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Abstract 

According to Department of Defense (DoD) and Secretary of the Navy 

(SecNav) instructions, acquisition decisions should be based on analysis that 

considers both the costs and benefits of different courses of action.  A recent change 

to DoD Instruction (DODI) 5000.02, the DoD’s regulations on the acquisition of new 

systems, specifically calls for its agencies to consider the fully burdened energy 

costs in all trade-offs involving costs and benefits. Defense ground, air, and maritime 

platforms, as well as communications and network systems, all use a variety of 

renewable and disposable energy sources.  Past analyses conducted by the Office 

of the Deputy Assistant Secretary of the Army for Cost and Economics (ODASA–

CE) and the Office of the Undersecretary of Defense for Acquisition Technology and 

Logistics (OUSD(AT&L)) have developed methodologies to calculate the fully 

burdened cost of fuel as delivered energy in defense systems.  Whereas these 

previous studies did not consider other energy sources such as batteries, this thesis 

contributes to the DoD area of knowledge in estimating lifecycle costs of systems by 

developing a methodology to estimate the fully burdened cost of batteries. 

Keywords: Lifecycle cost estimating, battery acquisition, delivered energy, 

fully burdened costs, fully burdened cost of fuel, fully burdened cost of water, fully 

burdened cost of batteries, analysis of alternatives, tradespace, capability 

development document, battery 
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Executive Summary 

This study built upon USD AT&L metrics to develop a methodology and tool 

for acquisition planners to use in the Analysis of Alternatives process when fully 

burdened energy costs are an issue. The BA-5590, a high demand, DoD-specific, 

lithium sulfur dioxide battery was studied in order to develop a methodology to 

understand the burdens that affect battery costs. Burden elements developed for this 

study differ from the metric developed from the fully burdened cost of fuel 

methodologies and reflect the variable nature of battery types, the lack of dedicated 

transport vehicles for batteries, the more complicated acquisition process for 

batteries, and the variable nature of battery usage. The six burden elements are as 

follows: Acquisition, Transportation, Depreciation, Storage, Disposal, and Usage.  A 

major outcome of this analysis is that the methodology developed the fully burdened 

cost of batteries based on two scenarios.  

Under a Continental US training scenario, the base-case fully burdened costs 

of the BA-5590 are an additional 9.3% of the contract price of the batteries.  Under 

an operational scenario, the BA-5590’s fully burdened costs are an additional 

12.85% of the contract price of the batteries.  Under both base-case scenarios, 

disposal represents the greatest portion of the fully burdened costs.  If the military 

seeks immediate cost savings in the use of non-rechargeable lithium batteries, the 

reduction of the waste stream associated with their use would most readily result in 

cost improvements. 

Usage scenarios affect the assured delivery price greatly. Transportation 

planning is important for battery costs. The use of aviation assets as part of a 

scenario increased the cost of batteries significantly, and our analysis confirms the 

work of Peltz et al. (2008), as well as our observed shipments to theater via the air 

channel using total asset visibility tools.  
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This methodology lends itself to the study of other forms of delivered energy 

on the battlefield—i.e., wind, solar, and biofuels.  The endstate of future studies 

undertaken to advance this methodology would be to develop a simulation model or 

tool that a planner could use to determine the fully burdened cost of different forms 

of delivered energy with a minimum number of inputs required from the user of that 

tool. 
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I. DoD Energy Awareness 

The Department of Defense (DoD) has not always taken into account the full 

cost of the energy that powers its systems.  In the past, warfighters assumed their 

planes, tanks, and ships would always have sufficient fuel, and that the only cost 

involved was the standard commodity price of fuel.  Only recently has energy 

security taken a front-and-center role in the DoD’s planning and discussion. Lengyel 

(2007) discusses the issue in terms of national security, stating that the United 

States should begin to improve national security by decreasing its dependence on 

foreign oil, ensuring access to critical energy requirements, and promoting research 

for future energy security. The Center for Naval Analyses (CNA) (2009) finds that 

“inefficient use and overreliance on oil burdens the military, undermines combat 

effectiveness, and exacts a huge price tag—in dollars and lives” (p. 7).  Eggers 

(2008) claims that “the seemingly intractable problem of US dependence on foreign 

oil is a pre-eminent national security threat” (p. 12). The true costs of energy can be 

much higher than the flat per-gallon or per-barrel cost that fuel military planners 

typically consider. 

A. Emerging Importance of DoD Fuel Cost Accountability 

The earliest efforts to recognize the true cost of delivered energy for US 

forces came in 2001. The Defense Science Board (DSB) Task Force on Improving 

Fuel Efficiency of Weapons Platforms published More Capable Warfighting through 

Reduced Fuel Burden: Improving Fuel Efficiency of Weapons Platforms (2001), 

which contains several findings and recommendations that are detailed in the 

Appendix to this thesis.  One particularly relevant finding was that almost 70% of the 

weight US Forces bring to theater is fuel that powers warfighting equipment 

(Defense Science Board Task Force on Improving Fuel Efficiency of Weapons 

Platforms [DSB], 2001). 
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The DSB found that although improvements have been made, the DoD still 

had far to go in reducing energy demand by the warfighting forces (DSB, 2008).  In 

regard to its previous 2001 report, the DSB stated: 

The key finding was that warfighting, logistics and monetary benefits occur 
when weapons systems are made more fuel-efficient, but those benefits are 
not valued or emphasized in the requirements and acquisition processes. 
This is because DoD’s business processes do not explicitly, routinely, or 
systematically consider either the energy problem or opportunities to address 
it. The [2001] report found that the requirements process does not require 
energy efficiency in deployed systems, the acquisition process does not value 
it, the procurement process does not recognize it, and the Planning, 
Programming, Budgeting, and Execution System (PPBES) process does not 
provide it visibility when considering investment decisions. (DSB, 2008, p. 23)  

Many claim that the heavy energy burden of our systems will result in a 

greater number of instances of irregular warfare, wherein our enemies will find 

choice targets in the large logistics train, or “tail,” rather than face the “tooth” of our 

combat forces (CNA, 2009; DSB, 2001; Eggers, 2008; Lengyel, 2007). 

Warnings about securing our logistics trains, and the energy they provide to 

our combat systems, proved prescient when, in 2006, the commander of Multi-

National Forces-West (MNF-W), MajGen Zilmer (Commanding General, Multi-

National Force-West (MNF-W), 2006), submitted an Urgent Universal Needs 

Statement (UNS) for fuel-efficient vehicles, as a result of the high number of combat 

troops he had taken away from the fight and assigned to convoy escort duties.  

Recognizing the price he had to pay to protect his logistics tail, Zilmer requested 

equipment that freed him from the fuel tether.  The thought behind his request was 

that more fuel-efficient equipment would decrease the amount of support convoys 

would need to sustain combat vehicles. Decreased support requirements would also 

diminish the number of combat forces that Zilmer needed to pull away to perform 

force-protection duties for sustainment convoys.  Others have quoted this Urgent 
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UNS to further emphasize why the DoD needs to rethink its valuation of energy 

(Dipetto, 2008). 

The Government Accountability Office (GAO) was asked to discuss the DoD’s 

efforts to manage and reduce its mobility energy demand and found that “high fuel 

requirements on the battlefield can place a significant logistics burden on military 

forces, limit the range and pace of operations, and add to mission risks, including 

exposing supply convoys to attack” (GAO, 2008b, p. 1).  The GAO determined that 

there was a lack of accountability in the DoD with overall responsibility for energy 

reduction. The GAO stated that, “In the absence of an overarching organizational 

framework for mobility energy, DoD cannot be assured that its current efforts will be 

fully implemented and will significantly reduce its reliance on petroleum-based fuel” 

(GAO, 2008b, p. 1). The GAO recommended that the DoD establish an executive-

level Office of the Secretary of Defense (OSD) official to oversee all DoD energy-

reduction efforts.  Indeed, the GAO suggested that if such an office were instituted, 

the DoD would be better able to incorporate fuel efficiency as a consideration in both 

developing requirements and acquiring new weapons systems (GAO, 2008b). 

B. OUSD(AT&L) Efforts to Establish Fuel Metrics 

In response to the 2001 and 2008 DSB and other calls to better address 

energy efficiency in warfighting systems, the OUSD(AT&L) developed metrics to 

assist materiel planners and warfighters to value the logistics and delivery costs of 

fuel in materiel and operational decisions.  These efforts led to the development of a 

methodology to calculate the total cost of energy consumption of DoD systems and 

personnel on the battlefield. 
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C. Fully Burdened Cost of Fuel: DAG Rewrite and FBCF 
Directives 

The Interim Defense Acquisition Guidebook (DAG) now includes language 

that considers the cost of providing energy to systems (DAU, 2009).  Specifically, the 

DAG states that “the Analysis of Alternatives conducted during the Materiel Solution 

Analysis phase shall include an estimate of the fully burdened cost of delivered 

energy, added to the total ownership cost estimate” (DAU, 2009, part 3.1.6).  

Concentrating on the Fully Burdened Cost of Fuel (FBCF), the DAG seeks to 

capture all the costs of providing fuel to a tactical system as part of the Analysis of 

Alternatives.  The DAG defines FBCF as “the cost of the fuel itself (typically the 

Defense Energy Support Center (DESC) standard price), plus the apportioned cost 

of all of the fuel delivery logistics and related force protection required beyond the 

DESC point of sale to ensure refueling of this system” (DAU, 2009 part 3.1.6).  In 

addition to this concept, the DAG included a detailed guide of how to calculate the 

FBCF.  This guidance describes a seven-step process shown in Table 1. 

Table 1. Seven Steps to Estimating the Cost Elements of the Fully Burdened 
Cost of Delivered Energy  

(DAU, 2009, part 3.1.6) 

Step Element Burden Description 
1 Commodity Cost of Fuel DESC standard price for the appropriate type or types of fuel 
2 Primary Fuel Delivery Asset 

O&S Cost* 
Cost of operating service-owned fuel delivery assets 
including the cost of military and civilian personnel dedicated 
to the fuel mission 

3 Depreciation Cost of Primary 
Fuel Delivery Assets* 

Measures the decline in value of fuel delivery assets with 
finite service lives using straight-line depreciation over total 
service life 

4 Direct Fuel Infrastructure O&S 
and Recapitalization Cost 

Cost of fuel infrastructure that is not operated by DESC and 
directly tied to energy delivery 

5 Indirect Fuel Infrastructure* Cost of base infrastructure that is shared proportionally 
among all base tenants 

6 Environmental Cost* Cost representing carbon trading credit prices, hazardous 
waste control, and related subjects 

7 Other Service & Platform 
Delivery Specific Costs* 

Includes potential cost associated with delivering fuel such 
as convoy escort, force protection, regulatory compliance, 
contracting, and other costs as appropriate 
*These costs vary by Service and delivery method (ground, sea, air) 
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To provide greater detail to planners and cost estimators, OUSD(AT&L) 

released the FBCF Calculator to compute a numerical estimate of the FBCF using 

the basic methodology provided in the DAG (DAU, 2009). The calculator is an Excel 

spreadsheet that computes a 1,000-iteration Monte Carlo simulation based upon 

user inputs to provide graphical output from the model for use in planning total 

lifecycle costs. 

The Office of the Assistant Secretary of the Army (Acquisition, Logistics, and 

Technology) released a memorandum (USD(AT&L), 2007) to all US Army Program 

Executive Officers (PEOs) and Program Managers (PMs) mandating that all new 

program starts and increments that use energy, calculate the fully burdened costs of 

delivered energy required to operate their respective systems.  Another 

memorandum states that fuel costs used in estimating total ownership costs shall be 

based on the Fully Burdened Costs of Fuel, not just the standard commodity price 

(DUSD (LMR), 2008).  Based on these directives and policies, defense agencies 

have begun several projects to explore fully burdened costs of energy. 

D. Service Efforts to Determine FBCF Methodologies 

1. US Army Sustain the Mission Project 

In 2006, the Army Sustain the Mission Project (SMP) developed a 

methodology for calculating the FBCF resources to sustain Army missions in 

theaters of operation and at the training base. (Eady, et al., 2006)  In 2008, SMPII 

developed a user-friendly alpha-decision support tool in fiscal year (FY) 2008 for 

calculating the FBCF using the SMP methodology and for evaluating energy 

technology investments (Siegel et al., 2008).   These studies give realistic numbers 

to what it truly costs to provide fuel to a Stryker Brigade Combat Team (SBCT) in a 

base case scenario in Iraq or in an undeveloped theater.  SMP allows planners to 

see the costs and benefits of different fuel delivery methods for sustainment of 

forces.  The beta version of SMP, when released by Headquarters, Department of 
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the Army G-4 (HQDA G-4), should allow planners to calculate the FBCF for a variety 

of army units over changing scenarios.   

2. ODASA–CE Methodology 

At the 2009 DoD Cost Analysis Seminar (DODCAS), the ODASA–CE 

presented the first attempt to quantify the FBCF in the Analysis of Alternative (AoA) 

process based on the OUSD(AT&L) methodology (Hull & Roper, 2009). The 

ODASA–CE has taken the lead for generating a FBCF methodology and publishing 

factors for Army-wide use in the acquisitions process.  The ODASA–CE plans to 

develop FBCF methodology to incorporate into the AoAs for the Ground Combat 

Vehicle (GCV), Joint Light Tactical Vehicle (JLTV) and Armed Aerial Scout (AAS) 

MDAPS.  

3. US Navy FBCF Efforts 

Naval Sea Systems Command (NAVSEA) (Kearns, 2009) used the 

USD(AT&L) methodology for calculating FBCF and applied it to Navy ship 

applications.  These results were also presented at the 2009 Department of Defense 

Cost Analysis Symposium (DODCAS).  FBCF Calculator v6.2 is optimized for Navy 

systems.  In an analysis of Department of the Navy Major Defense Acquisition 

Programs, Corley (2009) found that the majority of programs are potentially 

impacted by FBCF estimates and concluded that the use of the FBCF during AoAs 

and EOAs offers the potential for significant benefit.  As Corley (2009, p. 42) states, 

“the use of FBCF estimates will provide PEOs, PMs, Milestone Decision Authorities 

(MDAs), and budgeting professionals a tool to better assess total Life Cycle Costs 

(LCC), the impacts of energy demand on the capability and its logistics tail, and its 

impact on the overall DoD budget.” 
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4. US Marine Corps FBCF Efforts 

The Commandant of the Marine Corps (CMC) recently tasked USMC HQMC 

Programs and Resources, Program Assessment and Evaluation Division (P&R 

(PA&E)) to determine the FBCF and Fully Burdened Cost of Water (FBCW) for 

Afghanistan, Operation Enduring Freedom (OEF). The PA&E’s Division’s results—

presented to General Officer Offsite (GOS) in October 2009—were based on a 

specific convoy scenario to a combat outpost of Marines operating in Southern 

Afghanistan (Cole & Blankenship, 2010).  The PA&E Division modified the FBCF 

Calculator V6.2 to apply to this specific scenario.  In so doing, the PA&E Division 

first-incorporated the concept of the Assured Delivery Price (ADP), a scenario-

specific price of fuel that can be calculated per gallon or per barrel.  The assured 

delivery price takes consuming systems out of the fully burdened price and gives 

only the cost of delivering under a specific scenario.  Figure 1 shows the continuum 

described by PA&E of the Assured Delivery Price (expressed in dollars per gallon) 

and the FBCF, expressed in dollars per day only after factoring in the demand of a 

consuming system. Figure 1 also shows that changes in system demand can affect 

the retail price of fuel. 
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Figure 1. Assured Delivery Price  
(Cole & Blankenship, 2009, Slide 5) 

5. MORS Energy Related Efforts 

The DoD’s efforts to determine Fully Burdened Costs of Energy have only 

focused on fuel. However, the Military Operations Research Society (MORS) has 

found, that the fully burdened costs for energy definitions for the DoD must go 

beyond petroleum-based fuels.  In addition to calling for standardized definitions of 

several energy efficiency terms, MORS insists that the definition of the FBCF must 

also be expanded to include energy beyond fuel (Regnier et al., 2009). 
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E. Conclusion 

Energy demands are placing increasing burdens on the logistical tail.  

Planners have begun to see this burden as a strategic issue.  This chapter focused 

on the DoD’s methods to deal with energy demand in the acquisition of new systems 

by applying new metrics to capability decisions.  The foremost of these new metrics 

is the FBCF. The chapter also discussed service efforts to develop FBCF 

methodologies and apply the methodologies to active Major Defense Acquisition 

Programs (MDAPs) and current sustainment scenarios.
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II. Delivered Energy from Batteries  

A. Introduction 

Compared to the amount of money spent each year on fuel, the cost of 

batteries is minuscule. It stands to reason that most of the efforts spent on 

determining the fully burdened costs of delivered energy have focused on 

petroleum-based fuels.  However, for a complete understanding of the fully 

burdened costs of delivered energy to mature, the DoD needs to develop this 

methodology for batteries. Additionally, as the DoD begins to use more electric-

powered vehicles, delivered (e.g., petroleum-based) fuel demands will decrease 

while stored energy demands will increase. 

During fiscal years 2000 through 2008, the Department of Defense spent over 

$66 billion on delivered energy (Andrews, 2009, p. 2).  Less than 1% of that amount, 

just under $600 million in FY 2000 dollars, was used for the purchase of batteries.1  

Although comparatively small when compared to total fuel purchases, $600 million is 

a considerable sum—enough to fund two US Army light infantry battalions deployed 

to Iraq for a year in 2006 (Belasco, 2009, p. 46). 

                                            

1Amount of money spent by the Department of Defense on fuel and battery purchases during FY 
2000 through FY2008, years in which data is available. Battery-purchase data was found based upon 
research conducted by authors on DoD battery-purchase contracts from FY 2000 through FY 2009. 
All dollar amounts are in FY 2000 values unless noted. 
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Figure 2. Total Energy Spending (in FY00$)  
(Federal Procurement, n.d.) 

B. Battery Purchases 

The $600 million in battery purchases from FY 2000–2008 fell into two major 

divisions: rechargeable and non-rechargeable. The majority of the spending—over 

350 million dollars—was for non-rechargeable batteries. Rechargeable battery 

contracts made up the remaining $225 million. The following table presents yearly 

battery purchases by category:
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Table 2. Battery Spend Data by FY and Major Category  
 (Federal Procurement, n.d.) 

During this period, approximately 61% of battery-purchase funds were spent 

on non-rechargeable batteries (Figure 3). 

 

Non-rechargeable 
(FSC 6135) 

(in FY 2000 $) 

% of total FY
batt purch 

Rechargeable 
(FSC 6140) 

(in FY 2000 $) 

% of total FY 
batt purch 

Total batt  
purch for FY (in FY 

2000 $) 

FY00 $11,888,001 49% $12,226,360 51% $24,114,361 

FY01 $29,944,583 60% $20,236,862 40% $50,181,445 

FY02 $13,983,808 40% $21,062,586 60% $35,046,394 

FY03 $154,420,532 80% $39,417,303 20% $193,837,835 

FY04 $46,427,999 66% $24,031,162 34% $70,459,161 

FY05 $26,480,793 47% $30,371,799 53% $56,852,592 

FY06 $32,489,384 64% $18,249,758 36% $50,739,142 

FY07 $25,178,831 50% $25,131,940 50% $50,310,771 

FY08 $15,587,974 31% $34,849,216 69% $50,437,190 

Totals $356,401,905  $225,576,986  $581,978,891 
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Figure 3. Battery Purchases Breakdown in $FY00  
(Federal Procurement, n.d.) 

C. Type 90 Battery Family 

One of the more common battery types used in the Services is the Type 90 

family of batteries, which includes both rechargeable and non-rechargeable 

batteries.  Table 3 summarizes key features of both types, and Table 4 presents a 

short list of equipment using the Type 90.
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Table 3. Type 90 Battery Features  
 (Power Sources Center of Excellence) 

Table 4. Military Equipment Powered by the Type 90  
(Power Sources Center of Excellence) 

Nomenclature Description 
AN/PRC-119  Radio, Portable Single Channel Ground and Airborne 

Radio System (SINCGARS) 

AN/PPN-19(V)2  Radar Transponder Set 

AN/PRC-117F Multiband Manpack Radio 

EPLRS RT Command and Control System 

AN/PSC-5 Portable Satellite Communications (SATCOM) Terminal 

AN/TMQ-30 Automatic Meteorological Station 

AN/GSQ-187 Remotely Monitored Battlefield Sensor System 

M-22 (ACADA)  Chemical Alarm 

AN/PRC-150 HF/VHF  Manpack Radio 

Javelin CLU  Thermal Imaging Unit 

 

D. Non-Rechargeable Battery Purchases 

Of the $356 million spent on non-rechargeable battery purchases by the DoD 

during FYs 2000–2008, purchases of the Type 90 series of batteries account for 

approximately $140 million, or about 40% of non-rechargeable battery purchases.  

This amount excludes the BB-2590, which is a rechargeable Type 90 battery (See 

Battery Features 

BA-5390/U Non-Rechargeable, Lithium Manganese Dioxide 

BA-5390A/U Non-Rechargeable, Lithium Manganese Dioxide, with State of Charge 
Indicator (SOCI) 

BA-5590A/U Non-Rechargeable, Lithium Sulfur Dioxide, with SOCI 

BA-5590B/U Non-Rechargeable, Lithium Sulfur Dioxide 

BB-2590/U Rechargeable, Lithium Ion, with SOCI 
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Figure 4). The amount spent on Type 90 batteries also accounts for approximately 

20% of all battery purchases during FY 2000-2008 (see Figure 4). 

 

Figure 4. Non-rechargeable Battery Purchases  
(Federal Procurement, n.d.) 

The amount spent on Type 90 batteries accounts for approximately 20% of all 

battery purchases during FY 2000-2008 (see Figure 5).   

 

Figure 5. Type 90 versus Overall Battery Purchases (FY2000–FY2008)  
(Federal Procurement, n.d.)
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E. Conclusion 

Almost 20% of the funds used to purchase batteries during FYs 2000 to 2008 

were spent on the Type 90 series of batteries. This series is a widely used battery 

within the DoD, and its use makes a good case for which to develop and analyze a 

methodology to determine the FBCB. Since the authors focused on one battery type 

in this study, the BA-5590 battery is the most obvious choice. The BA-5590 accounts 

for a large number of the Type 90 series of batteries purchased by the DoD. 
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III. Energy Awareness and Batteries 

Much has been done to improve battery performance within the DoD and to 

standardize military equipment to work on a smaller set of batteries. According to the 

Defense Standardization Program Office (2002), “During the 1970s and 1980s, Army 

systems were using more than 350 different types of 1.5-volt to 30-volt military 

batteries.  The proliferation of battery types led to high expenditures for batteries and 

decreasing unit readiness and interoperability” (Defense Standardization, 2002, p. 

1). 

Since the 1980s, the DoD has worked to reduce the number of batteries that 

power its 456 different communications–electronics (C-E) devices (defined as 

radios, laser rangefinders, telegraph terminals, global positioning systems, night-

vision devices, meteorological systems, and early warning sensors) from more than 

350 battery types to 35 battery types (Defense Standardization, 2002).  Although 

costs relating to battery type have decreased since 1996, to date no studies have 

attempted to apply fully burdened costs to batteries. 

A. Batteries as a Commodity 

Batteries are similar to fuel in that they are a commodity (Rendon, 2005).  

However, in order to appreciate the FBCB, one must understand a critical difference 

between how the DoD acquires batteries and how it acquires fuel.  As the sole 

acquirer and provider of fuel to all of the DoD, the Defense Energy Supply Center 

(DESC) develops and executes the DoD fuel procurement strategy.  Analysts and 

mission planners base their calculations on, and draw their conclusions from, the 

transaction costs and prices that DESC establishes.  The DoD battery procurement 

strategy is more commercialized due to the variety of commercial providers and the 

greater number of public and private consumers. 
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  The economist Oliver E. Williamson stated that “if transaction costs are 

negligible, the organization of economic activity is irrelevant, since any advantages 

one mode of organization appears to hold over another will simply be eliminated by 

costless contracting.” (Williamson, 1979, p. 233) Thus, it is important to understand 

and capture transaction costs in order to increase the DoD’s procurement 

effectiveness and avoid costs.  In a later article, Williamson explained transaction 

costs as “the comparitive costs of planning, adapting, and monitoring task 

completion under alternative governance structures” (Williamson, 1981, pp. 552-

553). 

The authors understand the complexity of capturing all applicable transaction 

costs accurately.  Williamson even stated that beyond some general propositions, a 

“consensus on transaction costs is lacking” (Williamson, 1979, p. 234).  Transaction 

costs for military battery procurement are an unrealized cost burden.  However, for 

the purposes of this thesis, the authors captured some of this burden by limiting the 

study of applicable transaction costs to government agency administrative costs up 

to and including contract award.  Even within this restricted view, costs only apply to 

contracting personnel actually working on a contract and not necessarily agency 

wide.  Within this view, Elliot Yoder defined transaction costs as the quantitative 

value of touch time required to create, solicit, and award a contract (Yoder, 2006).  

Yoder went on to expand this definition as follows: 

 Contract actions using large Simplified Acquisition Procedures (SAP) 
protocol—as outlined in Federal Acquisition Regulation (FAR) Part 
13—use approximately 9 hours of touch time. (Yoder, 2006, pg. 24–
25) 

 Contract actions using large-contracting procedures—typically FAR 
Parts 14 and 15—take approximately 200 hours of touch time. (Yoder, 
2006, pg. 24–25)
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 Transaction costs are derived by taking the “average loaded hourly 
salary rate for an 1102 Contract Specialist of $50” and multiplying it by 
9 hours or 200 hours, depending on the contract type. (Yoder, 2006, 
pg. 24–25) 

In addition to the many battery-procuring agencies within the DoD, the 

procurement process offers numerous opportunities to add time and/or cost 

inefficiencies.  One way to avoid or reduce the effect of transaction costs is to 

approach battery procurement as a strategic function.  When organizations take a 

more strategic approach to purchasing, they can improve by 20% or more in cost, 

schedule, and quality (Monczka, Handfield, Giunipero & Patterson, 2009).   

Strategic purchasing includes the idea of “strategic sourcing, […] however, it 

also emphasizes the ability of purchasing to align with and influence enterprise 

strategy” (Hudgens, 2008).  In a 2005 memo, the Office of Management and Budget 

(OMB) defined strategic sourcing as “the collaborative and structured process of 

critically analyzing an organization’s spending and using this information to make 

business decisions about acquiring commodities and services more effectively and 

efficiently” (Deputy Director for Management, 2005, p. 1).  Strategic sourcing is one 

of the major steps in the procurement process that involves the identification and 

selection of the supplier whose costs, qualities, technologies, timeliness, 

dependability, and service best meets the organization’s needs (Burt, Dobler & 

Starling, 2003).  The success of commercial firms using strategic sourcing has been 

the catalyst for the increased interest by government organizations (Foust & Jenson, 

2006).  In order to fully understand how the DoD can purchase batteries 

strategically, this chapter will examine the battery industry both in terms of suppliers 

(using industry analysis and core competencies), and in terms of purchasing (using 

spend analysis (reference) and the Kraljic (1983) model). 
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B. Battery Suppliers 

In its 2002 case study—which analyzed how to improve the performance of 

portable power for C-E devices—the Defense Standardization Program noted a 

decrease in the industrial base for defense battery manufacturers.  This study also 

noted how major manufacturers “such as Eveready and Duracell walked away from 

the military battery business because of low volume demand” (Defense 

Standardization, 2002).  The study indicated that the military-unique battery demand 

is small compared to the overall commercial market; such a position can result in 

higher unit costs and uncertain contractual commitments.  This situation created a 

small niche market for a few opportunistic manufacturers, which (as of 2009) 

consisted of five primary suppliers of Type 90 non-rechargeable batteries: Saft 

Batteries, Inc., EaglePicher Corp., BrenTronics, Inc., Mathews Associates, Inc., and 

Ultralife Batteries, Inc.   

C. Battery Purchasing 

A key to managing the purchasing activity at a strategic level is to find the 

successes and faults in past procurement activity. Leading commercial firms 

discover this history by conducting “a spend analysis, or an analysis of expenditures 

along dimensions such as type of commodity or service and suppliers, numbers of 

contracts and expenditures, and other variables showing how current money is 

spent on goods and services” (Moore, Cook, Grammich & Lindenblatt, 2004).  A 

spend analysis is an excellent strategic analysis tool that seeks to analyze both the 

purchases and the supply base in order to understand risks and opportunities 

involved in how, and from whom, the organization buys (2004).   

An ideal starting point for conducting a spend analysis on a government 

agency is the Federal Procurement Data System–Next Generation (FPDS–NG).  

This is a digital database of every DD Form 350, the Individual Contract Action 

Report (CAR), which accompanies every contract or contract modification and 
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includes key information about that contract—such as contract number, date, 

agency/office, dollar amount, vendor, contract type, and socio-economic information 

on the contractor.   

Although extremely useful in collecting data for a spend analysis, one of the 

limitations of the FPDS–NG is that it does not return the specific item(s) involved in 

the transaction.  Therefore, it is impossible to determine useful information, such as 

unit price or quantity, without calling the office for a copy of the actual contract.  The 

most precise detail that FPDS–NG will return for any given item is the Federal 

Supply Classification (FSC) Code.  The Type 90 family of C-E non-rechargeable 

batteries falls under the FSC Code 6135, which is the classification for all non-

rechargeable batteries.  Therefore, the procurement data collected for this study 

from FPDS-NG consisted of all DoD contracts, with the FSC Code of 6135, 

purchased from the five aforementioned vendors. 

Regarding C-E non-rechargeable battery purchases, any DoD agency can 

establish a new contract or make a purchase order against an existing contract from 

any one of these vendors.  This type of activity makes purchasing extremely 

convenient at the individual office level but ultimately costly at the DoD enterprise 

level. 

D. Spend Analysis 

In Spend Analysis: The Window into Strategic Sourcing, Pandit and Marmanis 

(2008) propose that a thorough spend analysis would enable an organization to 

answer the following types of questions: 

 What was the corporate-wide spend associated with each cost center 
last year? Does the aggregate amount enable me to increase leverage 
with suppliers? 
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 What are the top commodities? What has the spend trend been over 
the last few years? Which of these commodities represent 
opportunities for spend reduction? 

 Which suppliers are the most valuable and strategic? 

 How much is spent with preferred suppliers? How much is spent with 
poorly performing suppliers? 

 What percentage of spend is associated with contracts? 

Figure 6 graphically represents all DoD purchases from January 2000 through 

August 2009 (with the FSC Code of 6135) from the five C-E non-rechargeable 

battery manufacturers. 

 

Figure 6. FPDS-NG Data for C-E Non-rechargeable Batteries  
(Federal Procurement, n.d.) 

This study of FPDS-NG data yields the following results: 

 The Army and Defense Logistics Agency (DLA) made the greatest 
number of purchases in terms of total dollar amounts and the largest 
purchase amounts for a single contract, and also had the highest total 
number of transactions.   
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 As expected, most of the Army activity occurred from FY 2002-FY 
2004, at the beginning of Operations Enduring Freedom and Iraqi 
Freedom. 

 Army purchasing activity tapered sharply after FY 2004.  The bulk of 
DLA activity occurred from FY 2005 to the present. 

 All DoD agencies make battery purchases with these companies, thus 
increasing transaction costs.  There does not appear to be an 
overarching procurement strategy. 

 A 2004 Research and Development (RAND) study that applied a 
spend analysis to all Air Force purchasing in order to help the Air Force 
in its purchasing and supply management made similar observations 
based on FPDS-NG data. 

 Procurement offices execute more than 800 contracts per year, in 
more than 200 Federal Supply Classes, with more than 400 contractor 
codes.  As a result, operational procurement personnel may have 
difficulty becoming expert with specific industries or contractors. 
(Moore, Cook, Grammich & Lindenblatt, 2004 p. ix) 

 34% of contractor ID codes have multiple contracts with the Air Force. 
Because many Air Force suppliers have multiple contractor ID codes, 
this percentage actually underestimates the number of multiple 
contracts with the same company.  For companies with multiple 
contracts, the Air Force is paying (through higher prices) for the 
contractor’s repetitive bidding and contract administration costs. 
(Moore et al., 2004 p. ix) 

 Many purchase-office codes are associated with the same contractor.  
Buyers indirectly pay each contractor’s administrative and marketing 
costs associated with selling its services to more than one unit of the 
buying enterprise. The decentralized Air Force purchasing structure 
leads to 24% of contractor ID codes selling to more than one Air Force 
purchase office code. (Moore et al., 2004 p. ix) 

E. Purchasing Approach 

In order to leverage its buying power, the DoD’s battery procurement activity 

should resemble the Kraljic (1983) Purchasing Model.  This approach “provides a 

systematic framework for incorporating environmental and other strategic factors into 
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corporate procurement strategy formulation for purchased products and material” 

(Rendon, 2005, p. 7).  Figure 7 illustrates Kraljic’s purchasing model. 

 

Figure 7. Kraljic Purchasing Model Approach  
(Kraljic, 1983, p. 111) 

A GAO report published in April 2005 detailed the market characteristics of 

the Type 90 family of batteries.  Prior to 2002, Saft manufactured all the BA-5590 

batteries for the DoD.  In late 2002, the increase in operations tempo caused by 

Operations Enduring Freedom and Iraqi Freedom created a surge in demand that 

resulted in a critical shortage of the BA-5590.  In response to the shortage, CECOM, 

the Type 90 battery manager for the DoD, contracted additional battery 

manufacturers: Eagle-Picher Technologies to deliver the BA-5590 and Ultralife to 

deliver the BA-5390, a longer lasting BA-5590 substitute.  The DoD also made a $5 

million investment to all three producers in 2003 and established a war-reserve 
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requirement of 1.5 million batteries comprised of both the BA-5590 and the BA-5390 

(GAO, 2005, April).  Additionally, in 2004, the Deputy Under Secretary of Defense 

for Logistics and Materiel Readiness transferred battery inventory management 

authority from CECOM to DLA (GAO, 2005, April). 

The GAO report listed four related conditions as the key causes for the 

battery shortage: inadequate war reserve requirements, inaccurate forecasted 

requirements, lack of full funding, and acquisition delays due to industrial-base 

limitations (GAO, 2005, April).  However, in March 2004, Science Applications 

International Corporation (SAIC), in a DoD-sponsored assessment of the logistics 

situation in Iraq, reported that a “limited industrial base [w]as the primary cause of 

the BA-5590 battery shortage.” 

Until stable replacement technology matures, the Type 90 battery will 

continue to be critical to the warfighter.  The April 2005 GAO report demonstrated 

that the Type 90 battery family has a high purchasing importance, relatively limited 

supply base, and low-to-moderate market complexity.  This would classify the Type 

90 battery as a “strategic item” within the Kraljic purchasing model.  As Dr. Rendon 

suggests in his 2005 report on Commodity Sourcing Strategies, “[s]trategic items 

require extensive market and vendor analysis, accurate product forecasting, and the 

establishment of long-term supplier partnerships” (Rendon, 2005, p. 300). 

Failure to adequately plan for an immature combat theater scenario results in 

unnecessary costs for procurement transactions and additional costs for 

transportation.  In the future, DoD purchases of Type 90 batteries should be 

strategically planned and coordinated to take advantage of the procurement 

strategies for leverage items.  Using purchasing leverage now will save costs and 

position the DoD for future savings as battery technology develops. 
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F. Recommendations 

The spend data revealed a surge in battery-purchasing activity at the onset of 

combat operations in Iraq, as well as various uncoordinated purchases occurring 

over the next five years.  This data also reveals a flaw in the planning and 

forecasting process, which results in unnecessary costs.  The following 

recommendations will help to reduce the number of flaws in DoD’s current 

procurement planning methods for Type 90 batteries. 

First, battery purchasing should occur at a central office.  This requirement 

would reduce the transaction costs and increase the leverage of the buyer (DoD) on 

the industry.  As the Air Force RAND study stated: 

If many purchase office codes are purchasing the same commodity, or if there 

are many separate contracts for the same commodity, the Air Force may be able to 

consolidate these purchases into fewer contracts and benefit from economies of 

scale with its suppliers as well as reduce its transaction costs. (Moore et al., 2004, p. 

60) 

Second, given the increased reliance on portable power sources, contracting 

strategy should be considered in the planning process prior to a) initially engaging in 

an immature area of operations or b) producing a new system dependent on 

portable power.  Procurement strategy and forecasting for batteries (and for other 

sources of delivered energy) will not be perfect, but they should be proactive. 

Third, logistics planners should incorporate a procurement strategy for the 

long term.  This approach would mean planning for purchasing equipment and 

supplies in a mature theater of operations or purchasing spares over the lifecycle of 

a system.  Proactive planning for purchasing will ultimately reduce and control 

transaction costs. 
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G. Conclusion 

This chapter discussed procurement factors that contribute to the FBCB.  

Though they seem unrelated to energy awareness and lifecycle modeling, the 

viability of the battery industry and the purchasing approach of the DoD can 

ultimately help or hinder the process of putting portable energy in the hands of the 

warfighter.
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IV. Fully Burdened Cost of Batteries 
Methodology 

Our analysis of the Fully Burdened Cost of Batteries (FBCB) builds upon the 

Fully Burdened Cost of Fuel (FBCF) methodology mandated in the DAG. The Fully 

Burdened Cost of Batteries (FBCB) is defined as the cost of batteries as delivered 

from the manufacturer to the Department of Defense Logistics Agency, plus the 

ensuing cost burdens accrued in the logistics of delivery, use, and disposal. In this 

thesis, we attempt to modify the FBCF methodology described by USD(AT&L) to 

develop a methodology that applies to the Fully Burdened Cost of Batteries within 

the AoA.  We then apply this methodology to wartime and peacetime scenarios to 

determine how the fully burdened lifecycle cost of a battery impacts the total cost of 

a military system.  Figure 8 is a pictorial representation of our methodology. 

 

Figure 8. Methodology of This Study 



 

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 32 - 
k^s^i=mlpqdo^ar^qb=p`elli=

 

A. Research Questions 

The primary aim of this study is to determine a methodology for analyzing the 

FBCB for use in the Analysis of Alternatives of a DoD system acquisition. 

Secondary questions this study will attempt to answer are as follows: 

(1) What cost elements can be used to determine the fully burdened cost 
of a battery? 

(2) What model or models can be developed to simulate the lifecycle of 
batteries within defense systems? 

(3) How does analysis of the battery as a commodity drive the 
procurement strategy? 

B. Limitations of Fully Burdened Costs 

Fully burdened costs are scenario dependent.  That is to say, the costs are 

only valid within the scenario being modeled.  For example, there is no set cost for 

fuel to a forward operating base (FOB) in Iraq or Afghanistan.  Every situation will be 

different based on the scenario; therefore, costs will be different. 

Numbers generated from fully burdened costs should never be taken as 

definitive.  Because a wartime scenario shows that it will cost, for example, $11.53 

per fully burdened gallon of fuel to run a FOB in Operation Enduring Freedom 

(OEF), this number should not be used as the absolute cost of fuel in OEF. Because 

of the scenario-specific nature of fully burdened costs, they are most useful for 

trade-space analysis.  The number derived from a fully burdened cost analysis is 

useful for comparing costs and benefits of different systems and battery types within 

the scenario being modeled. 

Scenarios need to be standardized for AoAs in order to demonstrate the true 

benefits and costs within the tradespace.  Currently, no standardized, unclassified 

scenarios exist.  Unless standard “plug and play” scenarios are developed, the fully 
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burdened costs developed for tradespace analysis will have limited applicability 

across different scenarios; however, our methodology is general and the calculations 

are computationally efficient so as to allow many specific analyses to be conducted 

in a relatively short period of time. 

The fully burdened price is equal to the assured delivery price multiplied by 

the energy demand of a system.  In many instances, once the assured delivery price 

is established, the fully burdened cost may be of little use when compared to other 

similar systems.  The most useful measure of assured delivery price comes when 

you have systems with differing energy demands within the tradespace. 

C. Limitations of this Study 

This study is limited to modeling the lifecycle and fully burdened costs of the 

BA-5590A/B batteries.  Other 90-series batteries present an enticing object of study, 

but due to the similarity of non-rechargeable 90 types, this study focuses on the 

ubiquitous non-rechargeable battery. 

Models are never meant to capture all the complexities of real-life situations.  

The researchers desired to create a methodology that can be used to analyze fully-

burdened costs of batteries.  The outcome of this methodology will not result in a 

budgetary number that can be placed in a budget for battery costs. The resulting 

number will be one that can be used for analysis, i.e. it will be a scenario-based 

amount that can only be compared to other battery systems whose fully burdened 

costs were determined using the same methodology and scenarios. The model, 

though, presents a way to implement a general methodology that can be used for 

further analysis in fully-burdened energy costs.  
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D. Battery Burden Elements 

In order to estimate the direct and indirect costs associated with batteries, we 

utilized the FBCF methodology as a base model to develop the direct and indirect 

costs associated with batteries.  The cost elements we have derived to apply FBCB 

are detailed in Table 5.   

Table 5. Battery Lifecycle Burden Elements  

Symbol Cost Element Name Description 
CE1 Acquisition Costs Transaction costs for purchases made through DLA 

and Services 
CE2 Transportation Apportioned costs of air, maritime, and ground modes 

of shipping 
CE3 Depreciation Shipping and storage asset depreciation 
CE4 Storage Apportioned cost of storage infrastructure. The 

dissipation cost is the average time a battery spends 
in storage times the energy dissipation rate. 

CE5 Disposal Costs Environmental costs and asset recovery costs related 
to disposal (already included in 30% of the purchase 
price of BA-5590). 

D Demand Cost per unit of power output. Weight cost of the 
battery asset on the system. Total demand of the 
system on the battery after the Assured Delivery Price 
has been calculated. 

Figure 9 depicts the flow chart that models the lifecycle of a battery under 

study.  This flow chart is the basis for the mathematical model the researchers will 

devise to estimate the fully burdened cost of the battery.
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Figure 9. Fully Burdened Lifecycle Cost Inputs  

E. FBCB Burdens 

The battery’s fully burdened cost elements are based on the FBCF burden 

elements from ODASA–CE. We have changed them to reflect the variable nature of 

battery types, the lack of dedicated transport vehicles for batteries, the more 

complicated acquisition process for batteries, and the variable nature of battery 

usage. The six burden elements are as follows: Acquisition, Transportation, 

Depreciation, Storage, Disposal, and Usage. 

1. Demand (D) 

System demand feeds the model. It is used to determine how many batteries 

will determine an ADP and the fully burdened cost of running batteries in a particular 

system for an operating period.  Demand, or the number of batteries required, is 

dependent on the situation of the user, temperature, the system being powered by 

the battery, and the number of times a battery is replaced in a system. For this 



 

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 36 - 
k^s^i=mlpqdo^ar^qb=p`elli=

 

analysis, we developed two very specific scenarios that fine tuned the inputs to 

make FBCB calculations. The scenario usage data we derived is based upon 

demand data we received from US Army Communications-Electronics Command 

(CECOM) based upon their analysis of BA-5590 Battery usage. In particular, we 

used a spreadsheet tool developed by CECOM called the Power Optimizer For the 

Warfighter’s Energy Requirements (POWER) version 1.3e. Appendix C describes 

POWER and how we used it to determine battery demand. 

2. Acquisition Costs (CE1) 

We determined the acquisition costs for our battery system by analyzing 

purchasing data for the BA-5590 from FY 2000 to 2009. We selected this time period 

because of data availability. Additionally, this period coincides with the Global War 

on Terror, thus incorporating increased military operational tempo (OPTEMPO). 

Both DLA and the individual services purchased batteries during this time period. 

This analysis includes purchases to be to a FOB destination. This means the 

shipping costs were built into the unit price of the battery (Gietter, 2010).  DLA’s 

published unit price, or the price that it charges units, can be found in the Army 

Material Data File (AMDF).  As the analysis will show, this price is significantly 

higher than the unit price that the manufacturer charges.  DLA would not reveal its 

additional cost burdens nor the rationale for the additional cost burdens.  In order to 

determine more realistic cost burdens, the researchers used the manufacturers 

contract price instead of the AMDF price. 

In order to determine Acquisition Costs, we broke them into three sub-

elements. These were Purchase Price, Transaction Costs, and Proprietary Cost 

Factor
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a. Purchase Price (CE1A) 

The purchase price of the battery system should be the amount paid by the 

Department of Defense for each individual system. For many systems, though, this 

is difficult to determine, especially since each system’s cost can fall as more 

systems are produced.  

Saft produces the BA-5590 B/U battery, both with and without the status of 

charge indicator (SOCI).  From FY2000 to the present, the DoD used three primary 

contracts to purchase the battery from Saft.  Table 6 displays the details for the 

contracts.   

Table 6. BA-5590 (without SOCI) Contract Data 
(Saft and FPDS–NG). 

Contract Period (FY) Quantity* Unit Price* 
(FY$2000) 

1 2000-2002 350,000 $60 

2 2003-2007 2,000,000 $55 

3 2008-present 37,000 $50 

*All figures are rounded estimates of actual DoD contracts. The authors have 

the actual data but cannot publish it because it is proprietary. 

Contracts 1 and 2 were both administered by the US Army Communications 

and Electronics Command (CECOM) in 1999 and 2002, respectively.  The Army 

made 11 delivery orders against Contract 2.  In FY2005, the DoD transferred all of 

CECOM’s contracting activity to DLA after closing the contracting office of Fort 

Monmouth, NJ through the Base Realignment and Closure (BRAC) process.  DLA 

administers Contract 3.   

Table 7 below outlines the price difference between what DLA purchased and 

what DLA charges to the services.  Since FY2000, DLA has charged its customers 
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an additional 45% over the original purchase price.  For the purposes of this study, 

the fully burdened price of batteries will begin with a unit price of $54.73.  This is 

based on a weighted average using ten years of proprietary unit prices and contract 

quantities given to the researchers by Saft.   

Table 7. AMDF and Saft Unit Price Comparison 
(Saft and DLA) 

*All figures are rounded estimates of actual DoD/Saft contracts. The authors 

have the actual data but cannot publish because it is proprietary. 

**Average unit price calculated using actual proprietary data.

 
FY 

AMDF unit price 
(FY00$) 

Saft unit price* 
(FY00$) 

% difference 
(AMDF/Saft*) 

FY00 N/A $60  

FY01 N/A $60  

FY02 N/A $60  

FY03 $79.80 $55 145% 

FY04 N/1A $55  

FY05 $72.29 $55 131% 

FY06 N/A $55  

FY07 N/A $55  

FY08 $80.83 $50 162% 

FY09 $83.24 $50 166% 

FY10 $58.91 $50 118% 

AVG $75.01 $54.73** 145% 
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b. Transaction Cost (CE1B) 

The transaction costs for this report will be based on E. Cory Yoder’s 

definition and application of transaction costs: 

 Contract actions using large Simplified Acquisition Procedures (SAP) 
protocol—as outlined in Federal Acquisition Regulation (FAR) Part 
13—use approximately 9 hours of touch time. (Yoder, 2006, pgs. 24-
25) 

 Contract actions using large-contracting procedures—typically FAR 
Parts 14 and 15—take approximately 200 hours of touch time. (Yoder, 
2006, pgs. 24-25) 

 Transaction costs are derived by taking the “average loaded hourly 
salary rate for an 1102 Contract Specialist of $50” and multiplying it by 
9 hours or 200 hours, depending on the contract type. (Yoder, 2006, 
pgs. 24-25) 

The following table details the transaction costs for the DoD contracts with 

Saft for the BA-5590. For the purposes of this study, the average transaction cost 

per battery will be $0.12, based on the average cost per battery for all three 

contracts across ten years. 

Table 8. Contract Transaction Costs  
(Saft and FPDS–NG) 

Contract 
Base 
Cost 

Delivery 
Orders 

Delivery Order 
Cost Total Cost Batt qty* Cost per batt 

1 $10,000 2 $900 $10,900 350,000 ≈$0.03 

2 $10,000 11 $4,950 $14,950 2,000,000 ≈$0.01 

3 $10,000 5 $2,250 $12,250 37,000 ≈ $0.32 

*All figures are rounded estimates of actual DoD/Saft contracts. The authors 

have the actual data but cannot publish because it is proprietary.
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c. Proprietary Cost  (CE1C)  

We developed a proprietary cost factor so that our methodology could 

compare two different types of batteries in an acquisition Analysis of Alternatives 

(AoA) process.  This cost factor enables us to compare the acquisition costs of two 

different battery systems by factoring in the effects of risk into the methodology 

based upon the contract type for the development of the system. For an acquisition 

of a defense system that is in the AoA stage of the acquisition process, the 

proprietary factor reflects the amount of risk that the government is accepting due to 

technology in the system. For a Fixed Price contract, in which the contractor accepts 

the most risk, the risk factor would be 1.  

As for the BA-5590—since it is an existing contract—it also carries a risk 

factor of 1 (General Services Administration, 2010, part 16.1). For Cost-

reimbursement Contracts, in which the government accepts a great deal of risk, the 

factor increases. This Proprietary Cost Factor is only to be used in the AoA process. 

Once a system has been produced, the purchase price and the transaction costs of 

the system will reflect the risk that the contractor and the government incurred 

(General Services Administration, 2010, part 16.301). 

We multiplied the proprietarty cost factor by the purchase price, CE1A in order 

to determine the cost of CE1C. 

3. Transportation Costs (CE2) 

In order to determine the transportation costs associated with movement of 

the BA-5590, we utilized the Marine Corps Format for Life Cycle Cost Estimates 

from the 1998 Marine Corp Cost Estimating Handbook for estimating transportation 

costs (MARCORSYSCOM, 1998, p. ANNEX C). This source gives a comprehensive 

and integrated analysis of the transportation costs within a lifecycle cost estimate. 

Additionally, it computes costs based on a per-unit basis.  



 

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 41 - 
k^s^i=mlpqdo^ar^qb=p`elli=

 

The Marine Corps method breaks the transportation cost estimation into two 

parts: First Destination Costs (FDC) and Second Destination Costs (SDC). The 

handbook states that “FDC costs are for transportation from the manufacturer to the 

location at which acceptance occurs,” while “SDC costs consist of the cost of 

transporting equipment between the point of acceptance and location of the using 

unit.” The “location at which acceptance occurs,” is the DoD Supply Depot 

(MARCORSYSCOM, 1998, p. Annex C). As we stated previously in the Acquisition 

Costs section, sometimes the FDC costs are included in the purchase price.  

For our model, we implemented a third transportation cost factor, Tactical 

Destination Cost (TDC), in order to incorporate shipping to operational units at the 

tactical edge in our combat scenario. TDC is the transportation cost from the theater 

port to the unit. Thus, our use of SDC for our combat scenario referred to the 

transportation of the batteries from Continental United States (CONUS) to the 

theater port location. For our peacetime scenario, SDC refers to transportation costs 

from the CONUS depot to the CONUS unit. It was important to create this third 

transportation cost part due to the inherent complexity in the transportation of the 

batteries from the theater port to the unit located in a forward, combat location.  

The Marine Corps Cost Estimating format estimates the costs of transport in 

two ways. For CONUS shipping costs, the model uses a formula based upon weight, 

mileage, and dollar/ton/mile rate. For our analysis, we contacted the DoD’s 

Transportation Command (TRANSCOM) in order to determine shipping rates for 

batteries (which are classified as hazardous materials (HAZMAT)) within the United 

States. The authors noted a price of $.70 per pound for orders over 100 batteries. 

(TRANSCOM, 2010) For outside the continental United States (OCONUS) shipping 

costs, the Marine Corps method utilizes measurement tons (Mtons), US port 

handling charges, ocean transport rates, and destination port handling charges with 

a measurement ton being 40 cubic feet (MARCORSYSCOM, 1998, Annex C).  This 

measurement was calculated by TRANSCOM’s Surface Deployment and 
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Distribution Command (SDDC) using a hypothetical weight of HAZMAT sent from 

the southeastern United States to the Middle East.  

The CONUS and OCONUS transportation costs (FDC and SDC) are 

relatively easy to determine if the weight to be transported, the distance, and the rate 

for distance are known. The TDC, however, is a more difficult amount to determine. 

The transportation that occurs during the TDC phase is usually conducted by 

Soldiers and Marines and not by contracted personnel. Thus, the cost associated 

with this transportation is fragmented between the cost of the vehicles transporting 

the materiel, the cost of the protection for the convoy, and the cost of the personnel 

who operate the vehicles. Additionally, the convoy would most likely be carrying 

more than just batteries, so the cost effect on the batteries is proportional based on 

how many batteries the convoy is carrying. 

In order to estimate proportion in our scenario, we used a set number of 

batteries carried over a certain distance with a specific convoy make-up.  We 

determined the make-up of the convey using an historical convoy observed by the 

USMC Energy Assessment Team in 2009.  To determine the number of batteries in 

the convoy, we collected data from the Logistic Support Activities’ Parts Tracker 

website to discover the average number of batteries in an order moving from Kuwait 

to Afghanistan.  Additionally, we estimated the amount of other materiel that would 

be in the convoy.  We used cost factors developed by Cole and Blankenship (2010) 

for force protection and other transportation costs in our determination of TDC costs. 

4. Depreciation Cost (CE3) 

Depreciation cost is one of the seven price factors to determine the FBCF. 

(Regnier et al., 2009) As with the Fully Burdened Cost of Fuel, the Depreciation Cost 

factor for batteries will measure the decline in value of battery delivery and storage 

assets with finite service lives using straight-line depreciation over total service life.  
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Depreciation cost analysis, though, need only be done on cost elements that 

have not already included depreciation costs. For Transportation Costs where the 

DoD contracts commercial assets for use, it can be assumed that the commercial 

shipper has already calculated depreciation costs. In contrast, the Defense Logistics 

Agency, in their storage cost transfer pricing, does not include storage asset 

depreciation (Smith, 2009). Thus we didn’t determine the depreciation for 

transportation assets from the depot to CONUS-based units, or from ports to 

overseas depots, because the contracted commercial transportation assets would 

price this into the amount charged to deliver the batteries. We did, however, 

determine the DLA storage depreciation costs per battery. 

In the tactical environment, though, it is important to determine depreciation 

costs for the storage and transportation equipment used. For our analysis, we will 

utilize a specific depreciation formula to determine the depreciation costs of a 

transportation or storage asset. The formula for an asset is as follows: 

% Space taken up by battery x % operational life battery uses x straight-line 

depreciation over that lifetime. 

In order to determine the percent of space used for battery storage or 

transportation, we used an example storage amount and an example number of 

batteries to be transported. We based the number to be transported on the demand 

required to operate a radio system within the scenario. We obtained the number 

through the US Army’s Parts Tracker website for Afghanistan requisitions (US Army 

Logisitics Support Activity). We based the number of batteries in storage in a 

location on the average number of batteries in storage at depots around the United 

States. We were limited in knowing the sites where batteries are stored by available 

storage data on WEBFLIS, the DLA’s enterprise tracking systems (US Army 

Logistics Support Activity).  
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We then estimated the length of time that the batteries would spend in 

storage and input this information into our scenario. Our scenario also gave us the 

amount of operational life used for transporting the batteries based upon travel 

distances from forward depot to requisitioning unit.  

5. Storage Costs (CE4) 

In order to reduce lead-time as the batteries move from the manufacturer to 

the receiving unit, there will be a need to store them in preparation for future orders 

from the field. There are two types of storage scenarios in our methodology: Depot 

Storage and Unit Storage. 

a. Depot Storage (CE4A) 

The Defense Logistic Agency (DLA) charges for storage based upon the unit 

cubic foot of an item and on what type of environment is needed. DLA will store 

items in open, covered, or specialized environments. Specialized environments are 

required for hazardous material, flammable items, and high value and sensitive 

items. The BA 5590 falls under the specialized category (Smith, 2009). 

The DLA FY10 annual rates for storage within these environments are as 

follows: 

Open  --------  $4.03 per cubic foot 
Covered ------ $0.39 per cubic foot 
Specialized -- $5.59 per cubic foot 

The DLA maintains a database with length, width, and height measurements 

for each item it stores. These measurements are used to calculate the cubic feet of 

each item.  That number is multiplied by the quantity in storage to obtain what is 

called the "extended cube" of the national stock number (NSN).  Then the storage 

cost is calculated by multiplying the appropriate storage rate ($5.59 for hazardous 
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materials, which includes batteries) by the "extended cube" size.  This cost 

represents the annual cost of storing an item at the 25 Defense Distribution Depots, 

including Kuwait (Smith, 2009, October 20; 2010, February 1) 

b. Unit Storage (CE4B) 

The numbers listed the previous section show the storage costs as the 

batteries move from the manufacturer to Kuwait. The last stage of storage is the unit 

storage cost for the battery. In order to determine this cost, we found it necessary to 

make certain assumptions due to the nature of unit storage costs. A warfighting unit 

(such as an Army brigade) does not charge or get charged for storage of materiel. 

The only cost factor that units have when they store items such as batteries is what 

they give up in order to store the batteries.  In order to determine this cost factor, we 

analyzed a storage space that is universal to tactical units. Since buildings differ in 

both design and space, it is impractical to use a building as a means of calculating 

costs. A common storage platform, however, especially when units are on the move, 

is transportation space. Transportation space in the military is generally on trucks. 

For most Army units, truck space is in the form of the Family of Medium Tactical 

Vehicles (FMTV). When a unit chooses to store a battery in an FMTV, it must have 

determined that the battery was more deserving of that space than whatever else 

the unit might have stored there. Thus, we can analyze the cost of that space in 

order to determine the unit cost of storing a battery at the unit level. This is the basis 

for our assumption that the storage cost of a battery for a military unit can be 

determined by analyzing the fraction of space used by a battery in an FMTV. 

The 2.5-ton Light Medium Tactical Vehicle (LMTV) variant of the FMTV costs 

$104,626, according to the Army’s Master Date File (AMDF) (DLIS, 2010). Using a 

rough life-cycle cost estimate for Operations and Support costs of 10% of the 

purchase price per year, over the expected nine-year lifespan of a battery, the 

lifecycle cost for the vehicle would be $199,784.   
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The maximum payload for the LMTV is 5000 lbs, allowing the LMTV to carry 

2200 of the 2.25lb batteries in its cargo area  (BAE Systems, 2009). In terms of 

capacity, the LMTV can carry 450 ft3 or 770,000 in3, which, in term of batteries, is 

equal to more than the maximum weight battery payload (TACOM, 2005). 

$199,784/2,200 = $90 per battery, if the LMTV were carrying the batteries for the full 

nine years. That means a daily cost of $0.02 per battery and a yearly cost of 

approximately $10 per battery. 

c. Dissipation or Loss of Battery Capacity Over Time (CE4C) 

As a battery is stored over its useful life, its full capacity charge will discharge, 

even at optimal temperatures.  This Cost Element attempts to capture a dollar value 

for that loss of charge over the useful life of the battery.  This Cost Element is 

measured in dollars per battery. 

CE4C=DPH*DR*T 

Where DPH=CE1A/Capacity 

Where DR=discharge rate, which is the amount of charge in watt hours lost 

per month.  

Where T=time in days for a scenario under study for fully burdened costs from 

battery purchase to use. 

An example of calculating the CE4C is given with a notional battery (BA-

XX90), which has a cost of $100 and a capacity of 1000 watt hours. The battery 

cost, DPH, is $.10 per watt hour (w-h).  If data collected on these batteries show that 

over five years the batteries lose approximately 30% of their charge.  At the end of 

five years a battery will have on average 700 watt hours of charge left, losing 60 W-h 

a year or five W-h a month.  The operational scenario that this battery is called for 



 

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 47 - 
k^s^i=mlpqdo^ar^qb=p`elli=

 

shows that it remains in the Defense Supply system for 15 months until it is used.  

The cost of this battery’s loss of charge over time is $7.50.   

6. Disposal Costs (CE5) 

For disposal cost analysis we utilized previous studies to determine the 

disposal amount per battery. Ross and Hull documented two methods for disposal of 

a BA-5590 battery. The first method is hazardous material disposal (for batteries that 

have a certain amount of charge remaining).  The second method is for non-

hazardous disposal. Hazardous material disposal is $9.30 per battery in FY 2000 

dollars (Ross & Hull, 1999).  It is $1.63 per battery for non-hazardous disposal in FY 

2000 dollars (Ross & Hull, 1999). One problem with this method, however, is 

determining if a battery is hazardous or not after a unit finishes using it. 

Toxco Corporation conducts disposal of LiSO2 batteries for commercial 

industries, and in the past it has conducted battery disposal for the DoD. Toxco 

quoted a price of between $2.50 and $3.50 per pound of batteries regardless of 

whether the batteries had a charge remaining at the time of disposal. This is a 

California-based cost per pound (Kinsbursky, 2010). We also contacted Fort 

Stewart’s (Eastern United States) and Fort Lewis’s (Western United States) 

Departments of Public Works Environmental Divisions, which quoted a price of 

$1.28 per pound for battery disposal (Fort Stewart) and $2.25 per pound (Fort Lewis) 

(Brown, 2010). Battery disposal cost will depend on the locality of the post doing the 

disposal (CE5c). The variance between disposal costs is primarily due to the distance 

the post is from the disposal facility (Brown, 2010). These quoted costs include the 

cost of transporting the batteries (which is CE5b) from the post to the disposal facility 

because the contractor transports the batteries for disposal. (Kane, 2010) For Cost 

Element CE5a storage before disposal costs, we used the unit storage Cost 

Element amount because the storage would be with the unit until the battery is 

delivered to the post’s environmental site. 
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7. Environmental Costs 

In spite of the hazardous wastes inherently generated by military operations, 

the US Military Services constantly strive to practice environmental stewardship.  

This standard is consistent whether in the US or in other countries, during peacetime 

training or combat operations.  Lithium sulfur dioxide batteries, such as the BA-5590, 

are quite common in military use.  Once expended and removed from equipment 

they are “subject to the hazardous waste regulations of the Resource Conservation 

and Recovery Act (RCRA) due to the presence of un-reacted lithium” (McCarley, 

2007).  However, the EPA concluded in a 2006 memorandum that expended BA-

5590 batteries that have been properly discharged using a Complete Discharge 

Device (CDD) could be treated as solid waste instead of hazardous waste (Hale, 

2006). 

From April 1997–April 1998, Ross and Hull studied the BA-5590 usage of US 

Army units in simulated combat missions at the Joint Readiness Training Center.  

On average, they found that 29% of the batteries that units turned in had more than 

70% life remaining (Ross & Hull, 1999).  While this is in no way enough data to 

determine the voltage or reactivity left in expended BA-5590s in current military 

operations, it still offers some insight.  While there are proper disposal procedures 

for lithium batteries in Iraq and Afghanistan, it would be safe to assume that young 

Soldiers and Marines will improperly discard batteries as a matter of convenience, 

for expediency in the heat of combat, or for any number of reasons.  Attempting to 

determine the exact ratio of improperly discarded batteries to those properly 

discarded would be outside the scope of this thesis.  However, the Ross and Hull 

study established the idea that some percentage of the improperly discarded 

batteries carries enough voltage to classify as hazardous waste. 

The starting point for environmental costs per BA-5590 would be at least in 

the $9.00 range.  As Ross and Hull determined, this is the average cost associated 
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with properly disposing of the battery as hazardous waste.  By taking into 

consideration the addition of EPA fines, remediation, and possibly personnel injury, 

the average environmental cost per battery would certainly increase.  For the 

purposes of this study, the researchers did not determine these cost burdens. 

F. Scenario Development 

For our model, we developed two scenarios in order to analyze battery life- 

cycle costs. Scenario-based modeling is necessary due to the high number of 

variables. This type of modeling enables us to evaluate complex systems. The 

Military Operations Research Society Symposium on Power and Energy stated in its 

out brief: 

To completely determine the impact of a specific change to an operational 
capability, such as a 10-percent increase in battery life, a single variable 
approach is not adequate. A flexible, multi-variable system model is required 
to allow ready definition of the impact of incremental changes to key 
performance parameters, key system attributes, and attributes.  Many 
capability requirements are interrelated and cannot be adequately assessed 
independently.  Incremental changes in one performance parameter may 
have significant impact on several other parameters including the logistics 
related costs.  For example, an improvement in battery capacity may allow an 
item to use a smaller power source, thus providing the opportunity to increase 
performance or operating time.  The increased operating time could impact 
the required cooling capacity, resulting in a larger space claim or increased 
power requirement.  The impact of this domino effect may be no benefit 
realized from the improvement in battery capacity.  This simple, while maybe 
not totally realistic, example illustrates the impact that power and energy has 
on equipment- from large to small, fuel burning to electric powered.  (Regnier 
et al., 2009) 

For Fully Burdened Cost of Fuel analysis, we generally used three scenarios: 

Peacetime, Steady State, and Undeveloped Theater Scenarios (Hull & Roper, 2009, 

slide 13). For simplicity’s sake, but still wanting to demonstrate realism, we chose 

only two scenarios to demonstrate the methodology. The scenarios we developed 
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for analysis are a Continental United States (CONUS) peacetime scenario and an 

Afghanistan-based steady-state scenario.  

For both of these scenarios, we made some basic assumptions. First, DLA 

purchased the BA-5590s from Saft. This means that FDC is included in the purchase 

price of the battery. Second, the BA-5590s were stored in a Depot Storage location 

for 365 days.  

1. Scenario 1 (Peacetime Training, CONUS) 

 

Figure 10. Training (CONUS) Scenario  

Our CONUS scenario demonstrates the methodology for non-deployed forces 

conducting peacetime training operations in the United States. Our CONUS 

Scenario uses a US Army Light Infantry Company at Fort Stewart, Georgia 

conducting peacetime training operations in and around Fort Stewart for a seven-

day period.  
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We utilized the Army’s Modified Table of Organization and Equipment 

(MTOE) for this Infantry Company to determine the total number of radio systems 

that utilize the BA-5590 battery.  We assumed seven days of operations and that the 

company was actively involved in field exercises in the Fort Stewart Training Area 

during this seven-day period of time. The MTOE spells out the number of radio 

systems that utilize the BA-5590. We used the AN/PRC-117F radio as the system 

for which this company used BA-5590 batteries in the seven-day mission. 

Utilizing CECOM’s POWER Calculator (see Appendix C) we were able to 

determine the number of batteries that the seven-day field-training mission would 

require.  Table 9 provides the output from CECOM’s power calculator for our 

CONUS Scenario.  Utilization rates vary and, depending on the scenario, batteries 

may be used to their maximum run time in the system under observation (the PRC-

117F) or for some duration under that run time.  Since the authors did not study the 

BA-5590 with SOCI we included this high and low range of run times. 
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Table 9. CONUS Scenario CECOM Power Calculator Output (POWER 1.3e) 

For this scenario, we made the following assumptions: 

 The Light Infantry Company had a Company-level Headquarters set up 
15km from the Fort Stewart cantonment area.  

 The Company transported its own supplies to the site. 

 All company training operations would occur at the Company 
Headquarters site. 

 Assured Delivery Price was determined using a requisition of 1000 
Batteries through the Standard Army Retail Supply System (SARSS). 

 Batteries were stored in the Unit Supply Room for one month before 
use. 

 Used batteries were stored for another two days after use. 

Battery: BA-5590B/U (4 per pkg) 

Device: AN/PRC-117F radio (21 per mission) 

# Batteries 

Required 

# Packages 

to order 

Battery  

Weight (lbs) 

Minimum for 1 day mission (chg every 12 hrs) 84 21 189 

Minimum for 1 day mission (chg every 18 hrs) 84 21 189 

Minimum for 7 day mission (chg every 12 hrs) 588 147 1323 

Minimum for 7 day mission (chg every 18 hrs) 420 105 945 

Minimum for 30 day mission (chg every 12 hrs) 2520 630 5670 

Minimum for 30 day mission (chg every 18 hrs) 1680 420 3780 
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2. Scenario 2 (Operational, OCONUS) 

 

Figure 11. Operational (OCONUS) Scenario 

The operational scenario we chose to model is based on the Marine Energy 

Assessment Team (MEAT) visit to Afghanistan (Moore et al., 2009).  The MEAT 

team performed an energy use for USMC forces operating in Helmand Province of 

Afghanistan in September 2009.  We chose this scenario because it is also the base 

scenario that was used by Cole and Blankenship (2010) to determine the FBCF and 

fully burdened cost of water for OEF operations.  Our methodology extends the 

assumptions these researchers made and the situation modeled to involve a delivery 

scenario that includes battery replenishment.  Therefore we considered the same 

delivery scenario as Cole and Blankenship.  The second scenario further develops 

burden costs for operational battery use. For this scenario we used a Battalion-sized 

Marine Corps unit operating in Afghanistan.
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a. Scenario 2 TDC 

In order to determine the assured delivery price for batteries, we included the 

price of batteries to the port, the transportation costs to ship the batteries from the 

US to the theater, the costs to move them from the theater port to a Forward 

Operating Base, and then the costs to handle and provide tactical delivery of the 

batteries from the FOB to the Battalion-sized Marine Unit. For security reasons, we 

will not be naming the bases or units upon which we based our scenario, but the 

numbers we used are based upon actual distances and basing sites. One key 

assumption that affects the type and speed of battery transportation into theater is 

the priority the requisition unit places on the battery order. For our analysis, we 

assumed a priority of 12 for the batteries ordered. An order priority code provides the 

supply system with information regarding how quickly the requisition item is needed. 

A priority 12 code generally allows 50 to 82 days for the unit to receive the 

requisitioned item (Defense Logistic Agency Training Center, 2010). 

Cole and Blankenship’s scenario provides a detailed amount of information 

for the Tactical Delivery Charge (CE2c). We altered their scenario by assuming that 

we were using the same transportation convoys in theater but instead of analyzing 

the convoys to determine how their costs affect the ADP for fuel and water, we 

looked at how the costs affected the ADP for batteries.  

Cole and Blankenship (2010) used the following convoy makeup: 

 Medium Tactical Vehicle Replacement (MTVR) with mine roller (escort) 

 MTVR wrecker (escort) 

 Mine Resistant Ambush Protection (MRAP) 6x6 vehicles (escort) 

 MRAP 4x4 vehicles (escort)  

 MTVRs (for water and other supplies)  
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 Logistics Vehicle Systems (LVS) (for water and other supplies)  

 Fuel tanker truck (M970) 

For our scenario, we made the assumption that the batteries escorted from 

the FOB to the Battalion-sized unit would be transported on a MTVR within this 

convoy, replacing an MTVR that was transporting pallets of water bottles. 

Cole and Blankenship’s scenario included the overall cost for transporting 

water for 35 miles in a tactical environment. We used their scenario to determine the 

average cost of transporting water on an MTVR. We then transposed that cost onto 

a vehicle transporting batteries and determined the number of batteries an MTVR 

can carry. We divided the cost of the vehicle by the number of batteries to come up 

with the cost to transport one battery in the 35-mile convoy. 

This cost was combined with the commercial cost of transporting the batteries 

from the port of Karachi to a logistics base in Afghanistan. The Surface Deployment 

and Distribution Command provided us with the cost to move one 20-foot ISO 

container from Karachi to the resupply point. We used this information to calculate a 

cost per battery to move it from Karachi to the logistics base. We came up with a 

cost of between $.18 and $.31 cents per battery for this movement, depending on 

the commercial transportation company used for the freight movement (Sitts, 2010). 

The cost to move the batteries from Karachi to the Battalion-sized Marine Corps unit 

comprises the Tactical Delivery Charge for our burden analysis.  
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Figure 12. Tactical Convoy for Scenario 2  
(Moore, Newell, Nolan, Dickson, Barnet & Alderman, 2009) 

b. Scenario 2 Demand 

Utilizing CECOM’s POWER Calculator (see Appendix C) we were able to 

determine what the seven-day Scenario 2 mission would require.  Table 10 provides 

the output from CECOM’s power calculator for Scenario 2. The table includes two 

rows: the top row is based upon changing out the batteries every 18 hours, while the 

second row is calculated based on changing out the batteries in the radios every 12 

hours.  Utilization rates vary and, depending on the scenario, batteries may be used 

to their maximum run time in the system under observation (the PRC-117F) or for 

some duration under that run time.  Since the authors did not study the BA-5590 with 

SOCI we included this high and low range of run times. 
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c. Scenario 2 Assumptions 

 The PRC-117 radio was used over a seven-day period, operating 24 
hours per day. 

 The unit’s density of PRC-117s as the same as reported in the 
Mechanized Allowance List. 

 Batteries sent via truck from depot to port using a commercial trucking 
company.  Then shipped via commercial maritime cargo transport from 
a Southeast US port to the port of Karachi, Pakistan.  From Pakistan 
the batteries were shipped via contracted commercial trucking to the 
Supply Support Activity supporting the unit we observed.  TDC 
shipping to the final destination was via tactical convoy.  

Table 10. Scenario 2 CECOM Power Calculator Output (POWER 1.3e) 

Battery: BA-5590B/U (4 per pkg) 

Device: AN/PRC-117F radio (46 per mission) 

# Batteries 

Required 

# Packages 

to order 

Battery  

Weight (lbs) 

Minimum for 1 day mission (chg every 12 hrs) 184 46 414 

Minimum for 1 day mission (chg every 18 hrs) 276 69 621 

Minimum for 7 day mission (chg every 12 hrs) 1288 322 2898 

Minimum for 7 day mission (chg every 18 hrs) 1932 483 4347 

Minimum for 30 day mission (chg every 12 hrs) 5520 1380 12,420 

Minimum for 30 day mission (chg every 18 hrs) 8280 2070 18,630 

 

G. Analysis and Results 

1. Scenario 1 FBCB Results 

a. Base Case 

The base case shows that fully burdened costs of the BA-5590 in this 

scenario are 9.3% of the contract price of the batteries.  A summary of the fully 

burdened costs can be found in Table 11.  An assured delivery price of $59.83 in the 
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POWER calculator multiplied by a low- and high-limit use for batteries in the 

scenario yields the fully burdened price.  Total battery cost in this scenario ranges 

from $25,127 to $35,172.  The range in this scenario is determined solely by the 

runtime of the system.  The lower price range assumes that all batteries are used to 

100% of their capacity by the users—the full 18-hour run time available.  The upper 

range assumes a user will only utilize 67% of battery capacity before changing out 

the battery in the system. 

Table 11. Scenario 1 Base Case Fully Burdened Cost Summary (FY00$)  

      Lower Use Limit  Upper Use Limit 

CE1A  Purchase Price  54.73  54.73 

CE1B  Transaction Costs  0.12  0.12 CE1 

CE1C  Proprietary Costs*  0.00  0.00 

CE2A  FDT Transportation  #  # 

CE2B  SDC Transportation  1.31  1.31 CE2 

CE2C  TDC Transportation  ##  ## 

CE3A  Storage Asset Depreciation  0.24  0.24 
CE3 

CE3B  Trans Asset Depreciation  0.02  0.02 

CE4A  Depot Storage  0.14  0.14 

CE4B  Unit Storage  0.88  0.88 CE4 

CE4C  Dissipation  0  0 

CE5A  Storage before Disposal  ###  ### 

CE5B  Transportation to Disposal  ####  #### CE5 

CE5C  Commercial Disposal   2.39  2.39 

    Total Burden costs (CE1B to CE5C)  5.10  5.10 
  ADP  Assured Delivery Price  59.83  59.83 
  DEMAND  Batteries demanded  420  588 
  FBCB  Fully Burdened Battery Costs  25,127.01  35,177.81 
         
  1.00  *Proprietary factor     

  #  Covered in FOB contract, part of CE1A   
  ##  No tactical delivery in CONUS scenario   

  ###  Incorporated into Unit Storage, CE4B   

  ####  Incorporated into Commercial Disposal, CE5C   
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Disposal costs make up the largest percentage of the assured delivery price, 

with commercial disposal accounting for 47% of the $5.10 of additional burdens on 

the purchase price of the battery.  Figure 13 shows the largest burden elements and 

the percentage of total cost burdens they make up.   

 

Figure 13. Scenario 1 - Cost Elements as Percent of Total Burdens,(FY00$)  
(Note: non-zero burdens only) 

b. Sensitivity Analysis 

Mod 1 uses the higher disposal costs associated with recycling lithium 

batteries in CONUS.  The battery disposal contract we observed at the scenario 

location had a lower disposal price than others (Kane, 2010).  A modification to this 

scenario was to input the average quoted disposal price from one of the major 
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lithium battery recyclers in CONUS (Kinsbursky, 2010, March 25; Brown, 2010, 

March 30).  This increases the cost of CE5C to $5.59 from $2.39 (Table 12).  The 

percentage of disposal costs on the full burdens jumps to 67% of the assured 

delivery price (Figure 14). 

Table 12. Scenario 1  Fully Burdened Cost Mod 1 (FY00$) 

      Lower Use Limit  Upper Use Limit 

CE5A  Storage before Disposal  ###  ### 

CE5B  Transportation to Disposal  ####  #### CE5 

CE5C  Commercial Disposal   5.59  5.59 

    Total Burden costs (CE1B to CE5C)  8.30  8.30 

  ADP  Assured Delivery Price  63.03  63.03 

  DEMAND  Batteries demanded  420  588 

  FBCB  Fully Burdened Battery Costs  26,473.99  37,063.58 

         

         

  ###  Incorporated into Unit Storage, CE4B   

  ####  Incorporated into Commercial Disposal, CE5C   
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Figure 14. Scenario 1 Mod 1 Cost Elements as Percent of Total Burdens (FY00$)  
(Note: non-zero burdens only) 

Mod 2 replaces all disposal costs with environmental costs.  Reductions in the 

numbers of batteries disposed of through contracted and proper means would also 

lessen the cost burdens. However additional environmental impacts would arise 

from improper disposal.  Again, this thesis does not quantify those issues.  Mod 2 

looked at replacing all disposal costs in the scenario.  Table 13 shows the changes 

in the ADP from this Mod.
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Table 13. Scenario 1  Fully Burdened Cost Mod 2 (FY00$)  

      Lower Use Limit  Upper Use Limit 

CE5A  Storage before Disposal  ###  ### 

CE5B  Transportation to Disposal  ####  #### CE5 

CE5C  Commercial Disposal   0.00  0.00 

    Total Burden Costs (CE1B to CE5C)  2.71  2.71 

  ADP  Assured Delivery Price  57.44  57.44 

  DEMAND  Batteries Demanded  420  588 

  FBCB  Fully Burdened Battery Costs  24,124.61  33,774.45 

         

  1.00  *Proprietary Factor     

  ###  Incorporated into Unit Storage, CE4B   

  ####  Incorporated into Commercial Disposal, CE5C   

Figure 15 shows that when disposal costs are eliminated, the largest 

elements contributing to the ADP are unit storage costs (33% total cost burdens) 

and SDC transportation costs (48% of total cost burdens).  The burdens that make 

up the ADP total only 4.95% of the purchase price in this scenario.
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Figure 15. Scenario 1 Mod 2 Cost Elements as Percent of Total Burdens 
(Note: non-zero burdens only) 

For Mod 3, we attempted to analyze changes in shipping and storage 

methods. However, none of these methods changed the fully burdened base case 

by more than 1%. Adjusting the purchase price of the batteries displays a lower 

percentage of the overall burden.   

Figure 16 shows the percentage of the burdens on the purchase price with 

two price points highlighted—the contract price derived by the authors and the 

AMDF or FEDLOG price charged by DLA averaged over 10 fiscal years.  As CE1A 



 

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 64 - 
k^s^i=mlpqdo^ar^qb=p`elli=

 

(the purchase price) increases in the base case, the percentage of the additional 

cost burdens on that price decreases.  At the AMDF price, burdens decrease to 

6.8% from 9.83% of the purchase.  The AMDF price is intended to capture some of 

the costs developed for this study.  But the discrepancy between contract price, plus 

additional cost burdens and the straight AMDF price, warrants further study. 

 

Figure 16. Scenario 1 Total Burden as a Percentage of Purchase Price (FY00$)
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2. Scenario 2 FBCB Results 

a. Base Case 

The base case shows that fully burdened costs of the BA-5590 in this 

scenario are 12.85% of the contract price of the batteries.  Table 14 shows a 

summary of the fully burdened costs. An assured delivery price of $61.76 in the 

POWER calculator multiplied by a low- and high-limit use for batteries in the 

scenario yields the fully burdened price.  Fully burdened battery cost in this scenario 

ranges from $79,550 to $119,325.99.  Again, the range in this scenario is 

determined solely by the runtime of the system.  The lower price range assumes that 

all batteries are used to 100% of their capacity—the full 18-hour run time available.  

The upper range assumes a user will only utilize 67% of battery capacity before 

changing out the battery in the system, a more likely use of batteries in combat for a 

battery without a SOCI. 

Table 14. Scenario 2 Base Case Fully Burdened Cost Summary (FY00$)  

      Lower Use Limit  Upper Use Limit 

CE1A  Purchase Price  54.73  54.73 

CE1B  Transaction Costs  0.12  0.12 CE1 

CE1C  Proprietary Costs*  0.00  0.00 

CE2A  FDT Transportation  #  # 

CE2B  SDC Transportation  1.31  1.31 CE2 

CE2C  TDC Transportation  0.94  0.94 

CE3A  Storage Asset Depreciation  0.24  0.24 
CE3 

CE3B  Trans Asset Depreciation  0.04  0.04 

CE4A  Depot Storage  0.14  0.14 

CE4B  Unit Storage  0.81  0.81 CE4 

CE4C  Dissipation  0.00  0.00 

CE5A  Storage before Disposal  ##  ## 

CE5B  Transportation to Disposal  0.94  0.94 CE5 

CE5C  Commercial Disposal   2.50  2.50 
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    Total Burden Costs (CE1B to CE5C)  7.03  7.03 

  ADP  Assured Delivery Price  61.76  61.76 

  DEMAND  Batteries Demanded  1288  1932 

  FBCB  Fully Burdened Battery Costs  79,550.66  119,325.99 

         

  1.00  *Proprietary Factor     

  #  Covered in FOB Contract, part of CE1A   

  ##  Incorporated into Unit Storage, CE4B   

Again, disposal costs make up the largest percentage of the assured delivery 

price, with commercial disposal accounting for 35% of the $7.03 of additional 

burdens on the purchase price of the battery.  Transportation cost increases can 

reduce the cost effect of disposal costs, though. Figure 17 shows the largest burden 

elements and the percentage of total cost burdens they make up.  
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Figure 17. Scenario 2 Base Case Cost Elements as Percent of Total Burdens 
(Note: non-zero burdens only) 

b. Sensitivity Analysis 

Mod 1 to Scenario 2 assumes that deployed battery users undertake no 

directed effort to dispose of the batteries. While not the best solution, we felt that it 

needed to be modeled in the burdens on the battery. Obviously, not properly 

disposing of batteries reduces the cost burdens. However, this does not take into 

account the environmental impacts of disposing of the batteries in local landfills in 

deployed areas. In this Mod, total cost burden on the battery is $3.58 which 

represents 6.5% of the contract price of the battery. 
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Table 15. Scenario 2 Mod 1 Fully Burdened Cost Summary (FY00$)  

      Lower Use Limit  Upper Use Limit 

CE4A  Depot Storage  0.14  0.14 

CE4B  Unit Storage  0.81  0.81 CE4 

CE4C  Dissipation  0.00  0.00 

CE5A  Storage before Disposal  ##  ## 

CE5B  Transportation to Disposal  0.00  0.00 CE5 

CE5C  Commercial Disposal   0.00  0.00 

    Total Burden costs (CE1B to CE5C)  3.58  3.58 

  ADP  Assured Delivery Price  58.31  58.31 

  DEMAND  Batteries Demanded  1288  1932 

  FBCB  Fully Burdened Battery Costs  75,100.29  112,650.44 

         

  1.00  *Proprietary Factor     

  #  Covered in FOB Contract, part of CE1A   

  ##  Incorporated into Unit Storage, CE4B   
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Figure 18. Scenario 2 Mod 1 Cost Elements as Percent of Total Burdens 
(Note: non-zero burdens only) 

For Mod 2 to Scenario 2, we used higher tactical shipping costs. We based 

this increase on the addition of Attack Aviation escorting to a convoy. Cole and 

Blankenship used two different tactical delivery charges based upon inclusion of 

attack aircraft. This Mod demonstrates how attack aviation escort increases our cost 

burdens for Scenario 2.  It increases the TDC burden from $0.94 to $1.34 and 

increases TDC percentage of burden costs from 13% to 17% as shown in Figure 19. 

Total burdens become 14.28% of the purchase price in this scenario. 
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Table 16. Scenario 2 Mod 2 Fully Burdened Cost Summary (FY00$)  

      Lower Use Limit  Upper Use Limit 

CE1A  Purchase Price  54.73  54.73 

CE1B  Transaction Costs  0.12  0.12 CE1 

CE1C  Proprietary Costs*  0.00  0.00 

CE2A  FDT Transportation  #  # 

CE2B  SDC Transportation  1.31  1.31 CE2 

CE2C  TDC Transportation  1.34  1.34 

CE3A  Storage Asset Depreciation  0.24  0.24 
CE3 

CE3B  Trans Asset Depreciation  0.02  0.02 

CE4A  Depot Storage  0.14  0.14 

CE4B  Unit Storage  0.81  0.81 CE4 

CE4C  Dissipation  0.00  0.00 

CE5A  Storage before Disposal  ##  ## 

CE5B  Transportation to Disposal  1.34  1.34 CE5 

CE5C  Commercial Disposal   2.50  2.50 

    Total Burden Costs (CE1B to CE5C)  7.82  7.82 
  ADP  Assured Delivery Price  62.55  62.55 
  DEMAND  Batteries Demanded  1288  1932 
  FBCB  Fully Burdened Battery Costs  80,561.79  120,842.68 
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Figure 19. Scenario 2 Mod 2 Cost Elements as Percent of Total Burdens 
(Note: non-zero burdens only) 

For Mod 3 of Scenario 2, we looked at how flying batteries from the United 

States into Afghanistan affects their cost burdens. For our base scenario, we 

assumed the batteries were ordered at a lower priority, which uses a more 

economical shipping method. For this Mod, we assumed that batteries were ordered 

at a higher shipping priority. Transportation Command provided cost data for a 

shipment of two tons of batteries via channel flight from Dover, DE, to Afghanistan. 

Based on this scenario, we were able to calculate a per-battery shipping cost. As 

shown in Table 14 and Table 17, SDC charge would increase from $1.31 to $11.22 

in this scenario, an increase in cost by a factor of more than 8. As shown in Figure 
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20, the SDC cost burden would dwarf all other burdens, and the overall cost burden 

would increase to $16.93, which is over 30% of the contract price for a battery. 

Additionally, this would increase the fully burdened cost of operating a Marine 

Battalion’s PRC-117s for a week by over $20,000.  

Table 17. Scenario 2 Mod 3 Fully Burdened Cost Summary (FY00$)  

      Lower Use Limit  Upper Use Limit 

CE2A  FDT Transportation  #  # 

CE2B  SDC Transportation  11.22  11.22 CE2 

CE2C  TDC Transportation  0.94  0.94 

    Total Burden Costs (CE1B to CE5C)  16.93  16.93 

  ADP  Assured Delivery Price  71.66  71.66 

  DEMAND  Batteries Demanded  1288  1932 

  FBCB  Fully Burdened Battery Costs  92,297.14  138,445.71 

         

  1.00  *Proprietary Factor     

  #  Covered in FOB Contract, part of CE1A   

  ##  Incorporated into Unit Storage, CE4B   
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Figure 20. Scenario 2 Mod 3 Cost Elements as Percent of Total Burdens 
(Note: non-zero burdens only) 

Figure 23 shows the rate-of-change of the percentage of the burdens on the 

purchase price.  We highlighted two purchase price points—the contract price we 

derived and the AMDF or FEDLOG price charged by DLA averaged over 10 fiscal 

years.  As CE1A (the purchase price) increases in the base case, the percentage of 

the additional cost burdens on that price decreases.  At the AMDF price, burdens 

decrease to 9.37% from 12.85% of the purchase.   
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Figure 21. Scenario 2 Total Burden as a Percentage of Purchase Price (FY00$)
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V. Conclusions and Recommendations 

A. Conclusions 

This study develops a methodology and tool for acquisition planners to use in 

the AoA process when fully burdened energy costs are an issue. A high-demand 

battery was studied in order to develop a methodology to understand the cost 

burdens that affect battery costs. Different types of batteries and different energy 

systems will affect the type of models to be used. A major outcome of this analysis  

is that the methodology developed the FBCB.  

Usage scenarios greatly affect the assured delivery price. The use of aviation 

assets as part of a scenario increased the cost of batteries significantly, and our 

analysis confirms the work of Peltz, et al (2008) as did our observed shipments to 

theater via the air channel using total asset visibility tools. Transportation planning is 

important for battery costs. Air transport adds approximately $20,000 to the fully 

burdened costs—about $11.22 per battery.  Services should use high-priority 

shipping less frequently and instead forward stock batteries when it is anticipated 

that large quantities will be needed (see Pelt, et al 2008 for a full discussion).  

Additionally, by proactively coordinating purchasing at the strategic level, the DoD 

will optimize transportation assets and decrease overall costs. 

Danger can come in adjusting scenarios to make the numbers look more 

attractive.  We suggest using standardized scenarios or scenarios taken directly 

from operational plans (which may be classified) in future AoA planning.   

Disposal is the largest piece of the fully burdened cost in our peacetime 

scenario. Other factors are minuscule compared to a battery’s demand upon 

resources to carry it.  If immediate cost savings are sought in the use of non-
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rechargeable lithium batteries, the reduction of the waste stream associated with 

their use would most readily result in cost improvements. 

Even though the authors came up with a method for calculating dissipation, or 

loss of a battery’s initial charge based on its shelf life, after our discussions with the 

manufacturer we chose not to model dissipation or loss of charge due to storage.  

As a result, the researchers have not validated the portion of the model for 

calculating dissipation, and our estimates will tend to underestimate the fully-

burdened cost of delivered energy in the form of a battery. 

Are the services really saving money by having DLA buy batteries? This study 

used the manufacturer’s contract price instead of the DLA published price in order to 

determine the most realistic cost burdens. The factors, or actual cost burdens, which 

make up DLA’s higher price may add an unnecessary burden to the cost of 

batteries. One area of future study would be to see whether or not the DoD is 

actually saving money by having DLA perform contracting functions, given the 

overhead rates and the possibility that those overhead rates may be reduced 

through process re-engineering or other efficiency gains within DLA. 

Researchers attempting to model the fully burdened cost of rechargeable 

batteries could readily apply this report’s methodology for non-rechargeable 

batteries.  However, additional considerations would certainly include the cost of 

electricity at bases/stations, cost of rechargers, depreciation of rechargers, 

generators, and the FBCF.  This methodology lends itself to the study of other forms 

of delivered energy on the battlefield (e.g,, wind, solar, and biofuels).  The endstate 

would be to develop a simulation model or tool that a planner could use that would 

give the fully burdened cost of different forms of delivered energy with a minimum 

number of inputs required from the user of that tool. 
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The next step would be to put this methodology into a format for presentation 

during AoAs, something that senior leaders can look at and make decisions with. 

Ideally, the briefer would create a slide to show tradeoffs/gains between the use of a 

BA-5590 and other battery types in future systems. 

B. Recommendations 

Developing this methodology was just a first step. This methodology built 

upon the efforts of a number of different organizations and people in the FBCF 

community. Based upon our analysis, we have come up with recommendations for 

this methodology’s growth and use: 

1. Extend methodology to other high-value batteries such as the Hawker 
vehicle battery. 

2. Extend methodology to other systems, such as generators, ensuring to 
include the cost inefficiencies inherent in wet-stacking (a power-
generation problem in combat theaters)  (Lovins, 2010, p. 37). 

3. Develop a simulation model or tool that a planner could use that gives 
the fully burdened cost of different forms of delivered energy, such as 
wind turbine or fuel cells, with a minimum number of inputs required 
from the user of that tool. 

4. When developing prototype batteries, take into account weight and 
available charge-life as important factors affecting the FBCB. Reducing 
the weight will reduce the cost of shipping and transport. Increasing the 
charge life will reduce the number of batteries that need to be 
transported. 

5. Continue to tie the FBCB with the FBCF. Expand methodology to cover 
more tradespace factors. An example would be the cost of a battery’s 
weight and its effect on troops. One way to measure this cost could be 
by using the per-calorie cost of Meals, Ready-to-Eat to determine the 
tradespace between a heavy battery and a light battery over a single 
day’s worth of activities. The reason for extending this analysis to 
include more factors is evident in Amory Lovin’s statement regarding 
FBCF: “FBCF should count all assets and activities—at their end-to-
end, lifecycle, fully burdened total cost of ownership—that will no 
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longer be needed, or can be realigned, if a given gallon need no longer 
be delivered” (Lovins, 2010, pp. 35-36). 

6. Extend the analysis of transaction costs to include post-award 
management costs. 
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VI. Appendices 

A.  Findings and Recommendations from the 2001 Defense 
Science Board Task Force on Energy 

Although significant warfighting, logistics, and cost benefits occur when 

weapons systems are made more fuel-efficient, these benefits are not valued or 

emphasized in the DoD requirements and acquisition processes. 

The DoD currently prices fuel based on the wholesale refinery price and does 

not include the cost of delivery to its customers. This method prevents an end-to-end 

view of fuel utilization in decision-making, does not reflect the DoD’s true fuel costs, 

masks energy efficiency benefits, and distorts platform design choices. 

The DoD resource allocation and accounting processes (PPBS, DoD 

Comptroller) do not reward fuel efficiency or penalize inefficiency. 

Operational and logistics wargaming of fuel requirements is not cross-linked 

to the Service requirements’ development or acquisition program processes. 

High payoff, fuel-efficient technologies are available now to improve 

warfighting effectiveness in current weapon systems through retrofitting and in new 

systems acquisition
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B. Manufacturer’s Data on the BA-5590 
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C. POWER Version 1.3e 

Power Optimizer for the Warfighter's Energy Requirements (POWER) is a 

Microsoft Excel-based application created by US ARMY CECOM Life Cycle 

Management Center Power Sources Team. It allows for end-user estimation of 

battery needs. POWER Version 1.3e was used to determine the demand and the 

FBCB in development of the methodology. POWER’s two basic outputs are the 

number of batteries comm-elec or weapons systems will require over a user-defined 

runtime and the cost of those batteries based on user-input prices.  Figure 21 is a 

flowchart that describes the process POWER uses to calculate battery requirements. 

 
Figure 22. POWER 1.3e Flowchart (POWER 1.3e)
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1. Calculating System Demand with POWER 

Use of POWER begins with selecting the system to be powered in a 

worksheet designed to have a few user-entered values (Figure 22).  The user inputs 

information about the number of systems, operating temperature, and required 

battery type on a tab in the spreadsheet labeled calculations. For our study we 

chose to use the AN/PRC-117F in both scenarios, the BA-5590 without SOCI, and 

standard operating temperatures. 

 
Figure 23. POWER Requirements Spreadsheet (POWER 1.3e) 

Once the user inputs this information, he/she can search in a database for the 

runtimes of a system using a "parent" (i.e., BA-5590) battery. Runtime calculations 

are done in pure hours. The design, which is user-centric, tells how long the battery 

is estimated to last in their system. The values in the database generally come from 

Tech Manuals or the OEM's literature.  The user is then presented a table of 

estimated runtimes.  For example, for one day of operation, the AN/PRC 119F will 

operate on a single BA-5590 for 33 hours.  Once presented with standard runtimes, 
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the user can then enter how often he/she wishes to swap out the battery (Figure 23).   

Local-unit standard operating procedures may dictate that users swap a battery after 

24 hours rather than after 31.  Also, runtimes are often dependent on usage: a radio 

in transmit mode uses a lot more juice than one in standby, therefore op-tempo has 

a great bearing on runtimes.  For scenario calculations, the researchers used a low 

and high range for run times.  In Scenario 1, we determined the low range to be an 

18-hour swap time.  We determined the high range to be 24 hours.  The final 

calculation of how many batteries are required is based purely on the user swap 

time and not the runtime estimate. Figure 24 shows the format that batteries 

required are presented in.  The researchers took these battery requirements, both 

low and high, and used them as demand in Scenarios 1 and 2. 

 

Figure 24. Battery Requirement (POWER 1.3e)



 

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 85 - 
k^s^i=mlpqdo^ar^qb=p`elli=

 

Table 18. POWER Summary of Minimum Battery Requirements (POWER 1.3e) 

Battery Batts (day) Pkgs to order (day) Weight (day) Cost (day) Batts (3dy) Pkgs to order  (3dy) Weight (3dy) Cost (3dy) Batts (mo) Pkgs to order (mo) Weight (mo) Cost (mo)
BA-5590B/U 63 15.8 141.8 $3,592 147 36.8 330.75 $8,367 1302 325.5 2929.5 $74,006

Summary of Minimum Battery Requirements

Minimum for 1 day mission Minimum for 3 day mission Minimum for 30 day mission

Notes: Summary does not inclued auxiliary batteries. Fractions of packages cannot be ordered and must be rounded; prices and weight are calculated using 
fractions of packages. Prices are rounded to the nearest dollar.

 

2. Calculating Fully Burdened Costs of Batteries 

POWER gives the user the capability to download current pricing from DLA 

for all battery NSNs in its database, or to manually enter pricing information. Both 

options are time stamped so the user can be sure the pricing is current.  To 

manually enter pricing, one simply types the price in the UI Cost column. The entry 

will be time stamped and marked “User Defined.”  Figure 24 shows the battery-

pricing information tab. To determine FBCB, the researches input the dollar amount 

calculated for the ADP in the UI Cost column.  All subsequent costs of batteries for a 

certain number of systems at the user-input ranges gave the fully burdened costs 

within that scenario. 
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Figure 25. Battery Pricing Information (POWER 1.3e) 

D. Getting the Most from Acquisition Reforms: FAR 13.5 Test 
Provisions for Simplified Acquisition Procedures, 
Commercial-item Acquisition by CDR E. Cory Yoder, SC, 
USN, (Ret.), Lecturer 

1. Background, Review, and Applicability of the FAR 13.5 
Commercial-item Test Procedures 

a. FAR 13.5 Transaction “Touch Time” and Transaction Cost 
Reductions 

Managing purchase actions with FAR 13.5 streamlined protocols and 

processes to conduct the construction, solicitation, and award of the purchase 

results in dramatically less “touch time” and with an associated reduction in 

transaction costs. According to CAPT Steve Shapro, NAVSUP Code 02, the 

reduction in actual touch time required to process a SAP buy versus buys using 
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traditional large-contract methods is significant. CAPT Shapro indicates that a recent 

review of protocols revealed over a 90% reduction in processing touch time when 

SAP protocol was used. Specifically, contract actions using SAP protocol have 

approximately nine hours total touch time, while those just using large-contracting 

procedures have approximately 200 hours of touch time.19 By converting this time 

savings into monetary savings, the researchers discovered that for each transaction 

that utilizes the FAR 13.5 provisions instead of traditional “large” protocol, there’s an 

average cost reduction of over $9,500 per transaction!20 In addition, 

approximately 90% of Fleet Industrial Supply Center’s (FISC) 65,000 annual 

contract-action transactions are below the FAR 13.5 Test Procedure’s $5.5 million 

threshold! The potential impact of full utilization of the FAR 13.5 protocol is obvious, 

given the virtual universal applicability to actions less than $5.5 million. 

19 CAPT Steve Shapro, NAVSUP Code 02. Cited with permission from discussion with the author conducted at NPS on 2 

November 2006. 

20 Note: This information is derived by applying an average loaded hourly-salary rate for an 1102 Contract Specialist of $50, 

multiplied by the number of hours for large contract protocol touch time (200 hours) and subtracting the average loaded hourly 

salary rate multiplied by the number of touch-time hours for an 1102 Contract Specialist conducting a purchase using SAP 

protocols.
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E. Table of FBCB Burden Elements 

Table 19. FBCB Burden Elements and Results 

Symbols  Parameter Name  Units 
Scenario 1 
Base Case 
Value 

Scenario 2  
Base Case 
Value 

CE
1A
    Purchase Price  FY00$  54.73  54.73 

AMDF   FEDLOG Price  FY00$  75.01  75 

CE
1B
    Transaction Cost  FY00$  0.12  0.12 

CE
1C
    Proprietary Cost  NA  0  0 

CE
2A
    First Destination Transportation Charge (Mfg to 

depot) 
FY00$  #  # 

CE
2B
  

 Secondary Destination Transportation Charge 

 (Depot to Supply Support Activity) 
FY00$  1.31  1.31 

CE
2C
    Tactical Destination Charge (SSA to using unit)  FY00$  0  0.94 

CE
2C1

    Force Protection  FY00$  0  ## 

CE
2C2

    Convoy Escort Charges  FY00$  0  ## 

CE
3A
    Storage Asset Depreciation  FY00$  0.24  0.24 

CE
3B
    Delivery Asset Depreciation  FY00$  0.02  0.04 

CE
4A
    Depot Level Storage Costs  FY00$  0.14  0.14 

CE
4B
    Unit Level Storage Costs  FY00$  0.88  0.81 

CE
4C
    Dissipation  Costs  FY00$  0  0 

CE
5a
    Storage before Disposal  Costs  FY00$  ###  ### 

CE
5b
    Transportation to Disposal Cost  FY00$  ####  0.94 

CE
5c
    Commercial Disposal Costs  FY00$  2.39  2.50 

D   System Demand  ea  420‐588  1288‐1932 

DPH   Battery cost in Dollars per hour  FY00$/hr  0.08  0.08 

DR   Discharge Rate 
watt hours per 

day 
*  * 

Cap   Battery Capacity  watt hours  720  720 

T   Total Scenario Length (Tsd+Tsu+Tu+Tt)   day  436  451 
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T
sd
    Total time in depot‐level storage  day  365  365 

T
su
    Time in SSA/unit level storage  day  30  5 

T
u
    Time batteries are in operation  day  1  1 

T
t
    Time Batteries are in transportation  day  10  40 

T
d
    Time batteries spent batteries are stored awaiting 

disposal 
day 

30  40 

W   Battery Weight  pounds  2.25  2.25 

 

#  For the BA-5590 contracts observed charge was captured in CE
1A

  
##  Incorporated into CE

2C
 for Scenario 2 

###  Incorporated into unit storage, CE
4A

 for the scenarios studied 
####  Incorporated into Commercial Disposal, CE

5C
  

*  Model for discharge available from Saft; not used in calculations
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