
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó=
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

NPS-AM-13-085

^`nrfpfqflk=obpb^o`e=moldo^j=
pmlkploba=obmloq=pbofbp=

One Size Does Not Fit All: A System Development Perspective

9 September 2013

LCDR Erik LaSalle USCG

Advisor: Dr. John Osmundson, Research Associate Professor
Second Reader: Dr. Kishore Sengupta, Associate Professor

Graduate School of Business & Public Policy

Naval Postgraduate School

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó=
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

The research presented in this report was supported by the Acquisition Research
Program of the Graduate School of Business & Public Policy at the Naval
Postgraduate School.

To request defense acquisition research, to become a research sponsor, or to print
additional copies of reports, please contact any of the staff listed on the Acquisition
Research Program website (www.acquisitionresearch.net).

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - i -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

ABSTRACT

Investments in technology have the potential to improve lives and organizations and can

be force multipliers for an organization; however, federal information technology (IT)

projects too often experience cost overruns, schedule slippages, and performance

shortfalls. Specific to the Coast Guard, there are currently four IT Level 1 acquisitions

programs, which are outlined in the Major Systems Acquisition Manual as having life-

cycle cost estimates equal to or greater than $1 billion. Many of these projects are over

budget, and as a result, many of the desired capabilities will not make it to the end user.

Since the passage of the first acquisition act and in every acquisition mandate

since, the federal government has struggled to deliver capabilities that meet the

requirements of the end user while staying within budget, on schedule, and within cost.

To alleviate this, adding more mandates and oversight has become the “go-to play.”

However, these mandates might be having the opposite effect on desired outcomes. This

thesis describes alternative system development methodologies that could assist the

Department of Homeland Security and Department of Defense in maximizing the

delivery of capabilities to the end user while staying on schedule and within budget.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - ii -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

THIS PAGE INTENTIONALLY LEFT BLANK

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - iii -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

ACKNOWLEDGEMENTS

I would like to convey my sincerest appreciation to Dr. John Osmundson,

Department of Information Sciences, Naval Postgraduate School, for his interest, time,

and guidance during this endeavor. I would also like to thank Dr. Kishore Sengupta,

Department of Information Sciences, Naval Postgraduate School, for his tireless effort

and passion in helping me write this thesis. Dr. Sengupta’s understanding of the

application of agile software development within project management is astounding, and

without his guidance, I would have produced an inferior product. In addition, I would

like to thank the Acquisition Research Program at the Naval Postgraduate School,

specifically Ms. Tera Yoder, for her support and guidance throughout the thesis process.

I am grateful for her friendship and contagiously optimistic outlook on life.

Additional acknowledgements begin with Lieutenant Commander Christopher

Treib of the United States Coast Guard. Chris’s friendship and contributions to this

endeavor are greatly appreciated.

I also would like to thank my beautiful wife, Dare, for her love, encouragement,

and support during my studies at Naval Postgraduate School and throughout my career.

Her friendship and love continue to amaze me, and without doubt are the foundation of

our family.

Last, but certainly not least, I would like to thank my wonderful daughters,

Isabella, Wylee, and Fenway, for being awesome kids and for reminding me on a daily

basis of the true values of life.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - iv -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

THIS PAGE INTENTIONALLY LEFT BLANK

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - v -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

ABOUT THE AUTHOR

Lieutenant Commander Erik LaSalle—is a C4IT officer currently enrolled in the
Information Systems and Technology curriculum at the Naval Postgraduate School in
Monterey, CA. LCDR LaSalle graduated with an Associate of Science degree in nutrition
and culinary arts from Johnson & Wales University in 1996, and a Bachelor of Business
Administration degree in information management technology from Florida Atlantic
University.

LCDR LaSalle was born in Boston, MA. He enlisted in the U.S. Coast Guard in
1988 and attended boot camp in Cape May, NJ. His first tour of duty was in Kodiak, AK,
where he served aboard the Coast Guard Cutter Ironwood (WLB-297). Other significant
enlisted assignments include StoreKeeper A-School, Petaluma, CA; Coast Guard Group
Moriches, East Moriches, NY; and Naval Engineering Support Unit, Boston, MA.
LCDR LaSalle was selected for Coast Guard Officer’s Candidate School in Yorktown,
VA, where he graduated in 1997.

From September 1997 to June 2000, LCDR LaSalle was assigned as an
intelligence officer at the Maritime Intelligence Center, Miami, FL. From June 2000 to
May 2004, LCDR LaSalle was assigned as a marine inspector at Coast Guard Marine
Safety Office, Miami, FL. From May 2004 to June 2007, LCDR LaSalle was assigned as
both the senior investigating officer and senior inspector of personnel at Coast Guard
Sector, Miami, FL. From June 2007 to August 2011, LCDR LaSalle was assigned as lead
IT project officer of the Interagency Operations Center major acquisition program for the
Commandant Office of C4I & Sensor Capabilities (CG-761) at Coast Guard
Headquarters, Washington, DC.

LCDR LaSalle’s awards include three Coast Guard Commendation Medals, two
Coast Guard Achievement Medals, the 9-11 medal, four Meritorious Team Awards, both
Expert Rifle and Pistol Medals, and various other service medals and unit awards.

LCDR LaSalle is married to the former Dare Marie Kocik of Binghamton, NY.
They live in Monterey, CA, and have three beautiful daughters, Isabella, 9; Wylee, 6; and
Fenway, 4. Off duty, LCDR LaSalle enjoys basketball and is an avid golfer and
photography enthusiast.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - vi -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

THIS PAGE INTENTIONALLY LEFT BLANK

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - vii -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

NPS-AM-13-085

^`nrfpfqflk=obpb^o`e=moldo^j=
pmlkploba=obmloq=pbofbp=

One Size Does Not Fit All: A System Development Perspective

9 September 2013

LCDR Erik LaSalle, USCG

Advisor: Dr. John Osmundson, Research Associate Professor
Second Reader: Dr. Kishore Sengupta, Associate Professor

Graduate School of Business & Public Policy

Naval Postgraduate School

Disclaimer: The views represented in this report are those of the author and do not reflect the official policy position of the
Navy, the Department of Defense, or the federal government.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - viii -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

THIS PAGE INTENTIONALLY LEFT BLANK

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - ix -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. ORGANIZATION OF THE STUDY .. 1
B. MOTIVATION ... 2
C. RESEARCH QUESTIONS .. 2

II. WHAT IS AGILE? ... 5
A. MANIFESTO FOR AGILE SOFTWARE DEVELOPMENT 5
B. GENERAL GUIDELINES TO AGILE (BASIC THEORIES) 7
C. AGILE DEVELOPMENT METHODS .. 10

1. Crystal Methodologies .. 11
2. Dynamic Software Development Method (DSDM) 12
3. Feature-Driven Development ... 13
4. Lean Software Development .. 14
5. Scrum ... 15
6. Extreme Programming (XP) .. 16

D. ASSUMPTIONS AND IMPACTS... 21
1. Assumptions .. 21
2. Impacts ... 22
3. Process and Documentation Impacts .. 24
4. Comparison to Traditional Engineering Methods (Plan-

Driven) ... 24
5. When to Apply Agile Development ... 26

III. WATCHKEEPER AND MASI ... 29
A. WATCHKEEPER GOALS AND OBJECTIVES................................ 29
B. WATCHKEEPER PROJECT PROCESS AND DOCTRINE 30
C. WATCHKEEPER PROJECT PROGRESS MEASUREMENT 31
D. STAKEHOLDERS, ROLES, AND RESPONSIBILITIES 33

1. Sponsor and Sponsor’s Representative 33
E. COMMUNICATIONS ... 35
F. OTHER FACTORS .. 35
G. WATCHKEEPER OUTCOME .. 36

1. WatchKeeper Outcome Compared to Goals and Objectives . 36
H. MISSION AND ASSET SCHEDULING INTERFACE (MASI) 36

1. MASI Goals and Objectives ... 36
I. MASI PROJECT PROCESS AND DOCTRINE 40
J. MASI PROJECT PROGRESS MEASUREMENT 40
K. STAKEHOLDERS, ROLES, AND RESPONSIBILITIES 41
L. COMMUNICATIONS ... 41
M. MASI: OTHER FACTORS ... 43
N. MASI OUTCOME .. 44

IV. PROJECT IMPACTS .. 45
A. WATCHKEEPER PROCESS AND DOCTRINE (RIGIDITY) 45
B. WATCHKEEPER PROJECT PROGRESS MEASUREMENT 47

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - x -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

C. STAKEHOLDERS AND COMMUNICATION 48
D. WATCHKEEPER OTHER FACTORS ... 49
E. MASI OUTCOME COMPARED TO GOALS AND OBJECTIVES 50
F. MASI PROCESS AND DOCTRINE .. 51
G. MASI PROGRESS MEASUREMENT... 51
H. MASI STAKEHOLDERS AND COMMUNICATION 52
I. MASI: OTHER FACTORS ... 52
J. WATCHKEEPER AND MASI PROJECTS RELATIVE SCORE ... 52
K. WATCHKEEPER AND MASI PROJECTS COMPARED TO

AGILE DEVELOPMENT ... 61

V. CONCLUSION ... 65
A. FUTURE RESEARCH ... 65

LIST OF REFERENCES ... 67

APPENDIX .. 71

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - xi -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

LIST OF FIGURES

Figure 1. Single- and Double-Loop Learning (Argyris & Schön, 1996)10
Figure 2. Agile Development Crystal Methodologies (Pruitt, 2011)12
Figure 3. Dynamic Software Development Method (Clifton & Dunlop, 2003)13
Figure 4. Feature-Driven Development (Feature-Driven, n.d.)14
Figure 5. Lean Software Development (Scio, 2010) ..15
Figure 6. Scrum Development (Lynch, 2010) ..16
Figure 7. Extreme Programming (Extreme, 2000) ...17
Figure 8. Dimensions Affecting Method Selection (Boehm & Turner, 2004)...............28
Figure 9. Stakeholder Organization ...34
Figure 10. Overall Planning View of MASI ...39
Figure 11. Overall Planning of the Prototype System Used for MASI39
Figure 12. Fictitious Monthly View of Assets in the MASI System40
Figure 13. MASI Stakeholders ..41

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - xii -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

THIS PAGE INTENTIONALLY LEFT BLANK

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - xiii -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

LIST OF TABLES

Table 1. The Genome of Agile (Glaiel et al., 2013) ...18
Table 2. Agile Genes Maps to Several Popular Agile Methodologies (Glaiel et al.,

2013) ..20
Table 3. Levels of Software Method Understanding and Use (Cockburn, 2002)23
Table 4. Traditional Versus Agile Software Development (Nerur, Mahapatra, &

Mangalara, 2005, p. 75) ...26
Table 5. The Five Critical Agility/Plan-Driven Factors (Boehm & Turner, 2004, p.

55) ..27
Table 6. Aggregated Totals of WatchKeeper and MASI Relative Scoring61
Table 7. The Five Critical Agility/Plan-Driven Factors: Comparison With

WatchKeeper and MASI Projects (Cockburn et al., 2005, p. 55)62

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - xiv -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

THIS PAGE INTENTIONALLY LEFT BLANK

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - xv -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

LIST OF ACRONYMS AND ABBREVIATIONS

ALMIS Aviation Logistics Management Information System

AOPS Abstract of Operations

BFT Blue Force Tracking

C4ISR Command, Control, Communications, Computers, Intelligence,
Surveillance, and Reconnaissance

COI Critical Operating Issues

DAA Designated Approving Authority

DHS Department of Homeland Security

DOG Deployable Operational Group

DSDM Dynamic Software Development Method

EVM Earned Value Management

GAO Government Accountability Office

IMS Integrated Master Schedule

IOC Interagency Operations Center

IOP Interagency Operational Planning

IPT Integrated Product Team

IVT Integrated Vessel Targeting

JCIDS Joint Capabilities Integration and Development System

KPP Key Performance Parameters

MASI Mission and Asset Scheduling Interface

MDA Maritime Domain Awareness

MHSOPS Maritime Homeland Security Operations

MISLE Marine Information for Safety and Law Enforcement

MNS Mission Need Statement

MSAM Major Systems Acquisition Manual

OM Operations Monitoring

OPAREA Operating Area

ORD Operational Requirements Document

PM Program Manager

PORD Preliminary Operational Requirements Document

SAFE Port Security and Accountability for Every Port

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - xvi -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

SCC Sector Command Centers

SDLC Systems Development Life Cycle

WBS Work Breakdown Structure

XP Extreme Programming

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - xvii -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

EXECUTIVE SUMMARY

Software Engineering

The philosopher Hegel hypothesized that increased human understanding
follows a path of thesis (this is why things happen the way they do);
antithesis (the thesis fails in some important ways; here is a better
explanation); and synthesis (the antithesis rejected too much of the
original thesis; here is a hybrid that captures the best of both while
avoiding their defects). (Boehm, 2006)

Statement of the Problem

The problem is that U.S. Coast Guard information technology (IT) projects are

often delivered late, over budget, and not within the scope of the original requirements.

Additionally, when these IT projects are delivered, they are often obsolete because the

technology specified in the original acquisition requirements has a very short life cycle.

This is a problem because failing to successfully deliver these IT capabilities hampers the

Coast Guard’s ability to accomplish its three primary responsibilities of maritime safety,

maritime security, and maritime stewardship.

Purpose of the Study

The purpose of this thesis is to explore and understand the factors that may have

contributed to Coast Guard IT projects that were delivered late, were out of scope, or

were over budget. This study seeks to understand the nature and characteristics of failed

IT projects. These failures are in the context of a plethora of resources made available to

the Coast Guard to ensure the success of its IT projects. This study is important because

it could identify several areas in which progress might be made to improve the rate at

which Coast Guard command, control, communications, computers, intelligence,

surveillance, and reconnaissance (C4ISR) technology can be assessed, acquired,

implemented, and sustained.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - xviii -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

THIS PAGE INTENTIONALLY LEFT BLANK

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 1 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

I. INTRODUCTION

Investments in technology have the potential to improve organizations and can be

force multipliers. However, federal IT projects too often experience cost overruns,

schedule slippages, and performance shortfalls. Specific to the Coast Guard, there are

currently four IT command, control, communications, computers, intelligence,

surveillance, and reconnaissance (C4ISR) Level 1 acquisitions programs, which are

outlined in the Major Systems Acquisition Manual as having life-cycle cost estimates

equal to or greater than $1 billion. As stated in a September 2012 Government

Accountability Office (GAO) report, these major C4ISR programs are 86% over budget,

and current funding levels will not allow the programs to execute as planned

(Government Accountability Office [GAO], 2012). Additionally, outdated program

baselines do not reflect current costs or schedules of the programs for myriad reasons,

which results in the Coast Guard not being able to provide Congress with accurate

information on its capital investment plan.

Since the passage of the first acquisition act, and in every acquisition mandate

since, the federal government has struggled to deliver capabilities that have met the

requirements of the end user while staying within budget and on schedule. To alleviate

this challenge, adding more mandates and oversight has become the “go-to play.” These

policies and mandates, however, might be creating a phenomenon that Senge (1990)

called compensating feedback, which is “when well-intentioned interventions call forth

responses from the system that offset the benefits of the intervention” (p. 58), meaning

that the additional regulatory requirements are having a counterproductive effect on the

desired outcomes. Regardless, improvements must be made, and this thesis explores a

viable option for improvement.

A. ORGANIZATION OF THE STUDY

Chapter I of this thesis describes the context surrounding the current state of

investments in technology and C4IT capabilities within the Coast Guard. Chapter II

describes agile software development and provides a glimpse into the current

fundamental application of this methodology. Chapter III provides a detailed look at both

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 2 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

the WatchKeeper project and the Mission and Asset Scheduling Interface (MASI) project,

two IT projects that I was personally involved with, and the outcomes of those projects.

The goal of Chapter III is to provide a glimpse into the challenges that are present when

fielding C4IT systems. Chapter IV discusses the challenge of information from federal-

level policies and directions, as well as internal Coast Guard policies and direction.

Chapter V presents potential considerations for future C4IT development endeavors.

B. MOTIVATION

I am convinced that the Coast Guard can become more efficient and effective at

fielding capabilities for operators to be better positioned to complete their mission. Being

involved with both the WatchKeeper project and the MASI project, I have witnessed

firsthand successful outcomes to IT project management challenges—when the effort is

freed of bureaucratic mandates that have little to no value. I am also convinced that the

Coast Guard possesses enough indigenous talent to accomplish fielding useful systems

for its operators.

C. RESEARCH QUESTIONS

1. Introduction

 What is the problem and purpose of the thesis? Agile
development.

 What is it?

 What are the different types?

 What are the strengths and weaknesses?

 When is it appropriate to apply the methodology?

 What are the comparisons with traditional engineering approaches?

2. WatchKeeper and MASI IT systems

 What is the WatchKeeper project, and what were the goals and
objectives of the project?

 How was the WatchKeeper project managed?

 What was the outcome of the WatchKeeper project?

 What is the MASI project, and what were the goal and objectives
of the project?

 How was the MASI project managed?

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 3 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

 What was the outcome of the MASI project?

3. Analysis of the WatchKeeper and MASI projects

4. Recommendations

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 4 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

THIS PAGE INTENTIONALLY LEFT BLANK

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 5 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

II. WHAT IS AGILE?

Agile software development is an approach that developers use to plan, coordinate,

work, and communicate with customers, stakeholders, and so forth. In its most simplistic

form, agile software development is about “feedback and change” (Dingsøyr, Dyba, &

Moe, 2010). Cockburn (2006) also stated that by accepting that perfect communication is

not feasible, one can learn to manage that uncertainty and “stop when you have

sufficiently communicated to the purpose of the intended audience” (p. 1). Boehm and

Turner (2004) defined agile as both the ability to rapidly change and the counterpart to

discipline: discipline strengthens; agility releases and invents. A textbook definition of

agile development states that when there are uncertainties with development or problems

occur, agile provides procedures for allowing for flexibility to be responsive to

unanticipated issues (Burd, Jackson, & Satzinger, 2012). Erickson, Lyytinen, and Siau

(2005) defined agility as the “means for stripping away the heaviness, commonly

associated with traditional software development methods, to promote quick response to

changing environments” (p. 2). These definitions don’t necessarily solidify an exact

answer to what agile software development is; however, the definitions share some

similar terminologies, such as communication, uncertainty, volatile environments, and

flexibility—all of which are derived from the Manifesto for Agile Software Development

(Beck et al., 2001).

A. MANIFESTO FOR AGILE SOFTWARE DEVELOPMENT

In February 2001, 17 people met in Utah and developed what is commonly known

as the Manifesto for Agile Software Development (the Manifesto). The Manifesto

describes what the group feels is “the uncovering of better ways to developing software”

(Beck et al., 2001). The Manifesto has 12 principles:

1. Satisfy the customer through early and continuous delivery of valuable
software: The highest priority of the team is to satisfy the customer with
frequent deliveries that allow for early feedback with respect to the
requirements, the team, and the process.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 6 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

2. Harness change for competitive advantage: If the team can adapt to the
changing requirements (because of early, frequent delivery), this allows
for a response to late-breaking information that often allows a company to
outmaneuver a competitor.

3. Deliver working software frequently: This reinforces the importance of
delivering working software frequently.

4. Business people and developers work together daily: This principle
enforces the concept that daily interaction helps to facilitate better
communication.

5. Build projects around motivating people: This principle focuses on the
people aspect of the project more than on the process.

6. Face-to-face conversation is the most effective and efficient way to
convey information: This principle supports principle 4, with the addition
of the importance of face-to-face communication—the most efficient and
effective approach for conveying information.

7. Working software is the primary measure of progress: This is the
Manifesto’s third reference to the delivery of working software. It
reinforces software delivery as a primary goal of a software development
project.

8. Agile processes promote sustainable development: This principle focuses
on the nonlinearity of humans and suggests that as people put in long
hours, they begin to tire and the rate of progress of the project slows.

9. Continuous attention to technical excellence and good design enhance
agility: This principle focuses on a well-encapsulated design, which
facilitates greater agility and an ability to change. In order to accomplish
this, the team should produce good designs throughout the project.

10. Simplicity is the art of maximizing work done: Simplicity is essential. As
Cockburn (2002) stated, “Simplicity has to do with accomplishing while
not doing, maximizing the work not done while producing good software”
(p. 212).

11. The best architecture, requirements, and design emerge from self-
organizing teams: The focus here is on the architecture being allowed to
adjust over time, just as the requirements do.

12. Adjust and fine-tune the development process to become more effective at
delivering useful code in intervals: This principle reaffirms that the most
important aspect of the software development project is the delivery of
working software.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 7 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

The four core values gleaned from the Manifesto and that are at the core of agile system

development are the following:

1. individuals and interactions over processes and tools,

2. working software over comprehensive documentation,

3. customer collaboration over contract negotiation, and

4. responding to change over following a plan.

B. GENERAL GUIDELINES TO AGILE (BASIC THEORIES)

The idea of agile development is that it is more important to place emphasis on

the people in the project than on the documentation. Amicability, talent, skill, and

communication become the foundation of the team, and the development of these skills is

of utmost importance (Cockburn & Highsmith, 2001b). The idea is that by strengthening

these areas, the cost of moving information and quickening the decision-making sequence

is realized, ultimately making the team more flexible. By placing people physically

closer and replacing documents with in-person communication, the cost of moving

information can be greatly reduced; likewise, adding experts to the team and working

incrementally quickens the feedback loop, thus reducing the time that it takes to make a

decision (Cockburn & Highsmith, 2001b).

The fact that the business world has become turbulent, uncertain, and fast paced—

requiring fast responses—is why the term agile was coined. However, it is of the utmost

importance not only to be fast, but to be accurate as well. The agile process requires that

appropriate business processes be in place to make and support change. However, in

order for these processes to succeed, they must have responsive people and organizations.

Too often, software engineering and rigorous process adherents are incorrectly confused

as competence (Cockburn & Highsmith, 2001a). As Cockburn and Highsmith (2001b)

stated, “Processes do provide the framework for groups to work together, but processes

alone cannot overcome a lack of competency. However competency can surely

overcome the vagaries of a process” (p. 132).

Agile software development is a complex phenomenon that includes interrelated

practices and managerial policies, so it might be best to try to examine agile software

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 8 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

development from a theoretical perspective. There are a variety of theories that best

explain agile development, but dynamic capabilities, coordination, and double-loop

learning are the theories that work the best. Dynamic capabilities theory helps explain

the need for agility and how to achieve it. Coordination and double-loop learning help

explain how to best achieve coordination and learning in an agile environment

(Balasubramaniam & Lan, 2007). Agile manufacturing, which was introduced to help

the United States regain competitive positioning in the manufacturing world, proves that

agility is not unique to software development (Dingsøyr & Dybå, 2008). Manufacturing

industries embraced agile to react quickly to changing customer requirements and

dynamic capabilities theory, as explained in strategic management literature

(Balasubramaniam & Lan, 2007). Pisano, Teece, and Teece (1997) stated, “Dynamic

capabilities are the firm’s ability to integrate, build and reconfigure internal and external

competences to address rapidly changing environments” (p. 515). Dynamic capabilities

theory explains how organizations can achieve competitive advantages while operating in

a changing environment. Dynamic capabilities theory exhibits several common features

of agile development. These features include cross-functional teams, joint experiences

among team members, and external communications. Effective dynamic capabilities

include the frequent use of prototyping to obtain real-time feedback in order to adjust

actions and experimentations. Applying dynamic capabilities theory to agile software

development has proven successful across multiple industries, suggesting its value in

appropriate dynamic environments.

Coordination theory requires that the entire group working on the project shares a

common set of goals and information to facilitate activities (Kraut & Streeter, 1995). As

task interdependence becomes intensive, group coordination increases significantly and

personal coordination increases moderately (Van De Ven, Delbecq, & Koenig, 1976). As

such, agile development involves intensive teamwork and high task interdependence

using group meetings and personal coordination. As task interdependence increases,

organizational hierarchy decreases, suggesting that agile development requires an

increased use of organizational rules and routines (Balasubramaniam & Lan, 2007). As

uncertainty increases, tasks become more challenging and coordination is more difficult.

Therefore, the use of personal and group coordination increases, while the use of

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 9 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

impersonal coordination decreases significantly. In an agile environment, where tasks

are highly uncertain because of changing and/or incomplete requirements, personal and

group modes of coordination are preferred over the use of formal documentation

(Balasubramaniam & Lan, 2007). As Balasubramaniam and Lan (2007) stated, “Agile

approaches replace heavy documentation, upfront design, detailed plans and formal

contracts with feature based planning, evolving design and co-located customers” (p. 46).

Double-loop learning theory helps explain how to solve complex and ill-

structured problems in rapidly changing contexts. Learning is critical in agile software

development, as Highsmith (1997) stated,

In an adaptive environment, learning challenges stakeholders, including
both developers and customers, to examine their assumptions, and then
use the results of each development cycle to learn the direction of the next.
The cycles need to be short, so teams can learn from small, rather than
large mistakes. They also need to be double-looped, so teams learn both
about product changes, fundamental changes, and underlying assumptions
about how the products are being developed. (p. 45)

Double-loop learning theory has three important elements:

1. Governing variables are dimensions that people keep within.

2. Action strategies are the plans used to keep governing variables within an
acceptable range.

3. Consequences are the results of those actions.

In single-loop learning, when something goes wrong, workers try to look for

another solution using the variables that are present. In double-loop learning, however,

people question the governing variables themselves and subject the variables to critical

scrutiny. As such, this is a shift in the way people frame strategies and consequences.

Double-loop learning is more important for organizations operating in dynamic

environments (Argyris & Schön, 1996). See Figure 1 for details on single- and double-

loop learning.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 10 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

Figure 1. Single- and Double-Loop Learning
(Argyris & Schön, 1996)

Agile software development practices foster double-loop learning because double-

loop learning provides an environment that warrants the participants to experiment with

their mental models. As Beck (2004) stated, “Agile software development is a

continuously self-correcting process” (p. 46). Instead of doing things right, the focus is

on doing the right thing to enhance business value, frequently adjusting strategies and

monitoring the feedback of those decisions.

An aspect of agile development that is often missed is that organizations are

complex, adaptive systems, where decentralized interaction is guided by a set of simple,

generative rules (Cockburn & Highsmith, 2001b). The previously mentioned

organizational theories are tremendously important to help explain why agility is useful

in software development. The agile approach is consistent with these sound principles

and is grounded in management and the organization theories explained previously

(Balasubramaniam & Lan, 2007).

C. AGILE DEVELOPMENT METHODS

Agile software development methods are being adopted in all industries and fields

to deal with quickly evolving requirements that can become obsolete before project

completion (Balasubramaniam & Lan, 2007). As Sengupta, Van Oorschot, and Van

Wassenhove (2013) stated, agile software methods are

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 11 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

lightweight processes that employ short iterative cycles, actively involve
users to establish, prioritize, and verify requirements, and rely on a team’s
tacit knowledge as opposed to documentation. True agile methods must
take several cycles to complete, teams must determine the best way to
handle work, and the work structures must be reorganized during the
project rather than predetermined. (p. 2)

There are multiple agile methodologies. To provide a scope for this thesis, I

summarize six methods in this section: crystal methodologies, dynamic software

development method (DSDM), feature-driven development, lean software development,

scrum, and extreme programming (XP). I do not intend for this section to describe these

methodologies in great detail, but rather to provide high-level exposure to each method’s

core values and practices (Dingsøyr & Dybå, 2008).

1. Crystal Methodologies

The core philosophy of this methodology is that software development requires

cooperative invention and communication, with a primary goal of delivering useful

working code. A key to this philosophy is that projects need to be run differently based

on needs and that the people involved must be as flexible as the needs. Crystal is a

method for co-located teams of different sizes and criticality, and each team is given a

color based on the team’s size and talents. These colors are clear, yellow, orange, red,

magenta, and blue. As shown in Figure 2, the clear team has the fewest members, while

the blue team has the largest number of team members. This is the most flexible of all

the agile methods and critically focuses on communication and small teams (Cockburn,

2002). Crystal development has seven characteristics:

 frequent delivery,

 reflective improvement,

 osmotic communication,

 personal safety,

 focus,

 easy access to experts, and

 requirements for the technical environment.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 12 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

Figure 2. Agile Development Crystal Methodologies
(Pruitt, 2011)

Figure 2 describes the various categories of the crystal method, in which life has

the highest priority and comfort has the lowest. The colors represent the size of the team

that is needed for the effort. For example, an E-yellow project is a project that is

essential and requires a team of 20 members, and a D-red project is a project that is

discretionary and requires a 100-person team.

2. Dynamic Software Development Method (DSDM)

This methodology divides projects into three phases: pre-project, which focuses

on candidate projects and funding; project life cycle, which examines the feasibility,

design, and implementation of the project; and finally, the post-project, which ensures the

system is operating effectively and efficiently. Figure 3 provides a graphical

representation of the DSDM. The DSDM has nine principles:

1. involving the user,

2. empowering the project team,

3. delivering frequently,

4. addressing current business needs,

5. using iterative and incremental development,

6. allowing for revisions,

7. fixing high-level scope before the project starts,

8. testing throughout the project life cycle, and

9. providing efficient and effective communication.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 13 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

Figure 3. Dynamic Software Development Method
(Clifton & Dunlop, 2003)

3. Feature-Driven Development

This methodology combines model-driven and agile development with an

emphasis on an initial object model, division of work features, and iterative design for

each feature. It consists of five activities: develop overall model, build feature list, plan

by feature, design by feature, and finally, build by feature. Feature-driven development is

driven from the customer’s perspective and is designed around industry best practices.

Figure 4 provides a simple graphical representation of the feature-driven development

model.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 14 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

Figure 4. Feature-Driven Development
(Feature-Driven, n.d.)

4. Lean Software Development

This methodology is an adaptation of principles from lean production, in

particular the Toyota production system, to software development. This methodology

has seven principles:

 eliminate waste,

 amplify learning,

 decide as late as possible,

 deliver as fast as possible,

 empower the team,

 build integrity, and

 see the whole.

Figure 5 shows a graphical overview of this method.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 15 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

Figure 5. Lean Software Development
(Scio, 2010)

5. Scrum

This methodology focuses on project management in situations where it is

difficult to plan ahead and where feedback loops constitute the core element of the

process. A team develops software in increments that are called sprints, starting with

planning and ending with review. The implementation features are registered in a

backlog, and the product owner decides which backlog items should be developed in the

next sprint. All of the software development activities (requirements analysis, design,

coding, testing, and delivery) are carried out in each sprint (Suganya & Mary, 2010). At

the end of each sprint, the team is able to deliver a small portion of the product. Work is

coordinated in daily stand-up meetings where the person in charge, called the scrum

master, is responsible for solving problems. These scrums define the framework to

organize and produce products on time. The scrum master prioritizes the backlog, and

then the scrum team prioritizes the customer requirements, taking into consideration both

the customer needs and the business needs. Figure 6 shows a graphical representation of

a scrum and the tasks involved.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 16 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

Figure 6. Scrum Development
(Lynch, 2010)

6. Extreme Programming (XP)

This methodology is probably the most well-known agile process (Beck, 2000;

Strigel, 2001). XP starts with a planning phase, followed by several iterations, and ends

with acceptance testing. The work is broken up and prioritized by the end user. The key

to this philosophy is that at the end of every iteration, the end user performs an

acceptance test against the requirements, often referred to as user stories (Suganya &

Mary, 2010). See Figure 7 for a graphical depiction of the XP process. XP focuses on

best practices for development and consists of 13 common practices:

 whole team,

 customer test,

 small releases,

 planning game,

 collective ownership,

 coding standard,

 continuous integration,

 metaphor,

 sustainable pace,

 simple design,

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 17 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

 pair programming,

 refectory, and

 test-driven development.

Figure 7. Extreme Programming
(Extreme, 2000)

Given the preceding examination of these agile methodologies, there are six

features that are common to them all. As Bohner and Coram (2005) stated, these features

are as follows:

1. Collaboration: Agile methods are highly collaborative inside and outside
the development group.

2. Code review: Agile methods encourage code reviews to facilitate the
dissemination of key information.

3. Small teams: Agile methods encourage small teams.

4. Short release schedules: Agile release schedules can be as short as two
weeks, which allows the team to evaluate the product and identify
priorities.

5. Boxing: Time boxing helps to focus the customer and reduces scope creep.
The release length is fixed so that the features of the system are not.

6. Constant testing: Frequent testing helps to prevent a degraded product.
This helps to offset the risk of just writing the code. Testing must be
automated with the daily builds and regression test to ensure that all
functionality works.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 18 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

To support the theme of common characteristics, Glaiel, Moulton, and Madnick

(2013) found that regardless of the agile methodology employed, seven agile techniques

were common to all of the previously mentioned methodologies. They called these seven

agile techniques the “Genome of Agile,” and they are listed and described in Table 1

(Glaiel et al., 2013).

Table 1. The Genome of Agile
(Glaiel et al., 2013)

Gene Name Description Contrast to
Traditional

Story/Feature Driven Breakup of the project into
manageable pieces of functionality,
sometimes named “features,”
“stories,” “use cases,” or “threads.”
The system is segmented into sets of
client-valued functionality, and
development work is organized
around producing these features.

Traditionally employ
functional
decomposition where
system is broken into
subcomponents that are
implemented in parallel
and integrated in late
stages. This requires
upfront requirement
specification in
lockdown.

Iterative-Incremental Development is performed in
repeated cycles (iterative) and in
portions at a time (incremental).

Development
approaches call for
complete requirements
analysis phase,
followed by lengthy
design, coding, and test
phases

Micro-Optimizing This represents the adaptive nature
of agile management processes.
Agile methodologies are encouraged
to tailor aspects of the development
process to adapt to change. Teams
are empowered to modify aspects of
the process or dynamically adapt to
changing circumstances. Small
improvements and variable changes
are made frequently as needed.

Traditional processes
can exhibit a flavor of
this change in the form
of lessons learned
activities that are called
for at the completion of
a project, but which
really feed to the next
development cycle and
yield little improvement
on subsequent
development projects.

Refactoring Refinement of the software design
and architecture to improve software
maintainability and flexibility.
Several of the agile methodologies

Typically traditional
development schedules
do not permit
refactoring.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 19 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

Gene Name Description Contrast to
Traditional

consider refactoring to be the
primary development practice.
Refactoring consists of taking apart
existing working code, factoring out
common elements, and rebuilding it
to provide a stronger base for
subsequent development.

Continuous Integration Policies and practices related to
configuration management, and
software build and test automation.
Continuous integration involves
methods for maintaining an updated
code base that includes all changes
that have been made and regularly
building a testable version of the
product

Configuration
management is
traditionally approached
by having different
teams develop different
portions of software in
isolated environments.
They then try to
integrate these separate
portions later in the
development cycle.

Team Dynamics Soft factors related to the project
team. Daily meetings, workspaces,
pair programming, schedule/peer
pressure, experience gained, etc.

Customer Involvement Customer/User involved in
demonstrations of functionality to
verify and validate features. Higher
frequency feedback and clarification
of uncertainty. Availability to
participate in development
meetings. Customer involvement
gene means accepting changing
requirements and including the user
in the development to the degree
that is possible.

The traditional
approach to this is to
lock in the system
requirements early in
the project. Any
subsequent changes
require contractual
renegotiation for added
scope or scope change.

The application of the Genome of Agile framework is dependent on the agile

methodology used. Not every agile method features every genome as identified by Glaiel

et al. (2013), as is shown in Table 2.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 20 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

Table 2. Agile Genes Maps to Several Popular Agile Methodologies
(Glaiel et al., 2013)

Methodology Agile Gene
 Feature

Driven
Iterative-

Incremental
Refactoring Micro-

Optimizing
Customer

Involvement
Team

Dynamics
Continuous
Integration

Scrum X X X X X
XP X X X X X X

TDD X X X X
FDD X X

Crystal X X X X

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 21 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

D. ASSUMPTIONS AND IMPACTS

1. Assumptions

While there has been a great deal of interest and enthusiasm behind agile methods,

and most reviews have been favorable, specific assumptions are present in agile software

development processes. These assumptions and development practices could lead to

limitations. The following is a summary of the assumptions identified by Turk, France, and

Rumpe (2005):

1. Visibility assumption: This assumption suggests that working code can be
used as a sole source for project visibility. Although project visibility is
traditionally accomplished through various report specifications—and
measures of quality and productivity—agile development suggests that
working code is a true barometer for project status.

2. Iteration assumption: This assumption states that a project can always be
structured into short fixed-time iterations. As stated previously, agile
processes require features to be coupled and bundled so they can be addressed
in fixed-time iterations.

3. Customer-interaction assumptions: This assumption suggests that the
customer will always be available for interaction when needed by developers.
This means that customers can always reschedule their other work.

4. Team-communication assumption: This assumption states that developers are
located so that they are able to have frequent communication with each other,
specifically face-to-face. This requires that team meetings be a priority and
that this is accepted by all of the respective stakeholders.

5. Face-to-face assumption: This assumption suggests that face-to-face
interaction is the most productive method in communication. This assumption
deemphasizes the value of documentation as a communication aid based on
the idea that tacit knowledge is superior to other types of gained knowledge.
There are potential ramifications for this assumption. As Boehm (2002) stated,
“This focus on tacit knowledge makes projects that use agile process
dependent upon experts” (p. 13).

6. Documentation assumption: This assumption states that developing extensive
documentation and software models is counterproductive. The assumption is
that it is more reliable to determine design from actual code than from
documents, specifically since documents are rarely kept up to date and are not

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 22 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

maintained when code is changed. Advocates for documentation state that
documents provide good models to bring new hires up to speed, which helps
users determine the applicability of requirements.

7. Welcoming changing requirements: Requirements change during software
development, and this is recognized both in the agile and traditional
developmental communities. Evolving requirements are an inherent problem
of software development; however, it is assumed that the development team
will be able to handle changing requirements, even late in the process.

8. Continuous redesign assumption: This assumption maintains that systems can
continuously be redesigned while maintaining their conceptual integrity. The
assumption is that the system can be redesigned and carried out without a
significant amount of time and cost.

9. Simplicity is essential: This assumption states that the complexity imposed by
heavyweight processes and models is unnecessary. The assumption is that a
focused architecture that satisfies the current needs is preferred over a general
architecture that is designed to incorporate future needs.

2. Impacts

In addition to the assumptions underlying agile software development processes,

there are impacts that may affect the project management component of the software

development effort. I examine these impacts as they relate to people, processes, and projects,

and then summarize the findings of Bohner and Coram (2005). The impact of a software

development process on people is obvious. The people involved include developers,

customers, testers, executive management, and project leaders, to name a few. However, the

largest impact is on the developers. As previously stated, agile methods are lightweight

methods that do not follow strict guidelines and processes. As such, it is imperative that the

developers be highly trained and willing to work as a team. Cockburn (2002) identified

characteristics and three levels of skill that developers must have to accomplish various tasks

within a given framework. Table 3 identifies these characteristics.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 23 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

Table 3. Levels of Software Method Understanding and Use
(Cockburn, 2002)

Level Characteristics

3 Able to produce solutions and unprecedented
situations

2 Able to tailor solutions to fit new, but
precedented situations

1A Solid developer able to implement
functionality, estimate effort, and re-factor
code

1B Able to implement simple functionality,
execute tests, and follow directions

-1 Unwilling or unable to work in a
collaborative environment

Of the three different personal technical skills identified in Table 3, only levels 3, 2,

and 1A would possess the needed ability to work in an agile environment. Given the need to

employ high levels of expertise, traditionally staffed organizations may have difficulties

achieving this requirement.

The impact of using agile methodology on an organization’s software development

testing team is dependent on the developmental cycles of the agile process chosen. Testers

must work closely with developers throughout the entire process and might actually need to

be programmers themselves. The challenge to management is to be able to identify this

required skill set of would-be team members. As a project leader in an agile development

effort, the challenge is in assembling an experienced staff and empowering those members.

This empowerment might be a cultural shift for some organizations, which may dissect the

decision-making hierarchy. Additionally, project leaders have to develop the skills required

to respond to change. Project leaders have a much more hands-on role than in traditional

development efforts, and as such, they are more involved with customer collaboration.

Customers have a much more involved role with agile methods than with traditional

development efforts. With agile, customers are involved throughout the entire process, unlike

traditional development, where customers are involved only with defining the requirements

and with acceptance testing. It is highly recommended that a full-time customer presence be

on-site to work with the development team on a daily basis.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 24 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

3. Process and Documentation Impacts

Since agile methods require new process activities, many organizations must make

drastic changes to old processes to accommodate the new way of doing business. This

includes, but is not limited to, planning, documentation, development processes, and delivery.

Agile processes place less importance on formal planning, but planning still needs to take

place. Planning in agile is a relatively informal process, but there are many small tests, which

may lead to more planning needs. In most agile efforts, documentation is often limited to

allow for optional architecture to be developed. The determination of how much

documentation to use in an agile effort is critical, as is the understanding that documentation

must be updated whenever a change is made. Although this type of documentation effort can

avoid the wasted time of writing a document and then leaving it to become obsolete, it does

come with risk. As stated earlier, documentation is an excellent way to bring new hires up to

speed with the developmental effort, and it provides a method for tracking and auditing.

4. Comparison to Traditional Engineering Methods (Plan-Driven)

As stated previously, the primary goals of agile methods are rapid value and

responsiveness to change, while the primary goals of plan-driven methods are predictability,

stability, and high assurance. Agile approaches are based on the view that organizations are

complex adaptive systems, where requirements are emergent rather than pre-specifiable

(Boehm & Turner, 2004). Plan-driven goals are focused on increasing process capability for

standardization, measurement, and control. Agile projects focus on building things quickly

and finding out through experience what activity or feature will add the most value (Boehm

& Turner, 2004). Agile methodologies are reactive postures that have considerable

advantages when operating in an environment with rapid changes, such as technology.

However, the downside to this approach is the overemphasis on tactical objectives over

strategic objectives.

Current research has stated that agile processes work best within small to medium

groups working on relatively small applications (Boehm & Turner, 2004). Kent Beck (2004)

stated, “the size of the project clearly matters, and it would be very difficult to run a project

using agile methods with a team of 100 programmers or more” (p. 38). Larger agile projects

with hundreds of people have been successful, but in those cases, traditional plans and

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 25 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

specifications were adopted to deal with interactions among the project elements. Conversely,

plan-driven methods are better for larger projects, where plans, documentation, and processes

provide for better communication. As stated previously, agile methods concentrate on

delivering a product on time to satisfy the customer. However, this comes with an inherent

risk of microscopically focusing on the product at hand and ignoring problems that may

occur later. An example of this pitfall is developing an agile system or application that

doesn’t integrate well with the organization’s overall enterprise architecture.

When agile approaches are compared to traditional approaches from a managerial

perspective, there are discrete differences in each stakeholder’s expectations. Although

planning, control, and communications are prevalent in both approaches, they are managed

differently. Agile approaches depend on dedicated customer involvement focused on adding

rapid value to the effort. Conversely, plan-driven methods depend on a formal contract

between the developers and customers as the basis for customer relations. This contract is

designed to identify foreseeable problems in advance and formalize a solution with

documentation. Although this approach aids in identifying potential issues, it can be a high

stress point for the development team working to facilitate the plan-driven effort. With agile,

planning is seen as a means to an end, and a high percentage of time is spent on re-planning.

Plan-driven methods use plans to anchor their processes and again to provide for a spectrum

for communication. As stated in the Manifesto for Agile Software Development, the emphasis

in agile methodologies is on individuals and interactions (Beck et al., 2001).

An important part of agile development—maybe even the most important part—is

testing. Testing is a way to validate that the customers specified the right product and that the

developers built the right product. Testing, which is frequent in agile approaches, requires

that code be developed and executed. However, with plan-driven approaches, testing does

not occur as often, resulting in problems being discovered late in the development cycle;

these problems are expensive to fix. In most agile approaches, it is recommended to automate

testing procedures. As Beck (2003) stated, this has significant advantages:

 It ensures that the requirement is testable.

 It avoids documentation minutia.

 It enables incremental build and test opportunities.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 26 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

 It helps modularize the application structure and provides a safety net
for re-factoring.

 It helps form an explicit working knowledge of the application. (p. 74)

Table 4 further outlines the differences between traditional and agile software development.

Table 4. Traditional Versus Agile Software Development
(Nerur, Mahapatra, & Mangalara, 2005, p. 75)

 Traditional Agile
Fundamental assumptions Systems are fully specifiable,

predictable, and can be built
through meticulous and
extensive planning.

High-quality, adaptive
software can be developed by
small teams using the
principles of continuous
design improvement in
testing based on rapid
feedback and change.

Control Process centric People centric
Management style Command and control Leadership in collaboration
Knowledge management Explicit Tacit
Role assignment Individual: favors

specialization
Self-organizing teams:
encourages role
interchangeability

Communication Formal Informal
Customer’s role Important Critical
Project cycle Guided by tasks or activities Guided by product features
Development model Life-cycle model (waterfall,

spiral, or some variation)
The evolutionary delivery
model

Desired organizational
form/structure

Mechanistic (bureaucratic
with high formalization)

Organic (flexible in part to
dissipate encouraging
cooperative social action)

Technology No restrictions Favors object-oriented
technology

5. When to Apply Agile Development

Agile methodologies are appropriate for projects that have high variability, uncertain

requirements, and unknown capabilities of people and that are utilizing new technology

(Nerur et al., 2005). To better guide the decision-making requirements on when to use agile

approaches and when to use plan-driven approaches, I have identified five critical factors,

introduced by Cockburn et al. (2005) to be most appropriate. As described by Boehm and

Turner (2004), these factors are project size, criticality, dynamism, personnel, and cultural

factors. Table 5 describes these factors.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 27 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

Table 5. The Five Critical Agility/Plan-Driven Factors
(Boehm & Turner, 2004, p. 55)

Factor Agility Discriminators Plan-Driven Discriminators

Size (number of
personnel)

Well matched to small products
and teams. Reliance on tacit
knowledge limits scalability.

Methods evolved to handle large
products and teams. Hard to
tailor down to small projects.

Criticality (Loss due
to impact of defect)

Untested on safety-critical
products. Potential difficulties
with simple design and lack of
documentation.

Methods evolved to handle
highly critical products. Hard to
tailor down to low criticality
products.

Dynamism
(Percentage of
requirements
changing per month)

Simple design and continuous re-
factoring are excellent for highly
dynamic environments but a
source of potentially expensive
rework for highly stable
environments.

Detailed plans and big design
up-front are excellent for a
highly stable environment, but a
source of expensive rework for
highly dynamic environments.

Personnel (Technical
abilities as defined in
Table 3)

Requires continuous presence of
critical mass of scarce Level 2 or
3 experts (as defined earlier).
Risky to use non-agile Level 1B
people.

Need for critical mass of scarce
Level 2 and 3 experts (defined
earlier) during project definition
but can work with fewer late in
the project. Can usually
accommodate some Level 1B
people.

Culture (thriving in
chaos vs. order)

Thrives in a culture where people
feel comfortable and powered by
having many degrees of freedom
(thriving on chaos).

Thrives in a culture where
people feel comfortable and
empowered by having their roles
defined by clear policies and
procedures (thriving on order).

Boehm and Turner (2004) developed Figure 8, which uses a graph to summarize the

five critical factors associated with agile and plan-driven efforts. The closer one moves

toward the center of the diagram, the more appropriate it is to use agile methods. By rating a

project along all of the five axes, a visual evaluation of relationships can be identified.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 28 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

Figure 8. Dimensions Affecting Method Selection
(Boehm & Turner, 2004)

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 29 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

III. WATCHKEEPER AND MASI

As stated in Chapter I, my interest in agile system development started during my

time working on both the MASI and WatchKeeper projects. I worked on these projects while

I was stationed at Coast Guard Headquarters from 2008 to 2011. My role with both projects

was in the capacity of sponsor’s representative, and, as such, my responsibilities included

acting as a liaison between the end users of the systems (operators) and the rest of the project

team. As the sponsor’s representative, I worked very closely with the sponsor, and my main

obligation was to ensure that requirements that the end user identified as important were built

into the system being developed. In the following paragraphs, I provide a synopsis of both

the WatchKeeper and MASI projects. The projects are broken down by their goals and

objectives, the doctrine in process that was followed for each project, how progress was

measured, the stakeholders within the projects, the communication effort within the projects,

and finally, the other factors that influenced the projects.

A. WATCHKEEPER GOALS AND OBJECTIVES

The WatchKeeper project was the IT component of the larger Interagency Operations

Centers (IOC) project. The IOC project was a result of the mandates of the Security and

Accountability for Every Port (SAFE Port) Act of 2006, and directed the Department of

Homeland Security (DHS) to transform Coast Guard Sector Command Centers (SCC) to host

interagency members and meet the challenges of interagency coordination and maritime

security. The three gaps identified by the SAFE Port Act were the following:

 basic awareness of vessel activities near vulnerable port and coastal
infrastructure,

 systems linking the ever-increasing volume of information with vessels in
ways that help decision-makers determine threats and develop the correct
course of action, and

 means for effective information sharing and joint operations with port partners.

The volume of maritime domain awareness (MDA) information necessary to manage

Coast Guard and interagency operations has increased dramatically and exceeded the field’s

capacity to collect and process it. The Coast Guard needed new information management

capabilities to solve the coordination and operational challenges faced by today’s interagency

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 30 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

decision-makers. Decision-makers lack the ability to see, understand, and share information

that is critical to coordinate interagency operations in port and coastal areas. This situation

severely inhibits efficient information sharing with interagency partners, resulting in reduced

mission capabilities in the ports and waterways within the U.S. The WatchKeeper project

was identified to help close these gaps, and as such, was targeted to provide the following

capabilities:

1. Integrated vessel targeting (IVT): This component integrates the targeting
results of various agencies and builds a consolidated threat picture of people,
vessels, and cargo operating within an operating area (OPAREA) as provided
by intelligence and law enforcement communities in support of the Ports,
Waterways, and Coastal Security Missions.

2. Interagency operational planning (IOP): This planning component integrates
federal, state, and local asset status and schedules. As such, better
coordination and more efficient resource allocation between agencies can be
realized.

3. Operations monitoring (OM): This component manages the IOC daily
schedule that was created by the IOP component. It manages the schedule
against all emergent events, such as search and rescue, spills, and other events
occurring outside the operational planning window. OM creates and shares
the tactical picture, including command and control, mission status, and the
status of IOC forces and Blue Force Tracking (BFT).

B. WATCHKEEPER PROJECT PROCESS AND DOCTRINE

As the sponsor’s representative for the project, I, along with the sponsor’s directorate,

was responsible for providing a few key documents early on in the project. These documents

included the Mission Need Statement (MNS), the Preliminary Operational Requirements

Document, (pORD), and the Operational Requirements Document (ORD). The

WatchKeeper project’s MNS was approved in 2005 and was revalidated in February 2009.

This MNS verified the capability gaps identified in the SAFE Port Act within ports and

waterways in the U.S., and was used initially to guide the needs of the project. In addition to

the MNS, the pORD was developed in April 2008 to provide more fidelity to the actual

requirements that would be needed, and to aid in the development of the more robust ORD,

which was signed in 2010. Therefore, the only requirements guide that was used early on for

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 31 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

the initial development effort was the pORD, which again, only provided a very high-level

conceptual need, not system-specific requirements.

For the project management effort, the following doctrine and Integrated Product

Teams (IPT) were used to guide the project:

 Major Systems Acquisition Manual (MSAM)

 Systems Development Life Cycle (SDLC)

 Mission Engineering Process Guide: This process guide was
developed while working with and visiting select sectors to identify
key processes and workflows of SCCs. The focus on the mission
engineering effort was to identify processes and not IT solutions; the
effort was to capture what was happening within the command centers
at the various watch positions to better define systems requirements.

 Two-chartered IPT: The two teams were (1) information management
IPT and (2) senior leadership.

C. WATCHKEEPER PROJECT PROGRESS MEASUREMENT

One key MSAM requirement was that earned value management (EVM) be used as

the performance measurement tool because of the dollar threshold that WatchKeeper met.

The goal of EVM is to integrate the contract scope of work with scheduling cost elements at

appropriate levels for optimum project planning and control. The MSAM directs that EVM

be used against a work breakdown structure (WBS) at sufficient levels to enable an

understanding of the performance against the allocated time and budget. This information is

then used to create an integrated master schedule (IMS), which incorporates the WBS items.

EVM also communicates a project status within a portfolio and is an integral

component of the Office of Management and Budget Exhibit 300 (Primavera Systems, 2008).

The MSAM doesn’t provide clear guidance on how EVM is to be incorporated, but instead

directs the PM to comply with the DHS (2009) guidance. The DHS guidance states, “Title V

of the Federal Acquisition Streamlining Act of 1994 requires agency heads to approve or

define the costs, performance, and schedule goals for major acquisitions to achieve, on

average, 90 percent of the cost, performance and schedule goals established” (p. 8).

Additionally, when EVM is employed for a project, it is imperative that it be supported by

management and stakeholders at all levels (Fleming & Koppelman, 2009). All stakeholders

have a vested interest in the project, and it is important that everyone has a rudimentary

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 32 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

understanding of the EVM data. EVM also enables stakeholders to understand what other

stakeholders are doing. The following 10 requirements were identified by Fleming and

Koppelman (2009) as being critical to successfully implement EVM:

1. EVM requires the project to be fully understood, defined, and scoped to 100
percent of the project effort. Stakeholders need to know what constitutes 100
percent of the work in order to measure progress along the way.

2. EVM requires that the defined scope be decomposed—broken down into
major management tasks, which are selected as points of management
control—and then planned and scheduled down to the detailed work package
level.

3. EVM requires that an integrated and measurable project baseline be
authorized—relating the scope of work directly to an achievable budget—then
locked into a specific time frame for performance measurement. This is called
bottom-up planning.

4. EVM requires that only authorized budgeted work be accomplished, meaning
all work being done must be tightly controlled. Scope creep cannot be
allowed.

5. EVM requires that physical performance be measured.

6. EVM requires that the values used be related to the planned values to
accurately reflect performance against the project baseline.

7. EVM requires that reporting be consistent with the earned value being
measured to allow for an accurate portrayal of cost performance. The
relationship of actual cost must reflect the true cost performance. Earned value
less actual cost provides cost performance.

8. EVM requires that a forecast be made periodically (weekly, monthly) to
estimate the amount of time and money it will take to complete 100 percent of
the project.

9. EVM requires that a full disclosure of actual results be made available to all
stakeholders who have a vested interest in the project. All stakeholders will
receive the same actual performance results.

10. EVM requires that project managers, in conjunction with key stakeholders,
decide on the appropriate action to be taken to stay within authorized budget
expectations.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 33 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

D. STAKEHOLDERS, ROLES, AND RESPONSIBILITIES

Figure 9 at the end of this section provides a graphical representation of the hierarchy

and organizational layout of WatchKeeper’s stakeholders. It is not an official organizational

hierarchy of the Coast Guard, but rather the organizational hierarchy of the WatchKeeper

project from personal experience.

1. Sponsor and Sponsor’s Representative

 Office of Shore Forces (CG-741) and CG-761: Initially, CG-741 was
the sponsor’s representative and CG-761 was the sponsor. This later
changed: CG-761 became a sponsor’s representative and CG-741
assumed the role of the sponsor. The switch in responsibilities
occurred when new leadership reported aboard both CG-761 and CG-
741, creating a leadership turnover in both directorates. Both
incoming captains were newly promoted, and no relationship between
the two had been established yet. Interestingly, the outgoing captain
of CG-761 became the leader of the Command Control and
Communications Center (C2CEN), which was later identified as the
lead developer of the WatchKeeper system, and the outgoing captain
of CG-741 retired.

 Acquisition Directorate (CG-9): The program manager (PM) was a
senior commander (O5) and had the overall responsibility of the
project. This created an interesting dynamic in the senior decision-
making for the project. Although the commander was more than
capable of performing the duties required of the PM, there was still an
underlying reality that he was junior to other decision-making
stakeholders, given that they were all captains (O6).

 Assistant Commandant for Command, Control, Communications,
Computers and Information Technology (CG-6): CG-6 included the
technical agents and technical leaders of the project. They were to
oversee all engineering efforts with respect to impacts to enterprise,
security, and accreditation. Both centers of excellence (C2CEN,
Operations System Center [OSC]) are under CG-6 leadership; yet, for
this development effort, the PM (CG-9) had the authority to direct the
developers. This created an interesting dynamic in which the normal
reporting and tasking chain of command was then bypassed; CG-9
directly tasked a CG-6 asset.

 C2CEN: When C2CEN was given the opportunity to decide on which
technical organization/corporation/agency to hire, the challenge was
whether it should include itself as a possible candidate for the job.
After consideration, the decision was made that C2CEN would be the
lead developing agent for this project.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 34 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

 OSC: OSC is another Coast Guard Center of Excellence that works for
CG-6. Once it was decided that the Coast Guard was going to
undertake this project in-house (from a developmental standpoint),
OSC was earmarked for providing a piece of the proposed technical
solution. As such, C2CEN would develop two thirds of the proposed
solution and OSC would develop the remaining one third.

 Research and Development Center (R&DC): The R&DC was hired to
provide support for this project.

 Contract support: Contract support was pivotal in the creation of the
Mission Engineering Process document. This document laid the
groundwork for standardizing the processes that the WatchKeeper
system should be designed to facilitate. Contract support worked very
closely with both the sponsor and the sponsor’s representative on
identifying the workflow of the end users of the system. This work
helped to identify what would later be known as IVT, IOP, and OM.
The goal here was to focus on the process and not on solutions or
technology. The team felt that it would be prudent to truly understand
the workflow inputs and outputs and functional areas they resided in
before coming up with the technical solution.

 Operators and end users: Coast Guard command centers.

Figure 9. Stakeholder Organization

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 35 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

E. COMMUNICATIONS

Communication for this project was challenging given the project’s size and scope.

The PM established many processes to better facilitate information sharing between

directorates and key stakeholders, but this was never realized. Some of the variables that

challenged the PM’s effort included the geographical separation of key stakeholders.

C2CEN is located in Portsmouth, VA; OSC is the located in Kearneysville, WV; CG-7 is

located in the Transpoint building at Coast Guard Headquarters; and CG-9 and CG-6 are

located at the Jamaal building at Coast Guard Headquarters. The challenges of being

geographically separated created a logistical challenge for the project. Stakeholders were

aware of these challenges and tried to implement various forms of communication to

minimize potential negative impacts. These tools included bi-weekly information

management IPT meetings, weekly progress report meetings, monthly senior management

team meetings, and day-to-day emails, to name a few. One of the biggest shortcomings of

having physically separated key stakeholders was that too much time was wasted getting

members up to speed at the beginning of every meeting. For example, despite having met

two weeks prior, it took a bit of time for mid-level management to reassess and understand

the issues that were last discussed during the previous meetings. Without face-to-face

communication on a regular (daily) basis, a lot of time was wasted playing catch-up.

Additionally, stakeholders did not physically attend many of the meetings in person, but

rather attended telephonically. This only added to the inefficient and ineffective use of time.

F. OTHER FACTORS

The landscape for this project was complicated. The major stakeholder leadership

was either (1) a newly promoted captain or commander or (2) a seasoned captain with many

years of experience. This was interesting because the new captains tried to assert themselves

as seasoned captains and at times received pushback from the more veteran captains. As

stated earlier, the PM was a senior commander. Because of his role as PM, he had to make

unpopular decisions. This had to be done very carefully because of the differences in ranks,

which often led to wasted time. Given this dynamic, it was often difficult to obtain a clear

picture of who was in charge of the project at any given point. On numerous occasions, CG-

761 claimed that they were responsible, while CG-741 felt that they were in charge. C2CEN

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 36 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

operated as if they were in charge and held sole responsibility for deciding on the technical

solution for the project.

G. WATCHKEEPER OUTCOME

1. WatchKeeper Outcome Compared to Goals and Objectives

It is difficult to classify the WatchKeeper project as a success in any capacity. The

project was delivered years late, with limited capability, and was grossly over budget. There

are many projects that have lofty goals, but that must settle for less because of factors outside

the control of the program; this is true for WatchKeeper as well, but is not the primary reason

for the project’s failure. WatchKeeper’s shortcomings can be attributed to many factors, all

of which are explored in Chapter IV of this thesis.

H. MISSION AND ASSET SCHEDULING INTERFACE (MASI)

1. MASI Goals and Objectives

The MASI project was originally developed to support the Coast Guard IOP needs of

WatchKeeper. It was the second of the three capabilities WatchKeeper was going to deliver.

MASI was going to be capable of displaying all assets, all asset statuses, and all planned, in-

progress, and completed missions planned. MASI was to eventually support port partner-

specific planning and scheduling requirements as well with later builds. MASI was to

provide a single user interface for near-real-time transparency of all asset and mission

information. MASI was to support pre-planning/emergent planning, scheduling, and the

execution of missions. This single presentation layer is Web-based, and was to be available

to anyone authorized to access the system, including planners, watchstanders, and port

partners.

Modernization places a premium on information transparency throughout the Coast

Guard and DHS. This is particularly true at the sector level, where the majority of mission

execution occurs. Prioritizing missions and assigning resources are under the responsibility

of the sector commander to optimize resource employment across the 11 CG-mission

categories and subcategories. The effective and efficient management of resources can only

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 37 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

occur with transparent planning and execution, and by making the results visible to all levels

of command.

Mission planning is conducted via many different formats, tools, and processes. For

example, spreadsheets, whiteboards, and Microsoft Outlook calendars are all used to perform

planning functions within Coast Guard units. The results of this inferior process are as

follows:

 The various planning products are not published in a manner that
provides a single operational view to the chain of command and
command centers, resulting in degraded situational awareness.

 Command centers have incomplete visibility of information on asset
statuses, planned activities, assets underway, and mission completion.

 Response to emergent events is often reactionary without taking into
consideration the impact of resource redeployment and without the
transparency to apply risk-based decision support.

 There is low awareness of Prevention Department activities.

 After missions are complete, the missions are recorded in various
enterprise authoritative databases (e.g., Abstract of Operations
[AOPS], Aviation Logistics Management Information System
[ALMIS], Marine Information for Safety and Law Enforcement
[MISLE]) without a clear relationship between common data elements.

MASI was to provide the following capabilities and services:

 A single user interface provides a near-real-time presentation of all
resources and statuses.

 A single user interface provides a near-real-time presentation of all
mission assignments planned, underway, and completed.

 A single user interface provides a near-real-time presentation of
significant events that influence planning decisions.

 Planners enter planning and scheduling information and decisions in
one place: MASI.

 Units and command centers then use MASI to manage the assigned
missions and to support post-mission reporting.

 A single location is available for the display of resource and mission
planning and execution, optimizing resource utilization against the
highest priority missions.

 Horizontal and vertical awareness are provided for resource and
mission planning, integration, and execution.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 38 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

 The requirement for reporting does not change, but the system
supports standard reporting procedures.

 MDA is enhanced by providing command centers with single source
visibility of all activities in the area of responsibility—planned,
underway, and completed.

 The system contributes to the standardization of data management and,
by extension, an increase in data integrity within authoritative systems.

To provide a better perspective on MASI’s capabilities, the following is an example of the

types of missions it will support:

 Resources and missions across the entire Coast Guard are displayed in
one application visible to all. In the event of an emergent mission, all
levels of command can see what assets are available and take the
necessary actions to respond.

 By being able to observe the changing assignments and resource
statuses in MASI, higher levels of command can avoid direct contact
with subordinate commands and command centers, thus freeing
watchstanders to better accomplish the mission.

 When a resource (e.g., cutter, boat, aircraft, or inspection team) gets
underway, that movement is transparent to the command center.

 MASI captures non-asset and mission information (e.g., reasons for
aborting mission, bar status, tidal closures) that is critical to
operational decision-making and requirements analysis.

Figures 10–12 are screenshots of the MASI system that illustrate the previously mentioned
system concepts.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 39 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

Figure 10. Overall Planning View of MASI

Figure 11. Overall Planning of the Prototype System Used for MASI

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 40 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

Figure 12. Fictitious Monthly View of Assets in the MASI System

I. MASI PROJECT PROCESS AND DOCTRINE

Although MASI was a component of WatchKeeper, and an IT system of its own right,

it did not follow the same doctrine rigor as the WatchKeeper project. The following is a list

of the doctrines that MASI used:

 Systems Development Life Cycle (SDLC)

 Requirements document (Excel spreadsheet)

 Testing document (Excel spreadsheet)

J. MASI PROJECT PROGRESS MEASUREMENT

The MASI project’s progress was not tracked simultaneously with the WatchKeeper

project, nor was MASI tracked with EVM. MASI’s requirements were captured on an Excel

spreadsheet with the sponsor, sponsor’s representative, end user, and developers. This list of

requirements was then prioritized by the end user and given to the developers to evaluate the

realm of possibility and the development time needed. Once the developers completed this

task, a final meeting was held and the official requirements list was generated. This list of

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 41 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

requirements was then used to guide the development effort and track progress towards

capability delivery.

K. STAKEHOLDERS, ROLES, AND RESPONSIBILITIES

 CG-741: Sponsor

 CG-761: Sponsor’s representative

 CG-6: Technical agents

 OSC: Developers

 End user: Coast Guard Deployable Operational Group (DOG)

 End users: Coast Guard Command Center personnel

Figure 13 is a graphical representation of the MASI stakeholders.

Figure 13. MASI Stakeholders

L. COMMUNICATIONS

This MASI project included daily face-to-face communication with stakeholders. The

key stakeholders at Coast Guard Headquarters Assistant Commandant for Capability (CG-7)

CG-6, and Planning, Resources, and Procurement (CG-8) were part of the daily meetings,

with the support of contractors. In addition to the short, daily interactions, there was a weekly

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 42 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

meeting that included the stakeholders at Coast Guard Headquarters, the developers from

OSC, and the end users of the DOG. These meetings were face-to-face and focused on

reviewing development progress and refining requirements. The luxury of meeting face-to-

face cannot be understated. Communicating technical ideas and concepts face-to-face

enabled the team to be more focused and committed. It nurtured a more creative,

homogenous environment than other projects I have been involved with, and it facilitated

storyboarding and the visual display of ideas and concepts, which was critical during the

concept phase of the effort. The group size of these meetings was typically between five and

seven people, and the meetings were held in a very informal setting, sometimes even

standing. Ideas were mapped out on a whiteboard, and problems were worked through in a

visual manner. At least one day prior to the weekly meeting, the group agreed upon a small

agenda and focused only on those items. Any new business ideas or concerns were placed in

a “parking lot” to be discussed at a later time. This process proved to be especially useful in

keeping the group on task and focused, given the compressed schedule of the MASI system.

Another outcome of these frequent meetings was that no issues went unresolved for more

than one or two days. When challenges did come up, they were discussed as a group, rather

than taking a parochial perspective. This allowed somewhat of a 360° view of the issue and

generally resulted in a much more fruitful solution.

Another valuable contribution to the effort was having the actual end users participate

in both the daily and weekly meetings and communicating with them face-to-face. Given that

they were going to be the ones using the system on a daily basis, their input proved to be

invaluable, and their contributions helped limit requirement ambiguities. The developers

were able to explain challenges they were facing, and trade-offs could be agreed upon and

understood. Additionally, priorities could be adjusted accordingly. Having access to the end

user with this frequency also facilitated the development of training for the new system.

Having the end user present during the development process allowed for a more thorough

understanding of the system in a more contextual sense. The end user was also able to

communicate actual workflow that would be required of the system, and engineering “best

guesses” were eliminated from a developmental perspective.

In the MASI project, formal communication with senior leadership occurred on a

weekly basis; although this communication was more frequent than communication in the

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 43 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

WatchKeeper project, it was far less cumbersome because it lacked the WatchKeeper

project’s reporting requirements. The report that was generated for the MASI project was

more anecdotal, yet more useful when it came to relaying ideas, challenges, and the actual

status of the project. The format and amount of information that was relayed during the

MASI project wasn’t regimented, but the content was. The group believed that it was more

important to capture accurate information than a specific amount of information. If there was

nothing to report, then there was nothing to report. The group felt no obligation to fabricate

information to placate leadership, and leadership appreciated this. The report that was

generated represented every stakeholders’ priorities, and issues that could not be agreed upon

were identified as such. If issues arose from the report, the team met within a day to address

those issues. Given the political and technical issues surrounding the MASI project, this form

of communication helped to ease any concerns in a timely manner. This frequent reporting

also facilitated the means for any course corrections that senior leadership felt prudent to

address quickly.

M. MASI: OTHER FACTORS

As previously stated, the MASI project was originally scripted to be one third of the

WatchKeeper project (with the other two thirds being IVT and OM), but was directed to

move out independently from the WatchKeeper effort. The reason for this push was that the

designated approving authority (DAA) deemed MASI’s predecessor, Maritime Homeland

Security Operations (MHSOPS), to be a security risk to the Coast Guard enterprise. The

MHSOPS system was used as the prototype for the MASI project and provided an

operational capability to the DOG. The DOG on a daily basis used MHSOPS, and if turned

off, it would critically reduce the unit’s operational effectiveness. Therefore, there was

pressure to deploy WatchKeeper because of the security risk that MHSOPS posed. Yet at the

same time, the project team had to develop the system to meet the workflow of the DOG.

From the DOG’s perspective, it did not want a new system because the system it was using

already worked, and it did not want the aggravation of having to learn a new way of doing

business. DOG leaders were extremely concerned about turning MHSOPS off because it was

their primary IT tool for missions, and they had little faith that the new system (MASI) could

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 44 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

be fielded in a timely fashion. Therefore, getting the DOG’s buy-in and commitment was

crucial.

From an acquisition and project management perspective, the challenge was in trying

to use existing doctrine (SDLC) to guide the MASI project within the compressed timeline.

The DAA, the part of CG-6 that is tasked with assessing the risk of a system within an

enterprise, ordered that MHSOPS be off-line within 90 days, thereby marking the delivery

date for MASI. The SDLC’s requirements could not be met in the timeframe established by

the DAA or in the timeframe in which MASI was being generated, so therein was the real

challenge. This quagmire created tension within CG-6 that carried over to the MASI project

team. How could the team meet both requirements? The MASI team members attempted to

establish a quasi-SDLC approach, and tried to customize the documentation requirements of

the SDLC to meet the MASI project needs, but this was an exercise in futility given the

delivery schedule of the project. Another challenge was that the engineering approach in use

to deliver the system did not dovetail with the SDLC requirements, regardless of how hard

the group tried to make it fit. The team was meeting more often and delivering requirements

without having required documents generated. This issue was eventually resolved with the

agreement among team members and leadership that the only required documents for the

initial MASI effort would be requirements documents and testing documents. The other

mandated items would be addressed in future builds and when MHSOPS was off-line.

N. MASI OUTCOME

I would consider the MASI project a success, as it was delivered on time to meet the

security risk identified by the DAA, while meeting the requirements of the DOG (end user).

The project went from concept to delivery within three months with very little funding. With

respect to MASI’s contribution to the WatchKeeper project, this integration still had not

happened at the time this thesis was written. However, this is not the fault of the MASI

project not having the required capability, but rather the WatchKeeper project’s inability to

integrate the two systems. I explore the MASI project’s outcome further in Chapter IV.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 45 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

IV. PROJECT IMPACTS

In this chapter, I provide the important variables for both the WatchKeeper and MASI

projects. I analyze and interpret variables that impacted the projects, using a similar format to

Chapter III. I examine the variables, process and doctrine (rigidity), progress measurement,

stakeholders, communication, and other factors of both projects. Using a scale of 1 to 10, I

then rate how well each project handled these variables. For example, if the project did well

in an area, the score would be closer to 10; if the project did poorly, the score would be

closer to 1. I also provide each variable’s effect on cost, schedule, and performance. For

example, I examine the progress measurement variable for both the WatchKeeper and MASI

projects; I rate it with a relative score, and then provide the effect of that score on the

project’s cost, schedule, and performance. Finally, the chapter ends with a comparison of

both the WatchKeeper and MASI projects with agile system development.

A. WATCHKEEPER PROCESS AND DOCTRINE (RIGIDITY)

As I stated in Chapter III, WatchKeeper used the MSAM and acquisition life-cycle

process to manage the project. These processes are defined by upfront planning, formal

documentation, and a linear phase approach, and do not provide an opportunity for the

program to move back to previous phases (Benito, Casagni, Mayfield, & Northern, 2010).

WatchKeeper was to deliver new capabilities that had never been delivered with previous IT

systems. As such, WatchKeeper by definition was filled with many uncertainties with respect

to requirements, yet because of the doctrine that was being followed, these requirements had

to be accurately defined upfront. One factor that led to the uncertainty with requirements

was that the end user had a difficult time defining what was needed or desired. This

uncertainty with requirements may be the primary reason for the difficulties the

WatchKeeper project faced (Atkinson, Crawford, & Ward, 2006). Adhering to the

heavyweight process outlined with the MSAM and acquisition mandates forced the program

and project to get everything right the first time, which is an impossible task if the desired

results are uncertain. Additionally, these heavyweight processes were designed for large

weapon systems and not IT systems (Benito et al., 2010). As Duquette, Bloom, and

Crawford (2008) described, “typically, the acquisition development cycle is quite lengthy, as

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 46 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

much as 5 to 10 years; and this development cycle is too long for IT programs” (p. 25). By

the time these technologies are fielded, they are outdated and no longer address the needs of

the end user.

The Joint Capabilities Integration and Development System (JCIDS) is the process in

the acquisition cycle that is designed to reduce uncertainty with development by focusing on

needed capabilities, rather than future threats. Although the JCIDS process is an effort to

reduce ambiguity with the requirements phase of the process, it is, in my opinion, still far too

cumbersome for the delivery of IT systems. As such, I feel that the WatchKeeper project

was handcuffed from the very beginning because of the uncertainty with the requirements,

and that an agile approach would have produced better results. WatchKeeper’s shortcomings

can be illustrated with an excerpt from a 2010 letter from the sponsor’s representative (CG-

761) to the PM (CG-9):

As the Sponsor Representative for the information management
(WatchKeeper) component of the Interagency Operations Center I have
serious concerns with the current status, progress, and direction of the project.
The project has had several system scope changes, has missed every capability
delivery date, and is currently months behind schedule on the next deliverable.
These delays reach beyond the project, and are beginning to negatively impact
both the Sector Command and port partners alike. For example, the
Operational Testing and Training schedules have been rearranged 3 times with
Sector personnel, putting an unnecessary burden on an already over-taxed
workforce. The root cause of these issues stems from the failure to implement
basic project management tools, including an Integrated Master Schedule and
an appropriate Integrated Support staff to meet the requirements and mandates
of the project. I am no longer confident that our system development aligns
with our operational requirements; therefore, I am again requesting detailed
architecture views/diagrams, Integrated Project Plan, a summary report of the
technical challenges encountered thus far and the action officer assigned to
solve these challenges. (Sponsor representative, personal communication,
October 4, 2009)

Clearly, there were concerns from the sponsor’s representative about the management

approach taken to deliver the WatchKeeper project. Many of the project’s managerial

challenges were not due to competence issues, but rather to the fact that the PM had no

alternative approaches other than the one dictated by the MSAM and the acquisition process

mandates. Many of these mandates added no value to the process but had to be complied

with because of the dollar threshold that WatchKeeper met. The inflexibility of these policies

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 47 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

increased the cumbersomeness of an already complex project. These policies prevented

opportunities for program management to seek alternative engineering approaches more

suited for a project with these characteristics (e.g., unknown requirements, use of new

technologies, large team size, and geographically separated stakeholders) and forced the use

of traditional system development applications. As such, this traditional approach required

that a plethora of documents be generated—many of which called for detailed information

that was unknown given the uncertainty of the project requirements.

Additionally, the actual system development approach and solution were chosen prior

to establishing a requirements document. There was the nonspecific pORD that outlined and

identified ideas and concepts at a very high level, but by no means did it provide the fidelity

needed to develop an actual system or engineering solution. A detailed requirements

document did not exist because at this point, the end user (via the sponsor’s representative)

had not identified the requirements. The Mission Engineering Book, which would later be

delivered to show workflows and business processes that WatchKeeper would facilitate, had

not been developed yet, and the missions that were to be accomplished were not completely

identified. Regardless of these facts, C2CEN set out to start developing the system, using the

pORD as guidance (see the appendix). To add to this problem, the developers derived the

original system requirements alone—without other stakeholders present. The impact of the

first iteration of system requirements generated by the developers in a silo would prove to be

an issue that the project never recovered from.

B. WATCHKEEPER PROJECT PROGRESS MEASUREMENT

Meeting requirements was a challenge for the WatchKeeper project. The project

requirements were not identified, so it was impossible to understand 100% of the project’s

scope. As stated, EVM requires full disclosure of actual results so that all stakeholders

receive the same information and allows only one set of books. There were several attempts

made to accomplish this, but there was never 100% buy-in from stakeholders due to a lack of

trust. A measurable project baseline must be identified and locked down for EVM to hold

any value, but this never happened. There were attempts to comply with locking down the

EVM variables, but because there was not a clear understanding of requirements, this was an

impossible objective. Finally, EVM requires that a forecast be made periodically, but

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 48 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

because of moving baselines, shifting delivery schedules, a number of requirements to be

fulfilled per release, and closed communication among stakeholders, the EVM effort proved

to be a waste of time for WatchKeeper.

Although a valid attempt was made to establish EVM requirements as mandated by

the MSAM doctrine, at no time was WatchKeeper close to meeting and achieving a 90%

success rate on cost, performance, and schedule goals, as identified by the DHS (2009)

requirement. The lack of accurate EVM data contributed to the WatchKeeper project’s

failing to meet acquisition milestones on time, resulting in a loss of faith at the DHS level.

The WatchKeeper project failures with EVM are not a reflection of EVM techniques and

their usefulness; it is a reflection of poor EVM execution. If the requirements for

WatchKeeper had been understood, if communication channels had been forged, or if the

project had not been handcuffed with cumbersome mandates from the acquisition process,

the likelihood of EVM success would have been far greater. The WatchKeeper project’s

failure to implement EVM does not suggest that EVM was incorrect; it suggests that the

Coast Guard could not properly facilitate the requirements of EVM.

C. STAKEHOLDERS AND COMMUNICATION

Additional factors that led to challenges of the WatchKeeper project included a lack

of cohesiveness among key stakeholders, a failure to communicate effectively, a lack of trust,

the geographic separation of stakeholders, and a sense that there would be endless funding

for the project. It did not matter what was done; it could always be fixed. On more than one

occasion, various stakeholders—including at the leadership level—mentioned that the first

version of WatchKeeper did not count and that it was disposable. This philosophy removed

any feeling of accountability from stakeholders and perpetuated an environment that fostered

complacency and stakeholder independence. Delivering useful code did not appear to be the

primary focus; instead, meeting the mandates of the acquisition process and the MSAM was

the priority, since failure to do this would surely derail the project at the DHS level, which

would lead to a loss of funding. As a result, stakeholders worked diligently, but

independently, on delivering their required portion of the MSAM documents, with little care

for the actual requirements or system needs.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 49 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

As mentioned in Chapter III, WatchKeeper communication efforts often were in vain.

Many of the meetings were held at a distance because of the geographical separation of the

stakeholders. The consequences of non-face-to-face meetings were misconceptions of

information passed between stakeholders. Each directorate had its own method for internal

communication and its own dialect, but when these various lexicons were brought together in

a group setting, they did not necessarily result in a clear understanding of the message.

Document control and management were also challenges. Despite having a consensus that it

was important to maintain document control, leaders of the project could never properly

manage documents. There were many meetings where two different versions of a document

were being reviewed simultaneously, and a lot of time was wasted simply trying to identify

the appropriate artifact to discuss.

D. WATCHKEEPER OTHER FACTORS

The WatchKeeper stakeholder dynamics were interesting. Aside from the

organizational and hierarchical challenges, the biggest hurdle was the political landscape that

existed amongst stakeholders. This politically charged jockeying ended up being a true

detriment to the project. Besides the normal disagreements and uncertainties that are present

in any project, this project had a level of animosity between stakeholders because of military

ranks that were involved. There were meetings where quarreling dominated the agenda, and

there was a lack of trust between stakeholders that at times bordered on resentment. C2CEN

felt that nobody trusted its efforts, while both directorates in CG-7 felt that C2CEN was not

being honest with the development efforts that were underway. CG-6 had an interesting role:

C2CEN is typically tasked by CG-6, but because this project was a major acquisition, CG-9

was in charge and directed C2CEN, which presented internal challenges within both CG-9

and CG-6.

Senior leadership also introduced pressure to the WatchKeeper. It was often said by

senior management that this project was “too big to fail.” Therefore, the information that was

passed to the decision-makers was often a more positive perspective than reality. No group

was willing to be responsible for the failure of the project. Milestone deliverables and

expectations were all managed in a way that would present the organizing group in the best

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 50 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

light. From a program management perspective, it was very difficult to gauge the true pulse

of the project given these realities.

Another challenge for the WatchKeeper project was that the developers, based on

their interpretation of the pORD document, derived the WatchKeeper system requirements

independently. This introduced many challenges to the delivery of the WatchKeeper system.

The developers decided which requirements to deliver and when to deliver them. Initially,

the developers broke the requirements into three spiral deliverables. The first spiral would

deliver 8% of the requirements, the second spiral was slotted to deliver 12% of the

requirements, and the third spiral would deliver the remaining 80% of the requirements.

After missing the delivery date of the first spiral by 114 days, the developers reduced the

targeted scope by 50% and added five additional spiral releases. Again, these decisions were

made independently without input from other stakeholders.

The WatchKeeper project also failed to meet testing events. Because of this failure,

the Coast Guard finally decided—with pressure from the DHS—to reduce the scope of

WatchKeeper. Therefore, in 2010, the DHS gave the direction that WatchKeeper was to be

deployed as a technology demonstrator rather than a full-fledged system of record, which

removed the MSAM requirements from the WatchKeeper effort. This decision came at a

price. The WatchKeeper project realized substantial funding cuts, and there was operational

backlash as well. At the time of writing this thesis, WatchKeeper is still being deployed

throughout the nation at Coast Guard SCCs as a technology demonstration, with far fewer

capabilities than envisioned.

E. MASI OUTCOME COMPARED TO GOALS AND OBJECTIVES

The MASI project was delivered on time, but more importantly, it met the operational

needs of the DOG. Therefore, MHSOPS could be taken off-line and the security risk to the

enterprise was removed. Another success of MASI was the effectiveness of the training that

was established and the execution of this training to the DOG in its subordinate units. The

success of this training is a direct result of having DOG representation during the

development process. Not every desired capability was delivered with the first iteration of

MASI, but the system that was delivered could be used effectively to accomplish the DOG’s

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 51 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

missions. Without doubt, there is a direct correlation between the success of the project and

the development approach taken to deliver the system.

F. MASI PROCESS AND DOCTRINE

Another factor, and quite possibly the most important one with respect to MASI’s

success, was the reality that the project did not get bogged down with documentation and

paperwork. Although it did follow the SDLC as outlined in Chapter III, it was a modified

SDLC that only required documentation that was beneficial to the development efforts.

Having flexibility within this process was incredibly useful to stakeholders. There was no

expectation to simply “check the box” for paperwork drills. It was not as if the MASI project

did not follow a process or create documentation; the MASI project simply was allowed to

modify established procedures to facilitate a more useful development approach. Time was

of the essence given the security risk identified by MHSOPS and the flexibility that allowed

for tailoring the regimented process was significant.

G. MASI PROGRESS MEASUREMENT

Another contribution to the success of MASI was the manner in which progress was

assessed. The metric that was used for assessing the project’s progress was not EVM, as with

WatchKeeper, but rather actual capability delivered by the developers. As stated earlier,

priorities were established during the daily face-to-face meetings, and the developers used

these priorities as a recipe for delivering the system. During the weekly meetings, progress

reports on these priorities were presented to the group, and on a bi-monthly basis, tangible

system capabilities were demonstrated. Another crucial component of the delivery of the

MASI system was the management of expectations. By no means was the first release of the

system expected to be the final product, but rather it was viewed as a first foundational step

in a series of releases, and everybody was aware of this. Again, the frequent meetings, the

establishment of an agreed-upon direction, access to a prototype system (MHSOPS) as a

guide, and honest stakeholder communication simplified many of the complexities that

typically hinder progress in system development efforts.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 52 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

H. MASI STAKEHOLDERS AND COMMUNICATION

Face-to-face daily communication was also critical in the delivery of MASI. I cannot

remember an instance where a key stakeholder was unaware of the progress of the project or

the immediate future goals of the effort. Face-to-face interaction was the driving force behind

this. In addition, having the developer, the customer, the testing team, and the enterprise team

communicate in the manner in which they did removed many obstacles and ambiguities

typical of a software development effort. As outlined in Chapter II, people are the driving

force behind successful software development deliveries. This was realized with the MASI

project.

I. MASI: OTHER FACTORS

Although the MASI project was successful, and a capability was delivered to the

operator, the MASI project still has challenges ahead. As with any endeavor, momentum

must be maintained, which requires that leadership continue to support the effort. There is

still the need to integrate MASI into WatchKeeper, and this is going to present some

challenges to both the WatchKeeper and MASI projects. With that said, if the appropriate

level of importance and support is given, there is no doubt that the MASI and WatchKeeper

integration effort will be successful.

J. WATCHKEEPER AND MASI PROJECTS RELATIVE SCORE

As described at the beginning of this chapter, I provide a description and metric value

for variables that impacted both the WatchKeeper and MASI projects. The variable is

underlined, the project in reference is bolded, and the relative score follows the related

project. The impact of the variable is then explained in relation to the effect it had on the

project’s schedule, cost, and performance, which are identified in italics.

Progress measurement: The importance of measuring the progress of a software

development effort cannot be undervalued. A baseline must be established and locked down

so that a road map can be established. Progress measurement is the metric that is used to

communicate work that has been done and work that remains, to both stakeholders within the

project and interested parties outside the project.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 53 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

WatchKeeper

How well the WatchKeeper project did with progress measurement on a scale of 1-10 (1=

low, 10= high): 2

Effect

Schedule: Although EVM was used for the project, the deliverables were never base-

lined or locked down. Requirements were moved from date to date, or deleted altogether by

the developers. As such, clear deliverables were never established; what was being delivered

and when was never clear, which made scheduling extremely difficult. Milestones were

established and missed. When this happened, another schedule was established and new

milestones were identified. These new milestones contained more deliverables than the

previous milestone, and typically less time to accomplish them.

Cost: The impact from the lack of an honest progress measurement tool is obvious.

The WatchKeeper project could not definitively express progress within the project because

of the lack of implementing a progress measurement tool. This had a negative impact on the

costs of the project.

Performance: With the requirement delivery schedule never being established, it was

unclear as to what the final capabilities of the system would yield. To date, the WatchKeeper

system still has not successfully passed Key Performance Parameters (KPP) and Critical

Operating Issues (COI) tests, and is still being fielded as a technology demonstration to end

users.

MASI

How well the MASI project did with progress measurement on a scale of 1-10

(1= low, 10= high): 7

Effect

Schedule: MASI was a smaller project in scope and therefore easier to manage with

respect to schedule. There was a prototype to work from (MSHOPS), and the number of

requirements identified for delivery was minuscule compared to that of WatchKeeper. As

such, the scheduling was realistic, with end user priorities being the focus of delivery. If the

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 54 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

requirements were not a priority and an engineering possibility given time or technical skill,

the requirement was pushed to a later iteration/deliverable. These issues were identified

during the daily face-to-face meetings with stakeholders.

Cost: The majority of the capabilities were delivered to the end user within budget.

Performance: The majority of the capabilities was delivered to the end user and met

the identified requirements.

Stakeholder: I have broken down stakeholders into the following categories: trust

among stakeholders, stakeholder professional experience, stakeholder proximity to each

other geographically, stakeholder support of the project, and finally, stakeholder turnover.

Trust amongst stakeholders is vital for successful software development efforts. There must

be a genuine trust of each other so that key metrics of progress have validity. The

stakeholder’s professional experience with a respective role is important to understand so that

adequate time can be allotted for training as necessary, and expectations for expected time to

complete a task can be managed. Obviously, the more experience a stakeholder has in a

respective role, the less time is needed for training, and theoretically, the more experience a

stakeholder has, the quicker a task can be completed. Stakeholder geographic proximity to

each other affects the manner in which the stakeholders communicate, perform their

respective tasks, and interact with each other. The closer the stakeholders are, the easier it is

to perform these functions. Stakeholder support of the project is critical. Without genuine

support of all stakeholders involved with the software development project, the project will

be hampered. By support, I am not only referring to funding, but also staffing, leadership

support, belief in the project, and how the project will be integrated within the overall

enterprise of the organization. Finally, stakeholder (personnel) turnover reflects the impact of

project stakeholders leaving a project and being replaced. Stakeholder turnover happens for

a myriad of reasons, and is especially prevalent within the Department of Defense (DoD) and

DHS, given rotations, promotions, and changing priorities. As such, the impact of this

disruption must be realized, and the impact on the project’s progress must be understood.

When a new stakeholder is brought on to a project, this individual must be trained in the

technology, the goals, and the overall strategy of the project. This adds time to the project.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 55 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

WatchKeeper

How well the WatchKeeper project did with the stakeholder variable on a scale of 1 to 10 (1

= low, 10 = high):

 Trust among stakeholders: 4

 Stakeholder professional experience: 4

 Stakeholder proximity to each other: 3

 Stakeholder support of the project: 7

 Stakeholder turnover: 3 (many stakeholders left the project)

Effect

Schedule: The lack of trust among stakeholders had a negative effect on the schedule.

Stakeholders often withheld information from each other, including progress information and

information about delays. The professional experience of stakeholders was fairly low. Both

the sponsor and sponsor’s representative had no prior experience in their roles prior to the

WatchKeeper project. Developing the WatchKeeper system was also a first for the

developers of the project. Although they had prior experience with system development, they

had never taken on a project of this magnitude. The program manager had experience with

acquisition and program management, but had never been responsible for a project of this

size. The inexperience of stakeholders had a negative effect on the schedule. Stakeholders

were geographically separated as mentioned earlier in this thesis, and as such added a layer

of complexity to many facets of the project. This geographical separation also had a negative

effect on the schedule. Stakeholder support of the project was relatively high. All of the

stakeholders wanted the project to succeed, and all of the stakeholders realized the value of

the project for the Coast Guard. Stakeholder support did not have a negative effect on the

schedule. Stakeholder turnover for the project was high. As mentioned earlier in the thesis,

roles and responsibilities were interchanged and stakeholders left the project for various

reasons. As such, the new stakeholders coming into the project required time to come up to

speed with the happenings of the effort. This had a negative effect on the project schedule.

Cost: The above-mentioned stakeholder variables had a negative impact on the

project, resulting in the cost being driven higher.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 56 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

Performance: The above-mentioned stakeholder variables had a negative impact on

the project, resulting in reduced capabilities being delivered to the end user.

MASI

How well the MASI project did with the stakeholder variable on a scale of 1 to 10 (1 = low,

10 = high):

 Trust among stakeholders: 9

 Stakeholder professional experience: 5

 Stakeholder proximity to each other: 7

 Stakeholder support of the project: 9

 Stakeholder turnover: 10 (no stakeholders left the project)

Effect

Schedule: Of the above-mentioned stakeholder variables, the only variable that

impacted the schedule in a negative way was stakeholder professional experience. The

developers of the project had experience working with the technology being implemented,

and the program manager was comfortable managing the MASI project. The sponsor and

sponsor’s representative were again relatively new to their respective roles, but given their

experience gained from the WatchKeeper project and the high experience of the other

stakeholders involved in the effort, the impact to the schedule was minimal.

Cost: The MASI project was delivered within budget.

Performance: The MASI project delivered the capabilities identified in the

requirements.

Communication: With respect to this thesis, communication encompasses several

forms. They are formal (e.g., meetings, testing events, requirement generation), informal (e.g.,

elevator, water cooler, lunches, etc.), and written (e.g., official project documents, ad hoc

email). Regardless of the form, the communication must be open and available to all

stakeholders. The final aspect of communication is team size. As pointed out by Brooks

(1982),

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 57 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

Communication is made up of two parts, training and intercommunication. Of the

two, intercommunication is worse. As tasks are separately coordinated, the effort of

intercommunication increases n(n-1)/2. For example, three workers require three

times as much pairwise intercommunication as two; four requires six times as much

as two, etc. (p. 18)

Therefore, the more stakeholders that are involved, the more complex the communication

variable becomes.

WatchKeeper

How well the WatchKeeper project did with the communication variable on a scale of 1 to10

(1 = low, 10 = high):

 Formal: 5

 Informal: 7

 Written: 3

 Team size: 4

Effect

Schedule: Of all of the communication variables mentioned above, the biggest

detriments to the WatchKeeper project were the written and team size variables. Given that

the trust among stakeholders could have been stronger, there were many written

communications that only reached certain stakeholders, and were purposefully withheld from

others. This includes actual project memorandums that were not routed to certain

stakeholders for various reasons. Additionally, the team size of the project facilitated the

gravitation into “cliques” among stakeholders. These cliques shared emails and other items

within their groups, but not outside. Many of these communications related to the schedule,

and because they weren’t open and available to all, the schedule was impacted.

Cost: A lot of time was wasted given the lack of strong communication channels, and

as such, the cost of the project was impacted negatively.

Performance: Again, the lack of communication among stakeholders had a negative

effect on the performance and functionality of the WatchKeeper project.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 58 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

MASI

How well the MASI project did with the communication variable on a scale of 1 to 10 (1 =

low, 10 = high):

 Formal: 7

 Informal: 9

 Written: 9

 Team size: 9

Effect

Schedule: There was no negative impact on schedule because of communication

within the MASI project.

Cost: The MASI project was not negatively impacted because of the communication

variables.

Performance: Given the frequent face-to-face meetings and the small team size, any

risks to the project were dealt with immediately and understood by all stakeholders. As such,

communication had a positive impact on the delivery of capabilities to the end-users.

Rigidity of the development process being followed: The appropriate development

process is dependent on the project needs. For new technologies and uncharted efforts,

flexibility is paramount. Obviously, new technology requires more time to understand,

forecast, develop, and implement. However, for more routine efforts, or for maintenance and

support, standardized processes might be appropriate.

WatchKeeper

How well the WatchKeeper project did with the rigidity variable on a scale of 1 to 10 (1 =

low, 10 = high): 3

Effect

Schedule: Because of the required mandates of the MSAM and other acquisition

policies, the WatchKeeper project was handcuffed in such a manner that tasks were being

assigned just to check the box, despite little to no value being added to the overall success of

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 59 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

the project. Many hours were wasted doing this, and because stakeholders realized that these

activities had no impact on the project, the motivation to complete these tasks was extremely

low. Additionally, the technology was new to the developers of WatchKeeper, so there were

many times that they were learning “on the fly.” However, the mandate of the acquisition

process requires that project needs and engineering solution be identified upfront with little

to no time for updating. Given the new technology and experience of the developers, it was

almost impossible to clearly identify when capabilities would be delivered despite best

efforts. These activities had a negative effect on the schedule of the project.

Cost: The above-mentioned factors negatively impacted the costs of the project.

Performance: Given the technology challenges, many of the capabilities were not

delivered as identified in the requirements.

MASI

How well the MASI project did with the rigidity variable on a scale of 1 to 10 (1 = low, 10 =

high): 9

Effect

Schedule: The MASI project was not riddled with having to meet specific mandates.

Although the SDLC was used for the effort, the project was given flexibility as to which

sections within the SDLC would be followed. If the stakeholders felt that a certain function

would add no value to the effort, it was skipped. This flexibility enabled stakeholders to

focus on value-added processes, and as such, the schedule of the project was met.

Cost: Cost was not impacted with the process implemented to develop MASI.

Performance: All capabilities were delivered as identified in the requirements, and

the flexibility afforded to the stakeholders was a critical reason for this.

Other factors: Outside pressures refers to situations such as political, time to develop

the project (this project has to be done by this date, no exceptions), etc. The more of these

variables that are introduced to the project, the more likely it is that shortcuts may be taken.

Shortcuts have a negative effect on the development effort, and at worst, they lengthen the

effort.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 60 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

WatchKeeper

How well the WatchKeeper project did with the other factors variable on a scale of 110 (1 =

low, 10 = high): 5

Other factors impacted the WatchKeeper project. For example, given the hierarchy of

the stakeholders, there were political influences on the effort. Another critical factor that

impacted the project was that the WatchKeeper project was classified as too big to fail, and

as such, the true reality of progress was never ascertained or accepted.

Effect

Schedule: The other factors had a negative impact on the schedule of the project.

Costs: The other factors had a negative impact on the schedule of the project.

Performance: The other factors influenced the delivery of capabilities for the project

and, as such, had a negative impact on the effort.

MASI

How well the MASI project did with the other factors variable on a scale of 1 to 10

(1 = low, 10 = high): 7

The only other factor to impact the MASI project was the pressure to deliver

something quickly so that MHSOPS could be taken off-line. This pressure was both negative

and positive to the project effort. The negative aspect was the compressed timeline given to

the project by leadership. The positive aspect was that leadership was motivated to get

MHSOPS off-line given the security risk it posed to the enterprise, and, as such, provided

timely support as needed.

Effect

Schedule: The other factors had a positive impact on the schedule of the project given

the reasons identified above.

Costs: The other factors had a positive influence on the project as identified above.

Performance: The other factors had a positive influence on the project as identified

above.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 61 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

Table 6. Aggregated Totals of WatchKeeper and MASI Relative Scoring

	 WatchKeeper	 MASI	

Progress	Measurement	 2 7

Stakeholder:	

Trust	

Experience	

Proximity	

Support	

Turnover	

4

4

3

7

3

9

5

7

9

10

Communication	

Formal	

Informal	

Written	

Team	Size	

5

7

3

4

7

9

9

9

Rigidity		 3 9

Other	Factors	 5 9

K. WATCHKEEPER AND MASI PROJECTS COMPARED TO AGILE
DEVELOPMENT

Table 7 shows both the MASI and WatchKeeper projects compared to Boehm and

Turner’s (2004) theory of the five critical factors involved in determining the relative

suitability of agile or plan-driven methods given a project situation. The blue-shaded boxes

reflect the plan-driven approach, while the green-shaded boxes reflect suitability more

appropriate for agile methods. As clearly identified by the table, the MASI project was better

suited for an agile approach given the factors involved with the project, while the

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 62 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

WatchKeeper project was almost split between plan-driven and agile given the factors

involved.

Table 7. The Five Critical Agility/Plan-Driven Factors:
Comparison With WatchKeeper and MASI Projects

(Cockburn et al., 2005, p. 55)

 WatchKeeper MASI Agile Plan Driven

Size (Number of
personnel on the
team)

Upwards of 20
people

6–8 people Well matched to small
products and teams.
Reliance on tacit
knowledge limits
scalability.

Methods evolved to
handle large products
and teams. Hard to
tailor down to small
projects.

Criticality (The
impact of
software defects
in terms of
comfort, money,
and or lives)

Low Medium
but closer
to low

 Untested on safety-
critical products.
Potential difficulties with
simple design and lack of
documentation.

Methods evolved to
handle highly critical
products. Hard to
tailor down to low
criticality products.

Dynamism (The
degree of
requirements
and technology
change)

Ambiguous
changing
requirements

Changing
technology

 Simple design and
continuous re-factoring
are excellent for highly
dynamic environments
but a source of
potentially expensive
rework for highly stable
environments.

Detailed plans and
big design up-front
are excellent for a
highly stable
environment, but a
source of expensive
rework for highly
dynamic
environments.

Personnel
(Technical
abilities as
defined in Table
3)

Low for the
task at hand

High Requires continuous
presence of critical mass
of scarce Level 2 or 3
experts (as defined
earlier). Risky to use
non-agile Level 1B
people.

Need for critical
mass of scarce Level
2 and 3 experts
(defined earlier)
during project
definition but can
work with fewer late
in the project. Can
usually accommodate
some Level 1B
people.

Culture
(Whether the
individuals on
the team prefer
predictability or
can tolerate
change)

The team was
not designed
to be flexible,
nor did the
team feel
empowered.

Team felt
empowered
.

 Thrives in a culture
where people feel
comfortable and powered
by having many degrees
of freedom (thriving on
chaos).

Thrives in a culture
where people feel
comfortable and
empowered by
having their roles
defined by clear
policies and
procedures (thriving
on order).

An interesting observation regarding Table 7 is that the data reflected in the cells of

the WatchKeeper and MASI projects are the actual values from each respective project for

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 63 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

the corresponding variable in the row. For example, the personnel factor for the MASI

project was high, given the technical abilities of the project team, while for the WatchKeeper

project, the personnel factor was low, given the abilities of WatchKeeper’s project team.

Given the technical challenges of the WatchKeeper project outlined earlier, this factor should

have rated high as well, and as such, would have switched that cell’s value to green,

suggesting that an agile approach would have been more appropriate. The personnel factor

was not the only factor that was in error for the WatchKeeper project. The culture factor,

which is a gauge of how many degrees of freedom the stakeholders have, should have been

green for the WatchKeeper project, given the uncertainty of many of the variables, such as

vague requirements and new technologies exploration. As outlined in Chapter II, these types

of variables are better suited for an agile approach, and as such, this box too would have been

green, again suggesting that the WatchKeeper project should have used an agile approach

instead of a plan-driven approach.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 64 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

THIS PAGE INTENTIONALLY LEFT BLANK

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 65 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

V. CONCLUSION

The primary objective of this thesis was to explore and understand factors that may

have contributed to Coast Guard IT projects that were delivered late and/or out of scope

through the analysis of two IT projects: WatchKeeper and MASI. Agile software

development was also examined, and a history and definitions of the various methodologies

were explained and outlined. Finally, case studies for both the WatchKeeper and MASI

projects were outlined, and the variables that led to the success or failure of the projects were

explored. The variables of the WatchKeeper and MASI projects were compared to agile

system development, and an analysis was conducted to evaluate whether agile methodologies

were suitable for IT projects of this kind. Given this analysis, I believe that agile

methodologies are quite suitable for IT projects within the DoD and DHS, and that agile

development should be explored as an option when developing IT systems within the

government. I do not believe that agile system development will solve all software

development challenges; it does, however, offer a refreshing approach to software

development within the DoD and DHS.

A. FUTURE RESEARCH

This thesis focused primarily on the case studies of the WatchKeeper and MASI

projects and the variables involved with those two projects. The thesis also focused on agile

software development, the characteristics of agile methodologies, and the strengths and

weaknesses of the methodologies. Further research is required on the implementation of

agile system development and how it can dovetail with the DoD acquisition process and

other DoD acquisition mandates.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 66 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

THIS PAGE INTENTIONALLY LEFT BLANK

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 67 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

LIST OF REFERENCES

Argyris, C., & Schön, D. (1996). Organizational learning II: Theory, method and practice.
Reading, MA: Addison-Wesley.

Atkinson, R., Crawford, L., & Ward, S. (2006). Fundamental uncertainties in projects and the
scope of project management. International Journal of Project Management, 24(8),
687–698. doi: 10.1016/j.ijproman.2006.09.011

Balasubramaniam, R., & Lan, C. (2007). Agile software development: Ad hoc practices or
sound principles? IT Professional, 8(2), 41–47. Beck, K. (2000). Extreme
programming explained. Boston, MA: Addison-Wesley.

Beck, K. (2003). Test driven development: By example. Boston, MA: Addison-Wesley

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., &
Sutherland, J. (2001). Manifesto for agile software development. Retrieved from
http://agilemanifesto.org/

Benito, R., Casagni, M., Mayfield, K., & Northern, C. (2010). Initiatives to the warfighter
(Technical report WN080041). Bedford, MA: MITRE.

Boehm, B. (2002). Get ready for agile methods, with care. IEEE Computer, 35(1), 64–69.

Boehm, B. (2006). A view of 20th and 21st century software engineering. In Proceedings of
the 28th International Conference on Software Engineering (ICSE ’06) (pp. 12–29).
New York, NY: ACM. doi: 10.1145/1134285.1134288

Boehm, B., & Turner, R. (2004). Balancing agility and discipline. Boston, MA: Addison-
Wesley.

Bohner, S., & Coram, M. (2005). The impact of agile methods on software project
management. In Proceedings of the 12th IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (pp. 363–370). Los
Alamitos, CA: IEEE Computer Society.

Brooks, F. P., Jr. (1982). The mythical man-month: Essays on software engineering. Boston,
MA: Addison-Wesley.

Burd, S. D., Jackson, R. B., & Satzinger, J. W. (2012). Systems analysis and design in a
changing world [Course technology]. Belmont, CA: Cengage Learning.

Clifton, M., & Dunlop, J. (2003, September 29). What is DSDM? Retrieved from
http://www.codeproject.com/Articles/5097/What-Is-DSDM

Cockburn, A. (2002). Agile software development. Boston, MA: Addison-Wesley.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 68 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

Cockburn, A. (2006). Agile software development: The cooperative game (2nd ed.). Boston,
MA: Addison-Wesley.

Cockburn, A., & Highsmith, J. (2001a, September). Agile software development: The
business of innovation. Computer, 34(9), 120–129.

Cockburn, A., & Highsmith, J. (2001b, November). Agile software development: The people
factor. Computer, 34(11), 131–133.

Department of Homeland Security. (2009, October). Department of Homeland Security
acquisition manual. Retrieved from
http://www.dhs.gov/xlibrary/assets/opnbiz/cpo_hsam.pdf

Dingsøyr, T., & Dybå, T. (2008, August). Empirical studies of agile software development:
A systematic review. Information and Software Technology, 50(9–10), 833–859.

Dingsøyr, T., Dybå, T., & Moe, N. B. (2010). Agile software development: Current research
and future directions. Berlin, Germany: Springer.

Duquette, J., Bloom, M., & Crawford, L. (2008). Transitioning agile/rapid acquisition
initiatives to the warfighter (Technical Report WN080041). Bedford, MA: MITRE.

Erickson, J., Lyytinen, K., & Siau, K. (2005). Agile modeling, agile software development,
and extreme programming: The state of research. Journal of Database Management,
16(4), 88–100.

Extreme programming. (2000). Retrieved from
http://www.extremeprogramming.org/map/project.html

Feature-driven development. (n.d.). Retrieved from http://www.step-
10.com/SoftwareProcess/FeatureDrivenDevelopment/index.html

Fleming, Q. W., & Koppelman, J. M. (2009, March). The two most useful earned value
metrics: The CPI and the TCPI. Cost Engineering, 51(3), 16–18.

Glaiel, F., Moulton, A., & Madnick, S. (2013). Agile project dynamics: A system dynamics
investigation of agile software development methods (Working Paper CISL#
2013=05). Cambridge, MA: MIT.

Government Accountability Office. (2012). Portfolio management approach needed to
improve major acquisition outcomes (GAO-12-918). Retrieved from
http://www.uscg.mil/history/docs/GAO/GAO2012PortfolioMgmt648636.pdf

Highsmith, J. (1997). Messy, exciting, and anxiety-ridden: Adaptive software development.
American Programmer, 10(1).

Kraut, R. E., & Streeter, L. A. (1995). Coordination in software development.
Communications of the ACM, 38(3), 69–81.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 69 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

Lynch, Clint. (2011, November 4). What’s scrum and how do we use it? [Blog post].
Retrieved from http://www.realmdigital.co.za/post/whats-scrum-and-how-do-we-use-
it/

Nerur, S., Mahapatra, R., & Mangalara, G. (2005, May). Challenges of migrating to agile
methodologies. Communications of the ACM, 48(5), 72–78.Pisano, J., Teece, A., &
Teece, D. J. (1997). Dynamic capabilities and strategic management. Strategic
Management, 18(7), 509–533.

Primavera Systems. (2008, November). Leveraging earned value management and IT
governance. Contract Management, 48(11), 66–70.

Pruitt, J. (2011, February 12). Perspectives on software development [Blog post]. Retrieved
from http://blog.jgpruitt.com/2011/02/12/crystal/

Scio. (2010, February 24). Lean product software development in 4 phases [Blog post].
Retrieved from http://blog.sciodev.com/2010/02/24/lean-software-product-
development-in-4-phases/

Security and Accountability for Every Port (SAFE Port) Act of 2006, Pub. L. No. 109-347,
120 Stat. 1884 (2006).

Senge, P. M. (1990). The fifth discipline: The art and practice of the learning organization.
New York, NY: Doubleday/Currency.

Sengupta, K., Van Oorschot, K. E., & Van Wassenhove, L. N., (2013). Dynamics of agile
software development. Retrieved from
http://www.systemdynamics.org/conferences/2009/proceed/papers/P1264.pdf

Strigel, W. (2001). Using extreme programming and other experiences. IEEE software, 18(6),
17–18.

Suganya, G., & Mary, S. A. (2010). Progression towards agility: A comprehensive survey.
Paper presented at the Second International Conference on Computing,
Communication, and Networking Technologies, Karur, India.

Turk, D., France, R., & Rumpe, B. (2005). Assumptions underlying agile software-
development processes. Journal of Database Management, 16(4), 62–87.

Van de Ven, A. H., Delbecq, A. L., & Koenig, R. (1976). Determinants of coordination
modes within organizations. American Sociological Review, 41(2), 322–338.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 70 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

THIS PAGE INTENTIONALLY LEFT BLANK

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 71 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

APPENDIX

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 72 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 73 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 74 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 75 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 76 -
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä= =

THIS PAGE INTENTIONALLY LEFT BLANK

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó=
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=
RRR=aóÉê=oç~ÇI=fåÖÉêëçää=e~ää=
jçåíÉêÉóI=`^=VPVQP=

www.acquisitionresearch.net

