

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

Approved for public release, distribution is unlimited.

Prepared for: Naval Postgraduate School, Monterey, California 93943

NPS-AM-10-011

^`nrfpfqflk=obpb^o`e=

pmlkploba=obmloq=pbofbp=
=

Developing a Modular Framework for Implementing a

Semantic Search Engine

12 February 2010

by

Capt. Brian M. Hawkins, USMC

Advisors: Dr. Craig Martell, Associate Professor, and
Dr. Andrew Schein, Research Assistant Professor

Graduate School of Engineering and Applied Science

Naval Postgraduate School

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

The research presented in this report was supported by the Acquisition Chair of the
Graduate School of Business & Public Policy at the Naval Postgraduate School.

To request Defense Acquisition Research or to become a research sponsor,
please contact:

NPS Acquisition Research Program
Attn: James B. Greene, RADM, USN, (Ret)
Acquisition Chair
Graduate School of Business and Public Policy
Naval Postgraduate School
555 Dyer Road, Room 332
Monterey, CA 93943-5103
Tel: (831) 656-2092
Fax: (831) 656-2253
e-mail: jbgreene@nps.edu

Copies of the Acquisition Sponsored Research Reports may be printed from our
website www.acquisitionresearch.org

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - i -
k^s^i=mlpqdo^ar^qb=p`elli=

Abstract

Current methods of information retrieval (IR) are adequate for everyday

search needs, but they are not appropriate for many military and industrial tasks.

The underlying mechanism of typical search methods is based on keyword

matching, which has demonstrated poor performance compared to highly technical

requirements documents found within the field of acquisitions. Instead of matching

keywords, an IR method that understands the meaning of the words in a query is

needed to provide the necessary performance over these types of documents; this is

known as semantic search.

This work utilizes sound software engineering practices to specify, design,

and develop a modular framework to aid in the design, testing, and development of

new semantic search methods and IR techniques, in general. The development of

the Modular Search Engine framework is documented in its entirety, from user-

needs analysis to the production of a full application-programming interface.

By exploiting the powerful techniques of polymorphism and object-oriented

programming in the Java programming language, users are able to design new IR

techniques that will function seamlessly within the framework.

Finally, a reference implementation is provided as a proof-of-concept to

demonstrate the capabilities and usefulness of the framework design.

Keywords: Semantic Search, Modular Search Engine, object-oriented

programming, Java, UML

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - ii -
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - iii -
k^s^i=mlpqdo^ar^qb=p`elli=

About the Author

Capt. Brian Hawkins, USMC received a Masters of Science in Computer
Science from the Naval Postgraduate School in September 2009.

Capt. Brian Hawkins
Graduate School of Business and Public Policy
Naval Postgraduate School
Monterey, CA 93943-5000

=
=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - iv -
k^s^i=mlpqdo^ar^qb=p`elli=

=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - v -
k^s^i=mlpqdo^ar^qb=p`elli=

=

NPS-AM-10-011

^`nrfpfqflk=obpb^o`e=

pmlkploba=obmloq=pbofbp=
=

Developing a Modular Framework for Implementing a

Semantic Search Engine

12 February 2010

by

Capt. Brian M. Hawkins, USMC

Advisors: Dr. Craig Martell, Associate Professor, and
Dr. Andrew Schein, Research Assistant Professor

Graduate School of Engineering and Applied Science

Naval Postgraduate School

Disclaimer: The views represented in this report are those of the author and do not reflect the official policy position of
the Navy, the Department of Defense, or the Federal Government.

=
=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - vi -
k^s^i=mlpqdo^ar^qb=p`elli=

=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - vii -
k^s^i=mlpqdo^ar^qb=p`elli=

Table of Contents

I. Introduction ..1

A. Background ...1

B. Motivation ..1

C. Objectives..2

D. Scope ..3

E. Thesis Organization...3

II. Vision Document..5

A. Introduction..5

B. User Description..5

C. Framework Overview...7

D. Framework Features ...8

E. Use Case...10

III. System Design ...19

A. Introduction..19

B. System Architecture ..19

C. Behavioral Design ...21

D. Object Design..36

IV. Reference Implementation ..63

A. Overview ...63

B. Extensions And Implementations ..63

C. Graphical User Interface..69

D. Performance Evaluation ..73

V. Conclusions and Recommendations ...79

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - viii -
k^s^i=mlpqdo^ar^qb=p`elli=

A. Research Conclusions...79

B. Recommendations for Future Work...79

List of References...81

Appendix. UML Reference Key...83

A. Figure 3–UML Domain Object Model ..83

B. Figures 11-24 UML Class Models ...83

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 1 -
k^s^i=mlpqdo^ar^qb=p`elli=

I. Introduction

A. Background

For many users, the advent of Google has trivialized the problem of finding

relevant documents on the Internet. Prior to Google, the search task was

accomplished by performing a simple keyword search, which finds pages that

contain the words in the query and rank orders them according to how strongly those

words match the search words. Google’s revolution came not by changing the

fundamentals—the pages returned are still those that match the keywords in the

query—but by changing the order in which the returned pages are presented.

Google evaluates the returned pages according to the PageRank algorithm and then

presents those pages in order of decreasing PageRank value.

Thus, the innovation behind Google is in the PageRank algorithm. Simply

put, the algorithm ranks pages according to sociological importance by observing the

number of hyperlinks that point to each page. The more links that point to a

particular page, the higher that page is in the “society.” Additionally, some pages

are given extra authority based on the number and rank of the pages to which they

point. Therefore, if several pages with high authority all refer to a particular page,

then it will be ranked higher than another page that has only low-ranking pages

pointing to it (Brin & Page, 1998). PageRank is essentially analogous to the

stereotypical notion of popularity status in high school: If you can become associated

with a “cool kid,” then your social status will be elevated respectively.

B. Motivation

While Google works well for most search tasks, for many military and

industrial tasks, the way Google returns documents—via the popularity of the

document—is not sufficient. Consider a software engineer who is tasked with

developing a sophisticated system. He separates his design into subcomponents

designed to achieve particular tasks that contribute to the operation of the whole.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 2 -
k^s^i=mlpqdo^ar^qb=p`elli=

Before he sets off to start building each subcomponent from scratch, he first

searches his company’s database to find out if any subcomponent (or part thereof)

already exists in order to avoid duplicating effort.

So, he searches over the database of requirements documents with a

particular search query, and if he is extremely lucky, the best component in the

database that meets his needs will have been described with the same set of words

in his query. Chances are, however, that those particular words were not used to

describe the existing component, but rather a different set of words with the exact

same meaning. In this case, the search will not return what he needs, regardless of

the popularity of the documents returned: If the keywords are incorrect, then he will

never find the component that he is looking for. He then resorts to altering his set of

keywords with synonyms, in hopes of choosing the particular words that were used

to describe the relevant system in the database, a particularly time-consuming and

frustrating effort.

The problem described above is the semantic search problem, and it is a

particular issue in Department of Defense (DoD) acquisitions. In August 2006, the

Program Executive Officer of Integrated Warfare Systems (PEO-IWS) established

the Software Hardware Asset Reuse Enterprise (SHARE) repository to enable the

reuse of combat system software and related assets (Johnson & Blais, 2008). In

order to make effective use of the SHARE repository, the DoD needs an effective

solution to the problem of semantic search.

C. Objectives

The objectives of this thesis are to utilize sound software engineering

practices to specify, design, and develop a modular framework for developing,

implementing, and testing new semantic search methods and information retrieval

(IR) techniques, in general. These objectives will be accomplished through the

following ways:

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 3 -
k^s^i=mlpqdo^ar^qb=p`elli=

 Thorough system specification and design using UML and other
software engineering practices.

 Development of a modular, object-oriented Java package whose
components can be used to build a fully functional search engine
consisting of one or more independent IR modules. The addition of a
single IR module should not incur a large integration effort as
measured by the number of classes and methods that need to be
implemented. Additionally, the framework will incorporate basic
management functionality for use by administrators, such as adding
and deleting documents from a corpus.

 Demonstrate the modular framework by developing a reference
implementation that consists of at least two IR modules whose results
are combined to produce a single list of results to the user.

D. Scope

The scope of this thesis focuses on the design of a modular framework that

allows multiple IR methods to run simultaneously on a selected corpus of data, with

each method returning a list of search results. The framework also provides for the

development of methods to combine the lists returned from each IR method into a

single list that is returned to the user. The scope of this thesis does not include the

development of a new method for IR.

E. Thesis Organization

Chapter II establishes the system and user requirements necessary to design

a comprehensive and modular framework for implementing multiple IR techniques

within a single search engine. A detailed use-case analysis is performed.

Chapter III formalizes the requirement specifications into an architectural

design by decomposing the system into a subset of systems. The use cases from

Chapter II are expanded and developed in detail.

Chapter IV describes and demonstrates the functionality of a reference

implementation; in addition, this chapter describes an evaluation metric and

demonstrates how to apply the measure.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 4 -
k^s^i=mlpqdo^ar^qb=p`elli=

Chapter V contains a summary and recommendations for future work.

Appendix A provides a UML reference key to the figures in Chapters II and III.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 5 -
k^s^i=mlpqdo^ar^qb=p`elli=

II. Vision Document

A. Introduction

1. Purpose of the Vision Document

This chapter provides the foundation, background, and reference for all

future, more detailed, development of semantic search engines. Here, the high-level

user needs are gathered, analyzed, and defined in order to identify the required

features needed for a fully functional Modular Search Engine.

2. Framework Overview

The Modular Search Engine provides the framework for future design,

development, testing, implementation, and deployment of IR methods. Developers

need only adhere to the design requirements—inherited via abstract super classes—

in order to have a new IR technique integrate seamlessly into the Modular Search

Engine.

B. User Description

1. User Demographics

The primary user of the Modular Search Engine framework is any student or

researcher looking to develop and test new methods of IR and/or metasearch.

Specifically, Draeger (2009) used the Modular Search Engine framework to

implement a new semantic search technique to help solve the problems of searching

over requirements documents.

Additionally, the Modular Search Engine framework can be used to develop

fully functional applications for end-users needing to conduct searches over text

corpora. Such applications would require administrative control and functionality to

update and maintain the corpora.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 6 -
k^s^i=mlpqdo^ar^qb=p`elli=

2. User Profiles

Students and IR researchers at NPS and other academic universities will

need to be familiar with the Java programming language in order to use the Modular

Search Engine framework.

End-users, for whom applications have been built using the Modular Search

Engine framework, need not have any specific knowledge of the interworking of the

application. Such users only need basic computer knowledge to launch the

application and conduct searches over the corpus for which the application was

designed.

3. User Environment

Users of the framework will need a computer system that enables

development in the Java programming language. While not mandatory, a

developing environment such as Eclipse or NetBeans is recommended. At

minimum, users will need a text editor and a current version of the Java SE

Development Kit, provided by Sun Microsystems, in order to write, build, and run

their applications.

End-user applications developed using the Modular Search Engine

framework can be run on any computer operating system utilizing a current Java

Runtime Environment, also provided by Sun Microsystems.

4. Key User Needs

When conducting research in this field, it is important to compare different IR

methods against one another to determine the method with the best performance.

The Modular Search Engine framework provides the architecture and data structures

that each IR method must utilize to simplify such comparisons.

One additional and important area of study in the field of IR is known as

metasearch. Metasearch is the process of fusing or merging the ranked lists of

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 7 -
k^s^i=mlpqdo^ar^qb=p`elli=

documents returned from different methods or systems in order to produce a

combined list whose quality (as measured via the performance metrics mentioned

above) is greater than or equal to any of the lists from which it was created (Aslam,

Pavlu & Yilmaz, 2005). Given the ability to improve the quality of results returned to

the user and the modular nature of the framework, metasearch has been included in

the design of the Modular Search Engine from the ground up, and users are

provided with the structure in which to build their metasearch techniques.

5. Alternatives

Each student or IR researcher is certainly free to develop, test, and

implement new IR techniques without the use of the Modular Search Engine

framework. They would, however, be required to spend valuable time implementing

the entire infrastructure themselves instead of spending that time on the

development of the IR method. Additionally, it is highly unlikely that any two IR

techniques developed by different authors would work cohesively in the same

system without extensive modifications to one or both authors’ source code.

C. Framework Overview

1. Framework Perspective

The Modular Search Engine framework’s architecture allows multiple IR

techniques to run simultaneously on a user’s query over a selected corpus of

documents. The architecture then combines the results of each into a single, ranked

list that is returned to the user. The framework is designed such that each IR

technique, known within the framework as a Search Module, need not be aware of

any other Search Module within the Modular Search Engine.

2. Framework Position Statement

IR researchers can benefit from a common framework in which to develop

and test new IR techniques. The Modular Search Engine framework provides all of

the overhead and design constraints necessary to streamline design efforts into the

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 8 -
k^s^i=mlpqdo^ar^qb=p`elli=

development of new IR techniques. Additionally, the framework provides sufficient

structure to develop a fully functional end-user application for searching over given

data corpora.

3. Assumptions and Dependencies

The Modular Search Engine framework is written in the Java programming

language, and applications developed with the framework can be run on any

platform on which the current Java Runtime Environment is installed. The data, over

which a Modular Search Engine application may conduct searches, is independent

of the framework itself; however, the framework provides the necessary classes into

which the data must be converted for use within the application.

D. Framework Features

1. Data Access and Management

a. Document

The basic data element within the Modular Search Engine framework is a

document. At a minimum, a document consists of a unique identification number,

known as a document ID, and a body of text. However, a document may contain

much more information, e.g., an author, bibliographical information, date written, etc.

For this reason, this basic document model will likely need to be extended in order to

capture the additional information that may exist.

b. Corpus

A collection of documents that have similar underlying structure comprise a

corpus. In the realm of IR research, a corpus is usually a fixed set of documents

over which IR techniques are tested and compared against one another. To this

end, read access to the data is the minimum capability required to access the data

and perform these types of operations. However, all corpora need not remain static.

As such, the Modular Search Engine framework is designed with this in mind and

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 9 -
k^s^i=mlpqdo^ar^qb=p`elli=

includes the functionality to add and delete documents from a corpus. Such

functions are expected to be used by an administrator needing to maintain the data

in a given corpus.

2. Resource Access and Management

a. Hard Disk Access

In general, IR techniques do not read through an entire corpus of documents

on the hard disk each time they perform a search. Instead, they each create an

internal representation of the corpus, called an index, that each uses to conduct

searches. Accordingly, every IR technique is expected to store its respective index

on the hard disk for subsequent access. This use of hard disk space will save

significant amounts of time and resources by preventing each technique from having

to re-build its index from the original corpus every time the system is launched.

b. Threading

The Modular Search Engine framework has adopted the principle that no

operation performed by any individual IR technique shall be forced to wait on the

operations of another IR technique. As such, the framework has been designed to

maximize the use of threading, and, therefore, all operations performed by individual

IR techniques shall be run by independent threads.

c. Heap Space

Most IR techniques require large amounts of working memory to function and

even more to be efficient at returning quality results to the user in a timely manner.

By default, the Java Runtime Environment allocates an initial 32 MB to the heap and

allows it to grow to a maximum of 128 MB. This, unfortunately, is not likely to be

enough memory for the Modular Search Engine framework to perform efficiently,

especially as multiple IR techniques are added to a single system. As a result, when

running a Modular Search Engine application, it is recommended to use the

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 10 -
k^s^i=mlpqdo^ar^qb=p`elli=

maximum amount of memory that a given computer will allow the Java Runtime

Environment to use.

E. Use Case

Use-case scenarios are a critical initial step in determining the requirements

of a system by analyzing the scenarios in which actors will interact with a system

and how that system should respond to the actors’ actions (Larman, 2005). The use

cases identified in this section will become the primary functions of the Modular

Search Engine framework and will be developed in detail throughout Chapter III.

Figure 1 is the use-case diagram for the Modular Search Engine framework; below

the figure, each of the seven use-case scenarios is described in detail.

Figure 1. Use Case Diagram

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 11 -
k^s^i=mlpqdo^ar^qb=p`elli=

1. Add Document

Use Case: UC-1 Add Document

Primary Actor: Administrator

Stakeholders and Interests:

 Administrator wants to add a document into a corpus so the document
can be included in search queries by the end-user.

Entry Conditions:

 Administrator’s application is running.

 The corpus is accessible for writing.

 Document object is created in system memory.

Exit Conditions:

 The document is successfully added to the corpus in memory and on
disk.

 The document is successfully added to each IR technique in the
system.

Flow of Events:

• Administrator identifies the document to be added.

• The document is added to the corpus on disk and in memory.

• The document is added to each IR technique.
Special Considerations:

• After the addition of a document into a corpus, the index models for
each IR technique will need to be updated/re-built.

• Each IR technique shall return to the system if the document was
successfully added.

• If any IR technique was not successful in adding the document, then
the system as a whole is considered to have failed to add the
document.

• If the document fails to be added to the corpus in step 2 of the flow of
events, above, then the failure is immediately returned to the system,
and attempts to add the document to the system’s IR methods are
abandoned.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 12 -
k^s^i=mlpqdo^ar^qb=p`elli=

2. Delete Document

Use Case: UC-2 Delete Document

Primary Actor: Administrator

Stakeholders and Interests:

 Administrator wants to delete a document from a corpus so that the
document is no longer included in search queries by the end-user.

Entry Conditions:

 Administrator’s application is running.

 The corpus is accessible for writing.

 The document ID of the document to be deleted is known.

Exit Conditions:

 The document is successfully deleted from the corpus in memory and
on disk.

 The document is successfully deleted from each IR technique in the
system.

Flow of Events:

• Administrator identifies the document to be deleted.

• The document is deleted from the corpus on disk and in memory

• The document is deleted from each IR technique.
Special Considerations:

• After the deletion of a document from a corpus, the index models for
each IR technique will need to be updated/re-built.

• Each IR technique shall return to the system if the document was
successfully deleted.

• If any IR technique was not successful in deleting the document, then
the system as a whole is considered to have failed to delete the
document.

• If the document fails to be deleted from the corpus in step 2 of the flow
of events, above, then the failure is immediately returned to the
system, and attempts to delete the document from the system’s IR
methods are abandoned.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 13 -
k^s^i=mlpqdo^ar^qb=p`elli=

3. Build Index

Use Case: UC-3 Build Index

Primary Actors: Administrator & Researcher

Stakeholders and Interests:

 Administrator or researcher wants each IR technique in order to build
its respective index of the system corpus.

Entry Conditions:

 Administrator or researcher’s application is running.

 The corpus is accessible for reading.

Exit Conditions:

 Each IR technique in the system has built its respective index of the
corpus.

Flow of Events:

1. Administrator or researcher provides the necessary instruction to the
system.

• Each IR technique builds its respective index of the corpus.

Special Considerations:

1. This functionality is designed to be optimized at the level of each IR
technique so that unnecessary work is not performed. For example, if
there has not been a change to the corpus, then there should be no
need to build a new index. If an individual search technique is
instructed to build a new index in this case, then it should recognize
that no actual change has been made and should not spend the
computer’s resources to build a new index that is identical to the
current index.

• Each IR technique shall return to the system if the index was
successfully built.

• If any IR technique was unsuccessful in building its index, then the
system as a whole is considered to have failed the operation.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 14 -
k^s^i=mlpqdo^ar^qb=p`elli=

4. Force Build Index

Use Case: UC-4 Force Build Index

Primary Actors: Administrator & Researcher

Stakeholders and Interests:

 Administrator or researcher wants to force each IR technique to build
its respective index of the system corpus.

Entry Conditions:

 Administrator or researcher’s application is running.

 The corpus is accessible for reading.

Exit Conditions:

 Each IR technique in the system has forcibly built its respective index
of the corpus.

Flow of Events:

1. Administrator or researcher provides the necessary instruction to the
system.

• Each IR technique forcibly builds its respective index of the corpus.
Special Considerations:

1. This use case is the complement to UC-3. It is designed to ensure that
each IR technique in the system builds a new index of the corpus.

• Each IR technique shall return to the system if the index was
successfully built.

• If any IR technique was unsuccessful in building its index, then the
system as a whole is considered to have failed the operation.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 15 -
k^s^i=mlpqdo^ar^qb=p`elli=

5. Ready Check

Use Case: UC-5 Ready Check

Primary Actors: End-user & Researcher

Stakeholders and Interests:

 End-user or researcher wants to ensure that each IR method in the
system is ready to receive a search query.

Entry Conditions:

 The end-user or researcher’s application is running.

Exit Conditions:

 Each IR method in the system has returned to its ready status.

Flow of Events:

1. End-user or researcher requests a ready check of the system.

• Each individual IR method returns to its ready status.

Special Considerations:

1. If any one of the individual IR methods is not ready, then the system’s
status as a whole is returned as not ready.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 16 -
k^s^i=mlpqdo^ar^qb=p`elli=

6. Single Query Search

Use Case: UC-6 Single Query Search

Primary Actors: End-user, Researcher

Stakeholders and Interests:

 End-user or researcher wants to perform a single query search of the
corpus.

Entry Conditions:

 The end-user or researcher’s application is running.

 The system is ready as described in UC-5.

Exit Conditions:

 The system has returned the results of the single query search.

Flow of Events:

1. End-user or researcher submits a single query to the system.

• Each individual IR technique in the system performs a search using the
provided query and returns its results.

• All of the results returned from the individual IR methods are combined
to return a single set of results to the user or researcher.

Special Considerations:

None.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 17 -
k^s^i=mlpqdo^ar^qb=p`elli=

7. Multiple Query Search

Use Case: UC-7 Multiple Query Search

Primary Actor: Researcher

Stakeholders and Interests:

 Researcher wants to perform multiple query searches of the corpus.

Entry Conditions:

 The researcher’s application is running.

 The system is ready as described in UC-5.

Exit Conditions:

 The system has returned the results of the multiple query search.

Flow of Events:

• Researcher submits a list of queries to the system.

• Each individual IR technique in the system performs a search for each
of the provided queries and returns results for each.

• All of the results returned from the individual IR methods are combined
to return a single set of results for each query to the researcher.

Special Requirements:

• This use case is specifically designed to allow for individual IR
methods to optimize the simultaneous search of multiple queries in
order to preserve system resources.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 18 -
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 19 -
k^s^i=mlpqdo^ar^qb=p`elli=

III. System Design

A. Introduction

This chapter converts the general analysis model described in Chapter II into

a detailed system design. This evolution will begin with a thorough study of the use-

case models, and it will continue with a decomposition of the system as a whole into

architectural and behavioral models that will eventually become objects in the

design.

B. System Architecture

1. Goals

The primary goal of the architecture is modularity. Existing IR techniques can

be encoded as SearchModule objects and built into a Modular Search Engine

application. As new IR techniques are developed, they too can be encoded as

SearchModule objects and seamlessly inserted into the existing Modular Search

Engine application for testing and further development. As such, the SearchModule

class shall be abstract, providing an existing template for extensions to inherit and

follow.

In addition to new IR techniques, new methods of conducting metasearch are

constantly being researched in the field, and the framework takes this into account

as well. It provides researchers with the ability to encode different metasearch

methods as ModuleMixer objects that can be interchanged within the system, thus

keeping with the goal of modularity.

Figure 2 displays a high-level, conceptual view of the internal architecture

within the Modular Search Engine framework.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 20 -
k^s^i=mlpqdo^ar^qb=p`elli=

Figure 2. Modular Search Engine Architecture

As each SearchModule object completes a search request, it feeds its

results—in the form of a SearchResults object—into a ModuleMixer object that

combines multiple SearchResults objects into a single set of results. In general, a

Modular Search Engine implementation would only use one ModuleMixer at a time;

however, this is not a restriction. In fact, for the purposes of developmental testing

and comparison, it may be beneficial to implement multiple ModuleMixer objects

simultaneously.

2. Integration

The objects within the framework will communicate with each other by directly

calling each other's procedures. However, no integration will take place between

SearchModule objects because each is specifically designed to work independently

of one another. As such, custom- designed extensions of the java.lang.Thread class

are used to handle communication both to and from all SearchModule objects for the

use cases presented in Chapter II.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 21 -
k^s^i=mlpqdo^ar^qb=p`elli=

C. Behavioral Design

1. Domain Object Model

The domain object model records the key concepts in the Modular Search

Engine framework. Figure 3 depicts the various entities involved and the

relationships between them. See Appendix A for a key to the figure.

Figure 3. UML Domain Object Model

2. Sequence Diagrams

Sequence diagrams help formalize the dynamic behavior of the system by

tying use cases to objects and by showing how processes operate with one another

and in what order. Visualizing the communication among objects can help determine

additional objects required to formalize the use cases (Bruegge & Dutoit, 2004). In

this regard, sequence diagrams offer another perspective on the behavioral model

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 22 -
k^s^i=mlpqdo^ar^qb=p`elli=

and are instrumental in discovering missing objects and grey areas in the

requirements specification. The following sequence diagrams depict the use cases

identified in Chapter II.

a. Add Document

Figure 4 displays the sequence diagram for adding a document in the

Modular Search Engine framework.

Figure 4. Add Document Sequence Diagram

b. Delete Document

Figure 5 displays the sequence diagram for deleting a document in the

Modular Search Engine framework.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 23 -
k^s^i=mlpqdo^ar^qb=p`elli=

Figure 5. Delete Document Sequence Diagram

c. Build Index

Figure 6 displays the sequence diagram for building the necessary indices in

the Modular Search Engine framework.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 24 -
k^s^i=mlpqdo^ar^qb=p`elli=

Figure 6. Build Index Sequence Diagram

d. Force Build Index

Figure 7 displays the sequence diagram for forcibly building the necessary

indices in the Modular Search Engine framework.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 25 -
k^s^i=mlpqdo^ar^qb=p`elli=

Figure 7. Force Build Index Sequence Diagram

e. Ready Check

Figure 8 displays the sequence diagram for determining that the system is

ready to accept a search query in the Modular Search Engine framework.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 26 -
k^s^i=mlpqdo^ar^qb=p`elli=

Figure 8. Is Ready Sequence Diagram

f. Single Query Search

Figure 9 displays the sequence diagram for performing a single query search

in the Modular Search Engine framework.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 27 -
k^s^i=mlpqdo^ar^qb=p`elli=

Figure 9. Single Query Search Sequence Diagram

In this case, the user is not normally responsible for redirecting the list of

results returned from the ModularSearchEngine object into the ModuleMixer object.

Instead, this is performed automatically by the user’s application.

g. Multiple Query Search

Figure 10 displays the sequence diagram for performing a multiple query

search in the Modular Search Engine framework.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 28 -
k^s^i=mlpqdo^ar^qb=p`elli=

Figure 10. Multiple Query Sequence Diagram

3. Operational Contracts

Operational contracts represent the final phase of the behavioral model

design; they are built on the foundations established by the use-case specifications,

domain object model, and sequence diagrams. These operational contracts assign

concrete attributes, such as function names, parameters, and return types, to the

framework components and also provide a brief definition of purpose to each.

Additionally, the operational contracts precisely define the pre-conditions and post-

conditions required for the proposed methods.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 29 -
k^s^i=mlpqdo^ar^qb=p`elli=

a. Add Document

Contract: C1: Add Document

Method: addDocument(Document d)

Cross Reference: UC-1: Add Document

Pre-conditions:

• The Corpus object was successfully constructed.

• All of the SearchModule objects were successfully constructed and
added to an ArrayList.

• The ModularSearchEngine object was successfully constructed with
the Corpus object and with the ArrayList of SearchModule objects
listed in pre-conditions 1 and 2 above.

• The system has completed a successful call to buildIndex() or
forceBuildIndex().

• The Document object to be added was successfully constructed.

Post-conditions:

• The ModularSearchEngine object constructed and started an
AddDocumentThread object for each SearchModule object in the
system.

• Each SearchModule object's addDocument(Document d) method has
executed and terminated.

• A status message was displayed back to the user.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 30 -
k^s^i=mlpqdo^ar^qb=p`elli=

b. Delete Document

Contract: C2: Delete Document

Method: deleteDocument(int docID)

Cross Reference: UC-2: Delete Document

Pre-conditions:

• The Corpus object was successfully constructed.

• All of the SearchModule objects were successfully constructed and
added to an ArrayList.

• The ModularSearchEngine object was successfully constructed with
the Corpus object and with the ArrayList of SearchModule objects
listed in pre-conditions 1 and 2 above.

• The system has completed a successful call to buildIndex() or
forceBuildIndex().

• The unique identification number of the Document object to be deleted
is known.

Post-conditions:

• The ModularSearchEngine object constructed and started a
DeleteDocumentThread object for each SearchModule object in the
system.

• Each SearchModule object's deleteDocument(int docID) method has
executed and terminated.

• A status message was displayed back to the user.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 31 -
k^s^i=mlpqdo^ar^qb=p`elli=

c. Build Index

Contract: C3: Build Index

Method: buildIndex()

Cross Reference: UC-3: Build Index

Pre-conditions:

• The Corpus object was successfully constructed.

• All of the SearchModule objects were successfully constructed and
added to an ArrayList.

• The ModularSearchEngine object was successfully constructed with
the Corpus object and with the ArrayList of SearchModule objects
listed in pre-conditions 1 and 2 above.

Post-conditions:

• The ModularSearchEngine object constructed and started a
BuildIndexThread object for each SearchModule object in the system.

• Each SearchModule object's buildIndex() method has executed and
terminated.

• A status message was displayed to the user.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 32 -
k^s^i=mlpqdo^ar^qb=p`elli=

d. Force Build Index

Contract: C4: Force Build Index

Method: forceBuildIndex()

Cross Reference: UC-4: Force Build Index

Pre-conditions:

• The Corpus object was successfully constructed.

• All of the SearchModule objects were successfully constructed and
added to an ArrayList.

• The ModularSearchEngine object was successfully constructed with
the Corpus object and with the ArrayList of SearchModule objects
listed in pre-conditions 1 and 2 above.

Post-conditions:

• The ModularSearchEngine object constructed and started a
ForceBuildIndexThread object for each SearchModule object in the
system.

• Each SearchModule object's forceBuildIndex() method has executed,
terminated, and returned its success or failure.

• A status message was displayed to the user.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 33 -
k^s^i=mlpqdo^ar^qb=p`elli=

e. Ready Check

Contract: C5: Ready Check

Method: isReady()

Cross Reference: UC-5: Ready Check

Pre-conditions:

• The Corpus object was successfully constructed.

• All of the SearchModule objects were successfully constructed and
added to an ArrayList.

• The ModularSearchEngine object was successfully constructed with
the Corpus object and with the ArrayList of SearchModule objects
listed in pre-conditions 1 and 2 above.

• The system has completed a successful call to buildIndex() or
forceBuildIndex().

Post-conditions:

• The ModularSearchEngine object constructed and started an
IsReadyThread object for each SearchModule object in the system.

• Each SearchModule object's isReady() method has executed,
terminated, and returned its ready status.

• A status message was displayed to the user.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 34 -
k^s^i=mlpqdo^ar^qb=p`elli=

f. Single Query Search

Contract: C6: Single Query Search

Method: searchFor(String query, int returnSize)

Cross Reference: UC-6: Single Query Search

Pre-conditions:

• The Corpus object was successfully constructed.

• All of the SearchModule objects were successfully constructed and
added to an ArrayList.

• The ModularSearchEngine object was successfully constructed with
the Corpus object and with the ArrayList of SearchModule objects
listed in pre-conditions 1 and 2 above.

• The system has completed a successful call to buildIndex() or
forceBuildIndex().

• The system has completed a successful call to isReady().

• The user's query is contained within a String object.

Post-conditions:

• The ModularSearchEngine object constructed and started a
SearchForQueryThread object for each SearchModule object in the
system.

• Each SearchModule object's searchFor(String query, int returnSize)
method has executed, terminated, and returned a SearchResults
object.

• The ModularSearchEngine object collected and passed all of the
returned SearchResults objects from post-condition 1 into a
ModuleMixer object via the ModuleMixer's
mix(ArrayList<SearchResults>) method.

• The ModuleMixer method from post-condition 3 returned a single
SearchResults object.

• A status message was displayed to the user.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 35 -
k^s^i=mlpqdo^ar^qb=p`elli=

g. Multiple Query Search

Contract: C7: Multiple Query Search

Method: searchFor(Set<String> queries, int returnSize)

Cross Reference: UC-7: Multiple Query Search

Pre-conditions:

• The Corpus object was successfully constructed.

• All of the SearchModule objects were successfully constructed and
added to an ArrayList.

• The ModularSearchEngine object was successfully constructed with
the Corpus object and with the ArrayList of SearchModule objects
listed in pre-conditions 1 and 2 above.

• The system has completed a successful call to buildIndex() or
forceBuildIndex().

• The system has completed a successful call to isReady().

• The researcher's batch of queries is contained within a Set<String>
object.

Post-conditions:

• The ModularSearchEngine object constructed and started a
MultiSearchForQueryThread object for each SearchModule object in
the system.

• Each SearchModule object's searchFor(Set<String> queries, int
returnSize) method has executed, terminated, and returned a
Hashtable<String,SearchResults> object.

• The ModularSearchEngine object collected and passed all of the
returned Hashtable<String,SearchResults> objects from post-condition
1 into a ModuleMixer object via the ModuleMixer's
mix(Hashtable<String,ArrayList<SearchResults>>
tableOfListedResults) method.

• The ModuleMixer method from post-condition 3 returned a
Hashtable<String, SearchResults> object.

• A status message was displayed to the user.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 36 -
k^s^i=mlpqdo^ar^qb=p`elli=

D. Object Design

The system analysis conducted in the previous sections for the Modular

Search Engine framework is critical for identifying the necessary objects that need to

exist within the framework and how those objects should interact with one another.

This section describes those objects in detail. See Appendix A for class diagram

reference.

1. Classes

This section describes the non-abstract classes in the framework, with the

exception of the Thread classes. The customized extensions of the

java.lang.Thread class are described later in this section.

a. ModularSearchEngine

The ModularSearchEngine class is the primary object on which all use cases,

sequence diagrams, and operational contracts focus; it is the central object in any

application developed from the framework. Figure 11 is the UML class model for the

ModularSearchEngine class.

Figure 11. UML ModularSearchEngine Class Model

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 37 -
k^s^i=mlpqdo^ar^qb=p`elli=

(1) Attributes

Corpus corpus: This private variable is the Corpus on which the

ModularSearchEngine performs its operations.

ArrayList<SearchModule> modules: This private variable is the container for

all of the SearchModules in the system.

(2) Methods

boolean addDocument(Document): This public method is the interface

through which a Document is added to the system. During this method’s execution,

the provided Document is first added to the Corpus via its addDoc method. If adding

the Document to the Corpus is not successful, then this method prints an error,

returns false, and terminates. Otherwise, this method continues, creating and

starting an AddDocumentThread for each SearchModule in the system. Each

AddDocumentThread is responsible for calling the addDoc method of the

SearchModule to which it is assigned. As those addDoc methods terminate, each

AddDocumentThread returns whether or not its addDoc method was successful, and

this method prints an appropriate message reflecting that success or failure. Once

all of the AddDocumentThreads have terminated, if there were any failures, then this

method displays an error message, returns false, and terminates. If there were no

failures, then this method displays an appropriate message, returns true, and

terminates.

boolean deleteDocument(int): This public method is the interface through

which Documents are deleted from the system; the provided integer corresponds to

the unique identification number of the document to be deleted. The indicated

Document is first deleted from the Corpus via its deleteDoc method. If deleting the

document from the Corpus is not successful, then this method prints an error,

returns false, and terminates. Otherwise, this method continues, creating and

starting a DeleteDocumentThread for each SearchModule in the system. Each

DeleteDocumentThread is responsible for calling the deleteDoc method of the

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 38 -
k^s^i=mlpqdo^ar^qb=p`elli=

SearchModule to which it is assigned. As those deleteDoc methods terminate, each

DeleteDocumentThread returns whether or not its deleteDoc method was

successful, and this method prints an appropriate message reflecting that success or

failure. Once all of the DeleteDocumentThreads have terminated, if there were any

failures, this method displays an error message, returns false, and terminates. If

there were no failures, then this method displays an appropriate message, returns

true, and terminates.

boolean buildIndex(): This public method is the interface through which a user

ensures that an appropriate index is built for each SearchModule. It first creates and

starts a BuildIndexThread for each SearchModule in the system, each of which is

responsible for calling the buildIndex method of the SearchModule to which it is

assigned. As those buildIndex methods terminate, each BuildIndexThread returns

whether or not its buildIndex method was successful, and this method prints an

appropriate message reflecting that success or failure. Once all of the

BuildIndexThreads have terminated, if there were any failures, then this method

displays an error message, returns false, and terminates. If there were no failures,

then this method displays an appropriate message, returns true, and terminates.

This method allows each SearchModule the opportunity to optimize its buildIndex

method so that, if possible, a new index might be built upon an existing one. This

would allow the system to save resources, instead of building a new index directly

from the Corpus each time.

boolean forceBuildIndex(): This public method is the interface through which a

user forces each SearchModule to build a new index directly from the Corpus. It first

creates and starts a ForceBuildIndexThread for each SearchModule in the system,

each of which is responsible for calling the forceBuildIndex method of the

SearchModule to which it is assigned. As those forceBuildIndex methods terminate,

each ForceBuildIndexThread returns whether or not its forceBuildIndex method was

successful, and this method prints an appropriate message reflecting that success or

failure. Once all of the ForceBuildIndexThread have terminated, if there were any

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 39 -
k^s^i=mlpqdo^ar^qb=p`elli=

failures, then this method displays an error message, returns false, and terminates.

If there were no failures, then this method displays an appropriate message, returns

true, and terminates. This method is the complement to the method above, and its

primary purpose is to be used when the user suspects that an index has become

corrupted on disk. Additionally, it may be used any time that a user has a reason to

give the system a “fresh start;” however, a call to this method can be expected to

take a significant amount of time to complete.

boolean isReady(): This public method is the interface through which a user

determines if the system is ready to receive a search query. It first creates and

starts an IsReadyThread for each SearchModule in the system, each of which is

responsible for calling the isReady method of the SearchModule to which it is

assigned. As the isReady methods terminate, each IsReadyThread returns the

status of its isReady method, and this method prints an appropriate message

reflecting that status. If any of the IsReadyThreads indicate that its SearchModule is

not ready, then this method displays an error message, returns false, and

terminates. If all of the SearchModules are ready, then this method displays an

appropriate message, returns true, and terminates.

Integer nextID(): This public method is a utility to be used while creating new

Documents because each Document is required to have a unique identification

number, as shown later in this chapter. This method provides the user with the next

available integer that can be assigned to a new Document for entry into the Corpus

and into each SearchModule. Specifically, it calls and returns the value from the

Corpus’ protected nextID method, which is also shown later in the chapter.

ArrayList<SearchResults> searchFor(String, int): This public method is

primary interface for conducting a search of the Corpus. The parameters to the

method are the query String and an integer that indicates the number of results to

return, e.g., if the provided integer is 100, then the each SearchModule returns the

top 100 Documents that match the search query. If the provided integer is greater

than the number of Documents in the Corpus, it is treated as if the user requested

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 40 -
k^s^i=mlpqdo^ar^qb=p`elli=

the results for all Documents. This method first creates and starts a

SearchForThread for each SearchModule in the system, each of which is

responsible for calling the appropriate searchFor method of the SearchModule to

which it is assigned. As those searchFor methods terminate and return

SearchResults, each SearchForThread returns those SearchResults. All of the

SearchResults are collected into an ArrayList and then returned by this method.

Hashtable<String,ArrayList<SearchResults>> searchFor(Set<String>, int):

This public method is the primary interface that an IR researcher uses to conduct

batch query searches. This method allows researchers and developers to take

advantage of the way that a SearchModule computes the relevance of a document

and to optimize it, if possible, for performing multiple search queries simultaneously.

The parameters to the method are a Set of query Strings and an integer that

indicates the number of results that should be returned in the SearchResults. This

method first creates and starts a MultiSearchForThread for each SearchModule in

the system, each of which is responsible for calling the appropriate searchFor

method of the SearchModule to which it is assigned. Those searchFor methods

terminate and return a Hashtable of SearchResults that are indexed by the String

used to produce them. Each MultiSearchForThread returns that Hashtable

accordingly, after which all of the Hashtables are broken down to produce a single

Hashtable of ArrayLists of SearchResults such that the index of the Hashtable is the

String that generated the list of results.

b. Document

The essence of conducting a search is to find documents that are relevant to

the provided query, and as such, the Document class is the basic element in the

Modular Search Engine framework. However, the provided class implementation

represents only the minimum amount of information necessary to comprise the

concept of a document. In many cases, much more information about a given

document is available, and as such, this Document class should be extended to

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 41 -
k^s^i=mlpqdo^ar^qb=p`elli=

include that additional information, as required. Figure 12 is the UML class model

for the Document class.

Figure 12. UML Document Class Model

(1) Attributes

String body: This private variable is the text body of a Document.

int id: This private variable is the unique identification number of a Document;

it must be unique amongst all the other Documents in a given Corpus.

(2) Methods

int bodyLength(): This public method allows a user to quickly get the length of

the Document’s text, without having to get the entire body of the Document.

String getBody(): This public method allows a user to get the entire body of

the Document.

int getID(): This public method allows a user to get the unique identification

number of a Document.

void setBody(String): This public method allows a user to set the text body of

a Document.

c. DocScore

Conceptually, when conducting a search, documents are considered in turn

and evaluated for how relevant they are to the provided query. The DocScore class

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 42 -
k^s^i=mlpqdo^ar^qb=p`elli=

is a customized container class, specifically created for the purpose of representing

that evaluation. Figure 13 is the UML class model for the DocScore class.

Figure 13. UML DocScore Class Model

(1) Attributes

Integer docID: This private variable is the unique identification number of the

Document to which this DocScore refers.

Integer docRank: This private variable is the rank given to the Document.

Integer docScore: This private variable is the score that the Document

receives from the evaluation process.

(2) Methods

int compare(DocScore, DocScore): This public method is required by the

implementation of the java.lang.Comparator interface. This method assists in the

sorting of DocScores. When two DocScores are compared with this method, it will

return a positive integer if the first has a better score (ranked higher) than the

second.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 43 -
k^s^i=mlpqdo^ar^qb=p`elli=

int compareTo(DocScore): This public method is required by the

implementation of the java.lang.Comparable interface. This method assists in the

sorting of DocScores and functions in the same manner as described above

Integer id(): This public method allows a user to get the unique identification

number of the Document to which this DocScore refers.

Integer rank(): This public method allows a user to get the rank contained

within the DocScore.

Double score(): This public method allows a user to get the score contained

within the DocScore.

void setRank(int): This protected method allows a user to set the rank

contained within the DocScore.

String toString(): This public method allows a user to get a String

representation of the DocScore for display purposes.

d. SearchResults

The DocScore class above, for all practical purposes, cannot exist alone

because the information contained within a single DocScore is useless without other

DocScores to compare against. As such, the SearchResults class has been created

as a customized container class, designed to hold all of the DocScores generated

from a single search query. Figure 14 is the UML class model for the SearchResults

class.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 44 -
k^s^i=mlpqdo^ar^qb=p`elli=

Figure 14. UML SearchResults Class Model

(1) Attributes

int dsVersion: This private variable ensures that all of the DocScores

contained within the SearchResults are formatted the same. For example, the user

is prohibited from placing a DocScore consisting of a docID and docScore into a set

of SearchResults that already contains DocScores with docID and docRank.

boolean firstPut: This private variable is used for internal record-keeping in

conjunction with the dsVersion attribute above.

int putVersion: This private variable is used for internal record-keeping in

conjunction with the dsVersion and firstPut attributes above.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 45 -
k^s^i=mlpqdo^ar^qb=p`elli=

String query: This private variable is the query string that produces this

SearchResults.

Hashtable<Integer, DocScore> scoreTable: This private variable is one of two

internal containers that hold DocScores. It allows quick access to a DocScore that is

associated with a particular Document.

TreeSet<DocScore> scoreTree: This private variable is the second internal

container that holds DocScores. It allows for the quick, ordered retrieval of all the

DocScores contained within because the DocScores are stored in sorted order

according to the compareTo method described above.

double weight: This private variable assigns a weight to the SearchResults for

the purpose of weighting different sets of results against one another.

String whoMadeMe: This private variable stores the unique String name of

the object that created the SearchResults. This variable is the only way that the set

of SearchResults is tied to the SearchModule or ModuleMixer that created it.

(2) Methods

boolean add(DocScore): This private method is a utility method used by the

put methods described below.

Set<Integer> docIDs(): This public method allows a user to get all of the

Document identification numbers contained within the SearchResults.

DocScore get(Integer): This public method allows a user to get the DocScore

for the Document whose unique identification number corresponds to the provided

integer. The null value is returned if the indicated Document does not exist in the

SearchResults.

String getQuery(): This public method allows a user to get the String query

that was used to generate the SearchResults.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 46 -
k^s^i=mlpqdo^ar^qb=p`elli=

double getWeight(): This public method allows a user to get the weight of the

SearchResults.

String getWhoMadeMe(): This public method allows a user to get the name of

the object that created the SearchResults.

Iterator<DocScore> iterator(): Implementing the java.lang.Iterable interface

requires the definition of this public method. Calling this method returns an Iterator

over all of the DocScores in the SearchResults. This function allows a user to easily

create a programming loop to iterate through the results via the for-each loop

construct.

boolean put(int, int): This public method is one of four that allows a user to

create an entry in the SearchResults. The first parameter corresponds to the

unique identification number of the Document to which the result pertains; the

second corresponds to the rank of that Document when compared to the rest of the

Documents. This method creates a DocScore with the provided parameters and

then calls the private add method to store the DocScore in the SearchResults.

boolean put(int, double): This public method is the second of four that allows

a user to create an entry in the SearchResults. The first parameter corresponds to

the unique identification number of the Document to which the result pertains; the

second corresponds to the score that the Document received from the method or

object that evaluated it. This method creates a DocScore with the provided

parameters and then calls the private add method to store the DocScore in the

SearchResults.

boolean put(int, double, int): This public method is the third of four that allows

a user to create an entry in the SearchResults; it is a combination of the two put

methods above. The first parameter corresponds to the unique identification number

of the Document to which the result pertains; the second corresponds to the score

that the Document received from the method or object that evaluated it; the third

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 47 -
k^s^i=mlpqdo^ar^qb=p`elli=

corresponds to the rank of that Document when compared to the rest of the

Documents. This method creates a DocScore with the provided parameters and

then calls the private add method to store the DocScore in the SearchResults.

boolean put(DocScore): This public method is the last of four that allows a

user to create an entry in the SearchResults. The user can choose to create a

DocScore directly and then use this method which will call the private add method to

store the DocScore in the SearchResults.

void setQuery(String): This public method allows a user to set the query

attribute that was used to create this SearchResults.

void setRanks(): This public method allows a user to automatically set the

ranks of all the DocScores contained within the SearchResults. This method is only

applicable if the DocScores do not already have assigned ranks. DocScores are

sorted according to their score attribute and assigned a rank, accordingly, such that

the DocScore with the highest score is assigned a rank of one.

void setWeight(double): This public method allows a user to set the weight

attribute of the SearchResults for later use when comparing SearchResults against

one another.

2. Abstract Classes

Abstract classes are classes that cannot be instantiated; they must be

extended into a non-abstract child class in order to gain this capability. Below are

the two abstract classes in the Modular Search Engine framework.

a. Corpus

In the field of IR, a collection of documents that have similar structure is a

corpus. As such, the abstract Corpus class has been developed for the Modular

Search Engine framework. It is abstract because corpora vary greatly from one

another, the details of which this author does not presume to know. Therefore, it is

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 48 -
k^s^i=mlpqdo^ar^qb=p`elli=

up to the user to extend this abstract class and conform it to the pre-existing

structure of a select corpus. All of the methods in the abstract Corpus class are also

abstract and must be implemented to allow the functionality described below. Figure

15 is the UML class model for the abstract Corpus class.

Figure 15. UML Corpus Class Model

(1) Attributes

None.

(2) Methods

boolean addDoc(Document): This protected abstract method allows a user to

add a Document to the Corpus.

Corpus clone(): This public abstract method allows a user to get a deep copy

of the Corpus.

boolean deleteDoc(int): This protected abstract method allows a user to

delete a Document from the Corpus.

Document getDoc(int): This public abstract method allows a user to retrieve

the Document whose unique identification number matches the provided integer.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 49 -
k^s^i=mlpqdo^ar^qb=p`elli=

Set<Integer> idSet(): This public abstract method allows a user to get all of

the Document identification numbers contained within the Corpus.

Iterator<Document> iterator(): Implementing the java.lang.Iterable interface

requires the definition of this public method. Calling this method returns an Iterator

over all of the Documents in the Corpus. This function allows the user to easily

create a programming loop to iterate through the Documents via the for-each loop

construct.

String name(): This public abstract method allows the user to get the name of

the Corpus. Each child extended from this abstract parent class should have a

unique String returned by this function so that the Corpus can be identified at

runtime.

Integer nextID(): This protected abstract method allows a user to get the next

available identification number that can be used to put a new Document into the

Corpus.

int size(): This public abstract method allows a user to get the number of

Documents in the Corpus.

b. SearchModule

The heart of any search engine is the unique method with which it performs

its primary function: to search. The goal behind the Modular Search Engine

framework is to implement multiple different IR techniques simultaneously within a

single search engine. As such, the abstract SearchModule class is the heart of the

Modular Search Engine framework. Users are able to extend this abstract class and

implement existing and new IR techniques that will integrate seamlessly with each

other within the framework. Figure 16 is the UML class model for the abstract

SearchModule class.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 50 -
k^s^i=mlpqdo^ar^qb=p`elli=

Figure 16. UML SearchModule Class Model

(1) Attributes

Corpus corpus: This protected variable is the Corpus on which the

SearchModule performs its operations.

 (2) Methods

boolean addDocument(Document): This public method allows a user to add a

Document to the SearchModule.

boolean deleteDocument(int): This public method allows a user to delete

Documents from the SearchModule.

boolean buildIndex(): This public method allows the user to ensure that an

appropriate index is built for the SearchModule. This method allows a

SearchModule the opportunity to optimize its buildIndex method so that, if possible,

a new index might be built upon an existing one. This allows the system to save

resources, instead of building a new index directly from the Corpus each time.

boolean forceBuildIndex(): This public method allows a user to forcibly direct

the SearchModule to build a new index directly from the Corpus. This method is the

complement to the method above; it is used when the user suspects that an index

has become corrupted. A call to this method can be expected to take a significant

amount of time to complete.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 51 -
k^s^i=mlpqdo^ar^qb=p`elli=

boolean isReady(): This public method is the interface through which a user

determines if the SearchModule is ready to receive a search query.

String name(): This public method allows the user to get the name of the

SearchModule. Each child extended from this abstract parent class should have a

unique String returned by this function so that the SearchModule can be

differentiated from other SearchModules at runtime.

SearchResults searchFor(String, int): This public method is the primary

interface for conducting a search with the SearchModule. The parameters to the

method are the query String and an integer that indicates the number of results to

return, e.g., if the provided integer is 100, then the each SearchModule should return

the top 100 Documents that match a search query. If the provided integer is greater

than the number of Documents in the Corpus, it is treated as if the user requested

the results for all Documents.

Hashtable<String, SearchResults> searchFor(Set<String>, int): This public

method is the primary interface through which an IR researcher conducts batch

query searches. This method allows researchers and developers to take advantage

of the way in which the SearchModule computes the relevance of a document and to

optimize it, if possible, for performing multiple search queries simultaneously. The

parameters to the method are a Set of query Strings and an integer that indicates

the number of results that should be returned in each SearchResults.

3. Interface

Like an abstract class, an interface cannot be instantiated on its own. An

interface must be implemented by the user, and that implementation must adhere to

the structure defined in the interface. The Modular Search Engine framework

contains a single interface, detailed below.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 52 -
k^s^i=mlpqdo^ar^qb=p`elli=

a. ModuleMixer

In the field of IR, metasearch is the process of combining multiple ranked lists

of documents to produce a single list that is better than any one of the lists that

generated it. Since the Modular Search Engine framework is designed to work with

multiple IR methods simultaneously, integrating metasearch into the framework is

essential in the design. Implementing a metasearch technique is accomplished

through the ModuleMixer interface. Figure 17 is the UML model for the ModuleMixer

interface.

Figure 17. UML ModuleMixer Interface Model

(1) Attributes

None.

(2) Methods

SearchResults mix(ArrayList<SearchResults>): This public method is

designed to accompany the single query searchFor method. It allows a user to

create a single set of SearchResults from the provided ArrayList of SearchResults

via the metasearch method implemented by the ModuleMixer.

Hashtable<String, SearchResults> mix(Hashtable<String,

ArrayList<SearchResults>>): This public method is designed to accompany the

multiple query searchFor method. It allows a user to create a single set of

SearchResults for each Arraylist of SearchResults in the provided Hashtable via the

metasearch method implemented by the ModuleMixer.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 53 -
k^s^i=mlpqdo^ar^qb=p`elli=

4. Threads

The Modular Search Engine framework contains seven class extensions of

the java.lang.Thread class. Each is designed to carry out one of the use-cases

described in Chapter II and is responsible for handling the communication between

the ModularSearchEngine and a SearchModule within the system. The details of all

seven are described below.

a. AddDocumentThread

Figure 18 is the UML class model for the AddDocumentThread class.

Figure 18. UML AddDocumentThread Class Model

(1) Attributes

Document doc: This private variable is the Document to be added.

int id: This private variable is the unique identifier of the Document to be

added.

SearchModule sm: This private variable is the SearchModule whose

addDocument method will be called by this AddDocumentThread.

boolean success: This private variable holds the returned result of the

SearchModule’s addDocument method.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 54 -
k^s^i=mlpqdo^ar^qb=p`elli=

(2) Methods

String name(): This public method allows a user to obtain the name of the

SearchModule that this AddDocumentThread is associated with.

void run(): Extending the java.lang.Thread class requires the definition of this

public method. It calls the addDocument method of the SearchModule assigned to

this AddDocumentThread.

boolean successful(): This public method allows a user to determine if the

Document was successfully added to the SearchModule.

b. DeleteDocumentThread

Figure 19 is the UML class model for the DeleteDocumentThread class.

Figure 19. UML DeleteDocumentThread Class Model

(1) Attributes

int id: This private variable is the unique identifier of the Document to be

deleted.

SearchModule sm: This private variable is the SearchModule whose

deleteDocument method will be called by this DeleteDocumentThread.

boolean success: This private variable holds the returned result of the

SearchModule’s deleteDocument method.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 55 -
k^s^i=mlpqdo^ar^qb=p`elli=

(2) Methods

String name(): This public method allows a user to obtain the name of the

SearchModule that this DeleteDocumentThread is associated with.

void run(): Extending the java.lang.Thread class requires the definition of this

public method. It calls the deleteDocument method of the SearchModule assigned

to this DeleteDocumentThread.

boolean successful(): This public method allows a user to determine if the

Document was successfully deleted from the SearchModule.

c. BuildIndexThread

Figure 20 is the UML class model for the BuildIndexThread class.

Figure 20. UML BuildIndexThread Class Model

(1) Attributes

SearchModule sm: This private variable is the SearchModule whose

buildIndex method will be called by this BuildIndexThread.

boolean success: This private variable holds the returned result of the

SearchModule’s buildIndex method.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 56 -
k^s^i=mlpqdo^ar^qb=p`elli=

(2) Methods

String name(): This public method allows a user to obtain the name of the

SearchModule that this BuildIndexThread is associated with.

void run(): Extending the java.lang.Thread class requires the definition of this

public method. It calls the buildIndex method of the SearchModule assigned to this

BuildIndexThread.

boolean successful(): This public method allows a user to determine if the

SearchModule’s buildIndex method was successful.

d. ForceBuildIndexThread

Figure 21 is the UML class model for the ForceBuildIndexThread class.

Figure 21. UML ForceBuildIndexThread Class Model

(1) Attributes

SearchModule sm: This private variable is the SearchModule whose

forceBuildIndex method will be called by this ForceBuildIndexThread.

boolean success: This private variable holds the returned result of the

SearchModule’s forceBuildIndex method.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 57 -
k^s^i=mlpqdo^ar^qb=p`elli=

(2) Methods

String name(): This public method allows a user to obtain the name of the

SearchModule that this ForceBuildIndexThread is associated with.

void run(): Extending the java.lang.Thread class requires the definition of this

public method. It calls the forceBuildIndex method of the SearchModule assigned to

this ForceBuildIndexThread.

boolean successful(): This public method allows a user to determine if the

SearchModule’s forceBuildIndex method was successful.

e. IsReadyThread

Figure 22 is the UML class model for the IsReadyThread class.

Figure 22. UML IsReadyThread Class Model

(1) Attributes

SearchModule sm: This private variable is the SearchModule whose isReady

method will be called by this IsReadyThread.

boolean ready: This private variable holds the returned result of the

SearchModule’s isReady method.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 58 -
k^s^i=mlpqdo^ar^qb=p`elli=

(2) Methods

String name(): This public method allows a user to obtain the name of the

SearchModule that this IsReadyThread is associated with.

boolean ready(): This public method allows a user to determine if the

SearchModule is ready to receive a search query.

void run(): Extending the java.lang.Thread class requires the definition of this

public method. It calls the isReady method of the SearchModule assigned to this

IsReadyThread.

f. SearchForQueryThread

Figure 23 is the UML class model for the SearchForQueryThread class.

Figure 23. UML SearchForQueryThread Class Model

(1) Attributes

String query: This private variable is the String to be search for and is passed

as a parameter to the SearchModule’s searchFor method.

SearchResults results: This private variable holds the returned result of the

SearchModule’s searchFor method.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 59 -
k^s^i=mlpqdo^ar^qb=p`elli=

Integer returnSize: This private variable is passed as a parameter to the

SearchModule’s searchFor method to indicate the size of the SearchResults to

return.

SearchModule sm: This private variable is the SearchModule whose

searchFor method will be called by this SearchForQueryThread.

 (2) Methods

SearchResults getResults(): This public method allows a user to get the

results of the search query.

String name(): This public method allows a user to obtain the name of the

SearchModule that this SearchForQueryThread is associated with.

void run(): Extending the java.lang.Thread class requires the definition of this

public method. It calls the searchFor method of the SearchModule assigned to this

SearchForQueryThread.

g. MultiSearchForThread

Figure 24 is the UML class model for the MultiSearchForQueryThread class.

Figure 24. UML MultiSearchForQueryThread Class Model

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 60 -
k^s^i=mlpqdo^ar^qb=p`elli=

(1) Attributes

Set<String> queries: This private variable is the Set of Strings to search for

and is passed as a parameter to the SearchModule’s searchFor method.

Hashtable<String, SearchResults> results: This private variable holds the

returned result of the SearchModule’s searchFor method.

Integer returnSize: This private variable is passed as a parameter to the

SearchModule’s searchFor method to indicate the size of the SearchResults to

return.

SearchModule sm: This private variable is the SearchModule whose

searchFor method will be called by this MultiSearchForQueryThread.

 (2) Methods

Hashtable<String, SearchResults> getResults(): This public method allows a

user to get the results of the batch search query.

String name(): This public method allows a user to obtain the name of the

SearchModule that this MultiSearchForQueryThread is associated with.

void run(): Extending the java.lang.Thread class requires the definition of this

public method. It calls the searchFor method of the SearchModule assigned to this

MultiSearchForQueryThread.

5. Packages

The Modular Search Engine framework is divided into three primary packages

that serve to organize the classes, interfaces, and extensions into logical groups.

The packages also serve to ensure that the protected variables are only directly

accessible by objects within the same package. The three packages are described

below.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 61 -
k^s^i=mlpqdo^ar^qb=p`elli=

a. modularSearchEngine

The modularSearchEngine package consists of the following:

 Corpus—Abstract Class

 Document—Class

 ModularSearchEngine—Class

 ModuleMixer—Interface

b. searchModule

The searchModule package consists of the following:

• DocScore—Class

• SearchModule—Abstract Class

• SearchResults—Class

c. modularSearchEngineThreads

The modularSearchEngineThreads package consists of the following seven

class extensions of java.lang.Thread:

 AddDocumentThread

 BuildIndexThread

 DeleteDocumentThread

 ForceBuildIndexThread

 IsReadyThread

 MultiSearchForQueryThread

 SearchForQueryThread

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 62 -
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 63 -
k^s^i=mlpqdo^ar^qb=p`elli=

IV. Reference Implementation

A. Overview

As a proof of concept, we have developed a reference implementation to

demonstrate the abilities of the Modular Search Engine framework. This chapter

describes the internal components of the reference implementation and shows the

Graphical User Interface (GUI) we designed to provide the user with a simple

working environment.

B. Extensions And Implementations

As described in the previous chapter, several components of the Modular

Search Engine framework must be extended or implemented. Specifically, the user

must extend the abstract Corpus and SearchModule classes and implement the

ModuleMixer interface. The reference implementation contains four child classes of

Corpus, two child classes of SearchModule, and two implementation classes of

ModuleMixer. These are described below.

1. Corpora

The reference implementation includes four standard benchmark corpora that

are used frequently in IR (Draeger, 2009). The corpora were attained from the

University of Glasgow’s IR Group and are as follows: Cranfield, Medline, CISI, and

Time (University of Glasgow, 2004). Each of the four Corpus classes was

developed by extending the base Corpus class and adapting it to the specifics of

each data set. However, only one is active at a time, as chosen by the user.

2. SearchModules

There are two SearchModules included in this example application; they are

individually described below.

a. TF-IDF SearchModule

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 64 -
k^s^i=mlpqdo^ar^qb=p`elli=

Term Frequency-Inverse Document Frequency (TF-IDF) is a basic keyword-

matching technique and is the basis for one of the two SearchModules in the

reference implementation. The essentials of TF-IDF are explained below.

One way to represent a document is as a vector of the frequencies of the

words contained within it. For example, consider a document whose entirety

consists of the following sentence: “The boy fed the dog.” The document is five

words long, but it only contains four unique words because the word “the” is used

twice; this document has five tokens, but only four types. We assign an index to

each type and count the number of times each appears in the document. Dividing

by the sum of the counts (the total number of words in the document) will yield the

term frequency for each type. The table below shows these values for the example.

Table 1. Term Frequency Example Table

Index Type Count
Term

Frequency

0 the 2 2/5 = 0.4

1 boy 1 1/5 = 0.2

2 fed 1 1/5 = 0.2

3 dog 1 1/5 = 0.2

We can now generalize the above process. Let ci,j be the count of word i in

document j. We can then calculate tfi,j, the term frequency of word i in document j:

,

,
,

i j
i j

k j
k

c
tf

c
=
∑

Now that we have all of the term frequencies in a document, we can

represent that document as a single column vector: tfj = [tf1,j , tf2,j , … , tfV,j]T where V

is the total number of unique words in our vocabulary.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 65 -
k^s^i=mlpqdo^ar^qb=p`elli=

So far, the above process weights the relevance of a word according to the

frequency in which that word appears in a document. This reflects the intuition that

the more frequently used terms in a document may reflect the meaning of that

document better than the terms that appear less frequently and, thus, should have

stronger weights (Manning & Schütze, 1999; Jurafsky & Martin, 2009). We now turn

our attention to the fact that we are dealing with multiple documents that comprise a

corpus.

Consider a word that appears in every document in the corpus. This word

has little power when trying to identify the relevance of one document over another.

Conversely, consider a word that appears in only a single document. The opposite

is true because this word carries a lot of importance in identifying this particular

document when compared to all the others. Thus, we should weight those words

that are common across many documents lower than those that appear in only a few

documents (Manning & Schütze, 1999; Jurafsky & Martin, 2009). As such, a new

measure known as the inverse document frequency (IDF) comes into play. IDF is

defined as N / ni, where N is the total number of documents in the corpus, and ni is

the number of documents in which word i appears. In order to discount the weight of

a word that appears in many documents, this measure is applied within a log

function, resulting in the following definition for the inverse document frequency of

word i (Jurafsky & Martin, 2009):

logi
i

Nidf
n

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

If word i appears in every document, then ni = N, and thus idfi = log(1) = 0.

When applied to every word in the vocabulary, this yields an IDF vector with

dimension equal to V.

When term frequency (TF) and IDF are combined, it results in the TF-IDF

weighting scheme such that the weight of word i in document j is the product of its

frequency in j with the log of its inverse document frequency in the corpus wi,j = tfi,j *

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 66 -
k^s^i=mlpqdo^ar^qb=p`elli=

idfi (Jurafsky & Martin, 2009). This yields a matrix with dimension V x N such that

each column in the matrix is the TF-IDF weight vector of a single document. We then

use the Euclidian norm on each of these to produce document weight vectors whose

lengths are exactly one.

The TD-IDF matrix and the IDF vector together comprise the index of the

corpus, and calculating these for a fixed corpus needs only take place once. They

can be stored on disk and recalled for subsequent runs of the reference

implementation. Up to this point, all of the above calculations have been performed

on the corpus, and we now turn the attention to how to conduct a search query using

TF-IDF.

First, the query string is converted into a TF vector in the same manner as

each document is above. We then calculate the element-wise product of the TF

vector and the corpus’ IDF vector to produce a new TF-IDF vector for the query.

This vector is normalized via the Euclidian norm and then can be used to determine

how relevant each document in the corpus is to the provided query. The TF-IDF

SearchModule accomplishes this by computing the cosine similarity (via the dot

product of normalized vectors) between the query TF-IDF vector and the TF-IDF

vector for each document in the corpus (i.e., the columns of the matrix.) This is

accomplished by a single matrix multiplication: transpose the query TF-IDF column

vector into a row vector and multiply it by the TF-IDF matrix of the corpus. The

resulting vector contains the scalar cosine similarity measure between each

document in the corpus and the provided query. Sorting in descending order

according to this measure will yield an ordered list of documents such that the most

similar documents are at the top of the list (Manning & Schütze, 1999; Jurafsky &

Martin, 2009; Manning, Raghavan & Schütze, 2008).

It should be noted that the vector and matrix mathematics used in this

implementation of TF-IDF is accomplished via the Colt Project, a set of open-source

java libraries published by the European Organization for Nuclear Research (CERN,

2004).

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 67 -
k^s^i=mlpqdo^ar^qb=p`elli=

b. Draeger’s LDA SearchModule

As mentioned in Chapter II, Draeger used the Modular Search Engine

framework to implement a new IR technique to conduct semantic search. During the

course of his research, he developed a SearchModule based on Latent Dirichlet

Allocation (LDA) (Draeger, 2009).

LDA is a parametric Bayesian model that generates a probability distribution

over the topics covered in a document, and each topic is a distribution over the

words in a vocabulary. These topics form a latent feature set that describes a

document collection better than the words alone. Using this model, it is possible to

perform a search by using the words in the query to infer the most likely topics

associated with that query and then find the documents that cover these same topics

(Draeger, 2009; Blei, Ng & Jordan, 2003).

As a demonstration of the modularity of the Modular Search Engine

framework, we have taken Draeger’s LDA SearchModule and incorporated it directly

into the reference implementation.

3. ModuleMixers

Two ModuleMixers are included in the reference implementation; however,

only one ModuleMixer is active for each search, as chosen by the user. The details

of each ModuleMixer are described below.

a. Weighted Average Rank ModuleMixer

This ModuleMixer simply calculates the weighted mean rank for each

Document (via a DocScore). For a given document, it uses the weights assigned to

each set of SearchResults and computes the weighted mean rank of that document.

It then creates a new set of SearchResults whose DocScores are sorted by the new

weighted average rank. This set of SearchResults is then returned to the user.

b. Condorcet-Fuse ModuleMixer

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 68 -
k^s^i=mlpqdo^ar^qb=p`elli=

This ModuleMixer implements the metasearch technique known as

Condorcet-fuse (Montague & Aslam, 2002). The inspiration for this technique

comes from the field of Social Choice Theory, which studies voting algorithms as

techniques to make group decisions (Riker, 1982; Moulin, 1988; Kelly, 1988). The

Condorcet voting algorithm specifies that the winner of an election is the candidate

that beats or ties with every other candidate in a pair-wise comparison (Montague &

Aslam, 2002; de Condorcet, 1785). Consider a voting scenario in which ten voters

are voting on five candidates in an election, and the voters must rank all five

candidates in order of preference. Table 2 depicts one possible outcome of the

votes for this scenario (Montague & Aslam, 2002).

Table 2. Example Voting Scenario

Number of Votes
Candidate Preference

(in order)

3 a, b, c, d, e

3 e, b, c, a, d

2 c, b, a, d, e

2 c, d, b, a, e

In the example, consider a pair-wise comparison of candidates b and c; six

out of the ten voters placed candidate b ahead of candidate c. In fact, candidate b

ranks above every other candidate in a pair-wise, head-to-head comparison;

therefore, candidate b is the Condorcet winner (Montague & Aslam, 2002).

This is the essence of the Condorcet-fuse metasearch method and the

associated ModuleMixer in the reference implementation. Candidates are

analogous to Documents, voters to SearchModules, and vote preference to

SearchResults. The following two pseudo-code algorithms explain exactly how the

Condorcet-fuse metasearch method is applied within the Modular Search Engine

framework (Montague & Aslam, 2002).

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 69 -
k^s^i=mlpqdo^ar^qb=p`elli=

Algorithm 1: Pair-wise Document
 Comparison (d1, d2)

Algorithm 2: Condorcet-fuse

1: count = 0
2: for each SearchModule, sm, do
 2a: If sm ranks d1 above d2,

count++
 2b: If sm ranks d2 above d1,

count--
3: If count > 0, rank d1 better than
d2
4: Otherwise rank d2 better than d1

1: Create a list L of all the
documents

2: Sort (L) using Algorithm 1 as
the comparison function

3: Output the sorted list of
documents as a
SearchResults object

C. Graphical User Interface

1. Overview

The reference implementation can be divided into five different sections:

Query Entry, Corpus Selection, ModuleMixer Selection, Status Display, and Results

Display. Figure 25 is a screenshot of the reference implementation GUI, and it

identifies and describes in detail the five basic sections.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 70 -
k^s^i=mlpqdo^ar^qb=p`elli=

Figure 25. GUI Overview

2. Sections

a. Query Entry Section

As Figure 26 indicates, users enter their search query into the text box; when

they type <ENTER> or click the Search button, the search will begin.

Figure 26. Query Entry Section

b. Corpus Selection Section

As previously mentioned, the reference implementation contains four different

corpora to choose from. The Corpus Selection Section allows users to choose a

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 71 -
k^s^i=mlpqdo^ar^qb=p`elli=

corpus via radio buttons, as shown in Figure 27. By default, the Cranfield corpus is

selected when the application is launched.

Figure 27. Corpus Selection Section

c. ModuleMixer Selection Section

Similar to the Corpus Selection Section above, the user chooses one of two

available ModuleMixers via radio buttons; in the reference implementation, the

WeightedModuleMixer is selected by default. This ModuleMixer requires additional

input from the user via the slider bar. Moving the slider bar adjusts the relative

mixing weight assigned to each SearchModule. In Figure 28, the TF-IDF-based

SearchModule will be weighted three times greater than the other.

Figure 28. ModuleMixer Selection Section with Weighted
Module Mixer Selected

If the CondorcetFuseModuleMixer is selected, then the mixing weights are no

longer applicable and that sub-section is disabled accordingly, as depicted in Figure

29.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 72 -
k^s^i=mlpqdo^ar^qb=p`elli=

Figure 29. ModuleMixer Selection Section with Condorcet Fuse
Module Mixer Selected

d. Status Display Section

When the reference implementation is running, System.out and System.err

are redirected to the Status Display, as shown in Figure 30. This area is scrollable

so that a user can view older messages that may have scrolled up and out of view or

longer messages that extend to the right of the view.

Figure 30. Status Display Section

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 73 -
k^s^i=mlpqdo^ar^qb=p`elli=

e. Results Display Section

As the name suggests, the results of the search query are displayed in this

section. In this example application, this area is simply populated with text by using

the toString() method of the final SearchResults object produced by the selected

ModuleMixer. Figure 31 is an example of what this section looks like after

conducting a search. Users can use the scroll bars to view the entire set of results.

Figure 31. Results Display Section

D. Performance Evaluation

This section presents how the Modular Search Engine framework can help

students and researchers design new IR techniques and metasearch methods by

calculating and evaluating the performance of the different components within the

reference implementation.

1. Average Precision

a. Definition

For a particular query, we use average precision as a metric to measure the

performance of an IR technique or a metasearch method (Robertson, 2008). The

average precision for a single query is defined as

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 74 -
k^s^i=mlpqdo^ar^qb=p`elli=

1

1 D

n
n

AP AP
R =

= ∑ ,

where R is the number of total relevant documents, and D denotes the total number

of documents in the corpus. The contribution of document dn to the average

precision APn is defined as

,
1

1 n

n m n
m

AP
n

δ
=

= ∑ ,

where δm,n = 1, if the documents dn and dm are both relevant to the query, and δm,n =

0 otherwise.

b. Example

Each corpus included in the reference implementation comes with a set of

test queries and a relevancy list that tells which documents in the corpus are

relevant to each test query. These are provided so that different IR and/or

metasearch techniques can be compared with one another. For example, the 224th

test query for the Cranfield corpus is: “in practice, how close to reality are the

assumptions that the flow in a hypersonic shock tube using nitrogen is non-viscous

and in thermodynamic equilibrium.” There are exactly nine documents identified as

relevant to this query.

Using the reference implementation, one can see how each SearchModule

compares against the other and how the ModuleMixers affect that performance

when searching for this test query. Table 3 is a summary of how the two

SearchModules performed independently and when mixed with the Condorcet-fuse

ModuleMixer.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 75 -
k^s^i=mlpqdo^ar^qb=p`elli=

Table 3. Relevant Document Rankings for the 224th Cranfield Test

Query

With the information in Table 3, we can calculate the average precision for

each of the three sets of results. Table 4 displays the average-precision calculations

for the results of Draeger’s LDA SearchModule.

Table 4. Average Precision of Draeger’s LDA SearchModule

Relevant
Document ID

LDA
Ranking

TF-IDF
Ranking

CondorcetFuse
Ranking

656 6 15 7

1157 40 10 24

1274 113 32 43

1286 4 3 2

1313 15 23 11

1316 120 27 41

1317 26 61 15

1318 7 117 22

1319 100 33 33

nth
Relevant

Document
Relevant

Document ID
LDA

Ranking APn

1 1286 4 1/4 = 0.25

2 656 6 2/6 = 0.33333

3 1318 7 3/7 = 0.42857

4 1313 15 4/15 = 0.26667

5 1317 26 5/26 = 0.19231

6 1157 40 6/40 = 0.15

7 1319 100 7/100 = 0.07

8 1274 113 8/113 = 0.0708

9 1316 120 9/120 = 0.075

Average Precision = 0.20408

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 76 -
k^s^i=mlpqdo^ar^qb=p`elli=

Table 5 displays the average-precision calculations for the results of the TF-

IDF SearchModule.

Table 5. Average Precision of the TF-IDF SearchModule

nth
Relevant

Document
Relevant

Document ID
TF-IDF
Ranking APn

1 1286 3 1/3 = 0.33333

2 1157 10 2/10 = 0.2

3 656 15 3/15 = 0.2

4 1313 23 4/23 = 0.17391

5 1316 27 5/27 = 0.18519

6 1274 32 6/32 = 0.1875

7 1319 33 7/33 = 0.21212

8 1317 61 8/61 = 0.13115

9 1318 117 9/117 = 0.07692

Average Precision = 0.1889

Table 6 displays the average-precision calculations for the results of the

Condorcet-fuse ModuleMixer. Note that the average precision of the mixed results

for this query is higher than both Draeger’s LDA SearchModule and the TF-IDF

SearchModule.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 77 -
k^s^i=mlpqdo^ar^qb=p`elli=

Table 6. Average Precision of the CondorcetFuse ModuleMixer

nth Relevant
Document

Relevant
Document ID

CondorcetFuse
Ranking APn

1 1286 2 1/2 = 0.5

2 656 7 2/7 = 0.28571

3 1313 11 3/11 = 0.27273

4 1317 15 4/15 = 0.26667

5 1318 22 5/22 = 0.22727

6 1157 24 6/24 = 0.25

7 1319 33 7/33 = 0.21212

8 1316 41 8/41 = 0.19512

9 1274 43 9/43 = 0.2093

Average Precision = 0.26877

2. Mean Average Precision

a. Definition

In order to measure the overall performance of an IR technique or

metasearch method, we use the mean average precision. Calculating the mean

average precision is as simple as calculating the average precision, as shown

above, for each query in the set of test queries and then taking the mean of all

those.

b. Example

The Cranfield corpus contains a total of 225 test queries; using a separate

application to speed the process, we calculated the mean average precision of both

SearchModules independently and when mixed with the Condorcet-fuse

ModuleMixer. Figure 32 shows the average precision calculations for each test

query, ordered from largest to smallest for each method, and Table 7 shows the

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 78 -
k^s^i=mlpqdo^ar^qb=p`elli=

mean average precisions. Again, the Condorcet-fuse ModuleMixer outperforms both

of the independent SearchModules.

Figure 32. Mean Average Precisions

Table 7. Average Precision of Test Queries

LDA TF-IDF CondorcetFuse

0.32711 0.36701 0.37637

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 79 -
k^s^i=mlpqdo^ar^qb=p`elli=

V. Conclusions and Recommendations

A. Research Conclusions

The overarching goal of this thesis was to develop a software API that offered

students and researchers a framework in which they could develop, test, and

implement new IR techniques and metasearch methods, specifically targeting the

development of new semantic search techniques.

Utilizing sound engineering practices, those user requirements were specified

and incorporated into the overall design of the Modular Search Engine framework.

Through extensive use of the Unified Modeling Language, software engineering

patterns, and object-oriented features, the Modular Search Engine framework

achieved the modularity goal that allows multiple IR techniques to work

simultaneously within a single system and allows IR techniques to be seamlessly

added and deleted from a system. Keeping with the objectives, the addition of an IR

technique requires only the extension of the single abstract SearchModule class with

its eight abstract methods. The framework also successfully allows for the

development of different metasearch methods that can be interchanged within a

system.

Furthermore, this thesis showed conclusively, using a standard metric, that

the framework can be used to judge the relative performance of each individual IR

technique and metasearch method.

B. Recommendations for Future Work

Overall, this research successfully accomplished its objectives, as defined in

Chapter I. However, several areas could benefit from further exploration,

augmentation, and improvement.

As with any new software application, the framework could greatly benefit

from extensive testing and debugging. If the Modular Search Engine framework

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 80 -
k^s^i=mlpqdo^ar^qb=p`elli=

were to receive greater exposure to students and IR researchers, their feedback

would undoubtedly benefit the framework by providing information for patches and

upgrades.

One upgrade in particular would be the development and inclusion of a set of

diagnostic tools. These tools would be able to automatically calculate the metrics to

analyze the performance of the different framework components using the

benchmark test corpora. Such tools would make it trivial for the developer to

evaluate the performance of a new IR technique or metasearch method.

Additionally, as end-user applications are developed, it is not recommended

to build them as stand-alone applications designed to run on client machines.

Because of the large requirement for the computer’s resources, such applications

will undoubtedly run extremely slowly and would likely aggravate any user,

especially during initialization. Instead, the framework could be used to develop a

server application—possibly web-based—that clients could access to perform

searches. This style architecture would provide the most responsiveness to users

while preserving resources in client computers.

Finally, the framework could benefit from the incorporation of ontological

information such as those suggested for the SHARE repository (Johnson & Blais,

2008). Such information could be used to develop a robust system that allows a

user to refine search queries and navigate through documents based on the

ontological relationships of the documents.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 81 -
k^s^i=mlpqdo^ar^qb=p`elli=

List of References

Aslam, J.A., Pavlu, V., & Yilmaz, E. (2005). Measure-based metasearch. In
Proceedings of the 28th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (pp. 571–572).
Salvador, Brazil.

Blei, D.M., Ng, A.Y., & Jordan, M.I. (2003). Latent Dirichlet allocation. The Journal of
Machine Learning Research, 3, 993–1022.

Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search
engine. Computer Networks and ISDN Systems, 30(1-7), 107–117.

Bruegge, B., & Dutoit, A.H. (2004). Object-oriented software engineering: Using
UML, patterns and java. Upper Saddle River, NJ: Prentice Hall.

de Condorcet, M. (1785). Essai sur l'application de l'analyse à la probabilité des
décisions rendues à la pluralité des voix.

Draeger, M. (2009). Use of probabilistic topic models for search (Master's Thesis).
Monterey, CA: Naval Postgraduate School.

European Organization for Nuclear Research (CERN). (2004). Colt project.
Retrieved September 2009, from http://acs.lbl.gov/~hoschek/colt/index.html

Glasgow Information Retrieval Group. (2004). Test collections. Retrieved September
2009, University of Glasgow, from
http://ir.dcs.gla.ac.uk/resources/test_collections/

Johnson, J. & Blais, C. (2008). SHARE repository framework: Component
specification and ontology. In Proceedings of the Fifth Annual Acquisition
Research Symposium (pp. 194–212). Monterey, CA: Naval Postgraduate
School.

Jurafsky, D., & Martin, J.H. (2009). Speech and language processing: An
introduction to natural language processing, computational linguistics, and
speech recognition (2nd ed.). Upper Saddle River, NJ: Prentice Hall.

Kelly, J.S. (1988). Social choice theory. Berlin: Springer-Verlag.

Larman, C. (2005). Applying UML and patterns: An introduction to object-oriented
analysis and design and iterative development (3rd ed.). Upper Saddle River,
NJ: Prentice Hall.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 82 -
k^s^i=mlpqdo^ar^qb=p`elli=

Manning, C.D., Raghavan, P., & Schütze, H. (2008). Introduction to information
retrieval. New York: Cambridge University Press.

Manning, C.D., & Schütze, H. (1999). Foundations of statistical natural language
processing. Cambridge, MA: MIT Press.

Montague, M., & Aslam, J.A. (2002). Condorcet fusion for improved retrieval. In
CIKM '02: Proceedings of the Eleventh International Conference on
Information and Knowledge Management (pp. 538–548). McLean, VA.

Moulin, H. (1988). Axioms of cooperative decision making. New York: Cambridge
University Press.

Riker, W.H. (1982). Liberalism against Populism. San Francisco: W.H. Freeman.

Robertson, S. (2008). A new interpretation of average precision. In SIGIR '08:
Proceedings of the 31st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (pp. 689–690).
Singapore.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 83 -
k^s^i=mlpqdo^ar^qb=p`elli=

Appendix A. UML Reference Key

This appendix contains the reference for the UML symbols used in Chapters

II and III of this thesis.

A. Figure 3 UML Domain Object Model

An association with an aggregation relationship indicates that one class is a

part of another class. In this relationship, the child class instance can outlive its

parent class; the existence of the child is not dependent on the existence of the

parent. The aggregation relationship is represented with a solid line, drawn from the

parent class to the child class with an open diamond shape on the parent class’s

end.

For example, a ModularSearchEngine object contains a single Corpus object,

but the SearchResults object contains one or more DocScore objects:

B. Figures 11-24 UML Class Models

Each class member and method is preceded with one of three symbols that

indicate its visibility.

Additionally, if any method name or class name is italicized, it indicates that

the method or the class is abstract.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =
k^s^i=mlpqdo^ar^qb=p`elli=

2003 - 2010 Sponsored Research Topics

Acquisition Management

 Acquiring Combat Capability via Public-Private Partnerships (PPPs)
 BCA: Contractor vs. Organic Growth
 Defense Industry Consolidation
 EU-US Defense Industrial Relationships
 Knowledge Value Added (KVA) + Real Options (RO) Applied to

Shipyard Planning Processes
 Managing the Services Supply Chain
 MOSA Contracting Implications
 Portfolio Optimization via KVA + RO
 Private Military Sector
 Software Requirements for OA
 Spiral Development
 Strategy for Defense Acquisition Research
 The Software, Hardware Asset Reuse Enterprise (SHARE) repository

Contract Management

 Commodity Sourcing Strategies
 Contracting Government Procurement Functions
 Contractors in 21st-century Combat Zone
 Joint Contingency Contracting
 Model for Optimizing Contingency Contracting, Planning and Execution
 Navy Contract Writing Guide
 Past Performance in Source Selection
 Strategic Contingency Contracting
 Transforming DoD Contract Closeout
 USAF Energy Savings Performance Contracts
 USAF IT Commodity Council
 USMC Contingency Contracting

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =
k^s^i=mlpqdo^ar^qb=p`elli=

Financial Management

 Acquisitions via Leasing: MPS case
 Budget Scoring
 Budgeting for Capabilities-based Planning
 Capital Budgeting for the DoD
 Energy Saving Contracts/DoD Mobile Assets
 Financing DoD Budget via PPPs
 Lessons from Private Sector Capital Budgeting for DoD Acquisition

Budgeting Reform
 PPPs and Government Financing
 ROI of Information Warfare Systems
 Special Termination Liability in MDAPs
 Strategic Sourcing
 Transaction Cost Economics (TCE) to Improve Cost Estimates

Human Resources

 Indefinite Reenlistment
 Individual Augmentation
 Learning Management Systems
 Moral Conduct Waivers and First-tem Attrition
 Retention
 The Navy’s Selective Reenlistment Bonus (SRB) Management System
 Tuition Assistance

Logistics Management

 Analysis of LAV Depot Maintenance
 Army LOG MOD
 ASDS Product Support Analysis
 Cold-chain Logistics
 Contractors Supporting Military Operations
 Diffusion/Variability on Vendor Performance Evaluation
 Evolutionary Acquisition

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =

• do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =
k^s^i=mlpqdo^ar^qb=p`elli=

 Lean Six Sigma to Reduce Costs and Improve Readiness
 Naval Aviation Maintenance and Process Improvement (2)
 Optimizing CIWS Lifecycle Support (LCS)
 Outsourcing the Pearl Harbor MK-48 Intermediate Maintenance

Activity
 Pallet Management System
 PBL (4)
 Privatization-NOSL/NAWCI
 RFID (6)
 Risk Analysis for Performance-based Logistics
 R-TOC AEGIS Microwave Power Tubes
 Sense-and-Respond Logistics Network
 Strategic Sourcing

Program Management

 Building Collaborative Capacity
 Business Process Reengineering (BPR) for LCS Mission Module

Acquisition
 Collaborative IT Tools Leveraging Competence
 Contractor vs. Organic Support
 Knowledge, Responsibilities and Decision Rights in MDAPs
 KVA Applied to AEGIS and SSDS
 Managing the Service Supply Chain
 Measuring Uncertainty in Earned Value
 Organizational Modeling and Simulation
 Public-Private Partnership
 Terminating Your Own Program
 Utilizing Collaborative and Three-dimensional Imaging Technology

A complete listing and electronic copies of published research are available on our
website: www.acquisitionresearch.org

==
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= =
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

^Åèìáëáíáçå=êÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=ëÅÜççä=çÑ=ÄìëáåÉëë=C=éìÄäáÅ=éçäáÅó=
k~î~ä=éçëíÖê~Çì~íÉ=ëÅÜççä=
RRR=avbo=ol^aI=fkdboplii=e^ii=
jlkqbobvI=`^ifclokf^=VPVQP=

www.acquisitionresearch.org

