Costing for the Future **EXPLORING COST ESTIMATION FOR** UNMANNED AUTONOMOUS SYSTEMS

CPT(P) Thomas R. Ryan **United States Military Academy**

> Ricardo Valerdi, Ph.D. University of Arizona

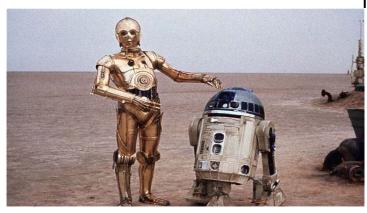
> > May 5 2016

The views expressed in this article are those of the authors and not necessarily those of the U.S. Army, the Department of Defense, or the U.S. Government. This material is based upon work supported by the Naval Postgraduate School Acquisition Research Program under Grant No. N00244-15-1-0008. The views expressed in written materials or publications, and/or made by speakers, moderators, and presenters, do not necessarily reflect the official policies of the Naval Postgraduate School nor does mention of trade names, commercial practices, or organizations imply endorsement by the U.S. Government.

By

Agenda

- Levels of Autonomy
- Emerging challenges Autonomy
- Research questions
- Autonomy Levels
- Cost hierarchy
- Weight and performance metrics
- Proposed approach
- Case studies
 - Squad Maneuver Equipment Transport, Autonomous Mine Detection System, Autonomous Mobility Appliqué System, Route Clearance Interrogation System



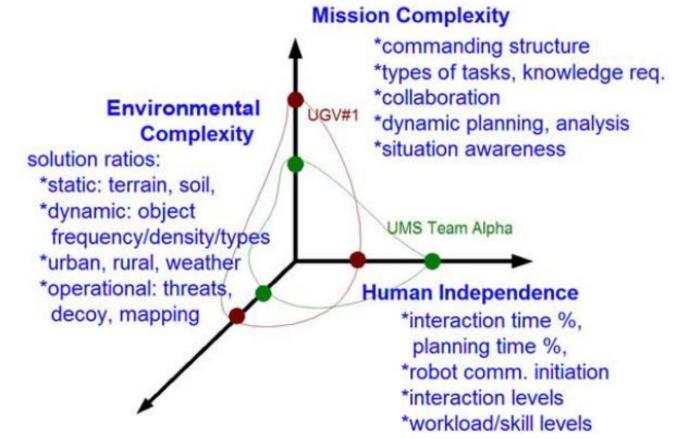
Unmanned Autonomous Systems

Perception

Unmanned Autonomous Systems

Reality

Unmanned Autonomous Ground Systems: Dull, Dirty, Dangerous


5

Research Questions

- From an acquisition perspective, what inadequacies exist, if any, with the tools and methods used to produce cost estimates for emergent UMAS technology?
- From a monetary and implementation view point, what are the hidden costs of UMAS – specifically when the system has left production and is placed into service?

Autonomy Levels of Unmanned Systems (ALFUS)

NIST Special Publication 1011-II-1.0 Autonomy Levels for Unmanned Systems (ALFUS) Framework Volume II: Framework Models Version 1.0

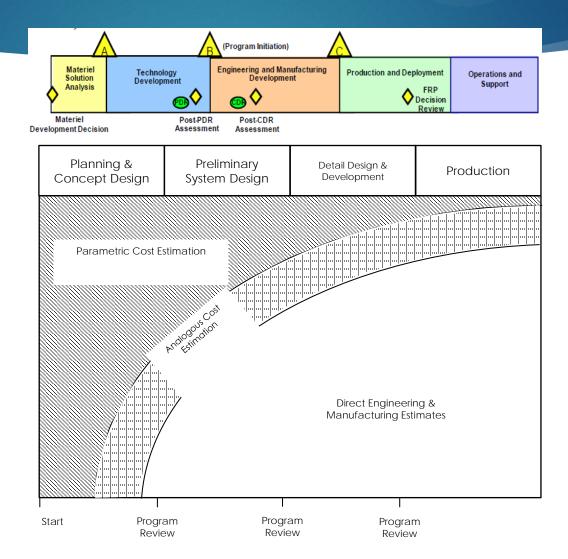
8

Levels of Autonomy

Level	Name	Description
1	Human Operated	A human operator makes all decisions. The system has no autonomous control of its environment although it may have information-only responses to sensed data.
2	Human Delegated	The Vehicle can perform many functions independently of human control when delegated to do so. This level encompasses automatic controls, engine controls, and other low-level automation that must activated or deactivated by human input and must act in mutual exclusion of human operation.
3	Human Supervised	The system can perform a wide variety of activities when given top- level permissions of direction by a human. Both the human and the system can initiate behaviors based on sensed data, but the system can do so only if within the scope of its currently directed tasks.
4	Fully Autonomous	The system receives goals from humans and translates them into tasks to be performed without human interaction. A human could still enter the loop in an emergency or change the goals, although in practice there may be significant time delays before human intervention occurs.

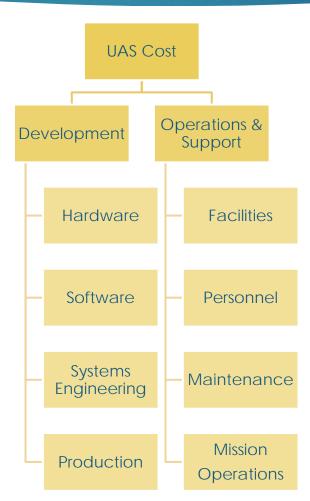
Unmanned systems integrated roadmap FY2013-2038. (2013). Washington, D.C.: Department of Defense.

Levels of Functionality

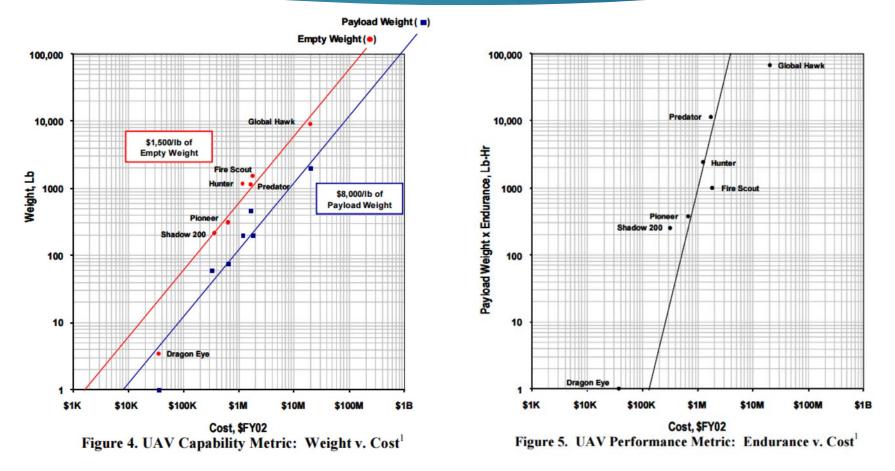

Level	Capability	Comments			
0	Pre-programmed	A software radio			
1	Goal Driven	Chooses Waveform According to Goal. Requires Environment Awareness.			
2	Context Awareness	Knowledge of What the User is Trying to Do			
3	Radio Aware	Knowledge of Radio and Network Components, Environment Models			
4	Capable of Planning	Analyze Situation (Level 2& 3) to Determine Goals (QoS, power), Follows Prescribed Plans			
5	Conducts Negotiations	Settle on a Plan with Another Radio			
6	Learns Environment	Autonomously Determines Structure of Environment			
7	Adapts Plans	Generates New Goals			
8	Adapts Protocols	Proposes and Negotiates New Protocols			

9

Mitola, J. "Cognitive Radio: An Integrated Agent Architecture for Software Defined Radio," PhD Dissertation, Royal Institute of Technology, Sweden, May 2000.



Cost Estimation Methods


Life Cycle Cost Hierarchy

Weight and Performance Metrics

UAV Roadmap, "Unmanned Aircraft Systems Roadmap: 2005-2030," Office of the Secretary of Defense, August 4, 2005.

Proposed Methodology

Cost (convert all individual outputs to \$K)

- = (SEER HDR) + (COCOMO II) + (COSYSMO) + (WeightBased CER) + (PerformanceBased CER)
- Hardware Best understood space with respects to UMAS.
- Software Most complex space at both the lowest levels of UMAS WBS, and at integration of sub-systems
- Systems Engineering/ Program Management – Not as precisely quantified as other effort categories.
- Weight Based CERs Different UMAS will require different goals. Less may not always be better in this category.
- Performance Based CERs This requirement will allow a system's need to remain the main driver, preventing "scope creep."

rwbs Estimation breakdown Matrix - with type of estimation approach recommended						
Ref. #	WBS Element	SEER – HDR	COCOMO II	COSYSMO	Weight	Performance
1	UMAS System					
1.1	Vehicle					Х
1.1.1	Vehicle Integration			Х		
1.1.2	Vehicle Sub-systems	Х			Х	Х
1.1.3	Autonomous Capabilities		Х	Х		х
1.1.4	Vehicle Electronics		х	х		
1.1.5	Navigation Capabilities				Х	Х
1.1.6	Communications		Х		Х	Х
1.2	Remote Control System				Х	
1.2.1	Ground Control Center Subsystem			Х		
1.2.2	Operator Control Unit (OCU) Subsystem				Х	

PWBS Estimation Breakdown Matrix - with type of estimation approach recommende

Unique Cost Considerations

• **Software –** Programming for operational environment interaction as well as adapting and evolving may be the biggest challenge for Autonomy.

- **Test & Evaluation –** We currently test UMS in similar fashion to MS. For UMAS we will need to collect different data points, change interpretations, create autonomous test environments, and change paradigms.
- HRI and MUM-T Focusing on integration of UMAS with the end user and the operating environment. Issues are current human capacity, cultural acceptance, ethical dilemmas, most of the engineering "-ilities"

Potential Solutions Software Size - OOFP

Object Oriented Function Points (OOFP) – Suggested Augmentation for COCOMO II

COCOMO II currently uses the International Function Point Users Group (IPFUG) standard for unadjusted function points (UFP). Traditional function point estimators view the final function point count through the lens of the end-user or the system itself, and what is not accounted for in that viewpoint is the SOS or lens of the customer. OOFPs can be used to calculate size that encompasses both the individual system and its integration, interoperability, and capacity as an SOS – creating a more robust estimation.

Potential Solution T-VED

Test, Validation, Evaluation, and Demonstration (T-VED) – Suggested Augmentation for COSYSMO

This cost driver rates the scale of requirements test worthiness at each level of the system. As the source of test worthiness increases the effort required to test, validate, evaluate, or demonstrate a requirement is lessened.

Very Low	Low	Nominal	High	Very High
No TVED	TVED methods	Current TVED	Current TVED	TVED methods
methods	are being	methods are	methods are in	are proven and
currently	developed and	available and	place and are	reliable. These
available to	should be	meet varying	standard	methods are also
certify	employable	levels of	compliant.	consistent with
requirement	within the near	standards.		respective
success. Requires	term (0-2 years).			standards.
full development				
of any TVED.				

Human Robot Interaction and Teaming (HRI-T) – Suggested Augmentation for COSYSMO

16

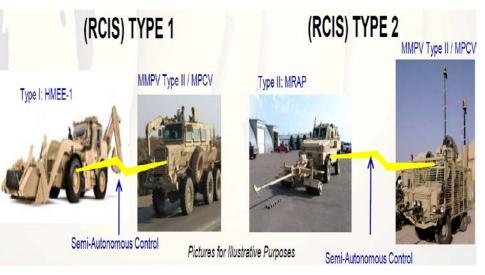
This cost driver counts the number of input/interactions required between a system and the number of unique users/teams that ensure mission success. As the number of counts decreases for HRI the effort estimation from a systems integration perspective increased. This is inversely applied for MUM-T, for as teaming capabilities increase (or the number of other systems it successfully cooperates with increase) the effort to integrate also increases.

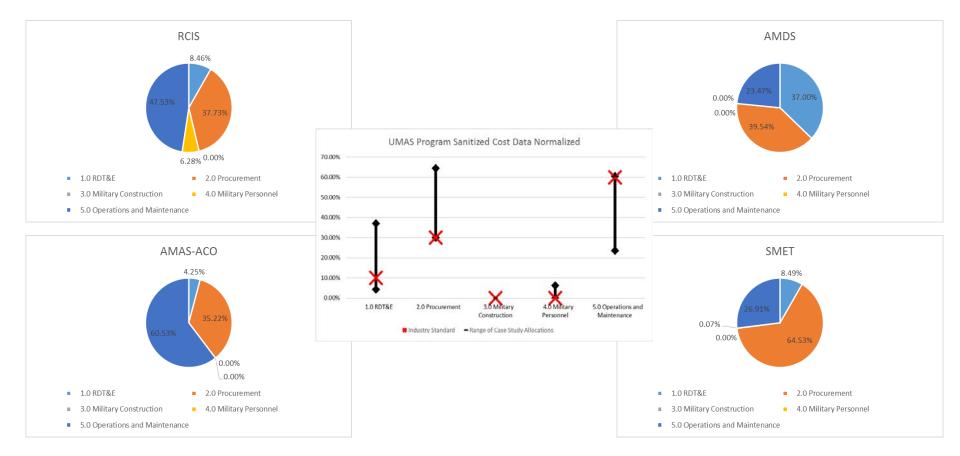
	Very Low	Low	Nominal	High	Very High
HRI Count	10+	10-5	4-3	2-1	0
HRI	System is	System requires	System requires	System is capable	After initial
	holistically	interaction	interaction only in	of completing	calibration system
	dependent on	intermittently	critical phases of	mission without	requires zero
	human/user	throughout total	a mission profile.	interaction.	interaction during
	interaction.	mission profile.			a mission.
MUM-T Count	1	2-3	4-5	6-10	10+
MUM-T	System currently	System currently	System exists in a	System exists in a	Team exists in a
	exists in a team	exists in a team	team with	team with	swarm with
	with a singular	with a multiple	manned and	manned and	mission
	manned system	manned systems	unmanned	unmanned	parameters
	with established	with established	systems; all	systems; some	calibrated prior to
	procedures.	procedures.	systems are	systems may	execution.
			controlled by	controlled by	
			humans.	humans.	

Case Studies: Squad Maneuver Equipment Transport, Autonomous Mine Detection System

The **SMET** will lighten the Warfighter's load and sustain the force during operations. The SMET will maneuver with the dismounted force and enable Warfighters to conduct continuous operations without the individual Warfighter carrying the equipment required to conduct 96 hours of dismounted operations. (Roberson, 2014)

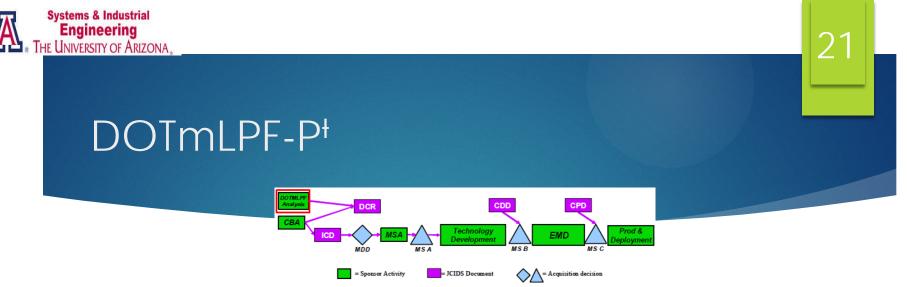



The **AMDS** is a team of 3 unique autonomous robots that when deployed together will provide the Army with unprecedented capability to detect, mark, and neutralize explosive hazards in virtually all environments. The platform for the collection robots is the MTRS and includes cutting edge detection technology like AN/PSS-14 and Ground Penetrating Radar (GPR). (Army, 2015)



The **AMAS** interfaces between the "Autonomy Kit" and mission payload and the host platform's environment - enabling manned vehicles to be operated with autonomous capabilities. (Roberson, 2014) **RCIS** does not procure any additional platforms, it will utilize existing HMEEs and RESET RG-31s. RCIS' main purpose is to develop and field a Semi-Autonomous Control Capability that provides standoff interrogation and neutralization capabilities for Route Clearance. (Roberson, 2014)

Cost Distributions for Army Systems



Case Study

Cost Element Allocation	RDT&E	Procurement	MILCON	MILPER	O&M
Current Industry Standard	10%	30%	0%	0%	60%
Range for Autonomy	5-37%	35-65%	0%	0-6%	23-60%
Recommended Standard	15%	45%	0%	0%	40%

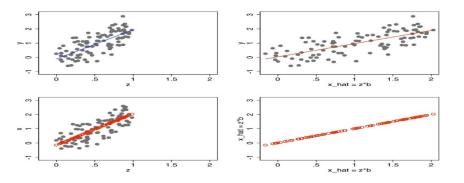
- RTD&E The individual story line for each UMAS factors into the data's distribution. A new industry standard for systems with autonomy in the RDT&E phase could be expected to be more than 10%.
- Procurement Three of the UMAS are reusing existing vehicular platforms keeping the allocation smaller than SMET, which is a completely new system. As new systems are not COTS based we should see Procurement become more than 30%

- MILPER/MILCON most programs assume that their system is engineered to "fit-in" to the existing infrastructure and existing operating environment. This assumption will have to change as autonomy becomes prevalent. And we could see this cost category become utilized more often.
- O&M/O&S The O&M cost element is the hardest element to estimate for. As UMAS infrastructure is built and exiting systems are supportive of this technology we will see a decrease in allocation – which does not equate to a smaller price tag.

- Gap Analysis tool used when a military requirement is generated by one of the services
- Used unconventionally in this research as a way of analyzing how UMAS will impact these same areas after implementation
 - Doctrine Capacity exists to generate early concept style doctrine. Current method is to issue emergent systems and let Soldiers innovate through trial and error (sometimes in real-world situations)
 - Organization, Training, Leadership, Personnel Recommend initially exploring an Army Special Forces structure of humans to robot ratio. Eventually expanding to regular Soldiers where incoming candidates train with their systems at entry level training then both Soldier are aligned by specialty

⁺Doctrine, Organization, Training, Materiel, Leadership, Personnel, Facilities, and Policy

DOTmLPF-P (Cont.)


- Materiel adjusting our understanding of how emergent systems will be mass produced should impact how we eventually field UMAS
- Facilities Recommend initial focus be on upgrading Test and Evaluation Centers (Yuma Proving Grounds, White Sands Missile Range, etc.) Secondly upgrade national military training centers (this could be both physical training infrastructure and with simulation training capacity)
- Policy/ Acquisition newest change is dated 7 January 2015 not able to quantify impact yet; however, this new policy introduced 4 unique acquisition strategies that could empower Project managers to be more agile in the process. (Hardware, Software, Incrementally deployed Software, and accelerated)
- Policy/ Implementation Focus is on ethical use, rule of law, and unintended consequences. Provoke thought – the systems we build/use are never perfect.

Autonomous Model Validation

- Continue to seek program data to build and validate a parametric model
- Focus on critical areas of Test & Evaluation, User and System of Systems integration, and Sustainment
- Discuss and Contribute to a common language for Autonomous Systems

Delphi Survey based on research

- Expand portfolio
- Examine sub-system and subcomponent autonomy
- Continue to refine the process for UMAS – embrace the coming paradigm shift