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Introduction

• Before moving to the main topic of the paper it is important to quickly 
discuss the motivation behind its development 

• Studies have shown1, 2 that 75-85% of DoD programs experience cost 
overruns

– This suggests that as an industry, our estimates are not at the 50th percentile, but rather at 
about the 20th percentile

• Recognizing this, agencies are taking the initiative to budget at higher 
percentiles of cost

– NASA requires all programs be funded at the 70th percentile 
• Constellation at the 65th

– The Air Force (Dr. Sega) has released a memo advising that all space programs be funded at 
the 80th percentile

• Rich Hartley (AFCAA) has advised against this, recommending programs be funded at 
the mean of the AFCAA ICE Estimate (generally between about the 55th and 60th

percentiles)

• In order to determine the appropriate funding level for programs
anywhere but at the mean, it is thus imperative that the risk and 
uncertainty around estimates be assessed

– Thus S-Curves must be developed

1 Schaffer 2004 study, referenced from Cost Estimating Requirements to Support New Congressional Reporting Requirements. Coonce et. 
Al. NASA PM Challenge, February 2008

2 NAVAIR Cost Growth Study, R. L. Coleman, M.E. Dameron, C.L. Pullen, J.R. Summerville, D.M. Snead, 34th DoDCAS and ISPA/SCEA 
2001
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Sample Program S-Curve

Program "X"
Cumulative Distribution

Program Budget,  $363,830 
, 80.0%
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There is an 80% probability 
that this program will be 

executed at or under budget

NASA uses a similar methodology and 
requires all programs to be funded at 
the 70th percentile (Constellation 
programs at the 65th)

We strongly 
recommend that the 

CV be called out 
explicitly – guarding 

against x-axis 
distortions 
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S-Curves

• S-Curves are the cumulative distribution function for the cost of a system
– Also known as probabilistic cost estimates

• S-Curves are generally driven by two main factors
– Cost Estimating Variance

• Labor estimates
– Data Driven
– SME Driven

• Escalation/Inflation Rates
• Material Costs
• Productivity (e.g. hrs/SLOC, hrs/ft2)

– Schedule/Technical Risks and Opportunities
• Discrete Events
• Continuous Events

• Two key measures are derived from these S-Curves
– Confidence level of the estimate

• What is the probability that the program will finish at or under budget?
– Uncertainty in the estimate

• What is the range of possibilities for the final cost of this program?
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Statement of Problem/Motivation

• Due to the increased focus on the reasonableness of cost estimates across 
the DoD community, a thorough risk assessment was conducted on the 
CG(X) program estimate
– In particular, the Northrop Grumman team wanted to explore reasons that cost 

growth may be underestimated
– It was determined that the treatment of correlation in risk adjusted cost estimates 

was one of the leading causes of this
– Correlation directly effects the CV of the S-Curve

• In order to correctly capture program risk at a lower level, NGIT needed a 
way to include relational/injected correlation in our risk models
– Without this ability the top level CV would be artificially shrunk due to the “square 

root of n problem”

• The following conditions lead the team away from traditional COTS models
– The risk analysis module was to be incorporated into the CG(X) cost model
– Both the cost and risk models were to be transitioned to a web-based platform

• In early 2006, work was begun on what would become the “Cost/Risk 
Correlation Module”
– The module would have to exist entirely inside of Excel and VBA so it could be shared 

with any user with Office 2003 or later
– The module would have to be open enough that it could be dropped quickly into most 

home-grown Monte Carlo models
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Outline

• Introduction to Correlation
– Pearson’s “Rho”
– Pearson’s vs. Rank Correlation

• The Problem

• Correlation Matrix Definitions

• Correlation in Risk Models

• Cost/Risk Correlation Algorithm 
– Correcting the user-input matrix
– Correlating the random variables
– Optimizing the Applied Matrix
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Correlation (Pearson’s)

• Although this paper is not about correlation itself, it’s 
important to briefly review the two most common 
measures
– Pearson’s Product-Moment Correlation
– Spearman’s Rank Correlation

• When correlation is discussed in terms of cost 
estimating, Pearson’s correlation is generally described

• Pearson’s Correlation is a measure of the linear 
relationship between two or more variables
– This is as opposed to Rank Correlation, which will be 

discussed on the next slide

• It is identified using the Greek symbol ρ and is always 
between [-1,1]

• The correlation of a linear regression is the square 
root of r²

• The examples on the right show representative data 
sets for three values of ρ

ρ = +0.8

ρ = 0

ρ = +1
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Pearson’s Correlation vs. Rank Correlation

• Most commercial risk programs (e.g. Crystal Ball & 
@Risk) use Spearman’s rank correlation rather than 
Pearson’s correlation because it is easier to simulate

• Spearman’s rank correlation is used to detect 
correlation between two variables, without assuming 
a linear relationship

– It is concerned with whether or not the function is 
monotonic

• Some other differences include
– Pearson’s is parametric, Spearman’s is not
– Spearman’s is not to be used for predictive purposes

• In the example to the right, rank correlation and 
Pearson’s correlation yield very different answers

• Although it is important to distinguish between these 
two types of correlation, past research has shown 
that in cost risk simulations using the most common 
families of distributions, the two yield fairly similar 
results1

– The aim of the authors is to “commit no avoidable errors”

1 Robinson, M and Salls, W. More on Correlation Accuracy in Crystal Ball Simulations (or What We’ve Now Learned about 
Spearman’s R in Cost Risk Analyses). Presented at the 2004 SCEA Conference, Manhattan Beach, CA, June 2004
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Correlation in Risk Models

• In risk analysis, correlations are critical to successful simulations used to find 
distributions of cost
– Correlations are thought to be widely present among elements of cost, but little data 

exists to determine them, principally because to determine correlations among any set 
of variables, data points must contain those variables in common, and this is rarely the 
case

– Without accounting for correlation, summing multiple independent risk distributions will 
lead to an artificial degradation in the CV 

• This is known as the “Square Root of N” problem

• Lacking discernable correlations, risk analysts are forced to rely on Subject 
Matter Experts to estimate correlations
– These correlations are subtle and difficult to estimate
– Estimated correlations, to be usable, must be “coherent”, as discussed later

• Once the desired correlation between all cost elements is determined, the 
next problem is to build these correlations into the risk model

• The following slides will lay out the algorithms used in the correlation module 
and demonstrate how they were applied to the CG(X) program
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Definitions: Matrices

• Before proceeding, it is important to define several 
matrices that will be used in the algorithm

• Input Correlation Matrix:
– The correlation matrix inputted by the user, may or may not be a

consistent correlation matrix

• Adjusted Correlation Matrix:
– The consistent correlation matrix found by the model that is as 

close as possible to the Input Correlation Matrix
• This matrix is positive semidefinite
• It is also coherent given the distributions being correlated

• Applied Correlation Matrix:
– The correlation matrix utilized by the algorithm to generate 

correlated random number draws

• Outcome Correlation Matrix
– The correlation matrix of the simulation variables after the 

simulation is run
– Ideally it is identical to the Adjusted Correlation Matrix

1.0000      0.7522      0.1322      
0.7522      1.0000      0.7522      
0.1322      0.7522      1.0000      

Adjusted Matrix

1.0000      0.7915      0.2263      
0.7915      1.0000      0.7744      
0.2263      0.7744      1.0000      

Applied Matrix

1.0000      0.7522      0.1316      
0.7522      1.0000      0.7521      
0.1316      0.7521      1.0000      

Outcome

1.0000      0.8000      0.1000      
0.8000      1.0000      0.8000      
0.1000      0.8000      1.0000      

User-Input Matrix
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Definitions: Eigenvalues/Eigenvectors

• An eigenvector is a vector v such that for a square matrix A and a scalar 
λ, Av = λv

• It follows that if Q is an indexed set of linearly independent 
eigenvectors for matrix A and Λ is the diagonal matrix containing the 
corresponding eigenvalues of A as its diagonal entries then: 

A = QΛQ-1

• By altering Λ, the diagonal matrix consisting of A’s eigenvalues, we 
eventually arrive at a positive definite correlation matrix that is close to 
the user input matrix

• The Jacobi Eigenvalue algorithm is used to find both the eigenvalues 
and eigenvectors of the user input correlation matrix 
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The Cost Risk Correlation Algorithm

Correcting the User Input Matrix

Correlating the Uniform Random Number Draws

Optimizing the Applied Matrix
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Correcting the User Input Matrix

• As a rule, correlation matrices must be positive semidefinite
– Positive semidefinite matrices have all non-negative eigenvalues

• When using data to generate correlation matrices, they will necessarily be 
positive definite

• Unfortunately, when generating matrices based on SME judgment, this 
condition may not be met

• To correct these matrices, an algorithm developed by Iman and Davenport1
was used

– The criteria for “closest matrix” that comes out of this algorithm is unknown to the 
authors but it is computationally efficient and relatively simple to implement

– Because the generation of the “closest viable correlation matrix” is so critical in finance, 
there are several more robust algorithms available2

• The following slide will outline the algorithm used in the Cost-Risk Correlation 
Module

1 Iman, R and Davenport J. An Intterative Algorithm to Produce a Positive Definite Matrix from an 
“Approximated Correlation Matrix” (With a Program User’s Guide) Sandia National Laboratories for 
the US DoE, June 1982

2 Higham, N. Computing the Nearest Correlation Matrix – A Problem from Finance. IMA Journal of 
Numerical Analysis. 2002



14

Correcting the User Input Matrix - Hurdles

• Two hurdles existed in implementing the algorithm
– Excel doesn’t have a function that finds Eigenvalues and Eigenvectors for the 

correlation matrices
– Excel doesn’t have a function to compute the Cholesky Decomposition matrix

• Research was conducted and algorithms (and the associated VBA source 
code) that conquered both hurdles were found
– Both were part of the MATRIX and LINEAR ALGEBRA Package For EXCEL 

developed by The Foxes team in Italy 
– The Cholesky Decomposition, Eigenvalues and Eigenvectors functions were taken 

from this package and added into the tool
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• The algorithm iteratively 
adjusts the eigenvalues of 
user-inputted correlation 
matrices until the resulting 
matrix has all non-negative

• During each iteration of the 
algorithm, there are two 
adjustments
1. Adjustment of the negative 

eigenvalues to small, 
positive values

2. Adjustment of the first 
adjusted matrix’s diagonal 
entities to values of 1

• Once the adjusted matrix 
(#2) is found to have all non-
negative Eigenvalues, the 
algorithm has found its 
solution

Correcting the User Input Matrix - Algorithm

X

-0.082 0 0
0 2.1825 0
0 0 0.9

Eigenvalues
0.4888 0.5109 -0.707
-0.723 0.6913 -7E-17
0.4888 0.5109 0.7071

Eigenvectors
0.4888 -0.723 0.4888
0.5109 0.6913 0.5109
-0.707 0 0.7071

Eigenvectors Inverse

1 0.8 0.1
0.8 1 0.8
0.1 0.8 1

User-Input Matrix

0.001 0 0
0 2.1825 0
0 0 0.9

Adjusted Eigenvalues
Eigenvector 

Matrix

Inverse of 
Eigenvector 

Matrix
X

1.0199 0.7705 0.1199
0.7705 1.0436 0.7705
0.1199 0.7705 1.0199

 Adjusted Matrix: #1

Change 
Diagonals to 1

1 0.7705 0.1199
0.7705 1 0.7705
0.1199 0.7705 1

 Adjusted Matrix: #2

Q Q-1Λ

This algorithm is 
iterated until the 
Adjusted matrix is 
positive definite



16

Correcting the User Input Matrix – Other 
Complications

• Although the matrix produced using the algorithm on the preceding slides is a consistent correlation 
matrix, depending on the random variables being correlated it may or may not be feasible

– At least if the marginal distributions are to be preserved

• The best way to illustrate this is to examine the maximum possible correlation between two 
Bernoulli risks

– As shown below, unless the probabilities of the two risks are equal, there is a maximum possible correlation between 
them

• The final step to correcting the User Input Matrix is to adjust the matrix so that all correlations are 
feasible based on the distributions being correlated
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ρ
Min(pf1, pf2)

pf1 - Min(pf1, pf2)

pf2 - Min(pf1, pf2)

1-Max(pf1, pf2)

(0, Cf2)

(0, 0)

(Cf1, Cf2)

(0, Cf2)

The only case in which XY ≠ 0 is when both risks 
occur, it follows that E(XY) simplifies down to Cf1xCf2 
times the probability that both risks occur. The highest 
this probability can possibly be is the minimum of the 

two probabilities

Although this example seems odd, 
this is an efficient way of inducing 
conditional probabilities between 

Bernoulli random variables
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Correlating Random Variables:
An Introduction to the Lurie-Goldberg Method1

• The only method the authors were aware of for inducing 
Pearson’s correlation between input random variables is the 
Lurie-Goldberg Algorithm
– The Lurie-Goldberg Algorithm aims to find an applied correlation matrix 

such that the input correlation and output correlation are as close as 
possible

– Unfortunately, the authors could not find a method for finding this 
optimal matrix (L… referenced as A’ in this paper)

– One obvious solution is to optimize the matrix by examining the post-
simulation correlations

• Given the computing power needed to complete each simulation, this 
could be a time consuming endeavor

1Goldberg, Matthew S, Lurie, Phillip M. Correlating Random Variables, 32nd DoDCAS, Williamsburg, VA. 
February 1999
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• Once a viable correlation matrix 
exists Uniform (0,1) correlated 
random numbers must be 
generated which in turn are used 
to generate the desired random 
variables

• To accomplish this, the Cholesky 
Decomposition Matrix of the 
adjusted matrix is found

– L is the Cholesky Decomposition of 
A iff L is a lower triangular matrix 
such that:

• After the Cholesky Decomposition 
Matrix is found, the algorithm at 
right is run to produce correlated 
Uniform (0,1) random numbers

• These random numbers, vice the 
originals, are used in the risk 
model to generate points off of 
distributions

Correlating the Uniform Draws:
The Lurie-Goldberg Method

U(0,1) Random Draws
0.26271853333989800                   
0.79616660202169400                   
0.15362541632109700                   

Random N(0,1)
(0.63498673467686800)                  
0.82800654029771300                   

(1.02100761130346000)                  

Inverse CDF 
Technique

X
Multiply N(0,1) 
by Cholesky

Multiply N(0,1) 
by Cholesky

1.0000      0.0000 0.0000
0.7522      0.6589      0.0000
0.1322      0.9907      0.0321      

Cholesky Decomposition

Correlated Random N(0,1)
(0.63498673467686800)                  
0.06794090908429620                   
0.70360627328862900                   

Correlated Random U(0,1)
0.26271853333989800                   
0.52708366338494000                   
0.75916099823068700                   

1.0000      0.7522      0.1322      
0.7522      1.0000      0.7522      
0.1322      0.7522      1.0000      

Adjusted Matrix

Cholesky 
Decomposition

TLLA =

1.0000      0.7386 0.1367
0.7386      1.0000      0.7395
0.1367      0.7395      1.0000      

Outcome Correlation
Resulting 
Correlation

Note: The resulting correlation between the 
Correlated Random U(0,1) random numbers 
will not be exactly the same as the adjusted 

correlation matrix… more on this soon
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• Non-linear transformations are used to correlate random variables in the model
– Because of this, the outcome correlation may be different from the intended correlation

• The biggest hurdle this module faced was in the correction of this discrepancy

• Northrop Grumman has developed a method that can find the outcome correlation 
matrix for any applied correlation matrix prior to the simulation being run

– In other words, the algorithm can determine ρOutput given ρApplied

– The applied correlation matrix can then be optimized so that the outcome correlation matrix is equal 
to the adjusted correlation matrix

• Additionally, it follows from mathematical proofs that the optimal applied correlation 
matrix will induce the desired correlation

– This infers that any variation in ρ in the simulation runs is due solely to Monte Carlo sampling error

Optimizing the Applied Correlation Matrix

Find: Such that after the Lurie-Goldberg 
method takes place:

=1.0000 0.7522 0.1322
0.7522 1.0000 0.7522
0.1322 0.7522 1.0000

Outcome Correlation Matrix
1.0000 0.7522 0.1322
0.7522 1.0000 0.7522
0.1322 0.7522 1.0000

Adjusted Correlation Matrix

1.0000 0.7915 0.2263
0.7915 1.0000 0.7744
0.2263 0.7744 1.0000

Applied Correlation Matrix
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• The algorithm developed by Northrop Grumman finds the optimal applied correlation 
matrix given:
1. The parent distributions being correlated
2. The adjusted correlation matrix

• The algorithm runs prior to the simulation being executed and once performed, only 
needs to be re-ran as variables are added or changed
– And in those cases, only for the new/modified distributions

• Although the algorithm was originally developed for cost risk analysis, it has 
applications wherever a user needs to account for correlation between independent 
random variables
– For example: the modeling of mutual fund performance given it is made up of a group of 

correlated stocks and bonds

• In fact, the algorithm’s first use is in the modeling of conditional probabilities 
between Bernoulli independent random variables
– The customer needed an efficient way to model the conditional probabilities they found between 

parameters in their data while preserving the marginal probabilities
– It can be shown using the same general methodology on slide 14 that Pearson’s correlation 

between two Bernoulli random variables equates to a conditional probability between them

Optimizing the Applied Correlation Matrix



Application to the CG(X) Program Risk 
Assessment
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Correlation Data

• One of the most difficult steps in the risk assessment process is in 
determining the correlation between the elements

• In this assessment, correlation is currently being measured using the 
relationship between the SWBS hours for three classes of surface
combatants

• Just recently, data was obtained showing estimates vs. actuals, by 
SWBS, for various ships
– The plan is to switch to correlations using this data once the analysis is 

complete

• Once uncertainty was evaluated for each lower level SWBS, 
correlation was applied between them to produce the top level risk 
adjusted estimate
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Estimating Variance (diagram)

Whole Ship Cost

100 150 200 250 300

100 SWBS

0 50 100 150 200

700 SWBS

0 50 100 150 200

+

ρ100,700

• This simplified example shows only 
the 100 and 700 SWBS
– 100 may have a lower level of 

uncertainty around its estimate than 
700

• Using the correlation algorithm, 
accurate distributions can be 
generated for the lower level 
SWBSs that, when added together, 
still produce the known historical 
distribution
– This allows decision makers to see 

what areas of the ship contain the 
greatest variance

– It also allows risk to be applied at 
the 1-digit-level (see next slides)

The bigger ratio of new 
to repeat work in the 700 
SWBS is reflected in its 
larger CV (wider curve)
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Schedule/Technical Risks & Opportunities

• The next step in the risk assessment was adding in schedule and 
technical risks
– Opportunities are just risks with a negative cost impact (cost is decreased)
– From this point on, risks &opportunities will be referred to simply as risks

• Technical experts involved in CG(X) from across the corporation were 
interviewed to produce the schedule/technical risks associated with 
their area of the ship

• The following information was collected:
– Description of the risk
– Probability of occurrence
– Description of the impact

• This is the consequence of the risk occurring
– Mitigation plans

• Description of the mitigation plan
• Cost of the mitigation plan
• Probability and impact if the risk is mitigated
• Whether or not the mitigation plan is included in the cost baseline

– Other areas of the ship affected if the risk were to occur
• If a schedule/technical risk increased the probability of occurrence for 

another risk, this was captured using the previously described correlation 
algorithm



25

Schedule/Technical Risk Template

Risk ID:

Risk Description:

Probability of Occurrence:

Impact Description:

Mitigation Plans(s):

Other Areas Affected: Are there any other areas of the ship that could be impacted if this risk were 
to occur (or if the mitigation plans are put into motion)? If so, describe the 
impact and the area it would affect. Then, interview the owner of that area to 
determine if there are anymore residual impacts not forseen originally.

The impact description is all the information that would be needed from the 
SME in order to estimate the cost impact of the risk independently. 
Wherever, possible, please include schedule impacts as well

The mitigation plan(s) are all activities that would lower the expected value of 
the risk. These activities do not have to completely eliminate the risks, they 
could just lower either the probability of occurrence or cost impact.
Information to be included:
1. Cost of Mitigation Plan (both schedule and $)
2. Affect mitigation plan has on the risk (what is the decrease in probability or 
cost/schedule impact)

An ID used to identify the risk. Label Sequentially

The risk description is a basic description of what the risk is. In particular, 
what could go wrong.

The probability that the risk will occur.
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Schedule/Technical Risk Modeling

• Once the risks are collected, they were input into the model

• For risks with mitigation strategies, whether or not the mitigation 
strategy is implemented was selected using a drop-down menu
– Mitigated risks (whose cost of mitigation is not included in the cost baseline) 

will add cost to the baseline cost
– Mitigated risks will use mitigated probabilities and consequences

• Each risk is assigned to a 1-digit-level SWBS
– This, along with the fact that cost estimating variability is also assessed at the 

1-digit-level, allows cost distributions to be produced accurately at the 1-digit-
level

• Risks can also be inputted as continuous risks (as appropriate):
– Triangular Distributions
– Normal Distributions
– Log-Normal Distributions
– All of these distributions can have probabilities assigned to them as well
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Schedule/Technical Risks

Model Also Accepts Triangular, Normal and 
Lognormal Risk Distributions

Model Also Accepts Triangular, Normal and 
Lognormal Risk Distributions

Risk ID SWBS Description Probability of 
Occurrence

 Cost Impact 

Mitigation Plan 
Description

Mitigated 
Probability

Mitigated Cost 
Impact

Cost of 
Mitigation

Mitigation 
Plan 

Implemented
?

1 000 Sample Risk 1 90% 25,000,000$           Mitigation Plan 1 30% 10,000,000$    7,500,000$   Yes
2 200 Sample Risk 2 52% No
3 300 Sample Risk 3 75% No
4 400 Sample Risk 4 100% No
5 500 Sample Risk 5 10% 100,000,000$         Mitigation Plan 5 1% 50,000,000$    10,000,000$ Yes
6 600 Sample Risk 6 25% 13,000,000$           No
7 700 Sample Risk 7 90% 9,000,000$             No
8 800 Sample Risk 8 100% No
9 900 Sample Risk 9 100% No
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Results

• Several sets of results are 
produced automatically by the 
simulation when the “Run 
Simulation” button is hit

• CG(X) Risk Adjusted S-Curve
– Shows the whole-ship cost 

distribution with the point estimate 
and its confidence on the graph

• CG(X) Risk Adjusted Estimate by 
1-digit-level SWBS
– Shows upside (20th Percentile), 

Probable (50th Percentile) and 
Downside (80th Percentile) by 1-
digit-level SWBS

• CG(X) Risk by SWBS
– Shows upside, probable and 

downside risk $’s by SWBS
– These are the $’s due entirely to the 

risks, not estimating variation

SWBS Description Upside Probable Downside
000 Administration
100 Hull
200 Propulsion
300 Electric Plant
400 Electonics Systems
500 Auxillary Systems
600 Outfit & Furnishings
700 Weapons
800 Integration & Engineering
900 Ship Assembly & Support

Total

SWBS Description Upside Probable Downside
000 Administration
100 Hull
200 Propulsion
300 Electric Plant
400 Electonics Systems
500 Auxillary Systems
600 Outfit & Furnishings
700 Weapons
800 Integration & Engineering
900 Ship Assembly & Support

Total

CG(X) Risk Adjusted Estimate

CG(X) Risk by SWBS

CG(X) Risk Adjusted S-Curve

Point 
Estimate

20th %-ile

50th %-ile

80th %-ile

CV: 8.89%
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Conclusion

• The previously discussed method is an attempt at producing a risk 
adjusted estimate for the CG(X) program that is also accurate at
the SWBS level

• This analysis would not have been possible were it not for the 
creation of the cost/risk correlation module


