

Modeling Open Architecture and Evolutionary Acquisition in ARCI with Applications to RCIP

David n. Ford Texas A&M University COL John T. Dillard, USA (Ret) Naval Postgraduate School

Acquisition Challenges

• Fast evolution of threats and technologies – often faster than acquisition programs

• Need acquisition of systems that are integrated

- Across system mission (e.g. ISR, navigation)
- Across platforms (carriers, destroyers, cruisers, etc.)
- Across capability improvements (e.g. technology upgrades)
- Need repeatable capability upgrade process
- Rapid Capability Insertion Process (RCIP)
 - Conceptually designed,
 - Needs better understanding of drivers of success for implementation

Designing and Managing Fast-Evolving Acquisition

- Open Architecture (OA):
 - Modular design and design disclosure
 - Reusable application software
 - Interoperable joint warfighting applications and secure information exchange
 - Life cycle affordability
 - Encouraging competition and collaboration through development of alternative solutions and sources
- Evolutionary Acquisition (EA):
 - Concurrent development phases
 - Only mature-enough technologies

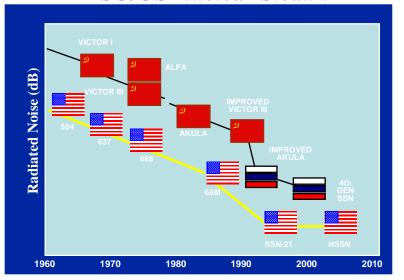
• But successful OA/EA programs have been episodic, not standard practice.

Defense Acquisition in Transition 6TH ANNUAL ACQUISITION RESEARCH SYMPOSIUM

Research Questions

- **Q1:** How have OA and EA been successfully integrated for rapid capability insertion?
- **Q2:** How can successful OA/EA processes and experiences be integrated into RCIP?

Defense Acquisition in Transition 6TH ANNUAL ACQUISITION RESEARCH SYMPOSIUM

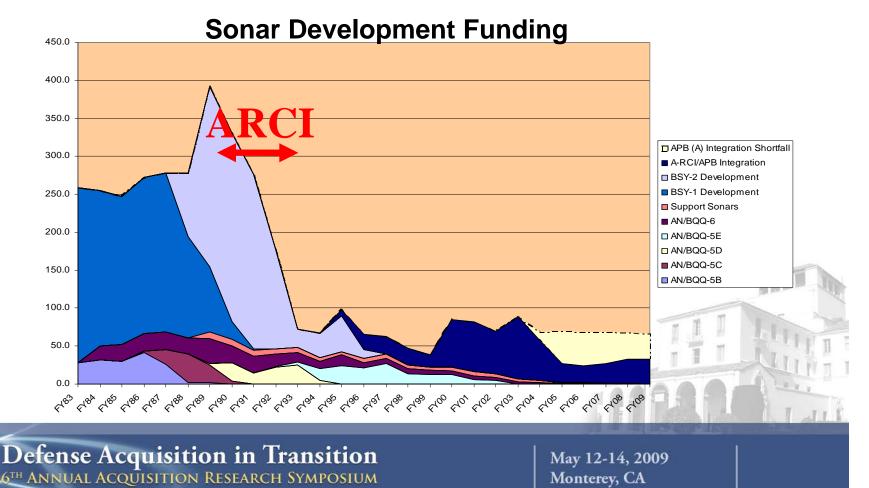

Research Approach

- 1) Build simulation model of successful rapid capability insertion process (ARCI program)
- 2) Change simulation model to better reflect RCIP
- 3) Simulate RCIP under variety of program characteristics and program environment conditions
- 4) Analyze results to better understand RCIP drivers

The Acoustic Rapid COTS Insertion Program (ARCI) – Background (1of3)

• Early 1990s: Real and immediate reduction in submarine sonar advantage

FSU/US Nuclear Stealth


From ARCI – A Historical Perspective, Mr. William Johnson, IWS 7.0 Deputy Major Program Manager Future Combat Systems Open Architecture

• Critical issue for the operating fleet – *needed improvement fast!*

Defense Acquisition in Transition

ARCI – Background (2of3)

 Sharp reduction in funding – "Build-new" not possible – *needed improvement cheap!*

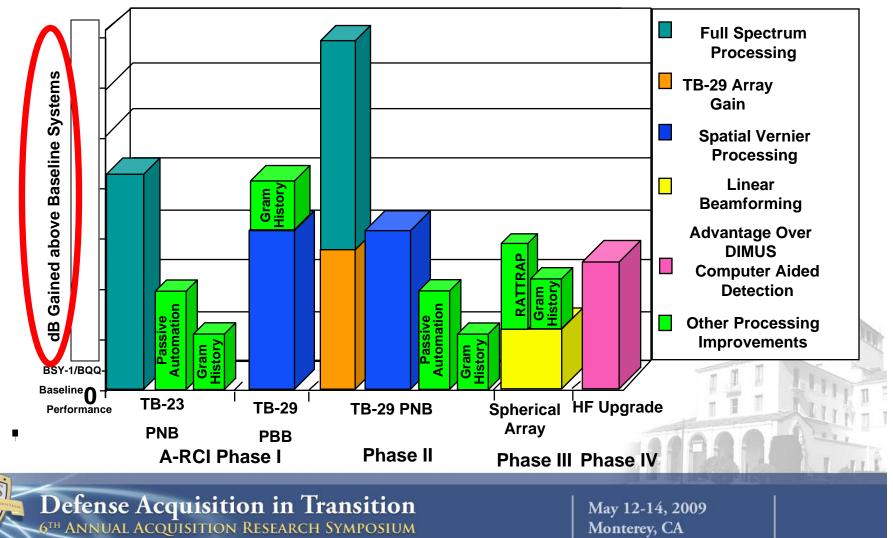
ARCI – Background (3of3)

 Legacy processors, software, and work stations were old (circa 1970s) and custombuilt – expensive and slow to change – *needed a different acquisition process!*

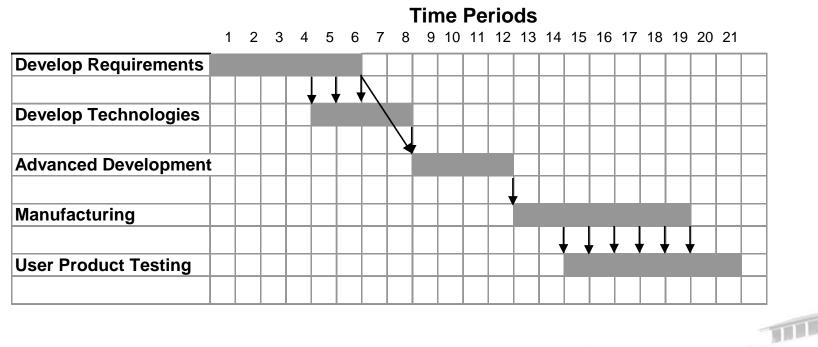
Defense Acquisition in Transition 6TH ANNUAL ACQUISITION RESEARCH SYMPOSIUM

ARCI – Program Performance (1of2)

- •New upgrades ("builds") every 12 months - *no schedule slippage*
- Cost avoidance > \$3 billion



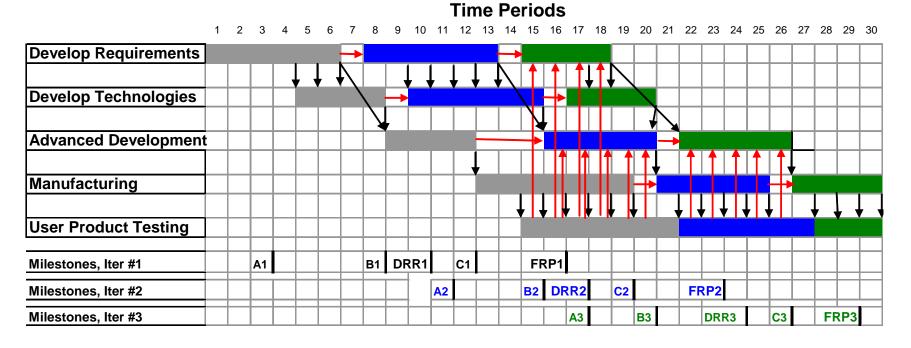
Defense Acquisition in Transition 6TH ANNUAL ACQUISITION RESEARCH SYMPOSIUM


ARCI – Program Performance (2of2)

• Sonar capability improvement

Modeling ARCI:

A Traditional Acquisition Process



Delays in developing requirements, technologies, or designs often delay deployment.

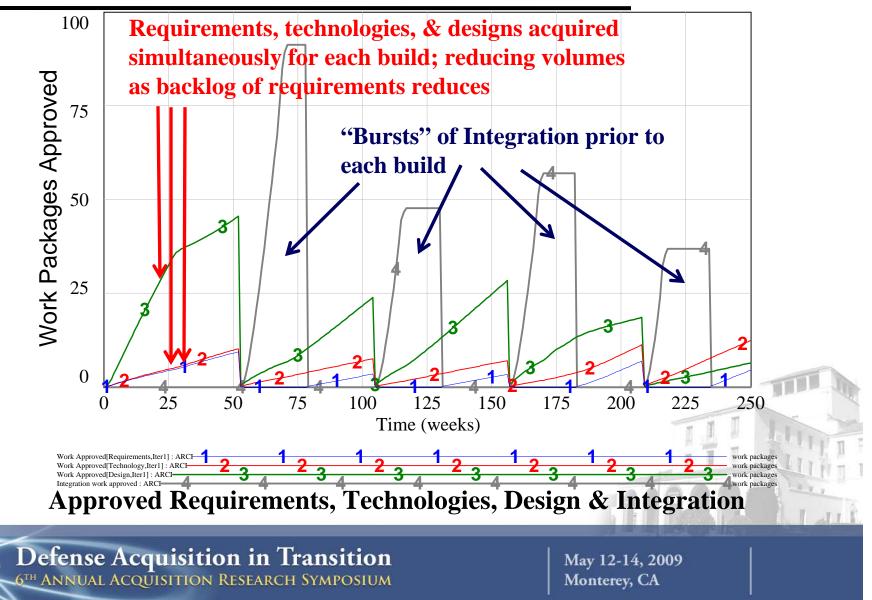
Defense Acquisition in Transition 6TH ANNUAL ACQUISITION RESEARCH SYMPOSIUM

Modeling ARCI: An Evolutionary Acquisition Process

 Revised EA project model to reflect some important characteristics of Open Architecture (OA): modularity, standards management, reduced component design, etc.

Defense Acquisition in Transition 6TH ANNUAL ACQUISITION RESEARCH SYMPOSIUM

Modeling ARCI: The ARCI Acquisition Process

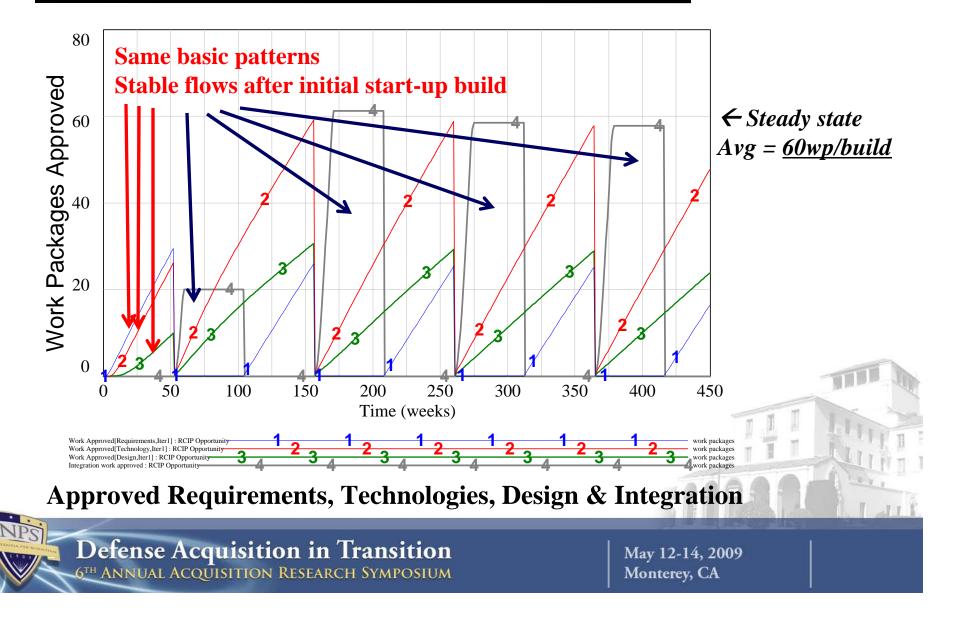

	~	~	~		40		40		~ ~ ~	~~~		-1			40		40				00
	0	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48	51	54	57	60
Requirements Evolution		Coi	nti	nu	ou	s r	eq	ui	rer	ne	nts	s e	vo]	lut	ion						
			I ,						L,	L,			L,			,	Ļ,			L,	
Acquire Technologies		C	on	tir	luo	DUS	s te	ech	ind	blo	gv	ac	gı	iisi	itio	n	•		•	•	
	L,	L,								L,											
Acquire Designs Continuous product design																					
Integrate Designs into Upgrades																					
Towed array upgrade rel	eas	se								-											
Hull array upgrade releas	se													7							
Spherical array upgrade	rele	eas	e	F	Ph	as	ed	in	teg	ra	tio	n					1				
High frequency array upg				ase			an	d I	up	gra	ad	es									T
																			_	-	

Months from Initial Requirements Release

- Select mature-only requirements, technologies, and designs at beginning of Integration
- Delay solutions to next upgrade to not delay build if required

Defense Acquisition in Transition 6TH ANNUAL ACQUISITION RESEARCH SYMPOSIUM

ARCI – Simulation Results



Revising the Model to Reflect the Rapid Capability Insertion Process (RCIP)

- Increase scope to reflect larger programs
- Continuous inflow of new requirements
- No existing inventory of requirements in steady state
- Reduced inventory of off-the-shelf solutions
- Capability upgrades every 2 years (vs. yearly)
- Integration phase duration = 12 months (vs. 6 months)

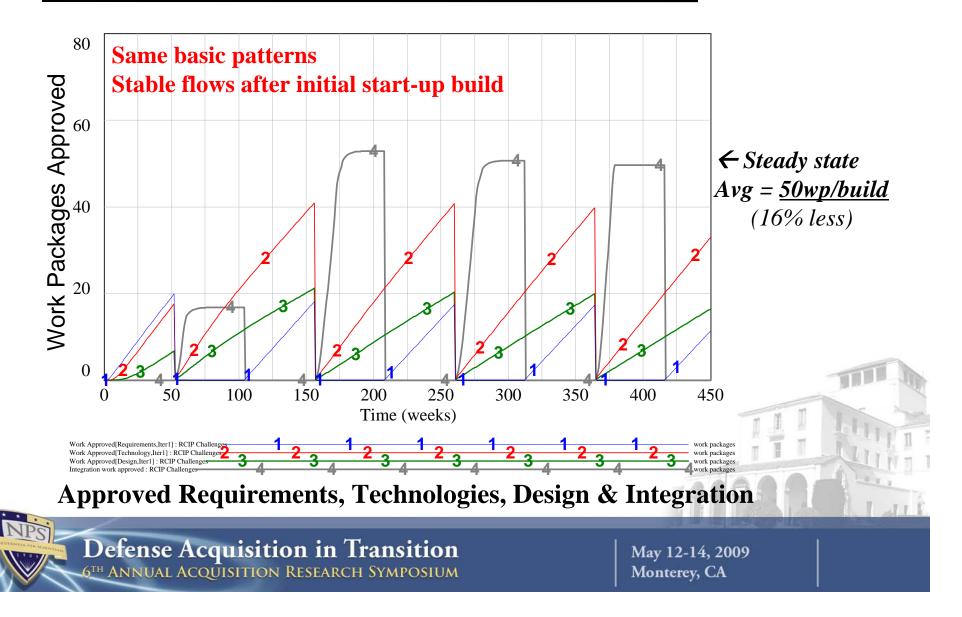
RCIP – Opportunities for Improved Performance

ARCI to RCIP –

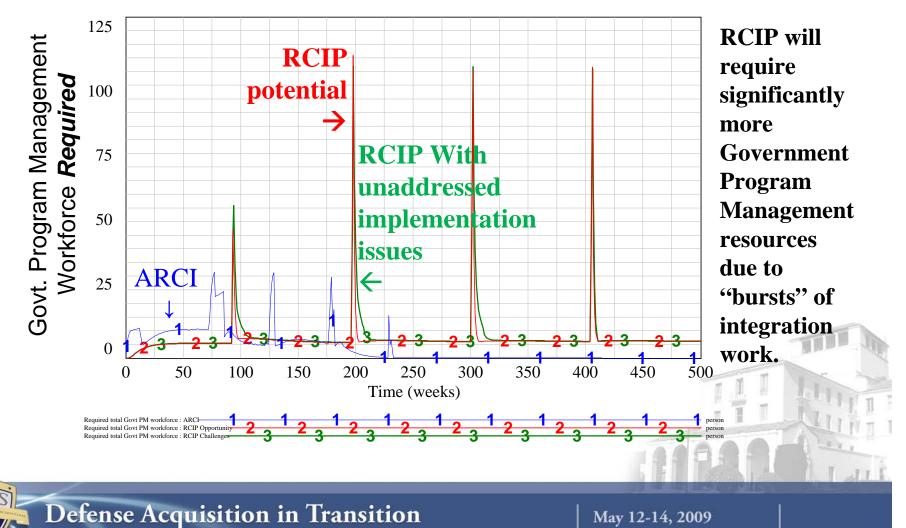
Implementation Challenges

Acquisition Program	Phased Program	ARCI	RCIP
<u>Feature</u>	with OA & EA	Program	Programs (vs. ARCI)
Development processes (Requirements, Technologies, Advanced Development)	Repeated separate phases	Primarily continuous processes, <i>known</i> <i>requirements</i>	<u>Continuous inflow</u> <u>of requirements</u>
Innovation sources	Primarily through Prime contractor	Primarily Off-the-shelf solutions	<u>Mix of new</u> <u>development & off-</u> <u>the-shelf.</u>
Product System Modularity	Often integrated across phases & development blocks	Primarily separate systems (towed, hull, spherical, high frequency)	<u>More systems</u> <u>& system</u> <u>interactions. More</u> <u>inter – system</u> <u>integration required</u>
Govt./Supplier Relationships	Prime contractor	"Prime" coordinator & multiple solution suppliers	Larger solution supplier pool
Primary Locus of Performance Flexibility	Cost, Schedule	Scope	<u>Scope with possible</u> <u>flexibility in cost</u>

RCIP Implementation Challenges –


Changes to the Simulation Model

- Increase scope → more oversight
 - Reduced productivity on larger scope (reduced 20%)
- No existing inventory of requirements (steady state)
- Reduced inventory of off-the-shelf solutions
 - Reduce techn. & Adv Dev initially developed (50%)
 - Increased iteration in integration phases (increased 25%)
- Increased integration required
 - More integration scope (increased 25%/solution)



Defense Acquisition in Transition

RCIP Implementation Challenges Simulation Model Results

RCIP Implementation Challenges – The Burnout Challenge

6TH ANNUAL ACQUISITION RESEARCH SYMPOSIUM

Implications for Practice

Addressing RCIP Implementation Challenges

Acquisition	ARCI	RCIP	RCIP
<u>Feature</u>	<u>Program</u>	Programs (vs. <u>ARCI)</u>	Implementation Risk Management
Development processes	Primarily continuous processes, known requirements	Continuous processes with <i>continuous inflow</i> <i>of requirements</i>	1) Standardize continuous processes 2) Add rigor for sustainability
Innovation sources	Primarily Off-the-shelf solutions	<i>Mix of new</i> <i>development & off-the-</i> <i>shelf.</i> More new development	 1)Adapt continuous processes to mix of off-the-shelf/new development solutions 2)Use "only - mature - enough" strategy
Product System Modularity	Primarily separate systems (towed, hull, spherical, high frequency)	More systems and system interactions. <i>More inter – system</i> <i>integration required</i>	Operationalize modular configuration management for large scale acquisition with focus on integration
Government / Supplier Relationships	"Prime" coordinator & multiple solution suppliers	Larger solution supplier pool	Formalize open, transparent, objective, & repetitive competition processes and organizations
Primary Locus of Performance Flexibility	Scope	Scope with possible flexibility in cost	Improve user - acquisition coordination to make RCIP responsive to warfighter priorities

More Implications for Practice Designing RCIP Implementation

- Improved integrated organization/process design and description
 - Frequent solution competitions, closer user-acquisition coordination,
 - As operational as possible

• New supplier roles

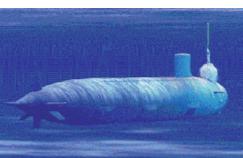
- Former "prime" in coordinator-only role, not solution supplier
- Many and diverse solution suppliers

• New Government Program Management skills

- Dynamic management of requirements selection and solution acquisition (balance flexibility of scope, schedule, cost)
- Leveraging of existing solutions (e.g. software libraries) (OA)
- Open competition among many solution suppliers (OA)

Conclusions

- **ARCI has demonstrated the potential** to radically improve acquisition performance in continuous-upgrade programs
- Implementing ARCI lessons into RCIP for broader use requires the **further development of new acquisition processes, changes in supplier roles, and development of different program management skills**
- Successfully implementing RCIP can greatly improve acquisition program effectiveness and efficiency and provide a basis for widespread adoption.


Defense Acquisition in Transition 6TH ANNUAL ACQUISITION RESEARCH SYMPOSIUM

Questions? Comments? Discussion?

Defense Acquisition in Transition 6TH ANNUAL ACQUISITION RESEARCH SYMPOSIUM

Analysis of the ARCI Program Atypical Program Environment

• Fleet need for fast capability improvement

- Extensive and direct involvement by warfighters
- Strong support by fleet upon demonstration of improvement

• Very limited funding

- Encouraged use of COTS (enormous savings)
- Many available off-the-shelf technologies & designs
 - Encouraged use of COTS (provided selection flex.)

• Era of acquisition reform

- Reduced oversight

Analysis of the ARCI Program Atypical Program Design Features

- Fixed and frequent capability improvements
 - Facilitated delaying requirement fulfillment until mature

• Extensive use of developed technologies & designs

- Added capacity & capabilities developed since original development
- Added flexibility for future upgrades and meeting extra-COTS requirements
- Many suppliers: ONR, academia, small businesses

• Extensive replacement of legacy systems with COTS

- Inherently modular – accelerated upgrades

• Continuous warfighter involvement in acquisition

- Improved development due to realistic operations input to acquisition
- Provided typically-unavailable operations data for testing and development
- Built fleet support through participation

Analysis of the ARCI Program Atypical Program Management

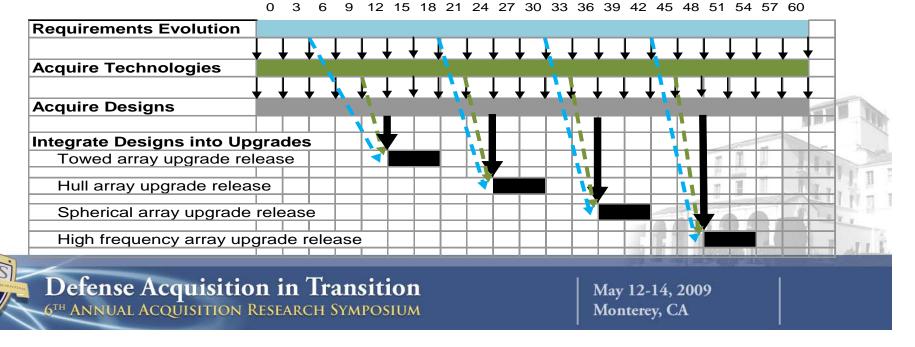
- Redesigned supplier relations and processes
 - Prime contractor in coordinator role only not supplier
 - Repeated open competitions (& objective solution evaluations)
- Maturity was the basis for upgrade scope
 - "Pull" resource allocation based on needs vs. "Push" of requirements
 - Identify and select mature solutions at start of integration
- Continuous requirements development, technology development, and design
 - Not tightly linked to program schedule
 - Upgrade content decisions & commitments late vs. early

ARCI's Atypical Objectives – A Notional Model

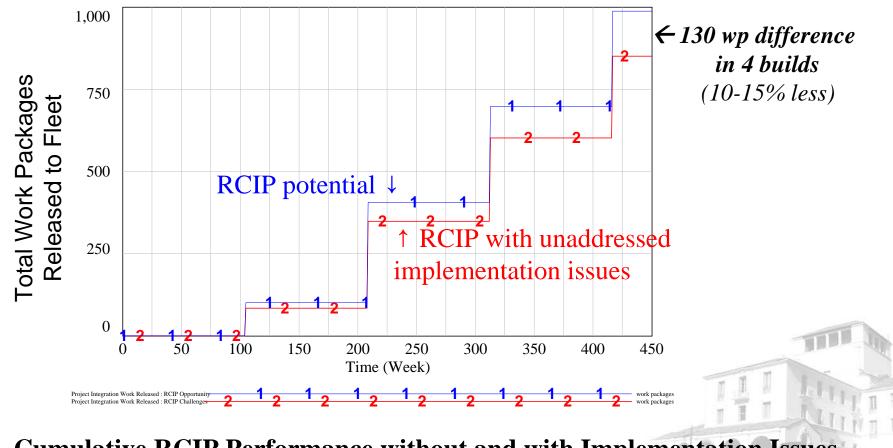
- When resources constrain progress, what performance dimension is most flexible? Ranking from least flexible to most flexible...
- Traditional programs:
- 1.% Requirements filled
- 2.Cost
- 3.Schedule

• ARCI:

- 1.Schedule (no delaying of builds)
- 2.Cost
- 3.% Requirements filled (in this build)



Defense Acquisition in Transition 6TH ANNUAL ACQUISITION RESEARCH SYMPOSIUM


A Simulation Model of ARCI

- ARCI acquisition process
- Six resource types
 - Technology acquisition, design, integration
 - Program management (govt.) and suppliers

Months from Initial Requirements Release

RCIP Implementation Challenges Implications for Design and Practice

Cumulative RCIP Performance without and with Implementation Issues

Defense Acquisition in Transition 6TH ANNUAL ACQUISITION RESEARCH SYMPOSIUM