AN APPROACH FOR MODELING SUPPLIER RESILIENCE

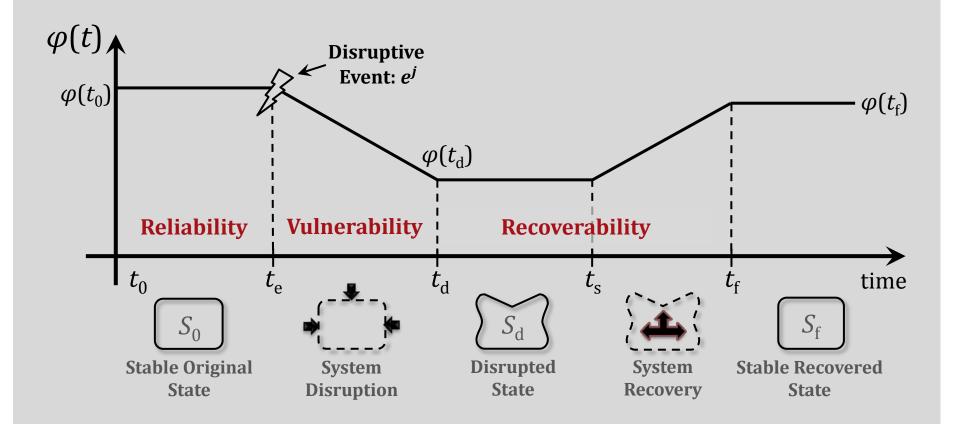
Kash Barker, Seyedmohsen Hosseini

Industrial and Systems Engineering
University of Oklahoma

Jose E. Ramirez-Marquez

Systems and Enterprises
Stevens Institute of Technology

Acquisition Research Symposium May 5, 2016


THE BASIC IDEA

- We want a means to evaluate and select suppliers based on typical criteria...
 - e.g., quality, delivery, performance history, and price
- ...as well as introducing resilience-based criteria
 - e.g., ability to withstand disruptions, ability to recover timely from a disruption

THE BASIC IDEA

■ We describe resilience with

FUNDING SOURCE, PUBLISHED RESULTS

- Naval Postgraduate School Assistance Grant/Agreement No. N00244-15-1-0042 awarded by the NAVSUP Fleet Logistics Center San Diego
 - The views expressed here do not necessarily reflect the official policies of the Naval Postgraduate School
- Two journal articles in progress
 - Nowicki, D., I. Hernandez, J.E. Ramirez-Marquez, W. Randall, B. Sauser, and C. Kochan. Supply Chain Resilience Metrics with Economic Considerations.
 - Hosseini, S., K. Barker and J.E. Ramirez-Marquez. Availability-Driven Approach for Resilient Supplier Selection.

Supplier selection criteria
TOPSIS

Illustrative example

Concluding remarks

SUPPLIER SELECTION

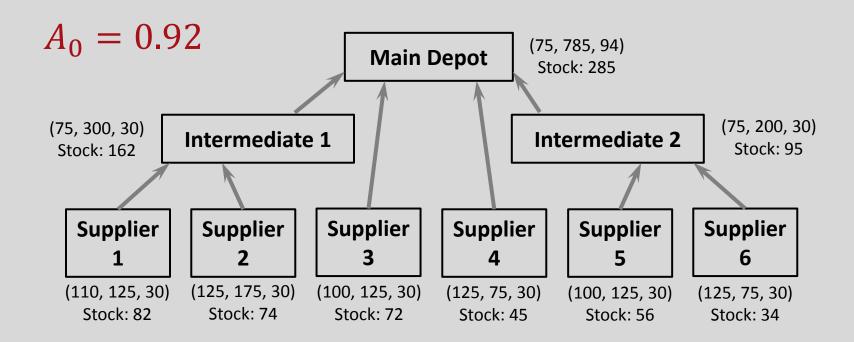
- Raw materials and component parts can amount to 70% of the cost of a finished product [Stueland 2004]
- As such, it's important to select suppliers effectively
 - Particularly selecting resilient suppliers in light of (seemingly routine) disruptions

SUPPLIER SELECTION CRITERIA

- Dickson [1966] introduced 23 supplier selection criteria still found in literature today
 - e.g., quality, delivery, performance history, price
- Recently, Hosseini and Barker [2016] introduced a few resilience-based selection supplier criteria
 - e.g., absorptive, adaptive, and restorative capacities

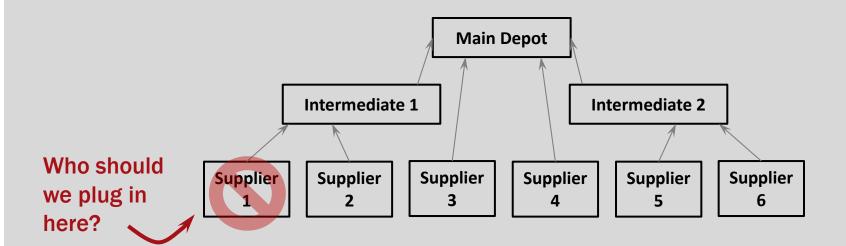
SUPPLIER SELECTION CRITERIA

- In this example, we consider four criteria in the comparison of backup suppliers
 - Availability (or the improvement in availability achieved by a backup supplier)
 - Recovery time (or how quickly a backup supplier can become engaged to provide component parts)
 - Quality
 - Delivery rate


- The calculation of availability is done with a variation on the Multi-Echelon Technique for Recoverable Item Control (METRIC) [Sherbrooke 2004, Nowicki et al. 2012]
- The idea with METRIC is to find a mix of suppliers to achieve a desired availability of the end system

Availability =
$$\frac{\text{uptime}}{\text{uptime} + \text{downtime}} = \frac{\text{MTBF}}{\text{MTBF} + \text{MTTR}}$$

For a set of supplier cost, reliability, and maintainability characteristics, end item availability can be calculated



- When demand exceeds inventory on-hand at the supplier level, back orders occur
- Availability is calculated as the proportion of orders when demand can be met with the supplier mix
 - That is, a perfectly "available" final product $(A_0 = 1)$ has no back orders
- An "optimal" supplier mix according to availability is found using the METRIC algorithm by Nowicki et al. [2012]

- We're interested in finding a backup supplier that helps us withstand a supplier disruption
 - Or a supplier that minimizes a dip in availability

OTHER CRITERIA

Recovery time

- Amount of time taken to engage an alternative supplier to improve availability
- When combined with "improvement in availability," provides a measure of resilience
- Quality
 - Ability of a supplier to meet specifications
- Delivery rate
 - Percentage of successful delivery schedules met

Supplier selection criteria
TOPSIS

Illustrative example

Concluding remarks

MULTI-CRITERIA DECISION ANALYSIS

- We have multiple criteria
- And we can weight each of those criteria according to their importance in supplier selection
- So we need a multi-criteria decision analysis technique to rank suppliers

MULTI-CRITERIA DECISION ANALYSIS

- We choose a technique called TOPSIS
 - Technique for Order Preferences by Similarity to an Ideal Solution
 - Common in supplier selection problems
- Based on the idea of a compromise solution
 - Closeness to the best solution, distance from the worst solution

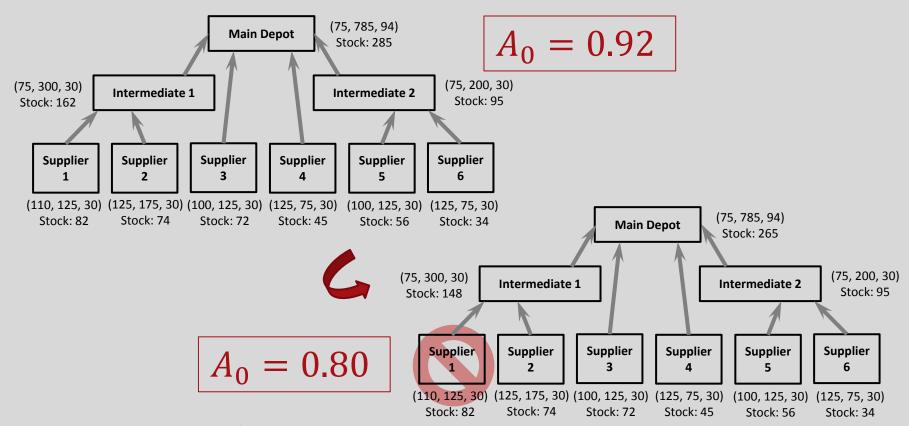
MULTI-CRITERIA DECISION ANALYSIS

What we do with TOPSIS: compare several alternatives across multiple weighted criteria

Availability, recovery time, quality, delivery rate

10			Criterion 1	Criterion 2	• • •	Criterion C
Backup suppliers	Alternative 1		x_{11}	x_{12}	• • •	x_{1C}
	Alternative 2		x_{21}	x_{22}	• • •	x_{2C}
	:		•	•	٠.	• •
	Alternative B		x_{B1}	x_{B2}	• • •	x_{BC}
_		Weights	W_1	W_2	• • •	$W_{\mathcal{C}}$

Weights determined by decision maker

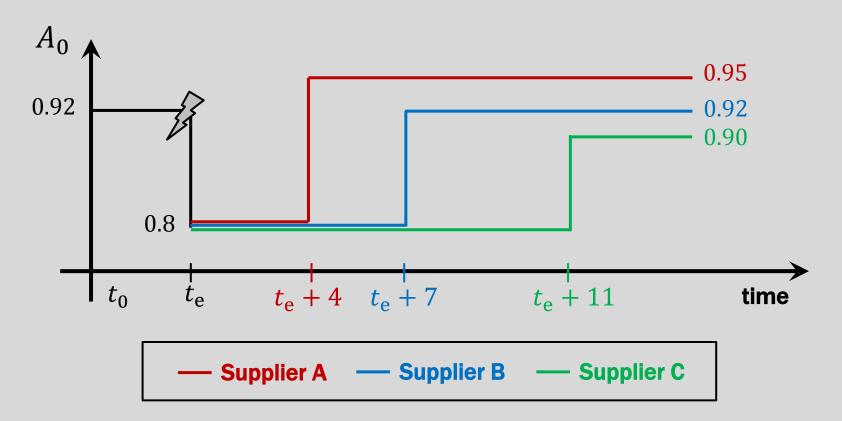


Supplier selection criteria
TOPSIS

Illustrative example

Concluding remarks

We consider a three-echelon supply chain, and assume that supplier 1 is disrupted



Assume that we have three backup suppliers
 (A,B,C) available to replace suppler 1

	Availability improvement	Recovery time	Quality	Delivery rate
Supplier A	0.15	4	0.97	0.82
Supplier B	0.12	7	0.83	0.98
Supplier C	0.1	11	0.89	0.91

Comparing the three backup suppliers with respect to resilience

Accounting for all four criteria, the rank of suppliers is as follows

Alternative supplier	RC_i	Rank
Supplier A	0.8934	1
Supplier B	0.5693	2
Supplier C	0.1074	3

Supplier selection criteria
TOPSIS

Illustrative example

Concluding remarks

CONCLUDING REMARKS

- This work addresses an important consideration in supplier evaluation and selection
- How can we integrate resilience into the supplier selection process for a backup supplier?
 - Ability to withstand a disruption of system availability
 - Ability to engage timely to provide component parts
 - As well as quality and response rate considerations

CONCLUDING REMARKS

- Rather than producing a lone resilience metric, we integrate the two resilience criteria (with the other two criteria) into TOPSIS
 - Criteria can be weighted according to importance

END OF PRESENTATION

contact: kashbarker@ou.edu

learn more www.ou.edu/systemslab

