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Abstract 

The most efficient use of the DoD’s network of remanufacturing depots is an 

important concern because of the extensive requirement to recapitalize the military 

equipment used in Iraq and Afghanistan through product recovery.  In this report, we 

consider the use of radio frequency identification (RFID) technology in improving 

remanufacturing efficiency.  We first provide a framework for understanding the 

choice between permanently tagging components with passive RFID versus using 

RTLS for the temporary identification of components in the remanufacturing process.  

We then report the results of simulation model that analyzes how RFID/RTLS 

creates value within the remanufacturing operation.  We find that the simulated gains 

from using RFID/RTLS are quite modest, and propose alternative justifications for 

the major benefits seen in practice. 

Keywords: radio frequency identification, remanufacturing, process 

improvement, framework, simulation 
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1. Introduction 

In this report, we study how RTLS (real time location systems)—a form of 

radio frequency identification application—may generate value in remanufacturing 

operations in the Department of Defense (DoD). The DoD has remanufacturing 

capabilities in 19 depots across the US that are able to recover aeronautical, 

automotive and naval equipment, in addition to a variety of electronic instruments 

(DoD Maintenance Depot Capabilities and Services, 2003)).  Examples of such 

depots include the F A-18 remanufacturing operations we recently toured at North 

Island Naval Air Station, San Diego, or the naval and aerial radar recovery facility in 

Tobyhanna, PA.  The DoD also has numerous partnerships that involve outsourcing 

remanufacturing activities to industry sites that might also benefit from RFID 

technology—one example would be the Bradley armored personal carrier 

remanufacturing program, which includes final assembly, integration and testing at 

BAE Systems facility in York, PA. 

The timing for this study is opportune for two main reasons.  First, the DoD’s 

prospective demand for remanufacturing operations continues to grow with the long-

term operational demands placed on its equipment in Iraq and Afghanistan.  The 

Government Accountability Office (GAO) has addressed the “recapitalization” topic 

at length in recent reports (2007, 2008).  This increased level of demand places a 

premium on the optimal use of remanufacturing facilities and personnel available in 

the DoD system.  Second, RFID technology continues to evolve at a rapid pace and 

its diffusion in supply chains is becoming rather widespread, including within DoD 

environments.  With the technology becoming more widely understood and 

integrated within DoD infrastructure, it is the right time to analyze its effectiveness in 

a range of other applications. 

This report proceeds with a quick overview of some of the important 

literatures on remanufacturing and we provide a concise appraisal of what has been 

learned in past studies of RTLS in DoD remanufacturing operations, which sets the 
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scene for the rest of the report.  In section 3 we analyze the process of selecting 

RTLS in a remanufacturing environment and the alternative choice of directly 

tagging components with passive RFID at the beginning of their service life.  We 

argue that this choice is largely driven by the feasibility of passive tagging and the 

VOI (value of information) gained through monitoring the tag during its operational 

period.  Some of this information may be useful for remanufacturing operations, such 

as sorting components prior to remanufacturing.  Section 4 reports the results of a 

simulation model that helps analyze the narrower issue of how RTLS (or passive 

RFID) creates value within the remanufacturing job shop.  Our results suggest that 

the direct gains are relatively modest.  A brief conclusion follows. 
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2. Remanufacturing: A Brief Literature Overview 

Remanufacturing closes the materials cycle and provides the basis for 

product recovery and re-use in supply chains. It focuses on value added recovery, 

rather than just materials recovery, that is, recycling. An old estimate indicates that 

there were more than 73,000 firms engaged in remanufacturing in the US, directly 

employing over 350,000 people (Lund, 1983).  Twenty-five years later, this number 

must have increased with new classes of products that are regularly 

remanufactured, such as electronic and computer equipment, and new markets that 

depend on remanufactured products.  Remanufacturing has been described as: 

[A]n industrial process in which worn out products are restored to like-new 
condition. Through a series of industrial processes in a factory environment, a 
discarded product is completely disassembled. Useable parts are cleaned, 
refurbished, and put into inventory. Then the new product is reassembled 
from the old and, where necessary, new parts to produce a unit fully 
equivalent—and sometimes superior—in performance and expected lifetime 
to the original new product. (Lund, 1983) 

Remanufacturing is therefore distinctly different from repair operations, since 

a product is completely disassembled and all parts are returned to as-new condition 

before reassembly.   

There is substantial literature on remanufacturing dealing with tactical, 

operational and strategic questions. Several authors have argued that current 

manufacturing technologies, practices and processes can and should be used in 

support of remanufacturing operations (Giuntini & Andel, 1995).  Thus, in many 

ways, remanufacturing has the same broad goals as manufacturing, such as quality, 

speed, flexibility and cost.  Therefore, the transfer of relevant best practices between 

these different operational settings is an important issue. 

Also, many authors see remanufacturing as a process of growing importance 

in the overall product lifecycle.  There are several reasons for this, including product 

take-back laws that mandate manufacturers bear the burden of disposal at the end 
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of a product’s useful life (Mangun & Thurston, 2002), and the profitability/cost-

effectiveness of remanufacturing in some circumstances.  In short, remanufacturing 

may make good business sense, with producers recovering a profit from 

remanufacturing that offsets some of the costs of take-back policies instituted in 

various communities.  The key point is that, in every organization, it is useful to 

conceptualize remanufacturing as a profit-enhancing or cost-reduction activity.  For 

this reason, we see many organizations seeking profitable opportunities via 

remanufacturing. 

A third point is that often remanufacturing may incorporate component 

upgrades to add new features to the product or to improve compatibility with newer 

systems. (Ayres, Ferrer, & van Leynseele, 1997).  This point is particularly important 

for the DoD, which is frequently engaged in refreshing its stock of hardware with new 

and improved upgrades.  Excellent examples of this include numerous examples in 

the US Army (i.e., Bradley and Abrams armored vehicles upgrade programs), the 

Marines’ Harrier upgrade programs, periodic updating of the Navy’s aircraft carrier 

fleet, and numerous examples in the USAF (including the recent B52 and KC135 

tanker fleets, both of which were originally built in the 1950s).  The authors know of 

no formal models of the upgrade decision and note that this topic clearly warrants 

further study in the military context. 

In the context of job shop operations, the remanufacturing literature remains 

limited.  The main difficulty in this research stream is to model the job shop in a 

meaningful, generalized way.  Guide, Srivastava, Spencer and Kraus generated a 

series of articles related to regular and expedited schedule, inventory buffer and 

capacity planning in simulated scenarios based on Naval Aviation Depots (Guide, 

Srivastava & Spencer (1996), Guide & Srivastava (1997), Guide, Kraus & Srivastava 

(1997), Guide & Srivastava (1998), Guide, Srivastava & Kraus (1998)).  These 

studies generally recommended best approaches to schedule the disassembly-

repair-reassembly sequence considering the uncertainty of the remanufacture 

process.  Since then, very little work has been done to understand the 
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remanufacturing job shop.  Interesting exceptions are the graduation theses by 

students of the Naval Postgraduate School at the Army’s Tobyhanna depot.  We turn 

to their work next.  

Tobyhanna Army Depot in Pennsylvania is the largest, full-service electronics 

maintenance facility in the Department of Defense (DoD), providing design, 

manufacturing and remanufacturing services for satellite terminals, radio and radar 

systems, electro-optics, night vision and anti-intrusion devices, airborne surveillance 

equipment, navigational instruments, electronic warfare, and guidance and control 

systems for tactical missiles. The Army designated Tobyhanna as its Center of 

Industrial and Technical Excellence for communications-electronics, radar, and 

missile guidance and control, while the Air Force has designated Tobyhanna as its 

Technical Source of Repair for command, control, communications and intelligence 

systems.  The variety of jobs undertaken by Tobyhanna clearly classifies this facility 

as a job shop, with all the challenges that a typical job shop would face. 

In early 2004, Tobyhanna conducted a pilot program incorporating Radio-

Frequency Identification (RFID) technology into its radar remanufacturing 

operations.  The program resulted in a payback of less than one year and 

measurable improvements in average repair cycle time and direct labor-hour per job, 

enabling higher throughput and more reliable lead-time promises (Forrest & 

Miertschin, 2005).  To further leverage the RFID technology, managers at 

Tobyhanna extended the program for three more years (Phelps & Rottenborn, 

2006). 

Phelps and Rottenborn (2006) found that, thanks to the use of RFID 

technology, the remanufacturing process in Tobyhanna experienced an 

improvement in six performance measures.  Three relate principally to customer-

orientation: 

 Lead time accuracy:  The ability to make good estimates about lead-
times is a valuable service to customers that was improved with the 
system. 
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 Job visibility—Response time:  The ability to assess the status of a job 
in real-time was improved. 

 Cycle time:  Better scheduling reduced wait time between tasks, thus 
reducing cycle time. 

A further three measurable impacts relate more to remanufacturing efficiency.  

These are: 

 Labor-hours per job—Non-value-added work—Overtime labor: 
Workers did not have to waste time looking for parts lost in the shop 
floor, eliminating the need for scheduling overtime work. 

 Resource utilization—Scheduling: Greater visibility enabled better 
scheduling of resources and improved asset utilization. 

 Shrinkage and theft:  Better visibility eliminated material loss in the 
shop floor. 

Clearly, Tobyhanna’s experiment with RFID was an operational success, 

which begs the question:  should RFID be adopted in all depots in the Department of 

Defense?  If so, what type of RFID should be used?  When should components be 

tagged at source (using passive RFID), and when should they be tagged only within 

the four walls of the remanufacturing site (using RTLS)?  Within remanufacturing 

operations, what characterizes a job shop that would benefit from using RFID to 

track parts and components movement in the shop floor?  In what follows, we 

address these questions. 
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3. A Framework for the Choice between Passive 
RFID and RTLS 

In this section, we analyze which kinds of RFID tagging are most appropriate 

in various situations.  The choice we consider is the choice between tagging a 

component with a passive RFID tag, which will be used to track its whereabouts over 

its lifetime (as Boeing and Airbus are reportedly doing with certain aircraft parts) or 

tagging components using RTLS while they are in the remanufacturing process.  

There are distinctly different reasons for tagging components. 

1. Regulation or policy.  Some systems are subject to regulation that 
requires keeping all components together as a kit, never cannibalizing 
parts among different systems.  In some cases passive RFID tagging 
may be an efficient method of accomplishing this.  This is particularly 
the case when errors are relatively expensive (i.e., cost of rework or 
cost of errors to users are high), when testing is relatively expensive 
(to check conformance of the reassembled original components), and if 
the error rates and costs of the alternatives to tagging are high.  
Moreover, regulatory policy may encourage passive RFID tagging at 
source for safety reasons, i.e., it may be necessary to record major 
events in the life of certain components and follow their use, 
degradation, repair and reuse until they are discarded.  To complete 
the system, the tag should be associated with the part’s serial number 
or UID (unique item identification), and the data would be recorded in a 
digital system (Obellos, Colleran, & Lookabill, 2007). 

2. Usefulness or value.  Passive RFID tagging may generate valuable 
information by recording the part’s history.  This information may 
facilitate the execution of timely maintenance of expensive items.  In 
some systems, such as aircraft engines, components are required to 
follow a cycle of inspection and refurbishment after a pre-specified 
number of flight hours, or after exceptional operating conditions are 
registered by an RFID tag (such as temperatures outside normal 
operating ranges).  There may also be value in information generated 
about a component during its operational life for its disassembly as it 
goes into remanufacture. 

In the situations described, either there is a regulation requiring records of the 

history of the part, or there is a benefit in tracking the history of the part over its 

lifetime.  Tagging the part with passive RFID may facilitate the process.   
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A different reason for using passive RFID or RTLS is their value within the 

remanufacturing process itself.  Remanufacturing operations often have low 

economy of scale, and the DoD’s depots are no exception. Considering the standard 

product-process matrix classification, the DoD depots are job shops because of their 

process-oriented layout, high product variety, high demand variability for each 

product and low volume associated with each job.  Hence, they cannot benefit from 

some of the efficiencies found in a line flow (human-paced or machine-paced 

assembly lines), such as steady demand and considerable economies of scale.  

Hence, jobs in military depots naturally face a jumbled flow, which makes it very 

difficult to schedule work orders and to keep track of all jobs as they progress, a 

problem that leads to inefficient operations with unpredictable deadlines, low 

resource utilization, and high incidence of delays, defects and rework.  To reduce 

uncertainty in the job shop, floor managers try to track the jobs using simple paper 

and pencil methods, with all the risks associated.  Clearly, the use of a reliable 

tracking technology would be more appropriate in this environment.  Better job 

shops make a consistent effort to be lean, and the use of RFID to track parts may be 

a useful tool to achieve this objective. In fact, if lifetime tagging is not necessary, and 

the benefit lies in tracking the process, one may consider RTLS tags, eliminating the 

need to tag the components themselves.  RTLS uses active tags that have their own 

power-source to emit a continuous beacon indicating the location of the part.  A set 

of three of more readers strategically located in the job shop identifies the precise 

location of the part using simple triangulation, which helps tracking the component’s 

progress in the remanufacturing process. 

Following the movements of individual components in the job shop while the 

product is being remanufactured can be difficult, due to high propensity for some 

parts to lag behind in the process and delay final re-assembly.  Moreover, if the shop 

is large enough, busy enough, or if the items are similar enough (where enough is 

introduced subjectively), tracking the location of individual parts using some 

automated system, such as RFID/RTLS may simplify decisions and allow the parts 
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to speed from station to station until all processes are complete.  This suggests 

three situations in which RFID/RTLS is useful in the job shop: 

1) Some shops repair a large number of similar items at the same time.  
The variety of items may overwhelm even the most experienced 
scheduler, or the most talented worker, making it difficult to enforce 
even the simplest first-come first-serve policy. 

2) Some repair processes are complex, requiring the parts to follow 
various operations in multiple workstations.  The typical process-
oriented layout found in most job shops would force the part to travel in 
a non-linear fashion in the shop floor, increasing the scheduling 
complexity.  This complexity would further increase with the general 
complexity of the site layout, the number of different workshops onsite 
that components are dispersed among, and the number of offsite 
subcontractors used for outsourcing specific remanufacturing 
processes.  These more complex arrangements are not untypical and 
result in a loss of visibility of components.  The scheduling difficulties 
created are magnified when there is high variability in component 
processing times. 

3) Some items go through several remanufacturing cycles during their 
lives, each time burdening the repair shop with the same scheduling 
and tracking challenges listed in cases 3 and 4, above. 

At least one of the five scenarios described must occur to justify the adoption 

of an RFID system to tag the parts that belong to complex remanufacturable items or 

systems in the repair shop. However, RFID tagging is expensive and is sometimes 

technically challenging, so the decision to adopt it requires evaluating the trade-off 

between benefits and the complexity of execution.  Figure 1 shows our suggested 

framework for making this decision: 

As Figure 1 shows, once the value of RFID is identified, the next step is to 

evaluate the implementation cost by answering two questions: 
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Figure 1:  Framework for the Adoption of Passive RFID  
or RTLS in Remanufacturing 

 Can the part receive an RFID tag without compromising the part’s 
function?  This assessment must include: 

o The effect of the tag on the component’s functionality during its 
normal operating cycle. 

o The ability to effectively read the tag in various operating 
environments. 

o The tag’s resilience to the remanufacturing process (perhaps 
requiring replacement). 

o The effect of the tag on the efficiency and effectiveness of the 
remanufacturing process (potentially requiring removal or 
replacement).  

 Is the cost of tagging the individual part acceptable?  The answer to 
this question requires assessing: 
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o The cost of the tag itself and whether to install it on the 
component. 

o The cost to replace it during the component’s lifetime. 

o The cost of additional hardware and software in the system. 

o The cost of managing the process. 

o The cost of not having an RFID-type of system, using an 
alternative tracking method, or not tracking at all. 

If the answer to these questions is positive, then the parts should be 

individually tagged with RFID, preferably associated with the part’s serial number 

encrypted using UID. 

If the answer to either set of questions is negative, the alternative depends on 

the purpose of tagging.  If the value lies in the knowledge of individual part’s history 

(specifically, if it is a regulatory requirement) then a traditional recording method 

must be adopted, with all its inherent weaknesses.  However, if the value of the 

tagging process lies exclusively in improving the material flow during 

remanufacturing, the tag could be located in a basket or bin that will be used to carry 

individual parts or kits of parts through the process.  With a little discipline to ensure 

that baskets and parts are correctly associated in the system and that the parts stay 

in the same baskets until the process is completed, the same benefits can be 

obtained by RTLS tagging using baskets (the system used at Tobyhanna Army 

depot) or directly tagging individual parts with passive RFID tags (we analyze this 

issue in the next section of the paper).  

One further alternative rationale for passive RFID tagging at source is worth 

mentioning here.  In some circumstances, passive RFID tagging may create 

valuable information for the pre-remanufacturing process of disassembling 

components.  Two articles have recently addressed this issue (Kulkarni  Ralph, & 

McFarlane, 2007; Zikopoulos & Tagaras, 2008).  These analyses suggest that since 

there is a high level of uncertainty about the quality of components entering the 

remanufacturing process, RFID-derived information can be valuable in helping sort 
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components wherever it provides an alternative to manual inspection and sorting 

processes.  Thus, information about the history of the component might help lower 

costs in the remanufacturing process.  Key findings are: 

 VOI (value of information) from passive RFID tagging increases with 
potential variability in component quality.  If variability is high, then 
information on component history has more value, which favors 
passive RFID tagging of components. This may be true for parts that 
are sensitive to maintenance quality or use/abuse/environmental 
factors (e.g. officials at North Island Naval Air Station told us that FA-
18 aircraft entering the remanufacturing process vary greatly in how 
many hours of work they require, largely depending - in their opinion - 
on the maintenance practices of the sites from which they operated).  
Moreover, some components may be malfunctioning when they enter 
the remanufacturing process; at the extreme, some parts are 
completely missing.  Early identification of this aids the 
remanufacturing planning process.  Using passive RFID-enable data it 
may also be possible to presort and prioritize components based on 
their history: some parts can be fast-tracked, some parts may not need 
disassembling, some may not be suitable for remanufacturing (and 
hence must be replaced). 

 The value of presorting using passive RFID-enabled data is contingent 
on several factors.  One is disassembly costs (if high, component 
tagging is more valuable, as this may enable the assessment that 
component may not need disassembling).  If holding costs are high, 
passive RFID data may have value by enabling faster sorting and 
routing compared to manual inspection processes.  The costs of 
manual sorting and testing also influence the value of RFID tagging: 
where manual costs are higher, RFID may be a better choice.  Finally, 
the accuracy of alternative sorting and testing procedures, and the cost 
of errors in sorting and testing has to be considered. 

Next we take up the question of the value of RFID/RTLS for improving the 

material flow during remanufacturing using a simulation model.   
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4. Simulation of RTLS in a Remanufacturing Shop 

The decision-making process shown in Figure 1 seems plausible but needs to 

be corroborated. In this section of the report, we use the results of a simulation 

model to provide a better understanding of how RFID/RTLS may generate value in 

remanufacturing operations. 

When the remanufacturing process requires that parts coming from the same 

core be reassembled together, the use of RFID is expected to reduce the complexity 

of the parts handling operation, thereby reducing or eliminating errors in the 

reassembly sequencing. In the absence of RFID, as a part exits a repair step, it is 

routed to the next step in which it may or may not be sequenced in the order that it 

arrives. The typical jumbled process seen in most remanufacturing job shops makes 

it difficult to maintain a discipline that ensures all parts arrive together at the 

reassembly station, creating delays and increasing the queue ahead of reassembly.   

We propose a simulation that compares two situations:  one that ensures first-

come first-serve in every repair station and another that allows parts to be repaired 

in random order at each workstation.  We believe that, in a busy job shop, it is 

difficult to ensure that all jobs are executed in the scheduled order if there is not a 

control system such as RFID tracking in place. From a simulation viewpoint, there 

are different ways to implement a random sequence of parts in the workstation, as 

expected in a RFID-less job shop.  We assign the travel time between workstations 

according to a random distribution, which delays some parts and speeding others in 

the subsequent workstation.  Thus, the queue in front of each workstation will not 

reflect the order in which the parts left the previous repair operation. 

The proposed simulation works as follows:  Cores from m products arrive in 

the system according to a Poisson process at a rate of  cores/hour.  They are 

immediately disassembled into p distinct parts and proceed to execute s distinct 

steps in a job shop containing w distinct workstation, after which they queue in front 
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of the final station where they are reassembled as soon as all parts from the same 

core join the reassembly queue.  In all scenarios, the time to execute the repair in 

every workstation is drawn from the same exponential distribution, regardless the 

step or the part; in other words, all workstations in each simulation have a capacity 

of  cores/hour.  In all scenarios we adopt the same value of  = 4 cores/hour, and 

we select a value of  such that the utilization level in each workstation is either 0.8 

or 0.9.  To prevent confounding factors to influence the simulation, the time to 

disassemble or to reassemble each product is set equal to 0.  If the job shop uses 

RFID to manage material flow, the transportation time from one workstation to the 

next, and from the last workstation to the reassembly station, is constant and equal 

to τ.  If the job shop does not use RFID, this transportation time is drawn from the 

uniform distribution with range (0 : 2τ).  Hence, any benefit from introducing RFID 

stems from ensuring a first-come first-serve discipline in every workstation.  We 

perform R replications of each scenario, lasting the equivalent to N days of 

continuous operation, shown in Table 1. A sample material flow showing the 

different path taken by each part appears in Figure 2.  Each replication in the 

simulation is equivalent to the continuous production of several thousand 

remanufactured products. Although process times and arrival rates are measured in 

minutes or hours, it does not affect the generality of the simulation, since all 

parameters can be easily scaled to arrival rates or process times measured in days 

or weeks.  However, the results would change significantly if the utilization rate (the 

ratio between arrival rate and the process capacity) is substantially different from the 

target values used. 
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Table 1:  Simulation Scenarios 

Scenario 1:  m = 1 product, p = 3 parts, w = 3 workstations, s = 2 steps, R = 20 repetitions, 
N = 30 days,  = 10 parts/hr, utilization () = 0.8 and τ = 6 min 

part A: first repair step in workstation 1, second in workstation 2 

part B:  workstations 2 and 3, in this order 

part C:  workstations 1 and 3 

Scenario 2:  m = 1, p = 3, w = 3, s = 3, R = 20, N = 30,  = 15,  = 0.8 and τ = 4 

part A: workstations 1, 2 and 3 

part B:  workstations 2, 3 and 1 

part C:  workstations 3, 1 and 2 

Scenario 3:  m = 1, p = 4, w = 4, s = 3, R = 50, N = 60,  = 15,  = 0.8 and τ = 4 

part A: workstations 1, 2 and 3 

part B:  workstations 2, 3 and 4 

part C:  workstations 1, 3 and 4 

part D: workstations 1, 2 and 4 

Scenario 4:  m = 3, p = 2, w = 3, s = 2, R = 50, N = 60,  = 20,  = 0.8 and τ = 3 

product I: part A (workstations 1 and 2); part B (workstations 2 and 3) 

product II: part B and part C (workstations 1 and 3) 

product III: parts A and C 

Scenario 5:  m = 4, p = 3, w = 3, s = 4, R = 50, N = 60,  = 40,  = 0.9 and τ = 1.5 

product I: part A (workstations 1, 2 and 3); part B (workstations 2, 3 and 4); part C 
(workstations 1, 3 and 4) 

product II: part B, part C and part D (workstations 1, 2 and 4) 

product III: parts A, C and D 

product IV: parts A, B and D 

Scenario 6:  m = 5, p = 4, w = 5, s = 3, R = 50, N = 60,  = 53.33,  = 0.9 and τ = 1.125 

product I: part A (workstations 1, 2 and 3); part B (workstations 2, 3 and 4); part C 
(workstations 3, 4 and 5) and part D (workstations 1, 4 and 5) 

product II: part B, part C, part D and part E (workstations 1, 4 and 5) 

product III: parts A, C, D and E 

product IV: parts A, B, D and E  

product V: parts A, B, C and E 
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Figure 2:  Material Flow in Scenario 1 

 

Table 2: Simulation Results 

 
Reassembly Queue 

Length 
Reassembly Queue 

Time 
Cycle Time 

 
All 

Reps 
Min 
Avg 

Max 
Avg 

All 
Reps

Min 
Avg 

Max 
Avg 

All 
Reps

Min 
Avg 

Max 
Avg 

Worst 
Case

m = 1, p = 3, 
w = 3, s = 2 

0% 3% 10% 1% 2% 6% -3% -1% 5% 15% 

m = 1, p = 3, 
w = 3, s = 3 

13% 10% 11% 14% 13% 13% 1% 0% -1% 13% 

m = 1, p = 4, 
w = 4, s = 3 

7% 14% 0% 7% 11% 1% 2% 4% -1% -5% 

m = 3, p = 2, 
w = 3, s = 2 

5% 6% 2% 5% 6% 2% 0% 1% -1% 22% 

m = 4, p = 3, 
w = 3, s = 4 

2% 6% 4% 2% 5% 4% 0% 2% 1% -3% 

m = 5, p = 4, 
w = 5, s = 3 

1% 6% 9% 1% 6% 8% -1% 4% 2% 3% 
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The scenarios vary from the simplest (one product, three parts, two repair 

steps per part) to the more complex (five products, four parts per product, three 

repair steps per part).  The results appear in Table 2, showing the reduction in total 

cycle time (the total time that the product stays in the system, from disassembly to 

reassembly), queue length and waiting time at the reassembly stations with the 

adoption of an RFID-based control system.  In all cases, RFID reduces the length of 

the reassembly queue, as well as the time that parts wait in line.  However, the 

reduction in cycle time was not as consistent.  For example, in the scenario in which 

there are three products, each made of two recyclable parts that are repaired in two 

out of three workstations (scenario 4), the average queue length was reduced by 

5%.  Comparing all 50 replications, the replication with lowest queue length average 

was 6% shorter, and the replication with the largest queue length was 2% shorter 

with RFID.  Similar improvements were found with the time that each part stays on 

queue.  However, the cycle time did not have the average reduced.  Comparing all 

replications, the replication with shortest average cycle time had a minor 

improvement (1%) and the replication with the longest cycle time showed a worse 

performance with RFID than without.  It seems that these minor differences (up or 

down) result from the simulation itself and should be ignored.  On the other hand, it 

seems that RFID has a major positive impact against the worst-case cycle times, 

providing double-digit cycle time reduction in half the scenarios analyzed. 

The simulation only evaluated the impact of improving the control of the 

material flow in the job, which explains the relatively small performance 

improvement.  However, this is only part of the RFID benefit, which also includes 

better housekeeping and faster process recovery when parts are effectively lost in 

the system.  Simulating the impact of RFID in this type of event is outside the scope 

of this study. 
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5. Conclusion 

In this report, we have shed some light on two key issues pertaining to the 

use of RFID technologies in DoD remanufacturing operations: when to use passive 

RFID tagging of components throughout their lifetime versus using RTLS tagged 

baskets in a remanufacturing process; and what about RFID/RTLS generates value 

in the remanufacturing process?  It turns out that neither of these questions is quite 

as easy to answer as it seems. 

Passive lifetime RFID tagging is beginning to happen for some components in 

the commercial aircraft industry but is not yet embraced by the DoD.  Given the 

contingencies we highlight in our proposed decision framework, at the moment we 

see a fairly limited scope for applying passive RFID to components in the DoD.  

Although we do not analyze the economics of this decision, we suspect that most of 

the value from lifetime passive tagging will be generated in maintenance programs, 

or is to be had because passive RFID is an efficient way to meet mandated safety or 

security policies.  In addition, passive tagging may improve the efficiency of the 

remanufacturing process, but we believe these are probably secondary 

considerations. 

This leaves the question of why and how RFID/RTLS generates 

remanufacturing benefits at all.  It is quite clear that substantial savings were 

garnered by introducing an RTLS system at Tobyhanna.  Yet our simulation results 

suggest that the efficiency gains from using RTLS in remanufacturing operations are 

relatively small.  Comparing the simulation results with the Tobyhanna results 

suggests one of three things might be going on.   

One possibility is that the relatively modest gains in remanufacturing 

efficiency translate into dollar savings that are still large compared to the cost of 

implementing RTLS at Tobyhanna.  This would explain the quick payback at 

Tobyhanna.   
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A second possibility is that the largest savings from implementing RTLS 

within remanufacturing do not come from improvements in the material flow that we 

address in our simulation.  This assumption suggests that the big dollar gains occur 

because RTLS creates information that prompts managers to address issues such 

as overtime, scheduling, shrinkage, etc.  It is possible that such inefficiencies could 

have been eliminated without the use of technology, but the arrival of new 

technology focuses management attention on their processes and therefore 

encourages improvements.  This raft of improvements is responsible for generating 

a strong payback of the new technology being implemented.  Ultimately, the point 

here is that implementing new technologies can have spillover effects by prompting 

general process improvements. 

A third possibility is that the implementation of RFID in the remanufacturing 

process requires substantial housekeeping and reorganization effort, which can only 

be obtained with unrestrained commitment from top management.  This 

housekeeping benefit is the same catalyst that is often observed during the 

implementation of Just-In-Time or Lean Six Sigma programs.  It is often described 

as the 5S approach (Simplify, Sort, Shine, Standardize and Sustain) introduced in 

Toyota.  In order to be able to introduce RTLS in the shop and track the movements 

of components, it was necessary to remove excess inventory, tools, bins and other 

staples from the working area to allow for a smooth material flow.  In doing so, the 

job shop achieved the whole potential of the process improvement through 

component tagging. 
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