

Materials Testing and Cost Modeling for Composite Parts Through Additive Manufacturing

> Eric S. Holm Vhance V. Valencia Alfred E. Thal, Jr. Jason K. Freels Adedeji B. Badiru

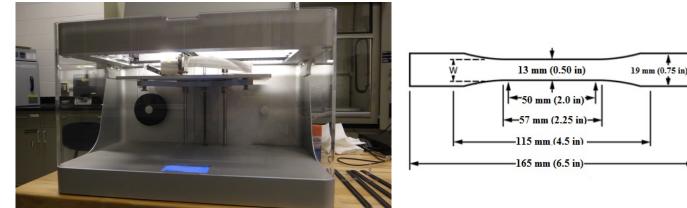
Additive Manufacturing Benefits

- Avoid tools, dies, and material waste associated with conventional manufacturing (Morrow et al., 2007; Serres et al., 2011)
- Produce small quantities of customized items at relatively low average unit cost (Baumers et al., 2011)
- Geometric constraints typical of formative and subtractive processes eliminated (Tuck et al., 2008; Baumers et al., 2011)
- Advanced freeform fabrication (Meteyer et al., 2014)
- Geometrically complex and novel items (Horn and Harrysson, 2012; Mani et al., 2014)
- Environmental benefits and performance improvements
 - 12:1 to 25:1 "buy-to-fly" ratio (ORNL, 2010; Huang et al., 2015)
 - Aircraft industry ... \$3,000 annual fuel savings per kilogram reduction in mass (Lindemann et al., 2013) and 6.4% reduction in fuel consumption (Huang et al., 2015)

Additive Manufacturing Limitations

- Ruffo and Hague (2007)
 - Material selection and characteristics
 - Process productivity
 - Accuracy of product dimensions
- Huang et al., (2015)
 - Low throughput
 - Geometric repeatability
 - Residual stresses
- Schroeder et al. (2015)
 - High rejection rates (operator or machine failures)
 - Industry standard for product quality rarely achieved

- Surface quality
 - Repeatability
 - Unit cost at medium and high volumes
- Precision
- Fatigue resistance
- Surface quality and high surface roughness


Research Purpose

The AFIT of Today is the Air Force of Tomorrow.

- Primary: address material characteristics
 - How do variations in layer height and raster angle orientation affect mechanical properties?
- Secondary: broadly review cost modeling issues
 - How is energy consumption affected by different types of additive manufacturing processes?
- Fused deposition modeling (FDM) trademarked by Stratasys
 - Fused filament modeling (FFM) and fused filament fabrication (FFF)

Mark One 3D Printer

Air University: The Intellectual and Leadership Center of the Air Force Aim High...Fly - Fight - Win 4 mm (0.1575 in)

Experimental Factors

The AFIT of Today is the Air Force of Tomorrow.

• Layer height and raster angle

Treatment	1	2	3	4	5	6
Raster Angle Orientation	0/90	0/90	0/90	±45	±45	±45
Layer Height (mm)	0.1	0.15	0.2	0.1	0.15	0.2

- Fixed parameters
 - Nylon fill density set to 100%
 - Roof, floor, and wall layers set to one
- Mechanical properties of finished part (quality characteristics)
 - Tensile modulus (secant modulus at 0.5% strain)
 - Yield stress (0.2% strain offset)
 - Percent strain at yield
 - Ultimate tensile strength
 - Percent elongation after break

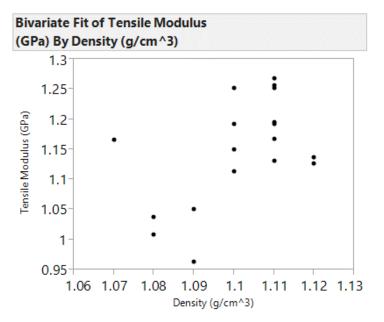
Material Testing Comparisons

The AFIT of Today is the Air Force of Tomorrow.

	Tensile Strength at Yield (MPa)	Tensile Strength at break (MPa)	Elongation at break (%)	Elongation at Yield (%)	Tensile Modulus (GPa)
Arkema Group Rilsan® AMN D Nylon-12, Rigid, Injection Grade (Dry)	42.00	not listed	≥ 50	8.0	1.45
Arkema Group Rilsan® AMIN D Nylon-12, Rigid, Injection Grade (Conditioned)	39	not listed	≥ 50	10.0	1.17
ALM PA 650 Nylon-12 Selective Laser Sintering (SLS) Prototyping Polymer	Not listed	48.0	24	not listed	1.70
Polyram PlusTek PD104 Nylon-12, Injection Molding	35	not listed	300	not listed	0.70
Average Experimental Data	12.32	36.5	71	1.28	1.15
Average Experimental Data at 10% Strain	31.2	n/a	n/a	10	n/a

Summary of Material Testing Results

The AFIT of Today is the Air Force of Tomorrow.


	Statistically Significant			
Material Property	Layer Height	Raster Angle Orientation	Interaction	
Mean Tensile Modulus (GPa)	Yes	Yes	No	
Mean Yield Stress (MPa)	No	Yes	Yes	
Mean % Strain at Yield Stress	No	Yes	No	
Mean Ultimate Tensile Strength (MPa)	Yes	No	No	
% Elongation at break	No	Yes	No	

- As layer height decreases ... tensile modulus and ultimate strength increase
- ± 45 angle orientation compared to 0/90 angle orientation
 - Greater tensile modulus
 - Greater percent elongation after break
 - Lower yield stress
 - Lower strain at yield

- Material properties evaluated for range of density values ... plots were similar
- Based on visual observation of plots, density classified as either low (< 1.095 g/cm³) or high (> 1.095 g/cm³)
- Statistically significant differences
 - Tensile modulus
 - Percent strain at yield
 - Ultimate tensile strength
 - Percent strain at break

- For one-off items, SEC lower for additive ... as number of items increase, SEC of bulk-forming and subtractive decrease significantly
- Bulk-forming cost greater than additive when three or fewer items being produced ... above three, additive cost increases sharply
- Found no significant difference between plastic and metal AM processes
- Conclusion: both energy consumption and production cost are related to production quantities

Bulk-forming processes	0.11-5.82 kWh/kg for injection molding 0.62-7.78 kWh/kg for metal casting
	2.3-188 J/mm ³ for milling
Subtractive processes	2.7-36.2 J/mm ³ for turning
	9-65 J/mm ³ for drilling
	343.4-1982.6 J/mm ³ for grinding
	14.5-66.02 kWh/kg for Selective Laser Sintering (SLS)
Additive processes	23.08-346.4 kWh/kg for Fused Deposition Modeling (FDM)
	14.7-163.33 kWh/kg for other processes

- Baumers et al. (2010) compared electricity consumption for selective laser melting and electron beam melting
 - Differences between maximizing capacity utilization and one-off items
 - Energy consumption affected by material selection and layer thickness
 - Proposed summary metrics ... kWh/cm³ or kWh/g
- Baumers et al. (2011) categorized energy consumption
 - Job, time, geometry, and Z-height
 - Time-dependent activities consumed 56-61% of energy
- Lindemann (2012) ... machine time accounts for 73% of costs
- Bottom line ... capacity utilization is critical to energy efficient processes (Baumers et al., 2011)
 - Energy savings ranged from 3.2% for FDM to 97.8% for LS
 - Full capacity operation uses less energy per mass of material deposited for all operating scenarios and materials they tested

- Baumers et al. (2012)
 - Energy consumption and production costs not dependent on production quantity
 - Capacity utilization is primary factor affecting process efficiency
- Developed model using speed, energy consumption, and production cost

$$C_{Build} = (C_{Indirect})(T_{Build}) + (w)(P_{Raw material}) + (E_{Build})(P_{Energy})$$

$$E_{Build} = E_{Job} + (E_{Time})(T_{Build}) + (\alpha_{Energy})(l) + \sum_{z=1}^{z} \sum_{y=1}^{y} \sum_{x=1}^{x} E_{Voxel xyz}$$

$$T_{Build} = T_{Job} + (\alpha_{Time})(l) + \sum_{z=1}^{z} \sum_{y=1}^{y} \sum_{x=1}^{x} T_{Voxel xyz}$$

Final Cost Thoughts

- Baumers et al. (2012) concluded that quantity and variety of items, along with utilizing available machine capacity, affect process efficiency for both energy and cost
- Lindemann et al. (2012) showed that AM more attractive for batch production that can maximize capacity utilization
- Costs and energy consumption must be allocated in an equitable manner ... which means that summary metrics like kWh/cm³ or kWh/g must be used

SEM Photographs

The AFIT of Today is the Air Force of Tomorrow.

Questions?