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Abstract  
Applying traditional manual US Navy testing practices to OA systems will limit many 

benefits of OA, such as system scalability, rapid configuration changes, and effective 
component reuse.  Pairing profile-driven automated software testing with test reduction 
techniques should enable these benefits and keep resource requirements at feasible levels.  
Test cases generated by operational profiles have been shown to be more effective than 
those developed by other methods, such as random or selective testing, and more resource-
efficient than exhaustive approaches.  This research effort increases the fidelity of the 
operational profile, creating an environment model referred to as a High-Fidelity Profile 
Model (HFPM) that can statistically describe individual software inputs.  Samples from the 
HFPM’s probability distributions can generate operationally realistic or overly-stressful test 
cases for software modules under test.  This process can be automated and paired with 
output checking functions, enabling automated effective software testing, and potentially 
improving reliability.  Such models would be ideal for US Navy Open Architecture (OA) 
software because of the defined interface standards.  HFPMs can enable effective testing in 
software reuse applications and are ideal for testing multiple releases of maturing software.  
This research defines the HFPM, presents a methodology to develop, validate, and apply it. 

Keywords: Software Testing, Software Reliability, Operational Profile, Software 
Reuse, Open Architecture 
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Introduction 
Current software testing methods will limit some of the key benefits that Open 

Architecture (OA) can provide for the US Navy.  More specifically, the ability to rapidly 
change a system’s configuration in order to meet new requirements is possible when using 
an OA but if current Test and Evaluation (T&E) practices and policies are applied, the 
updated system will likely not be fielded in a timely manner.  With the ability to rapidly 
update software comes a need to rapidly field that software (Berzins & Dailey, 2009). 

In order to rapidly field US Navy combat and weapons system software, two new 
approaches are required.  First, the current software testing process needs to be changed 
from a manually conducted process to an automated process that provides better test 
coverage for a given cost and period of time.  Second, the total amount of testing required 
should be safely reduced to a minima acceptable level.  Instead of conducting complete 
end-to-end testing after every configuration change, testing should only be conducted where 
necessary.  The ability to test more rapidly while providing better coverage combined with 
the ability to determine when retesting is not necessary should enable the ability to rapidly 
field OA combat and weapon system software (Berzins & Dailey, 2009). 

Model Driven Automated Software Testing 
The recommended automated software testing process, outlined in detail by Dailey, 

Berzins, and Luqi (2009; 2010), focuses on developing a High-Fidelity Profile Model (HFPM) 
for each software component under test (SUT) and then using it to automatically generate 
test cases, execute test cases, check SUT outputs and analyze the results. Analyzing the 
results automatically can be challenging for services with new or modified requirements, but 
can be accomplished easily and economically for components whose behavior is not 
supposed to change from the previous release. This can be done by running both the new 
and the previous version of the software component on each input generated by the HFPM 
and then comparing the results. That process is easy to automate. 

The HFPM contains High-Fidelity Profiles (HFPs), which are validated probability 
distribution functions (PDFs) that characterize the component’s environment. Operationally-
realistic or stress-inducing test cases are automatically created by sampling from those 
HFPs and processing the samples through test case generation algorithms.  Once 
generated, the test cases are queued up for automated SUT execution by the software tools 
implementing the HFPM.  Following execution, output analysis algorithms integrated into the 
HFPM, are used to automatically check the test case outputs and calculate the resulting 
reliability of the SUT with respect to the HFPs used in testing.  The overall process (Figure 
1) and the HFPM functional concept (Figure 2) are outlined below.  For a more detailed 
description, see Dailey and Luqi (2010).   
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Figure 1. HFPM-Based Automated Testing Process  
(Dailey & Luqi, 2010)
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Figure 2. HFPM Functional Concept  

(Dailey & Luqi, 2010) 

Application to US Navy Acquisition 
In order to make the process described above work for US Navy acquisition, it 

should be employed in a way that enables the HFPM model to be used by all relevant 
commands that play a role in software development or T&E.  This type of focus provides a 
common practice across the acquisition testing community with the ability for customization 
for specific roles.  The HFPM should be developed in parallel with new components and 
should be created for a component when acquired off the commercial shelf or in reuse 
applications where one does not yet exist.  The research, development and acquisition 
agency should use the HFPM to check each component as it is developed and/or integrated 
into its specific operating environment until such time that the component is ready for 
Independent Validation and Verification (IV&V).  At that time, the component along with the 
HFPM, are passed to an IV&V test team, which has the ability to modify the HFPs as 
desired, for Developmental Testing (DT).  The IV&V test team can be another group of 
independent testers in the same command as the software developers or they can be part of 
the In-Service Engineering Agency (ISEA) responsible for maintaining the software once 
fielded.  This level of DT is generally the most stressful type of testing, focused on 
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identifying bugs by wider ranges of test inputs than expected in the nominal operating 
environment. 

Once the DT IV&V testing is complete, the results along with the profile(s) used in 
the testing are passed back to the software development team.  If bugs exist that require 
correction, the software development team can make the proper changes, update the 
configuration, test internally and send out for another round of DT IV&V.  If the software has 
reached a desired level of maturity for field use, the software component is sent out for 
Operational Test (OT) certification.  OT should be conducted by a command outside of the 
software development and ISEA, such as the Commander Operational Test and Evaluation 
Force (COMOPTEVFOR), ensuring independent certification and utilizing more operationally 
realistic HFPs for test case generation.  Often however, such OT agencies do not have the 
technical expertise to evaluate all types of software.  In such cases, members of the 
software development team can become OT trusted agents and provide support for OT 
evaluation under control and supervision of the primary OT command.  If OT is 
unsuccessful, the test results and profile(s) used are sent back to the software development 
team for analysis and correction.  Upon successful completion of OT, results are passed 
back to the software development team and the software is certified for deployment.  This 
concept is illustrated in Figure 3. 

  
Figure 3. HFPM-Based Automated Software Testing Process Employment 

Scheme  
(Dailey & Luqi, 2010)
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Deriving HFPs from Historical Data 
The most important element of the HFPM-driven automated testing process is 

deriving the HFP(s) for use in automated test case generation as the reliability calculated 
during testing is only accurate relative to the HFP(s) used.  If we develop HFPs 
characterizing several different deployment environments, the methods described in this 
paper can be used to determine the reliabilities to be expected in each deployment 
environment. These can vary considerably.  

Collecting Historical Data 

The first step in deriving HFPs from historical data is collecting the historical data.  
To effectively do this, the component to be tested must be understood, including its 
operational and technical requirements, functional behavior, and expected inputs and 
outputs.  Once all the component inputs and outputs are identified and defined operationally 
and functionally, the next task is to collect data that can directly or indirectly be used to form 
characterizations of the expected component inputs in the operating environment. 

Depending on the specific application and information available, any type of historical 
or environment data can potentially be useful in this process.  The most ideal case is to 
obtain actual input data that will be processed by the component in the new environment 
and directly characterize that data.  If this is not obtainable, other indirect but relevant data 
can be collected and characterized along with information that relates the collected data to 
the SUT inputs.  For applications where the operating environment is not known, a method 
proposed by Voas (2000) can be helpful if access to the end users during development is 
possible.  In this process, an instrumentation tool is used to collect data from fielded 
software that can then be used to generate accurate operational profiles.  If access to the 
end users is not possible, it is up to the software development and acquisition team to 
determine how to best collect useful environment data in each specific application for 
analysis and HFP generation.  Specific methods could include trial data collection efforts 
during training exercises, Advanced Concept Technology Demonstrations (ACTDs), 
modeling and simulation, or technical intelligence collection and analysis.  Once collected 
and characterized, indirect data may require further processing by input test case generation 
algorithms if necessary, in order to transform samples from those characterizations into 
usable test case inputs. 

Characterizing Historical Data 

Once a particular set of raw environment data is collected and related to the specific 
component input(s), the data can be analyzed using one of many established data 
characterization methods and available commercial tools for HFP PDF generation.  One 
such example is the Matlab® Dfittool application within the Statistics Toolbox® (“Dfittool,” 
2009).  Regardless of the tool used, parametric methods such as Maximum Likelihood 
Parameter Estimation, and Maximum A Posteriori Probability Estimation, or non-parametric 
methods such as the Histogram, Kernel Density Estimation (KDE) (Wikipedia et al., 2009), 
or Parzen Neural Network (PNN) (Trentin, 2006) methods can be applied to generate HFP 
PDFs using available raw environment data.  Parametric methods should be used when an 
understanding of the data is available prior to characterization.  If there is no such prior 
understanding of the data, nonparametric methods can be used more effectively.  The 
desired tool(s) used to perform the necessary analysis should have the flexibility to modify 
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the method used for calculation in order to compare methods and determine the best type of 
PDF fit.  The output of this analysis process should be one or more PDFs that can be used 
to either directly or indirectly generate test case inputs based on samples from those PDFs.  
Direct examples include applications where a sample from the PDF can be used as a 
component input.  Indirect examples include PFD samples that require further processing in 
order to generate component inputs.  These PDFs are referred to as HFPs in this study. 

Simple Example of Deriving HFPs from Historical Data 

Dailey (2010) illustrated the concept creating HFPs from collected environment data.  
In the example, performance data on various small boat platforms from a US Navy study 
was acquired and modeled using Matlab®.  The US Navy data provided the following data 
on six different types of small boat platforms: 

Table 1. Small Boat Collected Data  
 (Dailey, 2010) 

Platform 

Max 
Velocity 
(kts) 

Boat 
Length 
(m)

Acceleration 
(kts/sec)

Deceleration 
(kts/sec)

Turning 
Rates 

(deg/sec) 

Speed 
Loss in 
Turns 

(deg/sec) 
Boghammer  40  13  1.5  4  10  10 

FB 38  50  11.85  2.5  4.3  15  12 

7m RHIB  27  7.25 2.5 4.2 28 7 
Boston 
Whaler  36  6.78 2.5 4 30 8 
Zodiac  23  4.7  6.25  4.5  32  5 

Wave Runner  44  3.66  6.25  4.4  47  15   

The data in Table 1 was entered into Matlab® and then characterized using the 
Statistics Toolbox® dfittool resulting in a HFP PDF and inverse cumulative distribution 
function (Inverse CDF) for each of the parameters.  Due to the limited number of points per 
parameter and the lack of specific knowledge on the specific type of distribution applicable 
to each parameter, the nonparametric KDE calculation was used to characterize the data.  
The KDE function is: 

 
where K is some kernel and h is a smoothing parameter called the bandwidth 

(“Kernel Density,” n.d.).  In this case, K was taken to be a standard Gaussian function. 

Several iterations of characterizations were generated taking into account the actual 
data as well as establishing logical finite ranges for each parameter.  The result is a 
collection of distributions that effectively describes a notional small boat platform from a 
technical perspective.  Two HFPs generated from this data can be seen below. 
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Figure 4. Notional Small Boat Maximum Velocity PDF (Knots)  

(Dailey, 2010) 

 
Figure 5. Notional Small Boat Maximum Velocity Inverse CDF (Knots)  

(Dailey, 2010)
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Figure 6. Notional Small Boat Acceleration PDF (Knots/Second)  

(Dailey, 2010) 

 
Figure 7. Notional Small Boat Acceleration Inverse CDF (Knots/Second)  

(Dailey, 2010) 
The HFP functions generated above were exported to the Matlab® workspace for 

use in automated test case generation as part of a HFPM concept demonstration prototype.  
For more information, see Dailey (2010). 
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Validating High-Fidelity Profiles 
Since testing results from this process are only valid with respect to the HFP(s) used 

to generate the test cases, it is important to take measures to check their validity.  In any 
application, a qualitative analysis of the HFP(s) should be conducted by subject matter 
experts to ensure that the derived profile(s) provide adequate coverage for testing.  In 
addition to the qualitative assessment, it would be very useful to define a quantitative 
process to perform this function.  When trying to determine the best characterization 
method, it is possible to compare the different methods taking into account the methods 
themselves as well as their results.  Various methods currently under investigation to assess 
the best characterization method include the use of Bayesian Information Criterion (BIC) 
and goodness of fit tests.   

BIC can be used to compare multiple alternative parametric models with different 
numbers of parameters of a particular environment.  When estimating parameters using 
maximum likelihood estimation, it is possible to modify or increase the likelihood using 
additional parameters, but this also can result in overfitting.  In this method, the model with 
the lowest BIC score has the best fit.  This technique does not apply to non-parametric 
characterizations such as KDE, but is useful for deciding between different parametric 
techniques.  In addition to BIC, other similar approaches, such as the Akaike Information 
Criterion (AIC), also exist.  BIC applies a stronger penalty than AIC for having additional 
parameters.  The formula for the BIC is as follows: 

 
where x is the observed data; n is the number of data points in x; k is the number of 

free parameters to be estimated; and L is the maximized value of the likelihood function for 
the estimated model (“Bayesian Information,” n.d.). 

Another approach for comparing different characterization methods is to perform a 
goodness of fit test for each characterization to the actual empirical data.  One specific type 
of calculating the goodness of fit of a PDF to an empirical distribution is the Cramér-von-
Mises criterion.  It is defined as: 

 
where  is the characterized distribution and  is the empirical environment 

data distribution (“Cramér-von-Mises,” n.d.). 

The methods described above are useful for comparing different HFPs to determine 
the best method.  Ongoing research is being conducted to determine the level of confidence 
in the HFP with respect to the sample size of empirical environment data.  This would be 
beneficial as it can be used to determine how much environmental data collection is 
adequate. 

Deriving Stress-Testing HFPs from Historical Models 
By definition, stress testing exercises a software system beyond the range of normal 

operating conditions. There are two basic approaches to this–black box and clear box. Black 
box approaches can be combined with the profile model transformations described in this 
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section to carry out automated stress testing that can support statistical reliability estimates 
relative to the stress testing profile(s) (PDF(s)). The black box approaches described in 
sections 6.1-6.3 can be combined with the method for reducing retesting of reusable 
components described in Berzins and Dailey (2009) to eliminate redundant repetition of test 
cases from the previously tested ranges.  

Clear box approaches are heuristic methods that seek to uncover particular types of 
errors. Although clear box criteria can be applied using stress-profiles, other methods should 
also be considered, as discussed in more detail in sections 6.4 and 6.5. 

Standard Deviation Based Methods 

The simplest kind of stress testing profile is based on the mean and standard 
deviation of the HFPM that characterizes the expected operating conditions (Berzins & 
Dailey, 2009). This approach is applicable to numerical data types and uses a distribution 
that exercises two intervals symmetrically placed about the mean, from one to N standard 
deviations set off from the mean in both directions. The parameter N determines how far 
beyond the expected operating range will be exercised by the stress test. We recommend a 
series of stress tests with increasing values of N such as (10, 100, 1000, …) up to the entire 
range supported by the underlying data type.  

The approach can readily be generalized to vector data types by choosing a uniform 
distribution that takes the form of a ring (in 2 dimensions) or a shell (in 3 or more 
dimensions). The distribution is centered on the mean of the HFPM, and the radius from the 
center ranges from 1 to N standard deviations. If the HFPM is not isotropic (not the same in 
all directions), an ellipsoid with different radii along each axis can be used, derived from the 
covariance matrix of an HFPM over a 2 or more dimensional input space. 

Scale Expanding Transformations 

Another approach that works for numerical or vector valued inputs is to use a scale 
expanding transformation. If the HFPM is a distribution P(x-m) where m is the mean of the 
HFPM, then the stress testing profile derived via the approach in P((x-m)/s), where s is a 
numerical scale factor. The stress testing profile then has the same mean as the HFPM, and 
a standard deviation that is s times larger. The shape and orientation of the stress profile are 
similar to the original, but spread out more by a factor of s, which is similar to the parameter 
N in the previous section. We recommend a sequence of tests with s = [10, 100, 1000, …] 
for applying this method. 

Probability Scaling Transformations 

The approaches described in sections 6.1 and 6.2 apply only to numerical or vector-
valued input data. In contrast, probability scaling transformations apply to any kind of input 
data, including discrete enumerations such as classification categories and other non-
numerical data types. For a HFPM with a distribution P(x) the stress testing profile derived 
using this approach is proportional to P(x)1/N, where N is a numerical parameter with N >1, 
and where the proportionally constant must be chosen to normalize the distribution to make 
all probabilities add up to 1. This family of transformations increases the probabilities of rare 
events and decreases the probabilities of the frequent ones, as illustrated by the example 
shown in Table 2. 
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Table 1. Original and Derived Probabilities 

  Original N = 2 N = 3 N = 4 N = 5 N = 10 N = 15 N = 20 
P1 0.88888889 0.670925 0.526601 0.432891 0.369481 0.233181 0.134859 0.128692
P2 0.1 0.225035 0.254214 0.250707 0.238684 0.187417 0.128468 0.12409 
P3 0.01 0.071162 0.117996 0.140983 0.150599 0.14887 0.12206 0.119418
P4 0.001 0.022504 0.054769 0.079281 0.095022 0.118252 0.115971 0.114922
P5 0.0001 0.007116 0.025421 0.044583 0.059955 0.093931 0.110186 0.110595
P6 0.00001 0.00225 0.0118 0.025071 0.037829 0.074612 0.10469 0.106432
P7 0.000001 0.000712 0.005477 0.014098 0.023868 0.059266 0.099468 0.102425
P8 0.0000001 0.000225 0.002542 0.007928 0.01506 0.047077 0.094506 0.098568
P9 0.00000001 7.12E-05 0.00118 0.004458 0.009502 0.037395 0.089792 0.094857

Table 2 shows an original PDF and a series of transformed and renormalized derived 
stress testing PDFs. Note that the probabilities in each column add up to 1 and that the 
original distribution spans a wide range of frequencies of occurrence. These distributions are 
shown as bar graphs in Figure 8. 

 
Figure 8. Original and Derived Probabilities 

The transformations increase the proportions of the rare cases in the stress testing 
samples, while preserving the rank ordering of the probabilities. The degree of enhancement 
of the rare events increases with the parameter N.  

Dominance Relations and Stress Testing 

Stress testing does not have to be done solely using HFPM’s.  Another useful 
approach is based on the concept of dominance. One test case dominates another one if 
the first one will expose at least as many software faults as the second, and may expose 
more. Even if there is not a single test case that dominates all of the others, often there will 
be some that are more likely to expose errors than others. This approach is particularly 
useful when the tester is focusing on a specific class of errors. Many of the commonly used 
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testing heuristics are based on this idea and can contribute to efficient testing. A 
representative sample of these is listed in Table 3, organized by the error type addressed by 
each. 

Table 2. Focused Stress Testing Strategies 

Coverage Criteria and Stress Testing 

Traditional coverage criteria, such as statement coverage and branch coverage, are 
useful for checking low probability paths through the software. This can be an important 
defense against unwanted features deliberately placed in the code by malicious insiders. 
For example, an “Easter Egg” is a hidden feature function in the software that is triggered 
only when a particular input is provided. Such code is typically deliberately hidden and can 
easily be made statistically invisible to black box testing approaches. For example, if the 
function is triggered only when a particular input sting is provided the probability of detection 
by black box testing is 1 in 88n, where n is the number of characters in the input and we are 
assuming all the characters on a standard keyboard can be used. For a field of length 30 the 
number of test cases needed to detect such a path this is about 2.16 x 1058, which is not 
technically or economically feasible. 

However, a branch coverage criterion coupled with a constraint logic solver for 
finding test cases to exercise infrequent branches has be found to be effective at detecting 
such faults (Molnar, 2008). 

Conclusions 
Effective and cost-efficient testing for US Navy OA software can be achieved by a 

mixture of automation methods to determine which tests can be safely eliminated by reusing 
previous test results, and methods for choosing test cases that are most likely to expose 
errors without duplicating coverage of other test cases. 

This paper explains how automated testing can be systematically performed based 
on historical data, in a way that exposes the most frequently manifesting errors earliest in 
the process.  We also identify some of the weaknesses of purely statistical approaches to 
testing and identify methods for overcoming these weaknesses. 
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