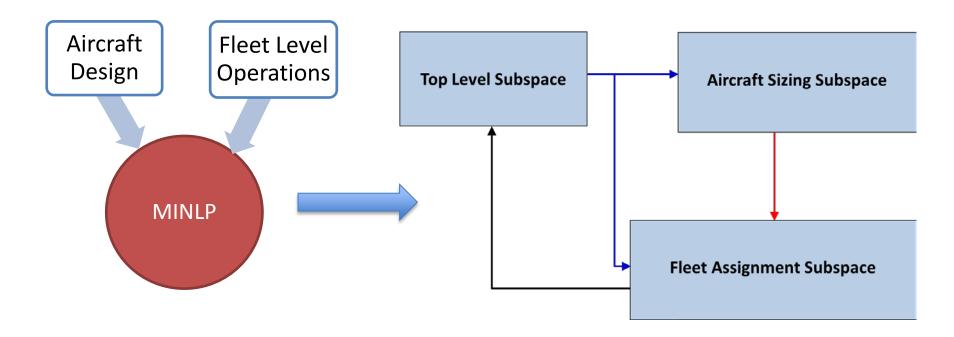


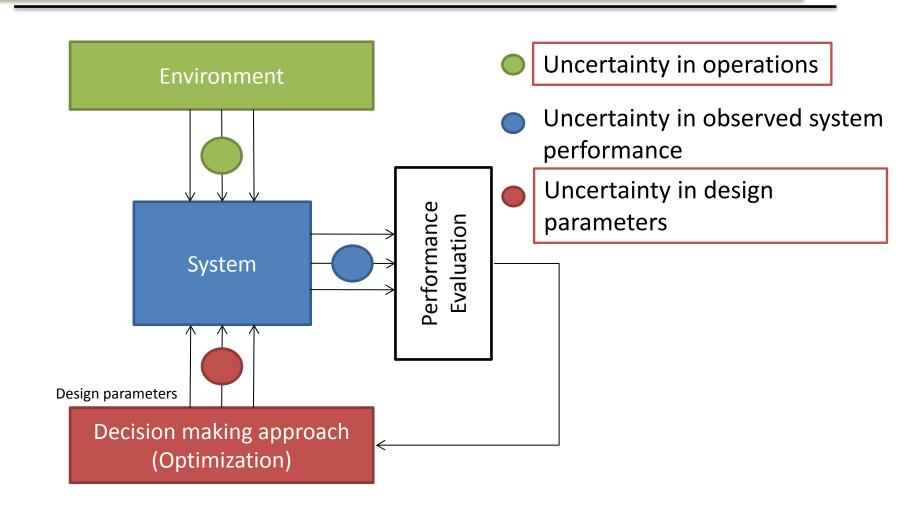
An Optimization-Based Approach to Determine System Requirements under Multiple Domain-Specific Uncertainties

Parithi Govindaraju, Navindran Davendralingam and William Crossley School of Aeronautics and Astronautics, Purdue University

> 13th Annual Acquisition Research Symposium May 5, 2016


Research Question

- Improve Requirements Definition
- Can we identify a quantitative approach to determine the "right requirements" for a new system?
 - New system must work in a "fleet" with existing systems
 - Adding new system to improve "fleetlevel" objectives
 - Make use of methods from operations research, operations analysis
- Can this approach address uncertainties?
 - New system design
 - Fleet-level operations
- Application here is military air cargo
 - Introduce new aircraft
 - Minimize fuel consumption, maximize productivity
 - Display tradeoffs


What are the right requirements for a new strategic cargo aircraft?

Approach: Decomposition Strategy

Monolithic Formulation Strategy: Subspace Decomposition

Uncertainty

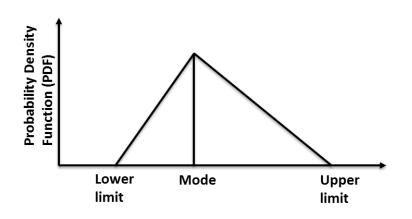
Optimization-based Approach

• Objectives

- Minimize Fleet fuel consumption
- Maximize Fleet productivity (speed of payload delivered)

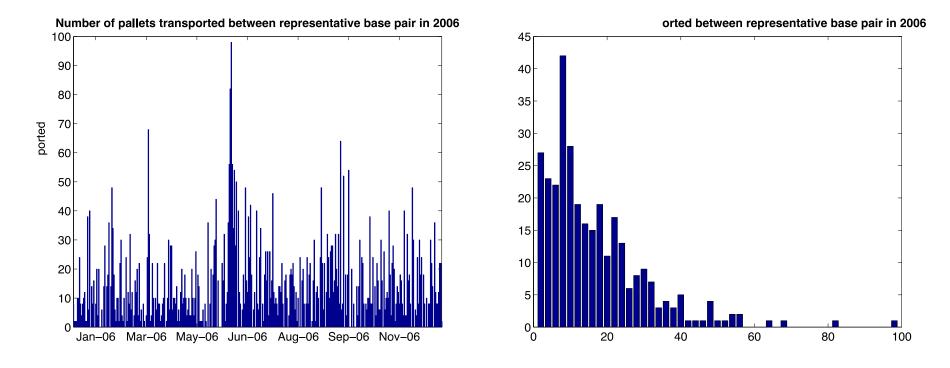
• Variables

- New aircraft requirements (pallet capacity, range, speed)
- New aircraft design variables (NLP: Nonlinear Programming)
 - Wing loading, aspect ratio, thrust-to-weight ratio, etc.
- Assignment variables (MIP: Mixed integer programming)
 - Flights, payload on a particular route


• Constraints

- Cargo demand
- Aircraft performance (takeoff distance, landing distance etc.)
- Fleet operations (maximum operational hours, number of each aircraft types etc.)

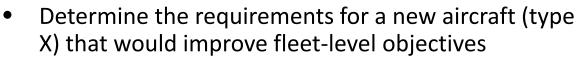
Aircraft Design (Sizing) Uncertainty


- Uncertain parameters characterized via scaling factors with triangular distributions
- Aircraft performance predictions follow distributions

$$C_{D_0} = k_{C_D} \times (C_{D_0 \text{ predicted}})$$

Uncertain Parameters $(m{\xi})$	Lower limit	Mode	Upper Limit
C_{D_0} multiplier, k_{C_D}	0.90	1.0	1.10
SFC	0.45	0.5	0.55
Oswald efficiency multiplier, k_{e_0}	0.95	1.0	1.05

Operational Uncertainty in Pallet Demand


- GATES dataset shows large variation in daily cargo transported, asymmetric demand between base pairs
- From this, treat future daily pallet demand as uncertain

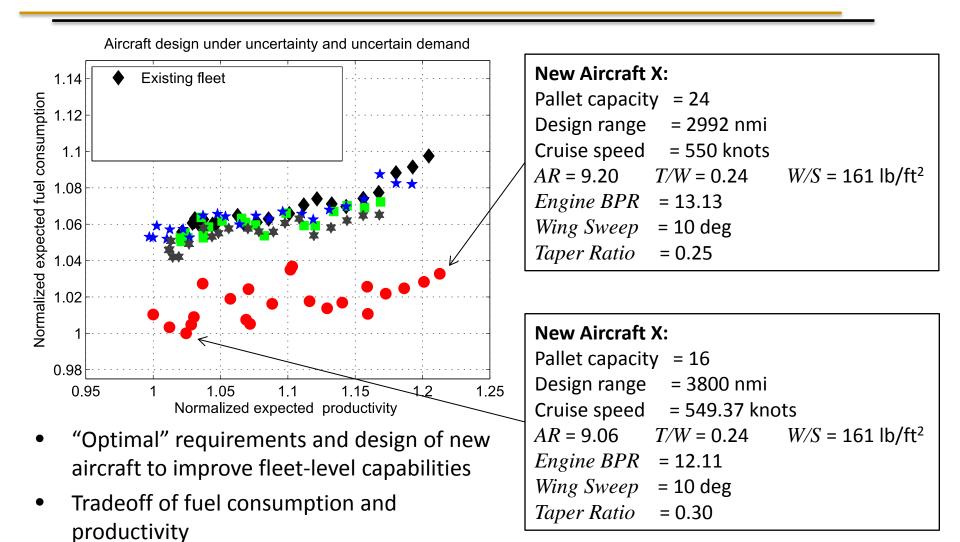
Approach: Handling Uncertainty

- Reliability-based design optimization (RBDO) formulation to handle uncertainty in new system design
- Descriptive sampling approach to handle *uncertainty in pallet demand*
- Propagation of uncertainty from aircraft sizing subspace
 - Performance of new aircraft is uncertain
 - Coefficients in assignment problem are distributions
- Used a 'Robust Optimization' approach
 - Interval Robust Counterpart (IRC) formulation: Optimize the worst-case values of parameters within an uncertainty set
 - Insensitive to data uncertainty in the problem

Case Study: 25-base Network

- 25-base problem consisting of 219 directional routes
 - Extracted from the GATES dataset, so reflects actual levels of demand
- Existing fleet for AMC
 - 28 C-5, 44 C-17, and 21 B747-F operated on 25 base subset

The fleet can add five new aircraft (all of type X)



C-17

B747-F chartered from Civil Reserve Air Fleet Source: www.amc.af.mil

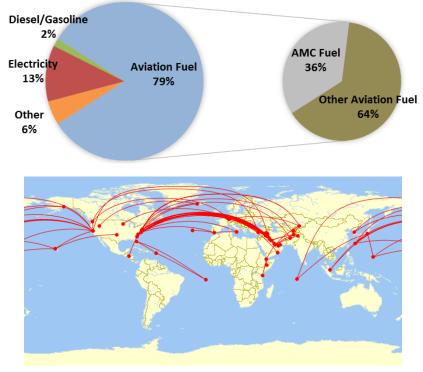
Combined Results

• Formulation addresses uncertainty

Concluding Statements

- Decision support framework to assist decision-maker or acquisition practitioner
 - Assess tradeoffs of different fleet-level metrics
 - Each tradeoff solution describes the design requirements for the new system
 - Addressed multi-domain uncertainty and uncertainty propagation
- Tradespace evaluation based on quantitative metrics
 - Shows impact of system requirements on fleet-level capabilities
 - Results here are limited by the accuracy of the aircraft sizing methodology

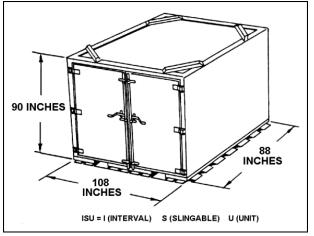
Thank You



BACKUP SLIDES

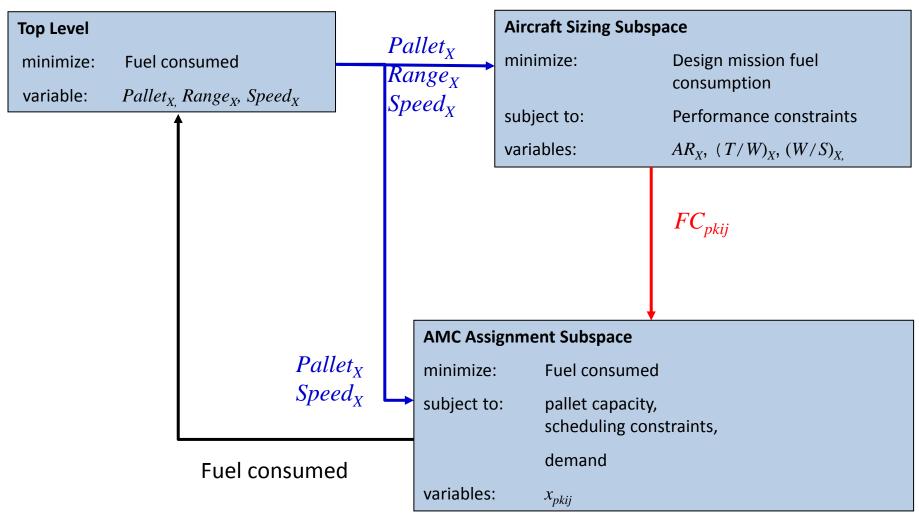
Application: Air Mobility Command (AMC)

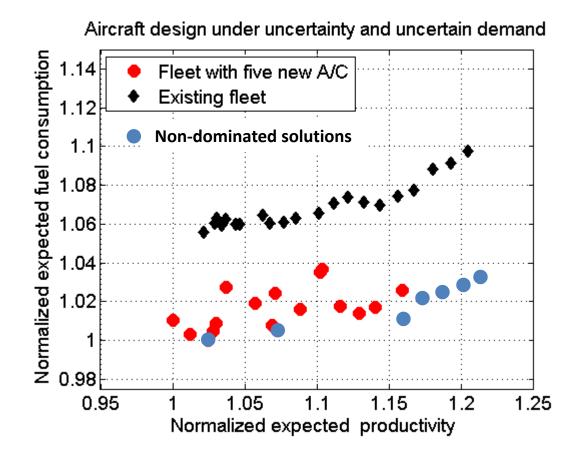
- AMC: One of the major command centers of the U.S. Air Force
- AMC is the DoD's single largest aviation fuel consumer*
- Non-deterministic nature of AMC operations
 - Demand is highly asymmetric
 - Demand fluctuation on a day to day basis
 - Routes flown vary based on demand
- AMC's mission profile includes
 - Worldwide cargo and passenger transport**
- Used Global Air Transportation Execution System (GATES) dataset

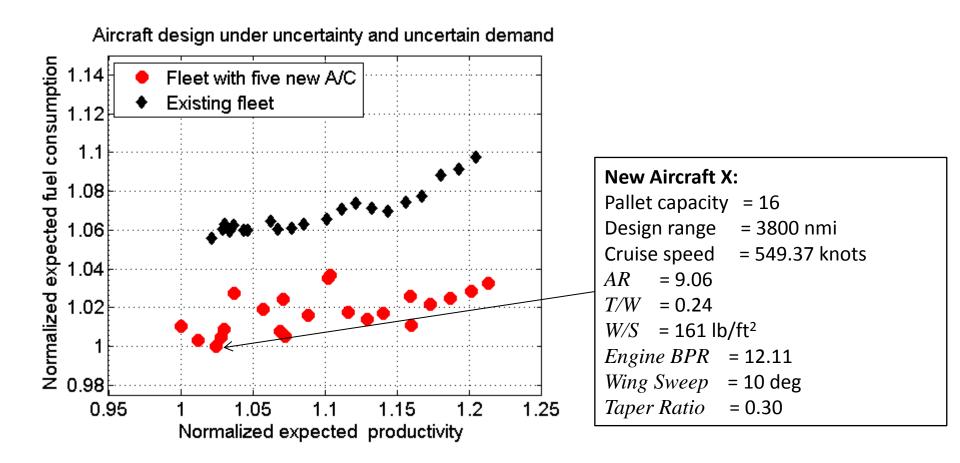

Sample route network from GATES

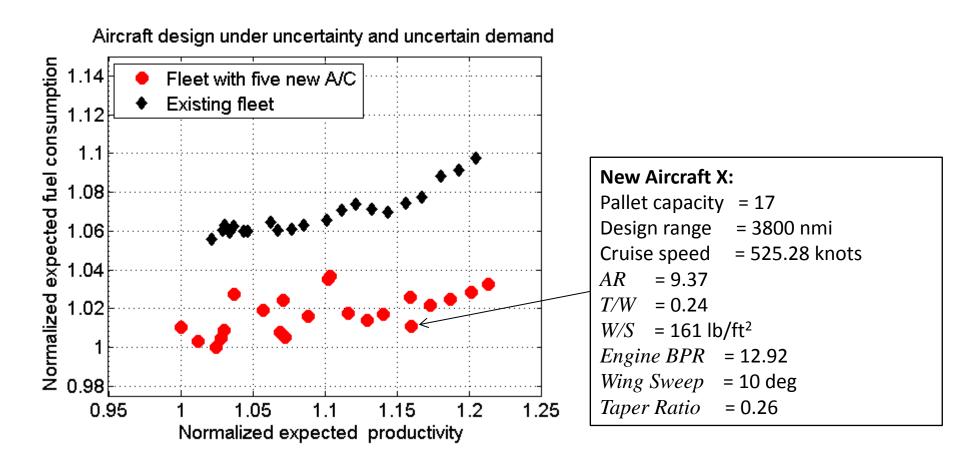
*Aviation fuel savings: AMC leading the charge. Air Mobility Command **This work only addresses cargo transport

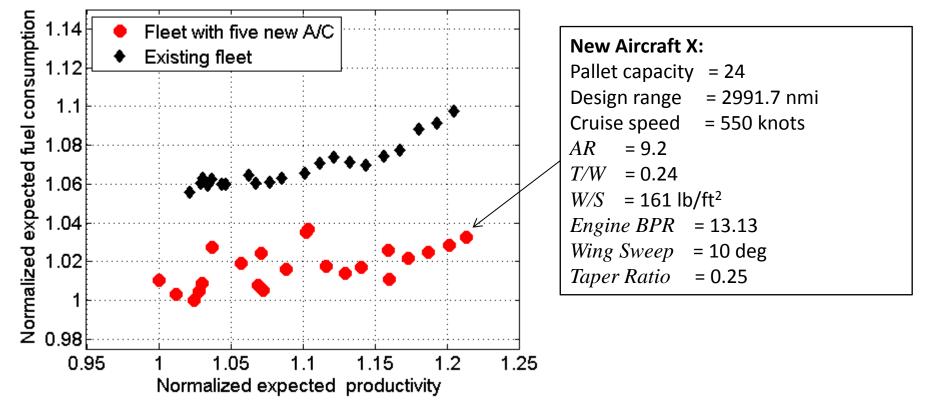
Air Mobility Command


- Used Global Air Transportation Execution System (GATES) dataset
- Filtered route network from GATES dataset
 - Demand for subset served by C-5, C-17 and 747-F (~75% of total demand)
 - Fixed density and dimension of pallet (463 L)
- Our aircraft fleet consists of only the C-5, C-17 and 747-F.




Source: www.amc.af.mil


Subspace Decomposition Approach (Deterministic Formulation)



Non convex Pareto front Some non-dominated solutions

Subspace Decomposition Approach (Deterministic Formulation)

Top level subspace	Minimize	Fleet fuel consumption	
	Subject to	Bounds on $Pallet_X$, $Range_X$, $Speed_X$	
Aircraft sizing	Minimize	Fuel consumption of Aircraft X for design mission	
subspace	Subject to	Performance constraints Bounds on AR, W/S , T/W	
Fleet assignment subspace	Minimize Subject to	Fleet fuel consumption Demand constraints Node balance constraints Starting location of aircraft constraints Daily utilization limits Trip limits	
		$x_{pkij} \in \{0,1\}$	

25-base, 219-route Network

- Top level
 - Three decision variables
 - Bounds on decision variables
- Aircraft sizing
 - Six continuous decision variables
 - Four nonlinear constraints
 - Five uncertain parameters
 - Bounds on decision variables
- Fleet assignment
 - 183,750 binary decision variables
 - 134,203 constraints
 - Uncertainty in pallet demand on each route along with uncertainty propagation from aircraft sizing

INTERVAL ROBUST COUNTERPART MODEL

Deterministic Formulation

$\begin{aligned} Minimize: c'x \\ Subject to: Ax \leq b \\ x_j \in \{0,1\} \end{aligned}$

 $c: n-vector, b: m-vector, A: m \times n$ matrix

IRC Model

- (ε, δ) -Interval Robust Counterpart (IRC) formulation* for bounded uncertainty
 - δ : infeasibility tolerance, ε data uncertainty

$$\left|\widehat{a_{ij}} - a_{ij}\right| \le \varepsilon \left|a_{ij}\right|, \left|\widehat{b_i} - b_i\right| \le \varepsilon \left|b_i\right|$$

- Uncertainty in objective function: Transform objective function as constraint
- $\,\varepsilon$ and δ can change for each constraint
- A solution *x* is **robust** if
 - -x is feasible for the nominal values
 - Whatever are the true values of the coefficients and RHS parameters within the corresponding intervals, must satisfy the *i*-th inequality constraint with an error at most $\delta \times \max(1, b_i)$

IRC [ε, δ] Formulation

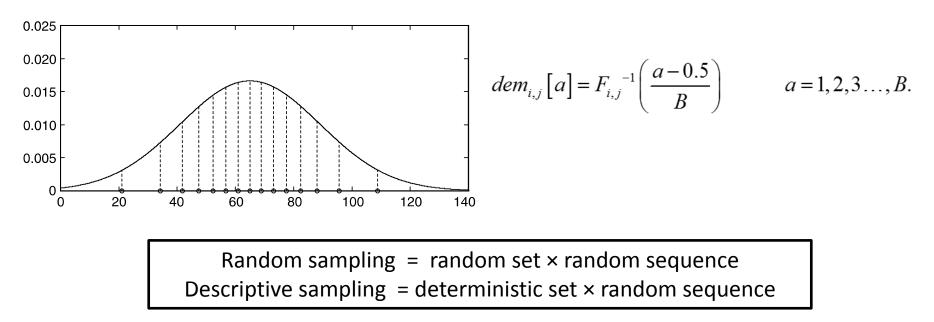
 $\begin{array}{ll} \textit{Minimize:} & c'x \\ \textit{Subject to:} & Ax \leq b \\ & \sum_{j \notin J_i} a_{ij} x_j + \sum_{j \in J_i} \left(a_{ij} + \varepsilon \left| a_{ij} \right| \right) x_j \leq b_i - \varepsilon \left| b_i \right| + \delta_i \times \max \left(1, \left| b_i \right| \right) \\ & x_j \in \{0, 1\} \end{array}$

 $c:n-vector, b:m-vector, A:m \times n$ matrix

 J_i : set of indices of the x variables with uncertain coefficients in the *i*-th inequality constraint

- The additional constraints consider the worst-case values of the uncertain parameters
 - With tolerable violations of the constraint
 - Enforced using user-defined factors, δ_i

 $\forall i$


Demand Uncertainty

- Applying IRC model to the demand constraint
 - 'Immunized' against the worst-case scenario (maximum value) of demand
 - Leads to a 'conservative' solution
- Instead, handled through a stratified sampling technique to reduce computational expense
 - On-demand nature of fleet operations
 - Large fluctuations in pallet demand

How can our approach help AMC?

- Our methodology
 - Helps determine the requirements for and describe the design of – a new aircraft for use in the AMC fleet
 - Optimize fleet-level metrics that address performance and fuel use
 - Account for uncertainties in fleet operations and new aircraft performance
- Describe how design requirements of the new aircraft would change for different tradeoff opportunities between productivity and fuel consumption

Descriptive Sampling

- Discretize the distribution to generate *B* demand scenarios
 - Sample more from high-density and less from low-density regions
- Random permutation of the demand values for each route

Aircraft Sizing Problem

Lower Bound	Upper Bound
6.00	9.50
0.18	0.35
65.00	161.00
4.50	14.50
10.00	35.00
0.10	0.40
Value	
≤ 8500	
≤ 5500	
≥ 0.025	
≥ 500	
	6.00 0.18 65.00 4.50 10.00 0.10 Value ≤ 8500 ≤ 5500 ≥ 0.025

Uncertain Parameters: C_{D_0} multiplier, SFC, Cruise altitude, Pallet mass, Oswald efficiency multiplier

Fleet Assignment Subspace

Minimize

PKNN

Subject to

$$\sum_{p=1}^{N} \sum_{k=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} x_{p,k,i,j} \cdot C_{p,k,i,j}$$

$$\sum_{i=1}^{N} x_{p,k,i,j} \ge \sum_{i=1}^{N} x_{p,k+1,i,j} \quad \forall k = 1, 2, 3...K,$$

$$\forall p = 1, 2, 3...P, \quad \forall j = 1, 2, 3...N$$

$$\sum_{p=1}^{P} \sum_{k=1}^{K} Cap_{p,k,i,j} \cdot x_{p,k,i,j} \ge dem_{i,j}$$

$$\forall i = 1, 2, 3...N, \forall j = 1, 2, 3...N$$

$$\sum_{i=1}^{N} x_{p,1,i,j} \le O_{p,i} \quad \forall p = 1, 2, 3...P, \forall i = 1, 2, 3...N$$

$$\sum_{k=1}^{K} \sum_{i=1}^{N} \sum_{j=1}^{N} x_{p,k,i,j} \cdot BH_{p,k,i,j} \le B_{p} \quad \forall p = 1, 2, 3...P$$

$$\sum_{i=1}^{K} \sum_{j=1}^{N} x_{p,k,i,j} \le 1 \quad \forall p = 1, 2, 3...P, \forall k = 1, 2, 3...K$$

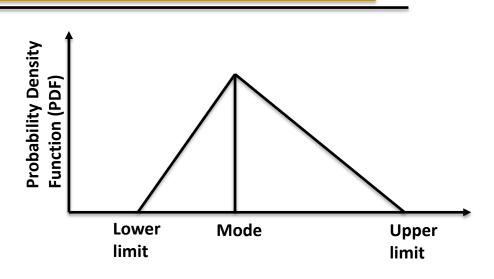
$$x_{p,k,i,j} \in \{0,1\}$$

Fleet-level DOC

Node balance constraints

Demand constraints

Starting location of aircraft constraints

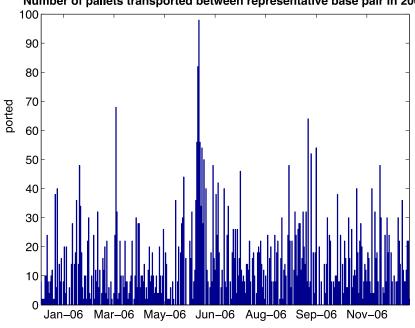

Daily utilization limit

Trip limit

Boolean Variable

Uncertainty in Aircraft Sizing

- Two major types of uncertainty
 - Aleatoric uncertainty: Inherent or natural randomness
 - Epistemic uncertainty: Imprecise or absence of complete information
- Some uncertain parameters used as scaling factors
- Represented using assumed triangular distributions

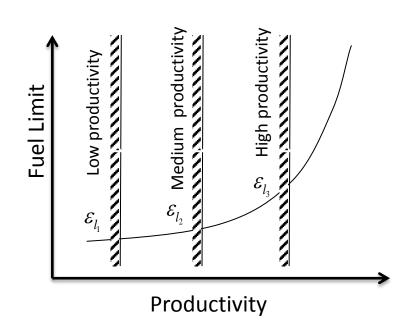


$$C_{D_0} = k_{C_D} \times (C_{D_0 \text{ predicted}})$$

Uncertain Parameters (ξ)	Lower limit	Mode	Upper Limit
C_{D_0} multiplier, k_{C_D}	0.90	1.0	1.10
SFC	0.45	0.5	0.55
Oswald efficiency multiplier, k_{e_0}	0.95	1.0	1.05

Uncertainty in Pallet Demand

- **Reported AMC operations** show large variations in daily cargo transported and asymmetrical cargo demand between base pairs
 - From this, treat future daily pallet transport demand as uncertain
 - Demand must address direction in route network



Number of pallets transported between representative base pair in 2006

Actual Data from GATES

Multi-objective Formulation

- Two objectives
 - Maximize fleet-level productivity
 - Minimize fleet-level fuel consumption
 - Epsilon (Gaming)
 constraint formulation

