

This thesis uses knowledge value added (KVA) methodology to identify additional cost savings that can be achieved in the ship maintenance (SHIPMAIN) process by implementing information technologies. Specifically, the technologies considered in this study are 3D printing, product lifecycle management, and 3D laser scanning. Using the current process as a baseline, KVA is applied to two notional scenarios, one using 3D printing only and one using all three technologies to reengineer the current process.

To Be SHIPMAIN Process Overview								Radical To-Be SHIPMAIN Process Overview							
Core Process	ProcessTitle	Number of Employees		Total Cost	ROK	ROI		Core Process	Process Title	Number of Employees		Total Cost	ROK	ROI	
Block 250	Authorize and Issue Letter of Authorization (LOA) Hull Maintenance Plan (HMP); Generate 2Ks	9	\$22,588,963	\$5,685,864	397%	297%		Block 250	Authorize and Issue Letter of Authorization (LOA)/Hull Maintenance Plan (HMP);						
Block 265	Hull Installation and Risk Assessment	44	\$94,800,881	\$138,454,222	68%	-32%	2%	Discipanti and	Generate 2Ks	4	\$16,215,953	\$2,230,371	727% 257%		
Block 270	Authorize Installation	4	\$24,677,019	\$3,294,087	749%	649%	11	Block 265	Hull Installation and Risk Assessment	26	\$172,381,012	\$67,136,526			
Block 280	Resolve "Not Authorized/Deferred SC	1	\$3,701,553	\$663,192		458%	1000	Block 270	Authorize Installation	4	\$26,334,464	\$3,299,649	798%	698%	
Block 300N	Install SC Normal	46	\$66,216,667				11.1	Block 280	Resolve "Not Authorized/Deferred SC	1	\$4,937,712	\$403,478	1224%	1124%	
							10	Block 300AM	Install SC	36	\$121,122,075	\$552,118	21938%	218389	
300AM Block 310	Install SC AM Feedback: Cost, CM, Performance, Schedule, ILS	2	\$28,374,716 \$1,850,776				1.1	Block 310	Feedback: Cost, CM, Performance, Schedule, ILS	1	\$2,370,102	\$204,520	1159%	1059%	
Block 320	Continue Installs	5	\$4,626,941	\$3,284,846			N.:	Block 320	Continue Installs	5	\$6,172,140	\$2,633,439	234%	134%	
Block 330	Final Install, Closeout SC	1	\$925,388					Block 330	Final Install, Closeout SC	1	\$1,975,085	\$270,839	729%	629%	
	,			\$183,456,701			1		÷		\$351,508,543	\$76,730,941	458%	358%	

Thesis Findings

• "To-Be" Scenario (3D Printing only): The overall ROK and ROI of the process stayed the same at 135%, although the ROK for the portion of Block 300 with 3D printing rose to 4,317% compared to the traditional production ROK of 118%

• "Radical To-Be" Scenario (3D Printing, PLM, & 3DLS): The overall ROK and ROI of the process rose to 458%, including gains of over 100% in every block except Blocks 270 and 320.

•The "Radical To-Be" Scenario indicates a savings of \$120 million per year is possible if all the technologies are implemented.

Publication Number: NPS-AM-13-128 Cameron Mackley, LT, US Navy

11111

Advisors: Dr. Thomas Housel, Professor Glenn Cook, Senior Lecturer Acquisition Research Program Graduate School of Business & Public Policy

www.acquisitionresearch.org