta_6 X_{i6} + \beta_7 X_{i7} + \beta_7 X_{i7} + \beta_7 X_{i7} + \delta_k X_k + \varepsilon_i$$

 $\alpha_j = \mu_{\alpha} + \eta_j$

Variables in the model of MDAP Total Cost Variance (y_i)

- X₁ Number of network partners Percent of partners that are
- X₃ considered joint

Total Cost Variance - Not in this

X₅ model

Estimation cost variance of

X₇ network partners

Engineering cost variance of

X₉ network partners

X Diversity of network partners rank

- abundance curve
- $_{\mathsf{X}}$ Percent of network partners in
- ⁴ production
- **X** Schedule cost variance of network
 - partners
 - **Economic cost variance of network**
 - partners

X Vector of fixed effects for years 2009-2014

Intercept that is a function of the mean of network communities and their

 α_{ii} variance

Method of Analysis (cont.)

- Basic models were leptekurtotic
- Transformed the y_i by the cube root
 - Model 1: $y_i^{1/3} = \alpha_{ji} + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \beta_4 X_{i4} + \beta_5 X_{i5} + \delta_k X_k + \varepsilon_i$

$$\begin{split} &\alpha_{j} = \mu_{\alpha} + \eta_{j} \\ &- \text{Model 2: } \gamma_{i}^{1/3} = \alpha_{ji} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i3} + \beta_{4}X_{i4} + \\ &\beta_{6}X_{i6} + \beta_{7}X_{i7} + \beta_{7}X_{i7} + \beta_{7}X_{i7} + \delta_{k}X_{k} + \epsilon_{i} \\ &\alpha_{j} = \mu_{\alpha} + \eta_{j} \end{split}$$

Findings

Model 1: Total Cost Variance of Network Partners Effect on Program Cost Variance

Parameter	<u>Est.</u>	<u>Std. Error</u>	<u>Sig.</u>
Number of network partners	0.0714	0.0394	0.071
Diversity of network partner services	5.9373	3.0053	0.049
Network partner total cost variance	0.1847	0.1615	0.253
Network community (variance est.)	0.2734	0.3881	0.481
-2loglik	1723.35		
	1734.95		-

Ň,

Findings

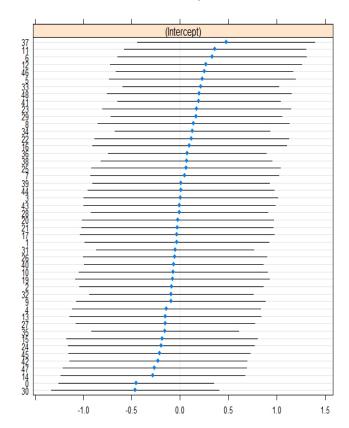
Model 2: Component Cost Variance of Network Partners Effect on Program Cost Variance

Parameter	<u>Est.</u>	<u>Std.</u> Error	<u>Sig.</u>
Number of network partners	0.1134	0.0449	0.015
Diversity of network partner services	6.3388	3.0339	0.038
Network partner estimation cost variance	0.0003	0.0002	0.09
Network community (variance est.)	0.076	0.189	0.688
-2loglik	1766.17		
BIC	1777.75		-

Ň,

Findings

- Diversity and Complexity vs. Cost Variances
 - Importance of diversity and complexity of network partners
 - Relative unimportance of network partner cost variances
- Network Community is not significant in the model
 - New approach that is theoretically warranted
 - May be viable in other models or research contexts



Thank You!

Addendum

Random Effects Plot – Total CV (right) and **Component** (left) community2

community2

Mary Maureen Brown, Ph.D. & Zachary Mohr, Ph.D.

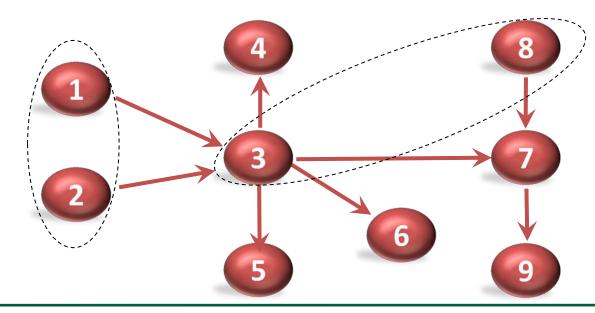
Complex Contagion Research Goals

1. Identify the extent to which exposure to upstream program performance affects downstream programs

- 1. Identify the extent to which interdependent activities experience turbulence over time
- 1. Identify hazard and survival rates relating to Program Performance

Better Understanding of Costs of Interdependencies

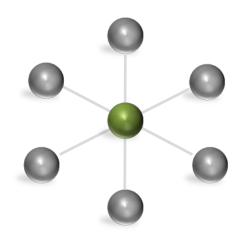
Improved Cost, Schedule, Performance Estimates


Mary Maureen Brown, Ph.D. & Zachary Mohr, Ph.D.

Defining Contagion - Refers to the phenomenon in networks where multiple sources of exposure affect a change in state.

Defining Complex Contagion – Examines influence of network exposure on program performance

Exposure Rates Susceptibility Rates Mean time in Growth Thresholds Survival Rates Mean Time to Growth



Methods

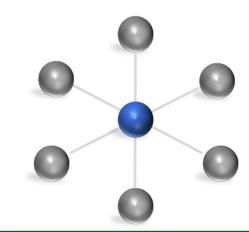
Examined 2 MDAP Networks

Funding Networks

Data Networks

Data Networks

Shared Funding Sources

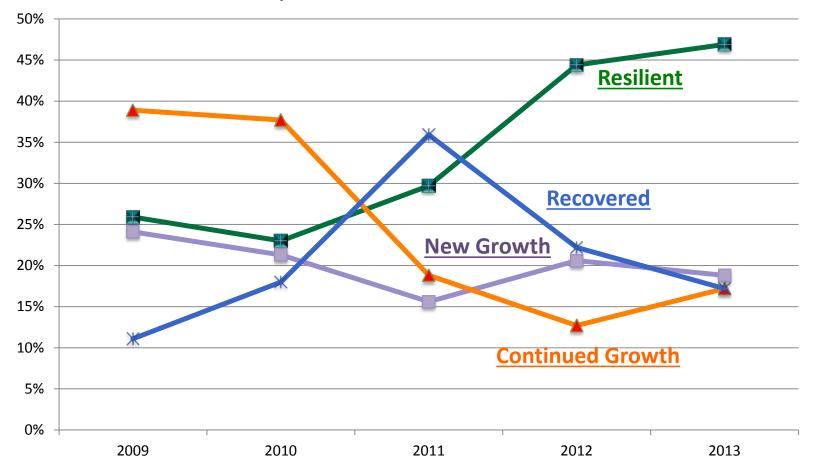

Funding Networks were established

through the track-to-budget field of the

SAR. Any given program element (R Doc)

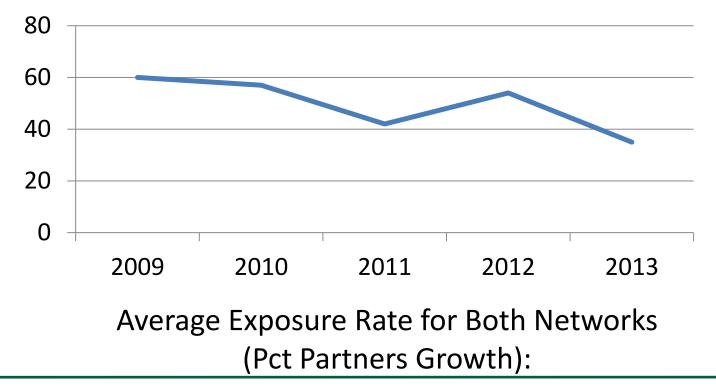
funds multiple MDAPS

established through a 2009 call to program managers to identify their critical interdependencies.



General Descriptives

Average Percent of programs in growth at any


point in time = 40%

General Descriptives

- Average Annual PAUC Growth Rate = 8%
 - Average Recovery Rate = 2.4 years
- Funding Network average number of partners = 4

• Data Network average number of partners = 5.6

Snapshot Findings

Contagion Results

(Generalized Linear Models Maximum Likelihood Estimation)

Funding Network:

- Exposure did not provide predictive capabilities
 - Number of Partners did

Data Network:

• Contagion was apparent and statistically significant

• Technological superiority

Snapshot Findings

Significant Network Level Findings

(Exponential Random Graph Modeling)

Funding Network:

- Increasing complexity over the years
 - Preferential attachment
- Preference for forming cohesive, interlocking relationships

Data Network:

- Preferential Attachment
- Is *four times more likely to exchange data* with partners than would normally be expected of a network of this size
 - A preference for tight closed relationships

Mary Maureen Brown, Ph.D. & Zachary Mohr, Ph.D.

