

A Complex Systems Perspective of Risk Mitigation and Modeling in Development and Acquisition Programs

13th Annual Acquisition Research Symposium Acquisition Research Program Naval Postgraduate School

Dr. Roshanak Nilchiani Associate Professor School of Systems and Enterprises Stevens Institute of Technology **Antonio Pugliese**

PhD Student School of Systems and Enterprises Stevens Institute of Technology

Contents

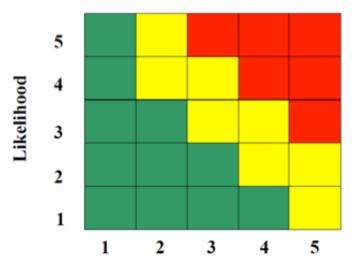
1970

Current Methodologies in Risk Assessment

Hybrid Structural-Behavioral Complexity Framework

Structural Complexity Metrics

Interface Characterization Model


Behavioral Complexity Metrics

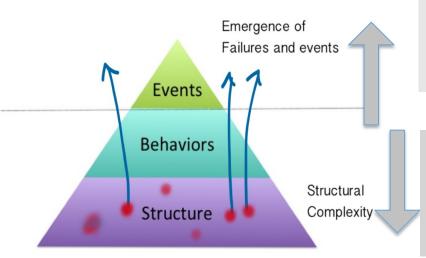
Use Case: Satellite Attitude Control System

Modification of Existing Metrics

Summary and Future Work

Some Problems with the Current Guidance

"Risk is a measure of future uncertainties in achieving program performance goals and objectives within defined cost, schedule and performance constraints." - Office of the Undersecretary of Defense


Consequence

- The current risk identification method does not inform the decision makers well on the underlying causes of risk and consequences.
- No variation (error bars) around three colors. Abrupt shift from one color to other is possible and is seen in practice. Interactions and ordering among risks cannot be shown. Consequences are not presented in tangible forms of potential cost and schedule overruns as well as underperformance
- No typology of risks associated with causes (internal, external), phases of life cycle (certain risks are more common in particular phases), and interconnections among choices.
- Consequences are not presented in tangible forms of potential cost to remedy (a NASA practice) and extent of schedule overruns. PMs cannot use risk matrix to make trades.

Different Approaches

Two major different Approaches:

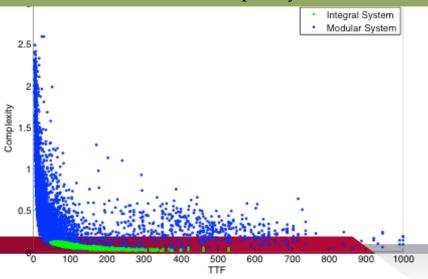
- 1. Incrementally improve the existing probability based assessment methods & tools, including adaptation of risk assessment methods from other disciplines.
- 2. Investigate and examine program artifacts for roots of technical risk. These in many instances originate from the structure and architecture of the system or from the organization creating the system. Feedback loops and existence of delays are a few of the examples of issues that are often the deep sources of technical risks. Create quantitative measures of the structure of the system and correlate them to current risk measures of the acquisition program.

Problem Statement

Domain of Risk identification and analysis: A large portion of risks and consequences internal to the system, are observable as symptoms of deeper underlying structure of the system

Domain of Hidden Structural Complexity and Dynamics, vulnerability and fragility: Certain signatures and behavior rooted in structure of the technical system and/or the organization cause the increased risk at the surface level.

Research Approach

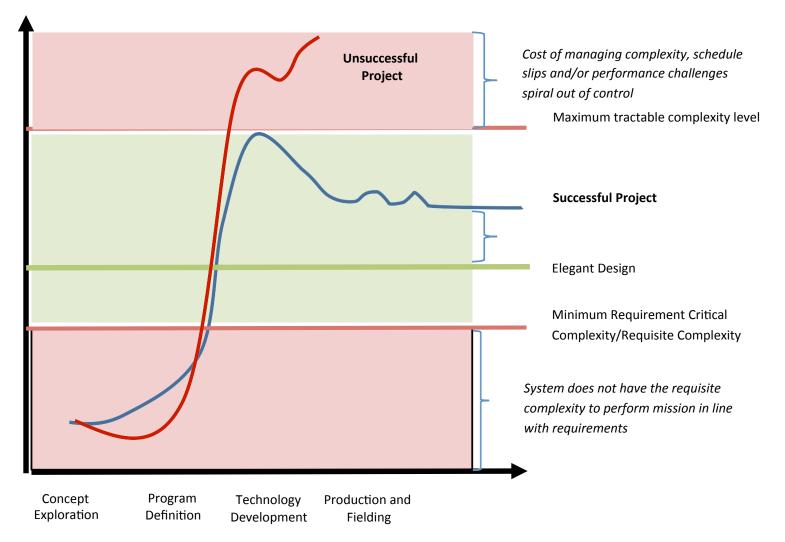


Complex Systems Engineering Dilemma

Functional Complexity

Structural Complexity

Complex systems exhibit:


- Potential for unexpected behavior
- Non-linear interactions
- circular causality and feedback loops
- May harbor logical paradoxes and strange loops
- Small changes in a part of a complex system may lead to emergence and unpredictable behavior in the system (Erdi, 2008)
- Different from complicated systems

The increased complexity is often associated with increased fragility and vulnerability of the system.

By harboring an increased potential for unknown unknowns and emergent behavior, the probability of known interactions that lead to performance and behavior in a complex system decreases, which in turn leads to a more fragile and vulnerable system.

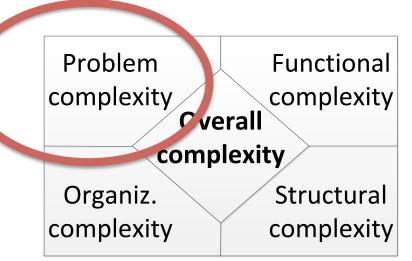

Research Approach

Figure 11. Complexity evolution throughout the systems acquisition lifecycle

Problem Complexity and Requirements

 $H = -K \cdot \sum_{i=1}^{n} p_i \cdot \log_j(p_i)$

- complexity index
 - functional complexity index
- organizational complexity index
- problem complexity index
 - structural complexity index

Functional requirements (Do)

=

=

=

С

 C_f C_o C_p C_c

What the system does in essence, which includes what it accepts and what it delivers

Performance requirements (Being):

How well the system does it, which includes performance related to functions the system performs or characteristics of the system on its own, such as –ilities

Resource requirements (Have):

What the system uses to transform what it accepts in what it delivers

Interaction requirements (Interact):

Where the system does it, which includes any type of operation during its life-cycle. $\vec{|}$

$$C(C_p, C_f, C_s, C_o) = -\sum_{c_p} \sum_{c_f} \sum_{c_s} \sum_{c_o} P(c_p, c_f, c_s, c_o) \cdot \log_j [P(c_p, c_f, c_s, c_o)]$$

©2013 Salado and Nilchiani

A conflict may exist when...

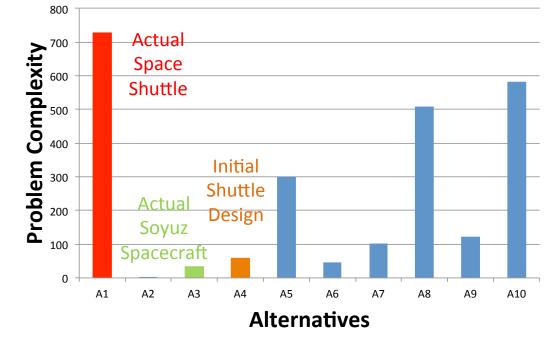
...two or more requirements *compete for the same resource*.

...two or more requirements oblige the system to *operate in two or more phases of matter*.

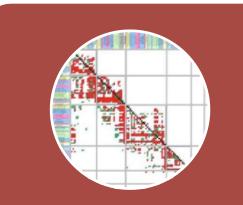
...two or more requirements inject *opposing directions in laws of society*.

...two or more requirements inject *opposing directions in laws of physics*.

$$C_p = K \cdot \left(\sum_{i=1}^n a_i \cdot r_{f_i}\right)^E \cdot \prod_{j=1}^m H_j^{b_j}$$


where K is a calibration factor that allows problem complexity to be adjusted to accurately reflect an organization's business performance. The first term represents the size of the requirement set, i.e., how many functional requirements *rf* the system has to fulfill. These are weighted (*a*) to reflect inherent difficulty of requirements and adjusted for diseconomies of scale (*E*). The last term represents complexity modifiers derived from amount and types of conflicts (*H*). They are adjusted to reflect influence and diseconomies of scale (*b*).

The spacecraft was a partially **reusable** human spaceflight vehicle for Low Earth Orbit, which resulted from joint **NASA and US Air Force** efforts after Apollo. "The vehicle consisted of a **spaceplane** for orbit and re-entry, fueled by an expendable liquid hydrogen/liquid oxygen tank, with reusable strap-on solid booster rockets. [...] A total of five operational orbiters were built, and of these, **two** were destroyed in **accidents**."



"Soyuz is a series of spacecraft initially designed for the **Soviet space programme** and **still in service today**. [...] The Soyuz was originally built as part of the Soviet Manned Lunar programme. [...] The Soyuz spacecraft is launched by the Soyuz rocket, the most frequently used and **most reliable** Russian launch vehicle to date."

Problem Complexity: Shuttle vs. Soyuz

Hybrid Structural-Behavioral Complexity Framework

Structural Complexity Metrics

- DSM Based
- Evaluate the complexity of the architecture
- Many examples in existing literature

Interface Characterization Model

- Way of comparing incommensurable interfaces
- Looks at the effect of the interface
- Ranks interfaces based on the level of enablement

Behavioral Complexity Metrics

- Based on the behavior of the system
- Evaluate the complexity of the output
- Many examples in existing literature

Hybrid Structural-Behavioral Complexity Framework

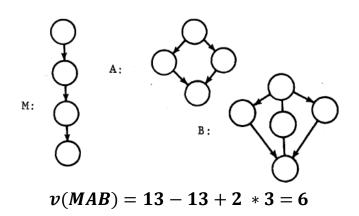
2

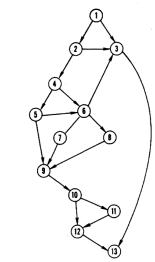
3

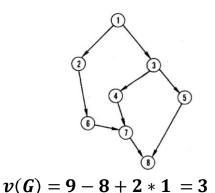
4

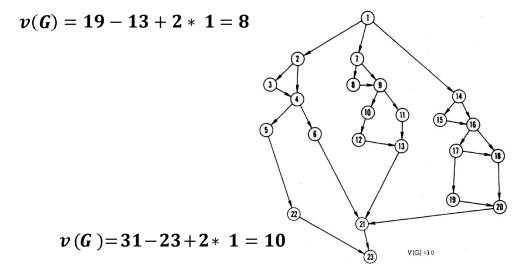
5

- Define the architecture of the engineered system
- Characterize the boundaries and interfaces of each component
- Use behavioral complexity metrics to assess the complexity of each component
- Use structural complexity metrics to evaluate the complexity of each subsystem
- Repeat the previous steps to evaluate the complexity of higher level subsystems




Structural Complexity Metrics McCabe (1976)


Complexity metric v(G):


v(G) = e - n + 2p

- *e* is the number of edges
- *n* is the number of vertices
- *p* is the number of connected components

Structural Complexity Metrics Cotsaftis (2009)

Complexity metric Cs:

 $C_S = n/N$

- N is the total number of nodes in the system
- n is the number of components that satisfy the inequality

 $\inf p_{ij} \gg p_{ii}$, p_{ie}

- p_{ij} is the flux of resource from node i to node j
- *p_{ii}* is the generation or usage of resource for node i
- p_{ie} is the resource flux from node i to the environment

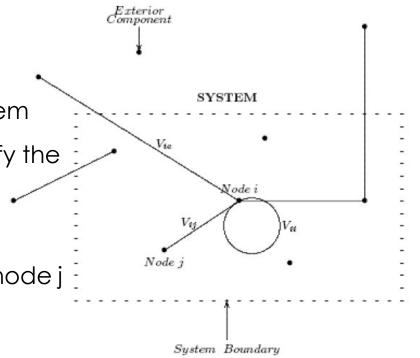


Fig. 2 : Graph Representation of System with its Three Exclusive Types of Vertices V_{it} , V_{te} and V_{ij}

Structural Complexity Metrics Sinha & deWeck (2012)

Complexity metric C(n, m, A):

$$C(n,m,A) = \sum_{i=1}^{n} \alpha_i + \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{ij} A_{ij}\right) \gamma E(A)$$

- *n* is the number of components
- α_i is the complexity of each component i
- β_{ij} is the complexity of the interface between components i and j
- *A* is the adjacency matrix of the system
- $\gamma = 1/n$
- *E*(*A*) is the energy of the adjacency matrix which is the sum of the singular values of *A*, evaluated through singular value decomposition

Interface Characterization Model Enablement and Constraint

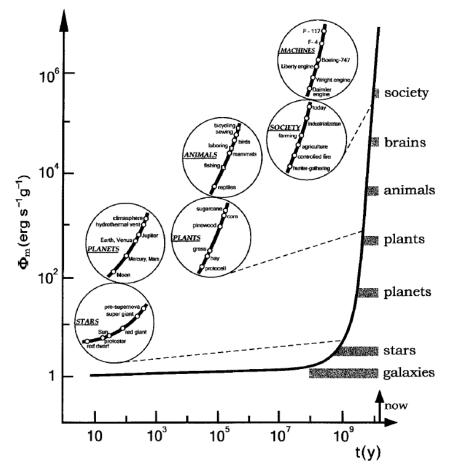
Components in engineered systems are connected to other components so they can either do thinghs they can't do alone (enablement), or so that they cannot do things they would otherwise do (constraint).

Assumption: for each interface between two components the level of enablement/constraint that a component exercises on the other can be measured.

The model will quantitatively rank interfaces based on the level of enablement/constraint, independently from their nature (e.g. mechanical, thermal, chemical, electromagnetic).

http://www.zerohedge.com/sites/default/files/images/user5/imageroot/2014/08/herd%20direction.jpg

http://thatscienceguy.tumblr.com/post/48996081962



Behavioral Complexity Metrics Chaisson (2004)

Chaisson just provides a definition for this metric as, free energy rate density, which is energy entering the system per unit of time per unit of mass.

He did although evaluate its value for many entities in the universe.

The accurate trend leads to think that a metric based on this concept could be useful in the measurement of complexity for engineered systems.

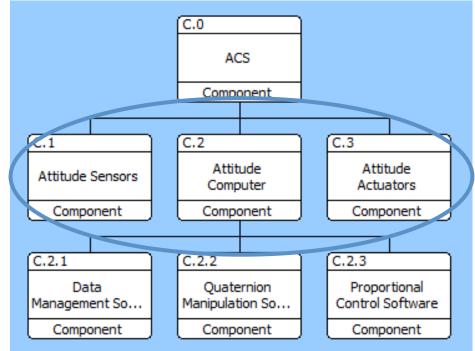
Behavioral Complexity Metrics Willcox (2011)

Complexity metric C(Q):

 $C(Q) = \exp(h(X))$ $h(X) = -\int_{\Omega_X}^{\Box} f_x(x) \log f_x(x) \, dx$

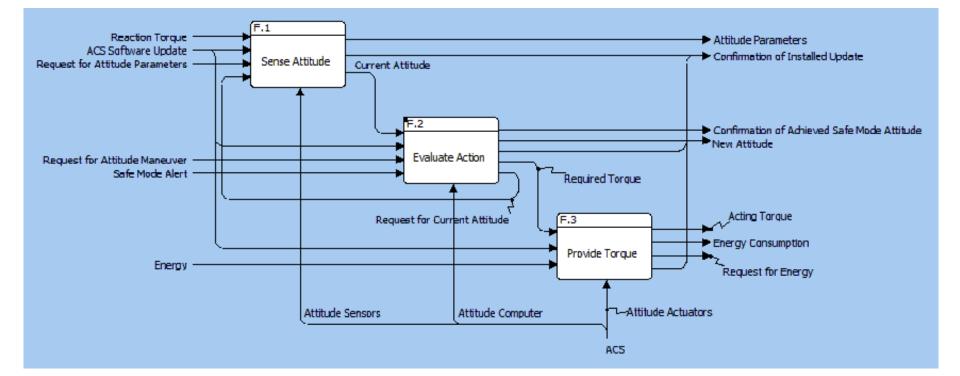
- X is the joint distribution of the quantities of interest
- h(X) is the differential entropy of X
- Ω_X is the support of X
- f_x is the pdf of a specific distribution

This metric shows how the framework would be able do accommodate uncertainty at the component level.



Use Case: Satellite Attitude Control System

We are going to show the application of the framework using the structural complexity metric proposed by Sinha & deWeck (2012).


The evaluation of the complexity of the component C.0 is performed using the components at the 1st level C.1, C.2, and C.3.

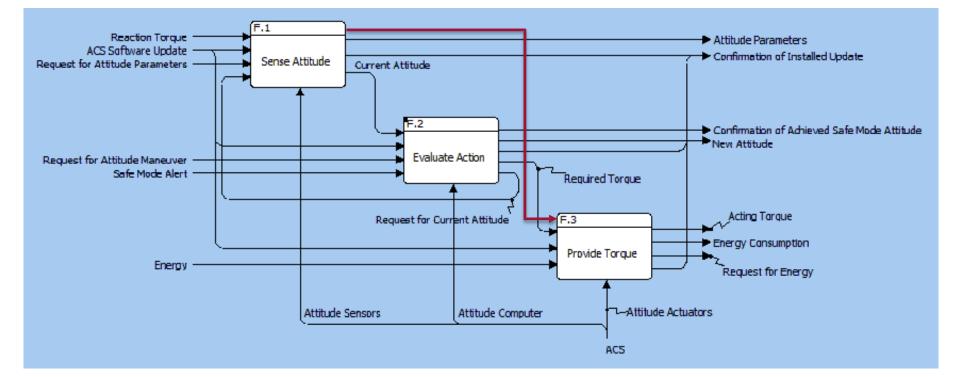
$$C(n,m,A) = \sum_{i=1}^{n} \alpha_i + \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{ij} A_{ij}\right) \gamma E(A)$$

Use Case: Satellite Attitude Control System

$$A_{C.0} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \qquad C_{C.0} = C_{C.1} + C_{C.2} + C_{C.3} + \frac{1 + \sqrt{2}}{3} (\beta_{12} + \beta_{21} + \beta_{23})$$

Use Case: Satellite Attitude Control System

$$C_{C.0} = C_{C.1} + C_{C.2} + C_{C.3} + \frac{1 + \sqrt{2}}{3} (\beta_{12} + \beta_{21} + \beta_{23})$$


The missing terms in the equation above cannot be evaluated in the current state of the framework.

The complexity of the components is going to be evaluated using behavioral metrics, using historical information about input/output of the components. In our opinion this is better than using historical complexity/ reliability/robustness data, since do not depend on the history of the specific components.

The complexity of the interface is going to be evaluated using the interface characterization model.

Modification of Existing Metrics Sinha & deWeck (2012)

$$A_{C.0'} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A_{C.0} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Modification of Existing Metrics Sinha & deWeck (2012)

$$C(n, m, A) = \sum_{i=1}^{n} \alpha_i + \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{ij} A_{ij}\right) \gamma E(A)$$
$$C_{C.0} = C_{C.1} + C_{C.2} + C_{C.3} + \frac{1 + \sqrt{2}}{3} (\beta_{12} + \beta_{21} + \beta_{23})$$
$$C_{C.0'} = C_{C.1} + C_{C.2} + C_{C.3} + \frac{1 + \sqrt{3}}{3} (\beta_{12} + \beta_{13} + \beta_{21} + \beta_{23})$$

Following the addition of one connection between C.1 and C.3 the metric has a twofold change. We propose the following modification to this metric:

$$C(n, m, A) = \sum_{i=1}^{n} \alpha_i + \gamma E(B)$$

where B is the matrix whose elements are β_{ij} .

Summary and Future Work

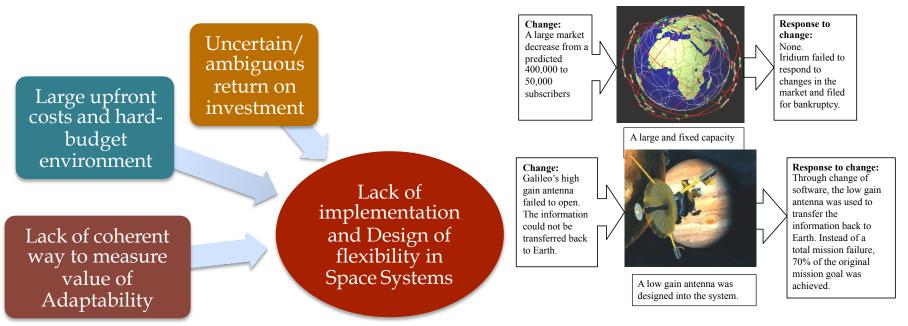
In this work we introduced the Hybrid Structural-Behavioral Complexity Framework.

The framework backbone has been defined, but its modules are yet to be developed.

Some modules are to be developed by modifying existing complexity metrics, while others are to be developed ex novo.

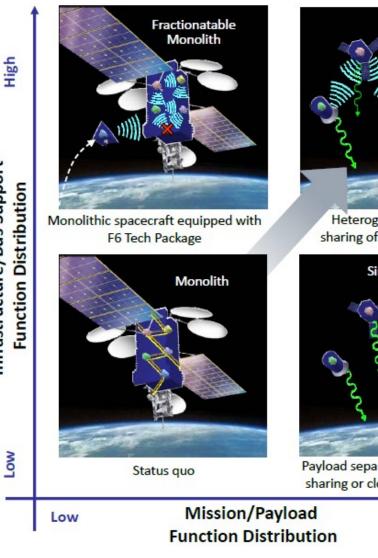
Future work will focus on the development of those modules and the validation of the framework using real data.

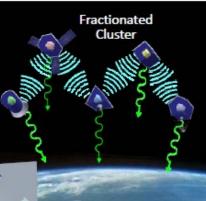
Thank you for your attention


Questions?

Backup Slides Example: DARPA F6 Program

Context: The Need for Adaptability and Resilience in Space Systems In Uncertain World


- Space Systems:
 - Lengthy design and manufacturing
 - Long lifetimes
 - Very expensive
 - Limited access after launch
 - Face extensive uncertainties during their lifetime

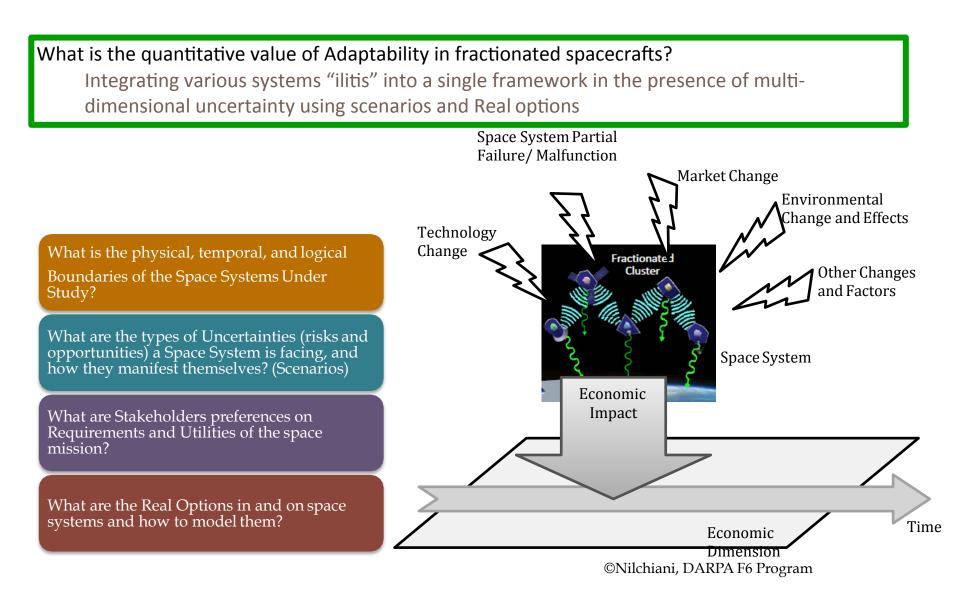

- Space systems often provide a good response to initial requirements but:
 - They fail to meet new market conditions
 - They cannot adapt to new applications
 - Their technology becomes obsolete
 - They cannot cope with changes in context/ environment (markets, policy, technological innovation, changing human needs)

An Overview of a Fractionated Spacecraft Concept

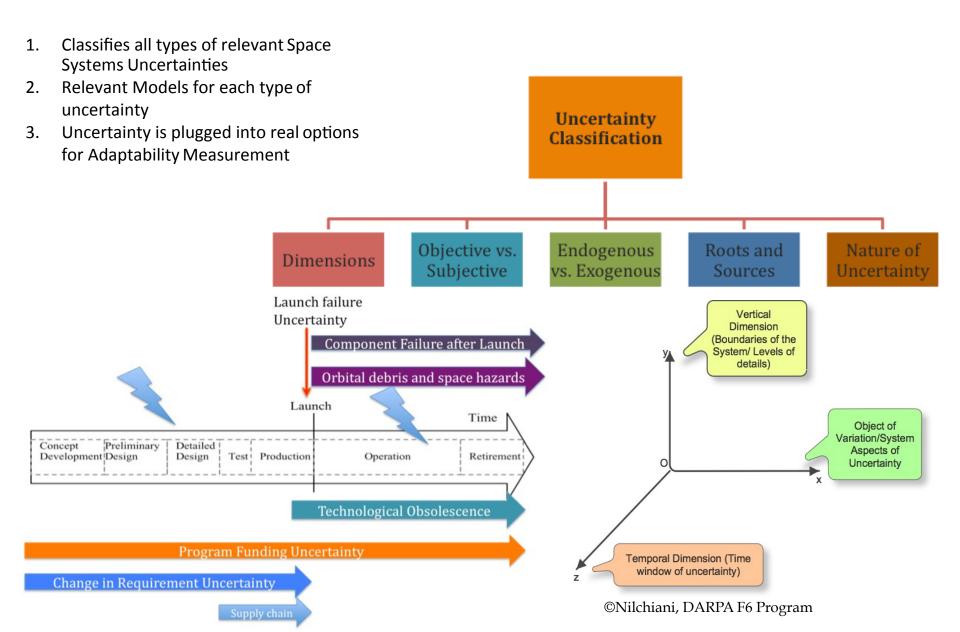
Infrastructure/Bus Support

Heterogeneous distribution and sharing of bus & payload functions

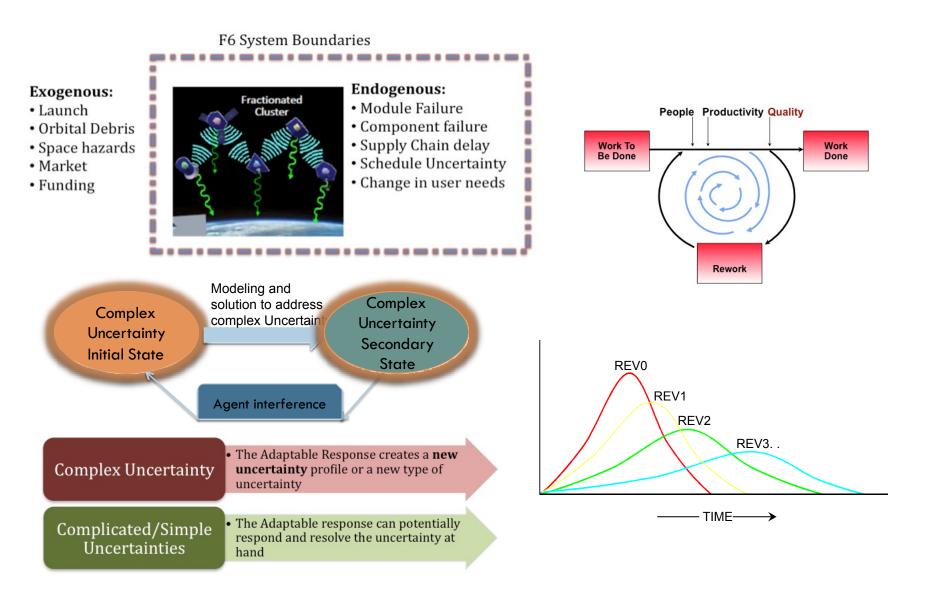
Payload separation with no resource sharing or closed-loop cluster flight

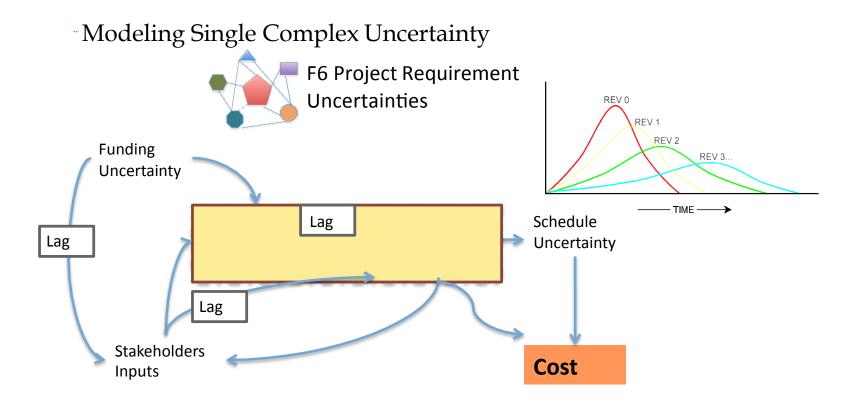

High

Enablers of Fractionated Space Architectures

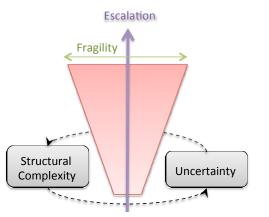

- Cluster maintenance
- Rapid cluster maneuvering
- **Relative navigation** ٠
- Wireless networking
- Real-time resource sharing
- Multi-level security
- 24/7 LEO-ground connectivity
- Open F6 Developer's Kit
- Modular F6 Tech Package
- Adaptability Metrics •
- Design-for-Adaptability Tools

Credit: Mr. Eremenko, DARPA


Value of Adaptability Under Risk and Uncertainty

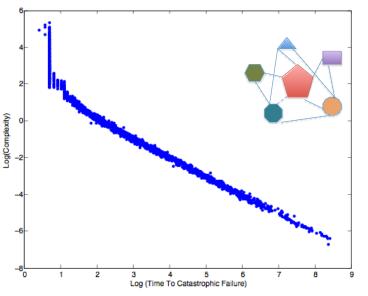

Uncertainty Science, Characterization and Modeling

Uncertainty Science, Characterization and Modeling


Uncertainties and Complexities in Space Systems

Requirement Uncertainty is mainly a function of changing user and stakeholders need, funding uncertainty, and incomplete or unclear set of initial requirements. There are delays in requirement gathering and classification and prioritization process and several loops of iterations that affect cost and project schedule dramatically

Uncertainties and Complexities in Space Systems


- On-going Research: Multiple Uncertainties, Realistic Scenarios and Catastrophic failures
 - Correlation between various space systems-related uncertainties
 - Realistic Scenarios: manifestation of a uncertainty and chain reaction effect of triggering other uncertainty types, Time lag between Uncertainties (Window of opportunity of options)
 - Correlation of increasing in complexity measure and structural complexity of the F6 and catastrophic chain of Uncertainties (Murphy's Law!)

Group	Uncertainties	
Policy	Export, frequency allocation, mission-specific	
	regulations, disposal.	
Technology	Obsolescence, technology readiness, system readiness.	
Organization	Supply chain, cost, technical capability, key people,	
	V&V, design, requirements, customer involvement.	
Service	Reliability, availability, space debris, space radiation,	
performance	weather hazard, lifetime, performance.	
Market	Market size, discount rate, competition, market	
	capture, schedule.	

Correlation Matrix of Space Systems Related Uncertainties

The Less Complexity in Design Structure and Architecture of F6, The slower the propagation of specific types of uncertainty in the F6 architecture, the more time to interfere and respond and/or exercise Real Options, Therefore More Adaptability

Propagation of Failure in F6 Network and correlation with Complexity measure of the Network

Complexity and Uncertainty in F6: Uncertainty Correlations

• Why Uncertainty Correlation matters?

- Realistic Scenarios, Realistic Options, Time to Exercise and Option
- Trigger possibility, Chain reaction effect

		Т	echr	۱.		Serv	ice p	erfo	orma	ince			Ν	Лark	et				Or	gani	zatio	n				Le	gal	
Columns are triggered by rows		Obsolescence	Technology readiness	System readiness	Reliability	Availability	Debris	Radiation	Weather hazard	Lifetime	Performance	Market size	Discount rate	Competitor	Market capture	Schedule	Supply chain	Cost	Technical capability	Key people	V&V	Design	Requirements	Customer involvement	Export	Frequency allocation	Mission-specific regulations	Disposal
Technology	Obsolescence		11	12		21				41							100	110							79			
	Technologyreadiness	1		13												72	101	111							80			
	System readiness	2														73	102	112							81			
	Reliability					22				42																		
	Availability													63	68			113										
	Debris					23				43																		99
Service performance	Radiation					24				44																		
	Weatherhazard					25				45																		
	Lifetime	3			18	26	31	34	38			?		?	?													
	Performance									?		60		64	69													
	Marketsize					27				46	52			65									135		82	92		
	Discountrate																											
Market	Competitor											61			70		103			123			136		83	93		
	Market capture					28				47	53			66											84	94		
	Schedule	4	6	14			32	35				62		67	71		104	114		124			137	146	85			
	Supplychain															74		115	150		127			147				
	Cost																						139	148				
	Technical capability		7	15							54					75					128	132	140	149				
Organization	Keypeople																		119									
Organization	V&V				19	29				48	56																	
	Design				20	30				10	57																	
	Requirements Customer involv																											hig
	Export possi	ıbl	e!!_	T	ne_	C	δΠe	ect	ive	e	ffe	ct	of	11	nsi	gni	tic	an	tι	inc	cer	tai	nti	es	h	av	e	
Policy	Frequencyalloc Mission-specific																											ng!
	Disposal						33			2											2	2	145					
							55									ON	Jilch	nian	i D	ARI	ΣÅΙ	6 P	rog	ram				

Uncertainties and Complexities in Space Systems

Category	Description
Policy	Uncertainties related to law and regulation that impact the system. Most common examples include ITAR, EO laws, or ITU frequency allocation. It is important to mention that uncertainties falling under this category have not really been explored in the available literature. When discussing Policy uncertainty, it is normally related to government funding, which we allocate to market.
Technology	Uncertainties that are related to the availability of technology or technical solutions. Most common examples are obsolescence, state-of-the-art, achievability, TRL, SRL, etc.
Organization	Uncertainties that are related to the organization of the system (project) and may impact the development or the operation of the system. Most common examples include supply chain, complexity of operations, directives to use specific suppliers, loss of key personnel, inadequate personnel, etc. It is important to mention that uncertainties falling under this category have never been looked into in the available literature.
Service performance	Uncertainties that are related to the impacts of bringing the system into real-life operation. They could be defined also as uncertainties included in the design by definition (performance based on probabilities). Most common examples may include reliabilities, availabilities, TX power, degradation, lifetime, orbit accuracy, fuel usage, radiation, atmospheric effects, network load, integration to other systems, etc.).
Market	Uncertainties related to "funding and revenues", which may be impacted by business case success or effects of internal and external competitors: <i>Commercial project:</i> market capture, effect of other company putting the system in place earlier or at lower cost, impact of competitors with same service in other industry (e.g. terrestrial networks). <i>Government project:</i> actual scientific return, competitors making funding fluctuate (e.g. budget moved from Human spaceflight to Earth observation), etc.

Structural vs. Functional Complexity

The Simple

Single cause and single effect

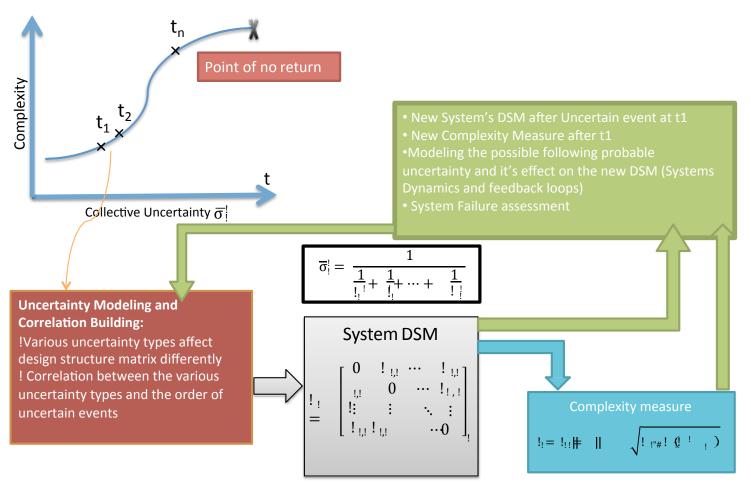
A small change in the cause implies a small change in the effect Predictability and Modelability

Complex Systems Engineering Dilemma

Structural Complexity

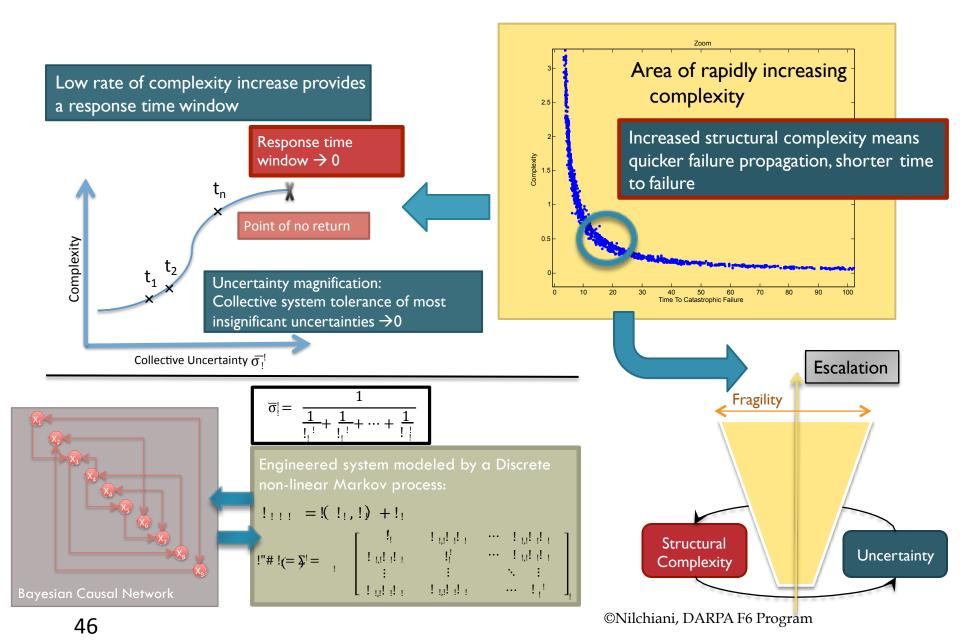
 Complexity is fragility and risk more complex à higher likelihood of failure à more difficult to manage à more expensive to maintain
Complexity is value more complex à more functions àbetter functions àunique (emergent) functions

Functional Complexity Complexification driving force

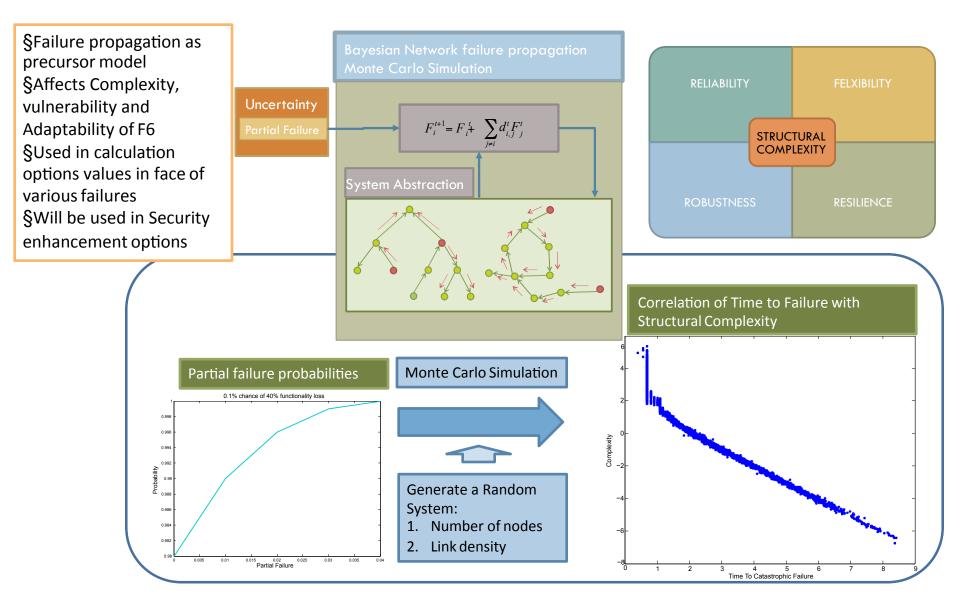

The Complex

Circular causality, feedback loops, logical paradoxes, and strange loops Chaos: small change in the cause implies dramatic effects Emergence, unpredictability and entropy

Emergence

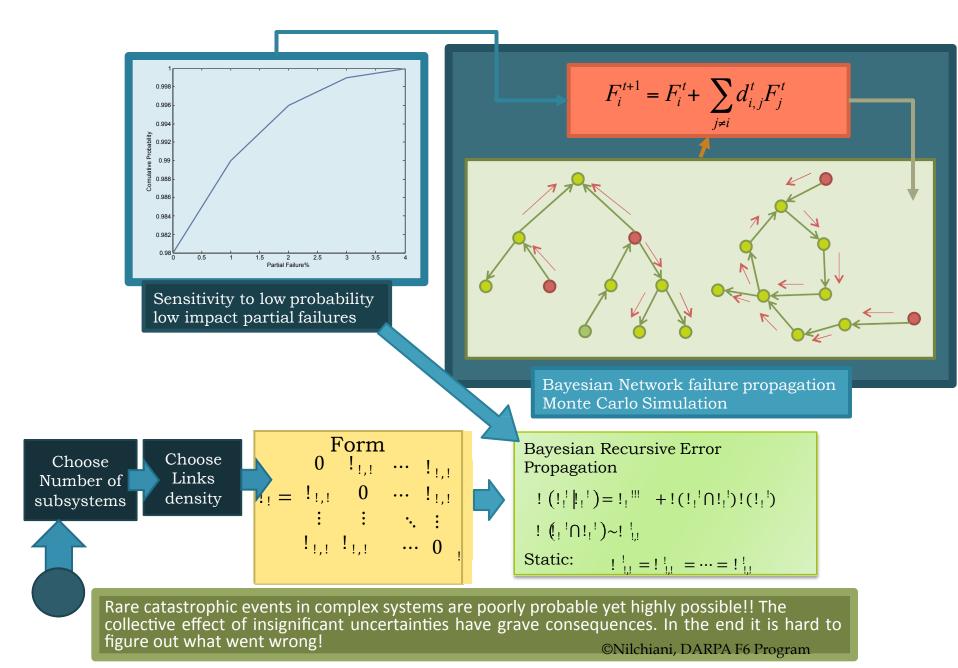

Exist in the whole not in the parts Cannot be modelled In complex systems failure can be emergent Structural Complexity is the potential for and intensity of emergence It is important to measure complexity

Research Approach

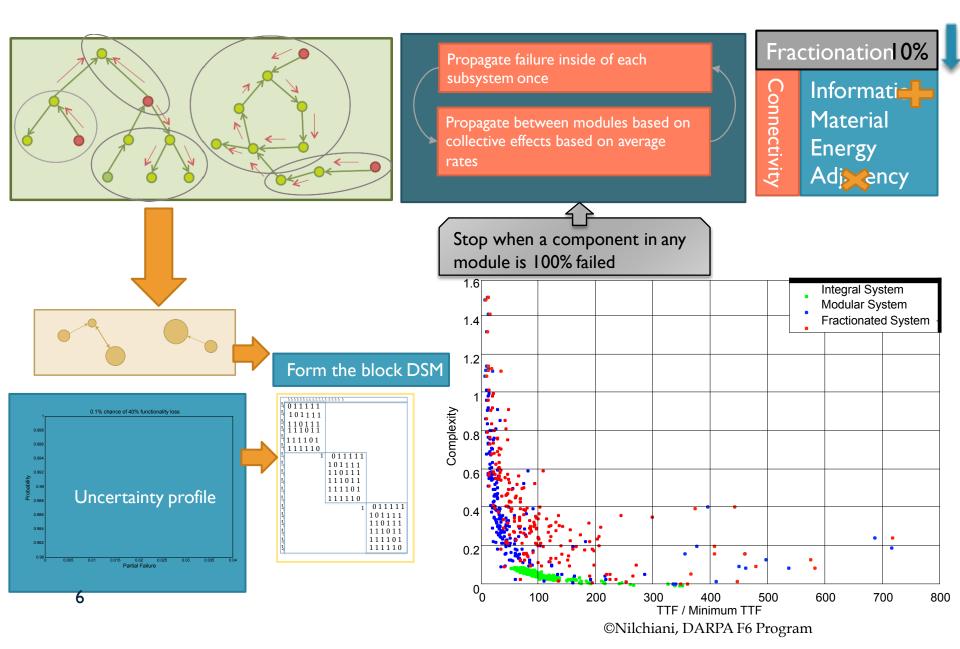


Our previous research has shown a direct correlation between an increase in structural complexity and how fast a failure or risk propagates in a complex satellite SoS (Example: a security attack on one of the satellites in the network).

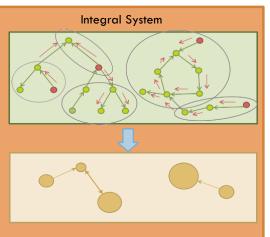
Uncertainty and Complexity in F6: Catastrophic Failure



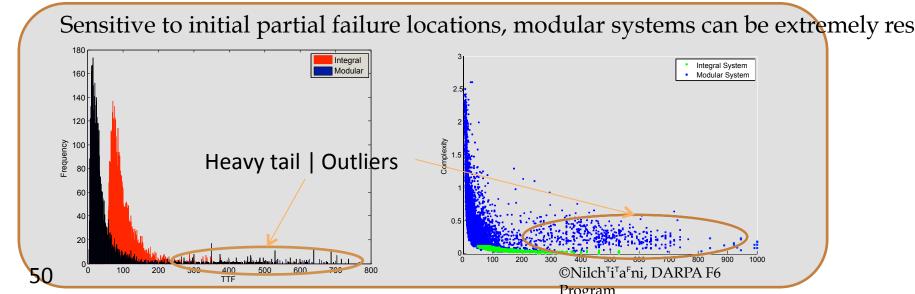
Failure Propagation Overview: Time To Failure Concept

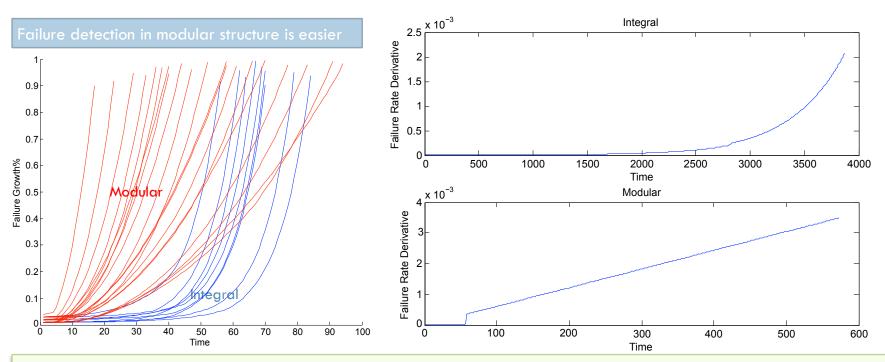


©Nilchiani, DARPA F6 Program


Uncertainty and Complexity in F6: Failure Propagation

Uncertainty and Complexity in F6: Failure Propagation vs. Various Number of Fractions

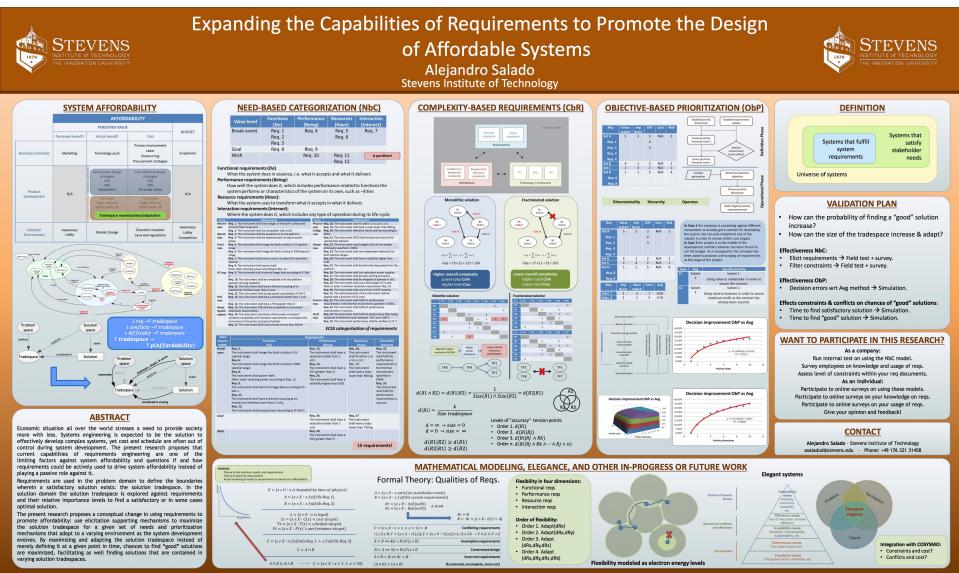

Failure Propagation: Results and Insights


Corresponding Modular System

Insights:

Our goal in to increase TTF, since it gives us more time to detect and remedy failures before they become detrimental to the whole F6 architecture •Correlation of number of modules and Complexity measure of the system: Monoliths often have the least structural complexity •Mean Time to Failure decreases with number of fractions and modules for majority of module architectures •F6 architectures with higher complexity measures are more vulnerable and prone to catastrophic failures •The art of module making: maximum cuts creates high degree of coupling between fractions and therefore higher complexity

Failure Propagation: Results and Insights


Insights:

Failure propagation and detection in various F6 architecture vs. a monolith

•In monoliths, failure propagates at a very slow rate initially and after a certain level, it grows exponentially

• In modular systems, failure propagates rather faster initially, but grows steadily

•If detectability of failure is defined at x% (e.g, 10%), Fractionated systems show partial failure sooner, as well as provide decision-makers with time to react (window of opportunity) to exercise an option to address the problem. In many monoliths, when the failure becomes detectable that its already too late

www.PosterPresentations.com