

Approved for public release, distribution is unlimited.

Prepared for: Naval Postgraduate School, Monterey, California 93943

NPS-AM-09-145

ACQUISITION Research

Sponsored Report Series

Requirements Framework for the

Software Systems Safety Review Panel (SSSTRP)

30 September 2009

by

Dr. Luqi, Professor

Dr. Valdis Berzins, Professor

MAJ Joey Rivera

Graduate School of Operational & Information Sciences

Naval Postgraduate School

The research presented in this report was supported by the Acquisition Chair of the
Graduate School of Business & Public Policy at the Naval Postgraduate School.

To request Defense Acquisition Research or to become a research sponsor,
please contact:

NPS Acquisition Research Program
Attn: James B. Greene, RADM, USN, (Ret)
Acquisition Chair
Graduate School of Business and Public Policy
Naval Postgraduate School
555 Dyer Road, Room 332
Monterey, CA 93943-5103
Tel: (831) 656-2092
Fax: (831) 656-2253
e-mail: jbgreene@nps.edu

Copies of the Acquisition Sponsored Research Reports may be printed from our
website www.acquisitionresearch.org

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - i -
NAVAL POSTGRADUATE SCHOOL

Abstract

This paper describes the research and progress made during FY09 at the

Naval Postgraduate School on a Software Systems Safety Review Panel (SSSTRP)

Requirements Framework. Accomplishments made in FY09 include the discovery of

the primary causes for the high level of vendor failure rates during the SSSTRP

process. Research showed that the lack of structure associated with the vendor-

provided Technical Review Package (TRP) led to inconsistent documentation and

standards in the SSSTRP process of evaluating the vendor's software safety risk.

The development of a domain-specific Requirements Framework designed to work

with the SSSTRP process will both help the vendor fully understand the measurable

requirements for the TRP, and the SSSTRP members to understand the measurable

standard by which the TRP is evaluated. This process should result in a reduction of

SSSTRP failures.

This paper further discusses the application of the NASA Software Safety

Standard to Naval Weapons Systems development processes. This development is

dependent on commercial off-the-shelf (COTS) software in order to meet deadline

and cost requirements; however, this dependency poses a problem, as commercial

programs are not commonly designed to a high standard for safety-critical

applications. The NASA Software Safety Standard is one of the most robust

software safety assessment standards that can be identified and, thus, provides an

ideal basis for assessment of COTS software components for Naval requirements.

This report identifies the portions of the NASA Software Safety Standard that are

relevant to the assessment of COTS software and proposes a guideline of how

these standards can be applied to the Naval weapons systems development. This

discussion includes both an analysis of the standard itself and justification of the

need for safety-critical applications within the Naval Weapons Systems

development. It also includes a brief discussion of the program, and identification

and application of the appropriate portions of the standard to Naval weapons

systems development (including the identification of checklists and other features

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - ii -
NAVAL POSTGRADUATE SCHOOL

that must be integrated into the system). This report can be used to identify specific

ways in which the NASA Software Safety Standard can be applied to Naval

requirements, as well as to identify potential gaps in the standard that could be

addressed by the Navy in an extension of this standard.

Keywords: Open Architecture, Software Requirements, Software Safety,

COTS Safety Analysis

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - iii -
NAVAL POSTGRADUATE SCHOOL

Acknowledgments

This research effort is being conducted under the guidance of MAJ Joey

Rivera’s PhD committee—consisting of Dr. Valdis Berzins, Dr. Luqi, Dr. Ronald

Finkbine, Dr. Mikhail Auguston, Dr. Tom Huynh, and Dr. Peter Musial.

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - iv -
NAVAL POSTGRADUATE SCHOOL

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - v -
NAVAL POSTGRADUATE SCHOOL

About the Authors

Dr. Luqi is a Professor of Computer Science at NPS. Her research on many

aspects of software reuse and computer-aided software development has produced

hundreds of research papers in refereed journals, conference proceedings and book

chapters. She has served as a PI or co-PI for many research projects funded by the

DoD and DoN. She has received the Presidential Young Investigator Award from

NSF and the Technical Achievement Award from IEEE.

Valdis Berzins is a Professor of Computer Science at the Naval

Postgraduate School. His research interests include software engineering, software

architecture, computer-aided design, and theoretical foundations of software

maintenance. His work includes papers on software testing, software merging,

specification languages, and engineering databases. He received BS, MS, EE, and

PhD degrees from MIT and has been on the faculty at the University of Texas and

the University of Minnesota. He has developed several specification languages,

software tools for computer-aided software design, and a fundamental theory of

software merging.

MAJ Joey Rivera is a Reserve Officer assigned to US Pacific Command J63

as an Information Assurance Officer. In his civilian profession, he is President of

Rivera Consulting Group, which works with customers in the DoD. He is an expert in

Information Technology business process reengineering and has helped agencies in

both the public and private sectors streamline their operational costs. He has over

20 years of IT experience—ranging from Programmer to Program Manager. He has

a Master’s Degree in Computer Resources and Information Management from

Webster University and is currently pursuing a PhD in Software Engineering at the

Naval Postgraduate School.

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - vi -
NAVAL POSTGRADUATE SCHOOL

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - vii -
NAVAL POSTGRADUATE SCHOOL

NPS-AM-09-145

ACQUISITION Research

Sponsored Report Series

Requirements Framework for the

Software Systems Safety Review Panel (SSSTRP)

30 September 2009

by

Luqi,

Valdis Berzins, and

Joey Rivera

Graduate School of Operational & Information Sciences

Naval Postgraduate School

Disclaimer: The views represented in this report are those of the author and do not reflect the official policy position of
the Navy, the Department of Defense, or the Federal Government.

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - viii -
NAVAL POSTGRADUATE SCHOOL

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - ix -
NAVAL POSTGRADUATE SCHOOL

Table of Contents

Introduction...1

The Naval Weapons System Program...3

The Naval Open Architecture and Use of COTS Software.........................3

The NASA Software Safety Standard ..5

Implementation of the Software Safety Standard ..11

Application of the NASA Software Safety Standard to the Naval
Weapons System Program..17

Future Research ..18

Recommendations and Conclusion ..21

List of References...23

Appendix A. Forms and Checklists ..25

Checklist for Off-the-shelf Software..25

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - x -
NAVAL POSTGRADUATE SCHOOL

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - 1 -
NAVAL POSTGRADUATE SCHOOL

Introduction

The use of commercial software in safety-critical systems within some

contexts (such as the Naval weapons system development program) is increasingly

common, as it has been shown to be highly cost-effective and may speed system

development time (NASA, 2004a, p. 269). However, in some cases safety issues are

not even considered; instead, off-the-shelf software is used by default—such as with

operating systems, low-level real-time operational code (for example, BIOS

software), and seemingly non-complex systems such as word processing or e-mail.

However, the use of these systems in the business environment does yield some

degree of difficulty in that their use is not strongly controlled and does pose a risk to

safety-critical systems.

One of the most complex issues in using commercial off-the-shelf (COTS)

software for safety-critical applications is that, in most cases, this software is

designed with commercial goals in mind. This means that the software is not ideal in

terms of functionality, but instead meets the majority of the needs of its users in

terms of both functionality and safety, with improvements added as an incremental

process. This software development methodology reduces the cost and time

required for development and allows commercial firms to release products in a

timely manner. In many cases, the potential for failure is not necessarily a

problem—commercial and other enterprises can often sustain a brief service

interruption or endure difficulties caused by software that is not perfectly functional in

a given area. However, for safety-critical software or security-critical software, this

approach to commercial software development can be highly problematic and

drastically reduce the utility of the software program. In many cases, safety-critical

and security-critical software applications are designed from scratch in order to meet

the enhanced safety requirements and security framework requirements that allow

the systems to operate at higher levels of safety and security.

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - 2 -
NAVAL POSTGRADUATE SCHOOL

In some cases, however, this approach is neither necessary nor desirable.

For example, ongoing development of the Naval Weapons Systems programs is

increasingly reliant on COTS software (as well as hardware) components, which are

integrated into air and sea weapons commands as well as into command and control

centers across the Navy (Friedman, 2006, p. 100). This integration of COTS

software components provides a much faster and, in many ways, more robust

means of integrating and upgrading systems; however, it does pose some security

risks. Foremost among these risks is the lack of a clear standard governing

assessment of the safety and security of COTS software components.

There are some standards that have been developed for analysis of safety-

critical software that could be applied. Foremost among these standards is the

NASA Software Safety Standard, which was developed for and is applied to all

NASA software development projects (including internal software development, as

well as COTS software components). This Standard addresses the more stringent

quality and safety requirements needed for software that will be deployed in

situations in which human lives are at stake. It is highly robust and has been proven

in a number of safety-critical solutions, and thus was selected as the most

appropriate choice for this situation. This report discusses the needs of the Naval

Weapons Systems development program in brief, analyzes the NASA Software

Safety Standard, and determines how this Standard can most effectively be applied

to the development situation at hand. It then identifies potential gaps in the Standard

and provides recommendations for filling those gaps. The goal of this discussion is

to provide a clear guideline for application of the NASA Software Safety Standard to

COTS-based development in the Naval Weapons System program.

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - 3 -
NAVAL POSTGRADUATE SCHOOL

The Naval Weapons System Program

Naval weapons systems are based in network-centric communications and

technologies (Friedman, 2006, p. vii). Surveillance, communication and monitoring

networks are used to channel information to the people operating the system,

providing real-time feedback and awareness of situational aspects outside the reach

of his or her own senses. According to Friedman (2006), active development is

ongoing in a wide range of systems—including surveillance and communication,

combat direction systems, radar, electro-optical sensors, shipboard guns and gun

systems, strategic strike systems, antisubmarine and antiaircraft systems, electronic

warfare, and mines and mine countermeasures. These systems each rely on an

integrated system of software that handles communication, sensory and targeting

capabilities, and other tasks. Because these systems are used in safety-critical

situations, and their failure could mean a highly disastrous outcome for the operator

of the system (as well as others that are depending on him/her), the need for safety-

critical engineering design standards is clear. Within these systems, the software

should be as robust and well designed and engineered as the hardware on which it

is based.

The Naval Open Architecture and Use of COTS Software
Naval weapons system design is based in the Naval Open Architecture. The

strategic goals of the Naval Open Architecture include “Encourage competition and

collaboration […] build modular designs and disclose data to permit evolutionary

designs, [...] build interoperable joint warfighting applications and ensure secure

information exchange […] identify or develop reusable application software […] [and]

ensure lifecycle affordability” (Department of the Navy, 2009, p. 2). Avoidance of

COTS obsolescence is a major component of the goal of lifecycle affordability . One

of the major components of the Naval Open Architecture strategy is lowering

development cost and time by integrating COTS software wherever possible, and

then using custom software to develop a modular system that can be rapidly

redeveloped or updated if required (Department of the Navy, 2009). This system has

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - 4 -
NAVAL POSTGRADUATE SCHOOL

been in place since 2004, and a large number of operational weapons systems have

been developed either wholly or partially using COTS software components

(Department of the Navy, 2008). Some of these systems include SONAR systems,

onboard ship management and communication systems, and surface ship

directional systems, among many others (Friedman, 2006, pp. 107,119). This

program has proved to be highly effective in terms of both cost savings and

efficiency. For example, one SONAR cabinet system developed using primarily

COTS technology was found to be less than a quarter of the cost of the MilSpec

custom-designed alternative (p. 667).

The use of COTS hardware and software has become extremely common in

Naval weapons system design, as discussed above. However, there is still no single

safety standard for integration of COTS software components, and safety of

software is evaluated on a case-by-case basis. This lack is particularly problematic

because software quality testing is not as straightforward as hardware safety

evaluation; its complexity can hamper attempts to determine quality and reliability.

By instituting a single standard of software safety, decision-makers would provide an

increased level of safety and control of COTS component integration.

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - 5 -
NAVAL POSTGRADUATE SCHOOL

The NASA Software Safety Standard

One highly viable candidate standard for integration into Naval weapons

systems development is the NASA Software Safety Standard. The NASA Software

Safety Standard was developed for NASA by the Office of Safety and Mission

Assurance, and is used to assess software risk in all programs used within NASA’s

systems (NASA, 2004b, p. 1). Specifically, it is applied in the following situations:

Safety-critical systems that include software must be evaluated for software’s
contribution to the safety of the system during the concept phase, and prior to
the start, or in the early phases, of the acquisition or planning for the given
software. Unless the evaluation proves that the software is not involved in the
system safety, this Standard is to be followed. (NASA, 2004b, p. 1)

Safety requirements that are addressed by this Standard include process-

oriented and technical requirements (p. 1). Both kinds of safety requirements must

be met. Technical requirements are not specified by the Standard, but are instead

identified by the manager of the software development process during the

requirements and design phase of the project (p. 1). The Standard specifies only the

process-oriented requirements of the system. As the document states, use of the

Standard for process-oriented aspects of software safety does not preclude the

requirement for the development and verification of the system to address technical-

oriented software safety issues. However, the process standards that are included

are designed to encompass the determination of what level of software safety is

required.

The scope of the NASA Software Safety Standard includes:

 Identification of the need for software safety and requirements
generation,

 Consideration of software safety within the system design,

 Discussion of software safety in project planning, management, and

control activities,

 Software safety throughout the lifecycle from requirements generation

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - 6 -
NAVAL POSTGRADUATE SCHOOL

to operation,

 Assurance that all COTS and contracted software undergo software
security evaluation and determination of its “safety contribution and
limitations”

 Inclusion of software safety verification in software verification

processes,

 Software certification requirements, and

 Change and reconfiguration management during operational use
(NASA, 2004b, p. 2).

Although much of this scope can have some incidental application to COTS

software acquisition (for example, many integration processes that involve COTS

software do involve a degree of project management, even if this is not a formal

software development effort), there are also provisions that apply directly to the

acquisition and use of COTS software components. It is these areas that will be

most interesting within this discussion.

In order to enact the guidelines of the Software Safety Standard, NASA has

also produced a Software Safety Guidebook (NASA, 2004a). This Guidebook

provides operational guidelines for enacting the software security standards

encapsulated in the Standard document. The Guidebook document includes

technical details and information intended to guide the development of operational

safety practices (NASA, 2004a, p. 12). The document includes not only information

for programmers, but also information for program and project managers intended to

ensure that these personnel understand the process and requirements of software

safety. As such, these two documents are incontrovertibly connected, and should be

used together in an operational software safety setting to ensure that both the

technical demands of software safety and the need for an organizational integration

of software safety standards are met.

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - 7 -
NAVAL POSTGRADUATE SCHOOL

Determination of Safety-critical Systems

The NASA Standard offers a number of criteria on which software can be

evaluated for safety criticality. The overarching criterion is inclusion within a safety-

critical system—in which case, all software is included, as all is presumed to be

safety-critical unless it can be shown to not be safety-critical (NASA, 2004b, p. 14).

Further criteria include: causing, contributing to, controlling, or mitigating a hazard;

controlling safety-critical functions or processing safety-critical commands or data;

either detects and reports or corrects a system in a hazardous state or mitigates

damage from a hazardous state; or resides in the same system as a hazardous

state (p. 15). Additionally, if the system processes or analyzes data used in a safety-

critical situation or verifies or validates other safety-critical systems, the system

should be considered to be safety-critical (p. 15). The evaluation of safety-critical

status extends not only to software, but also to data required to make safety-critical

decisions (p. 15).

Risk-mitigation Processes

A variety of processes have been identified for risk mitigation. One of these

processes is the isolation of safety-critical and non safety-critical software through a

process such as partitioning. This is done in order to prevent failure of non-safety-

critical software from negatively impacting the operation of safety-critical software

(NASA, 2004b, p. 15). The use of an evaluation process that identifies the safety-

critical nature of a given component during the conceptual phase of the project, prior

to acquisition, is also highlighted as a means of ensuring that the appropriate

software acquisition goals will be used (p. 15). The Standard does note that this

evaluation can be performed by the supplier rather than the purchaser, but that if this

is the case, it must be noted within the project plan, and the system should still be

evaluated for the need for safety-critical software prior to the process (p. 15). The

Standard also notes that the use of mitigation techniques (like manual operator

overrides) should not affect the absolute determination of the appropriate level of

software safety within the system (p. 16). This will prevent failures due to ineffective

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - 8 -
NAVAL POSTGRADUATE SCHOOL

mitigation techniques or integration of software that is essentially unsuitable due to

reliance on an erroneously inflated perceived value of a given mitigation technique.

The Process of Evaluation and Planning

The NASA Software Safety Standard presents a specific approach to

identifying system hazards, which must be applied to each individual project or

acquisition (NASA, 2004b, p. 22). The first stage in this analysis is the use of

Preliminary Hazard Analyses (PHAs), which “identify potential system hazards and

may identify which proposed subsystems contribute to, or are needed to control,

those hazards” (p. 16). The PHA can then be used to determine where—within the

system as a whole—safety-critical design may be required. The NASA Standard

requires that software safety analysis should take place along side and be integrated

into system safety analyses from the conceptual stage onwards through the system

lifecycle (p. 16). The Standard also requires a program to record the identified

software safety requirements together with information about software hazards and

how they can be controlled in an appropriate document: a system safety plan,

software management plan, software or system assurance plan, or standalone

software safety plan (p. 16).

The Standard also identifies software safety planning as one of the mission-

critical activities in safety-critical software development and acquisition (NASA,

2004b, p. 21). Personnel involved in the process of software safety planning include

software assurance engineers, project managers, and others involved in the

development process (p. 21). The Standard recommends the establishment of a

Software Safety Plan, which should outline the software safety process for the

facility or project as a whole, “including organizational structure, interfaces, and the

required criteria for analysis, reporting, evaluation and data retention to provide a

safe product (p. 21).” It should include analysis details and scheduling for the

project’s safety planning discussion; however, the Standard allows for the use of

both standalone documents and documents integrated into the overall project

management plan. NASA recommends that software safety planning should

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - 9 -
NAVAL POSTGRADUATE SCHOOL

encompass not only the initial acquisition, but the entire software lifecycle—through

the acquisition stage to implementation, use and maintenance (NASA, 2004b, p. 24).

There are a variety of documents associated with the Standard for safety assurance;

the most relevant of these documents for the purposes of COTS software include

the Software Safety Plan, the Software Configuration Management Plan, the

Software Requirements Specification, the Verification and Validation Plan, Safety

Analyses and Reports, Test Documentation, and user documentation and

procedures (pp. 24-25).

 The Software Safety Standard and COTS Software

The majority of the remainder of the Software Safety Standard is dedicated to

discussion of the software development process—which is largely irrelevant in this

case, as software development is not part of the process of integrating COTS

software. However, there is also an explicit discussion of the requirements for

integration of COTS software into an existing or new software-based system.

NASA’s position on COTS software is addressed in Section 5.12 of the Standard,

which addresses off-the-shelf (OTS) software (including commercial and

government off-the-shelf software components). This discussion of off-the-shelf

software is specific to both new software acquired for the project and software that

has been reused from previous projects in the past (2004b, p. 28). The Standard

states,

It is important to evaluate the differences between how the OTS or reused
software will be used within the new system, and how it was used in previous
systems. Differences in configuration of the software or operational constraints
may affect the operation of the OTS/reused software, sometimes in unexpected
ways. (NASA, 2004b, p. 28)

The guidelines for handling off-the-shelf software include evaluation of all

OTS software for the “potential to impact safety-critical functions within the current

system” (p. 28). This includes a safety analysis process that evaluates not only the

software’s ability to meet the level of safety required for the current project, but the

impact of any additional functionality or the potential inclusion of the software in

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - 10 -
NAVAL POSTGRADUATE SCHOOL

future projects (p. 28). This also includes evaluation of not only the code in and of

itself, but also its ability to interface with other pieces of code, hardware, and the

system as a whole (p. 28). Specifically noted is the interaction between COTS

software and other software in the planned system, including other OTS software

and custom-developed modules (p. 29). The Standard specifically recommends the

use of black-box testing in order to ensure that COTS software is equivalent in

safety standards to in-house developed software (p. 29). (Black-box testing, or data-

driven testing, is testing of the functionality of the code without considering its

structure, with the intention of finding non-conformances (Myers, Badgett & Thomas,

2004, p. 9).) NASA also notes the isolation of safety-critical and non-safety-critical

components within the system as being particularly important for the integration of

COTS software into safety-critical systems (NASA, 2004b, p. 35). As stated

previously, while the needed isolation can be designed into the system from the start

in an in-house development process, COTS software is often not designed as

safety-critical. Thus, this may not be a natural feature of the COTS software package

or component. As such, PMs should pay particular attention to the safety criticality of

a system when choosing COTS components.

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - 11 -
NAVAL POSTGRADUATE SCHOOL

Implementation of the Software Safety Standard

While the Software Safety Standard documentation does provide a

perfunctory example of how to evaluate software safety risk in an operational setting,

this document does not provide specific implementation details, but is rather more of

a rough guideline. In order to fill this gap, NASA has also instituted a Software

Safety Guidebook which addresses the implementation details of the Standard in

such a way that it can serve as a template for implementation in another

organization. Although many of the concerns throughout the Guidebook are relevant

to the discussion of COTS software, the Guidebook also provides a specific

discussion of the use of COTS software and software acquisition (Chapter 12 of the

Guidebook). The highlights of this discussion are addressed below.

Initial Acquisition and Implementation of COTS Software

The Guidebook identifies a number of concerns with the use of COTS

software in terms of implementation in a safety-critical system (NASA, 2004a, pp.

270-271). These include: inadequate or inaccurate documentation that does not

provide sufficient information for integration; no access to source code (which can

impede appropriate safety analysis); no information about the software development

or testing processes used; the potential that the OTS developers either do not fully

grasp interactions within the system or don’t communicate them to the user;

incomplete information regarding software bugs (including deliberately misleading

statements as well as bugs that simply were not detected and corrected during the

development process); no software analysis; and missing or extra functionality. The

last point is particularly problematic, as it either requires the use of glueware (which

can increase the inherent risk within a system due to its own bugs and defects) or, in

the case of extra functionality, may pose a threat on another level. The addition of

extra functionality that will not be used within the system is a risk; for instance: 1)

this additional functionality may be exploited at some point in the future, or 2)

instability within untested extra functionality may be problematic for the system itself

(NASA, 2004a, p. 271). Because of these potential issues, the use of COTS

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - 12 -
NAVAL POSTGRADUATE SCHOOL

software within safety-critical designs requires extra vigilance in terms of safety

assurance and risk management. Extra functionality can also complicate testing

procedures.

The Guidebook offers a specific checklist for safety-critical off-the-shelf

applications (Appendix A), that can be referred to for specific application. (This

inclusion is a truncated version of the checklist that contains only the main points of

each item. Specific technical details are included in the Guidebook’s checklist, and

PMs should refer to NASA’s text when putting this checklist into use). The checklist

offered has specific safety-critical features highlighted, such as the ability to recover

previous software configurations and the need for a safety-impact assessment (p.

360). The construction of this checklist is such that , by following it during the

assessment of a given COTS software plan, a PM could eliminate a large number of

potentially inappropriate choices for implementation—some of which may already be

addressed in implementation testing. For example, basic hardware and software

compatibility is addressed within this checklist. Although it is not likely that a basic

incompatibility between hardware and software would pass unnoticed through user

testing explicitly calling attention to this issue will reduce the risk that a more subtle

mismatch may go unnoticed. In this case, it is plausible that no one would otherwise

think to validate the OTS driver software package for a COTS hardware product, and

as driver failure has a strong potential to affect system safety, this compatibility is

likely to be highly important.

The Software Safety Guidebook offers a number of specific recommendations

regarding the acquisition process for COTS software. First, it specifies that all COTS

software residing on the same system as a safety-critical application needs to be

carefully examined and, if necessary, partitioned off from the resources used by the

safety-critical application—regardless of whether or not the COTS software itself will

be used within a safety-critical context (p. 272). The Guidebook further specifies

that, if possible, non safety-critical software should not be included on a safety-

critical platform at all, in order to manage the potential risk of interference at the

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - 13 -
NAVAL POSTGRADUATE SCHOOL

highest level (p. 272). However, this rule obviously does not apply for COTS

software that will be used in the implementation of safety-critical systems. In order to

deal with this case, the NASA Guidebook offers a number of suggestions for

analyzing the potential candidates for inclusion and determining which software

product is most likely to be appropriate for the application required. The first

suggestion is that the IEEE Standard for Software Safety Plans (IEEE 1228) should

be integrated into the analysis of the COTS software package. Vendor and package-

specific recommendations include discussion of the stability and accessibility of the

software package and the vendor as a whole (NASA, 2004a, p. 272). For example,

the checklist addresses the niche that will be filled within the system, the

responsiveness of the vendor, and the user base of the software—as well as a wide

variety of other technical and operational requirements for the effective use of the

software (p. 272). By using these criteria to assess and evaluate the software prior

to engaging in a formal evaluation of the product, a PM is likely to save a great deal

of time and effort in terms of determining overall viability of the software package.

In addition to evaluation of the COTS software itself, there is also the problem

of integration of COTS components into the system. The NASA Guidebook (2004a)

also addresses this issue, discussing details of implementation and testing of

glueware, firewalls, and of the composite COTS-glueware system (p. 277). One

particular problem noted in NASA’s text is the issue of extra functionality or dormant

code within the COTS code base. It states, “The more dormant code there is in the

OTS software, the more likely it is to ‘trigger’ accidentally” (p. 277). The Guidebook

offers a number of technical implementation details regarding this stage of the

documentation, but the main point of the discussion is that, in addition to testing the

COTS software in isolation, PMs must also evaluate the system as a whole.

NASA’s text identifies a number of specific tests that should be performed

both for COTS software in isolation and for the system as a whole; as the Guidebook

notes, if they are performed for the software package, they should be performed

again following integration of the COTS software into the system (p. 280). These

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - 14 -
NAVAL POSTGRADUATE SCHOOL

tests include software fault tree (including faults and dormant code in the COTS

software); timing, sizing, and throughput tests; interdependence and independence

analyses; design constraint, code interface, and code data analyses; and interrupt

and test coverage analyses (pp. 280-281). By using these tests both throughout the

system and specifically focused on the COTS software, PMs can help to prevent the

potential for negative interactions between COTS components and the remainder of

the system.

Safety throughout the Lifecycle

It is important to note, however, that this checklist and the notes above are

appropriate only for initial implementation. In order to provide guidance throughout

the software lifecycle, the Software Safety Guidebook also addresses issues of

software operations and maintenance. COTS software is subject to rapid changes

and upgrades from the supplier in order to fix bugs, add or remove functionality,

adapt to changes in the underlying hardware, or deal with changes in other

components (such as operating system patches) that change the operational

environment of the COTS software (p. 200). In some cases, the analysis of these

changes can be even more complex than the initial system configuration, and may

involve a more thorough examination of the software. Some of the components that

may have changed during a software update include the API, interface to glueware,

functional details (additional functionality or removed functionality), interfaces to

hardware or software already in place, required upgrades (such as memory

increases), the way in which the upgrade will be performed, the potential to test the

upgrade prior to implementation, and a number of other differences (p. 200). NASA’s

suggestion to COTS upgrades states, “The first and best choice regarding COTS

upgrades is to ignore them. If you do not change that software, nothing in your

system needs to be changed” (p. 202). However, the Guidebook does recommend

acquiring the software if no upgrades are going to be planned by the vendor, in order

to guard against the potential of COTS software obsolescence (p. 202). This may

become relevant if future changes to the operating environment require additional

changes to the COTS component to keep it safe. The Guidebook also recommends

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - 15 -
NAVAL POSTGRADUATE SCHOOL

strict configuration management control in order to allow for reproduction of previous

configurations. It states that this management should extend not only to COTS

software packages, but to all supporting compilers, libraries, source code bodies,

kernels, and other software structures (p. 202). This will enable reconstruction of

older systems if they turn out to be needed for a rollback to a stable older version, as

well as ensuring that the overall implementation of the system remains consistent

and as initially planned.

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - 16 -
NAVAL POSTGRADUATE SCHOOL

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - 17 -
NAVAL POSTGRADUATE SCHOOL

Application of the NASA Software Safety Standard
to the Naval Weapons System Program

The above discussion regarding the application of the NASA Software Safety

Standard to the Naval weapons systems development program does not uncover

any significant roadblocks for integration. It is likely that the program will require

some degree of modification in order to be consistent with existing documentation

and logging requirements, and that other requirements will be implemented on a

project basis. However, the basic elements of the NASA Standard are sufficient for

providing an inital systematic approach to risk analysis for use by the Naval

development system. The table below addresses specific requirements of the

Software Safety Standard (derived in relation to COTS software components) and

discusses how they may be implemented within an existing system. The most

important element of this Standard for the use of COTS software is the OTS

software safety checklist (Appendix A). On this checklist, the first three items are

essential for projects with potentially life-threatening implications, while the

remainder of the checklist refers primarily to areas of the software that are still

critical, but will not directly affect the outcomes of life-threatening hazards (p. 360).

However, the recommendation of this report is that PMs should consider all items on

this checklist, and should garner expert opinion on the ramifications of the software’s

risk-assessment profile.

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - 18 -
NAVAL POSTGRADUATE SCHOOL

Document Brief Description

Software Safety
Standard

Provides the general terms of NASA’s standard and briefly
identifies process-related implementation details

Software Safety
Guidebook

Provides technical and process guidance on software safety
assurance

Checklist for Off-
the-shelf (OTS)
Items

Provides a clear risk assessment checklist for OTS software
(including COTS, GOTS, MOTS, etc.) that outlines required
software safety decisions.

IEEE 1228 Standard that designates the content of Software Safety Plans,
including specific requirements for previously developed (or
reused) software and COTS and other acquired software

Table 1. Index to Supporting Documents

There are no specific implementation details within this Software Safety

Standard that must be changed or modified. However, the Standard may be

extended as needed to support additional consideration of specific Naval safety

requirements.

Future Research
One of the main issues with the current implementation of the NASA Software

Safety Standard is that it provides little clear guidance on methods for identification

of technical requirements for software safety or identification of safety-critical

systems. In most cases, these choices may be clear (as there are specific situational

guidelines that identify the areas in which software should be incontrovertibly safety-

critical). However, in other cases, there may be a more subtle approach to determine

the safety-critical features of the software system. In this case, there is no specific

method specified by the standard to identify safety-critical features. Instead, the

document recommends the use of skilled project management personnel and safety

engineering personnel to provide insight into how and when given software

applications are likely to require safety-critical design. By combining expert oversight

into the design of the eventual system, with the use of the clear cut requirements laid

out by the Standard, a PM will best meet the requirement for software safety in

critical systems.

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - 19 -
NAVAL POSTGRADUATE SCHOOL

A second problematic issue is organizational support for the software safety

process. The Standard notes that internal organizational support for software

safety—including adequate assignment of resources for requirements determination,

evaluation, testing and other needs—is essential to ensure software safety in safety-

critical systems (NASA, 2004b, p. 20). This includes not only organizational support

for the project itself, but organizational support and authority given to project

management and technical leaders to ensure that the software safety demands of

the given systems are taken into account (p. 20). However, obtaining such support

may be problematic in a setting that does not assign this level of authority to the

project managers and others involved in the safety determination. As this may be the

case with some Naval software development processes, this should be addressed

before applying the Standard to specific Navy safety assessments, since the

Standard is highly dependent on individual authority and management of safety

issues and responses.

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - 20 -
NAVAL POSTGRADUATE SCHOOL

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - 21 -
NAVAL POSTGRADUATE SCHOOL

Recommendations and Conclusion

The overall approach of the NASA Software Safety Standard to COTS

software component integration is much stricter and more conservative than the

current Navy approach to this integration. In the Standard, COTS software

integration is noted as being risky and requiring intensive scrutiny and increased

oversight, as well as justifying potential concessions—such as gaining access to the

source code and maintaining the source code in a fixed state (not implementing

upgrades or bug fixes if the issue is not deemed to be a problem within the system).

The NASA Guidebook, intended to guide implementation of the system, is

considerably more conservative—stating that in most cases it is actually best to not

use COTS software, and that if it must be used, it requires considerable oversight

into safety, security, and configuration management. However, the actual technical

treatment of the use of COTS software within the Software Safety Standard is very

strong. It includes specific technical details for risk management and control over

software quality and configuration that can be used to ensure that, if a COTS

component or package is integrated into a safety-critical system, it can be effectively

managed without negative consequences for the remainder of the system.

However, although the NASA approach to COTS integration is commonly

more conservative than the Naval approach, there are a few recommendations that

PMs should consider in order to implement a full safety-critical risk-prevention

system. The first of these is that serious consideration should be given to the

concept that non safety-critical software should not be installed on safety-critical

hardware systems or integrated into safety-critical software systems at all. Although

the use of partitioning or firewalling methods can help prevent negative interactions

between the software, it cannot prevent negative software-hardware interactions

from affecting the functionality of the system as a whole. For example, if a

commercial software package crashed and forced a reboot of a safety-critical

system, it would be difficult to shield the safety-critical portions of the system from

this reboot. Thus, the complete isolation of non safety-critical software packages

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - 22 -
NAVAL POSTGRADUATE SCHOOL

from safety-critical situations is the best way to ensure that these negative

interactions do not happen. The third recommendation is that not only COTS

software components, but operating systems, component packages, compilers,

libraries, SDKs and languages should be considered to be COTS software, and

treated as such for the purposes of analysis, integration, and version and

configuration control. This classification will prevent a number of potential mishaps

from occurring that could negatively affect the software package. Finally, the use of

software version control and configuration control, in addition to gaining access to

the software component code base if at all possible, poses a significant potential for

dramatically improving the ability to maintain, control, and ensure the safety of the

COTS software integrated into safety-critical systems. This control should be

considered a basic operational standard, as it will provide a clear-cut way to control

changes within the COTS codebase and make it possible for system developers to

correct defects if necessary.

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - 23 -
NAVAL POSTGRADUATE SCHOOL

List of References

Department of the Navy (DoN). (2008). Naval open architecture. Retrieved August
31, 2009, from
https://acc.dau.mil/CommunityBrowser.aspx?id=18016&lang=en-US

Department of the Navy (DoN). (2009, January 15). Naval open architecture
strategy.. Naval open architecture. Retrieved August 31, 2009, from
https://acc.dau.mil/CommunityBrowser.aspx?id=129676&lang=en-US

Friedman, N. (2006). The Naval Institute guide to world naval weapon systems (5th
ed). Washington, DC: Naval Institute Press.

Myers, G., Badgett, T., Thomas, T. & Sandler, C. (2004). The art of software testing.
NY: John Wiley and Sons.

National Aeronautics and Space Administration (NASA). (2004a). NASA software
safety guidebook. Technical Standard. Washington, DC: Author.

National Aeronautics and Space Administration (NASA). (2004b). Software safety
standard. Technical standard. Washington, DC: Author.

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - 24 -
NAVAL POSTGRADUATE SCHOOL

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - 25 -
NAVAL POSTGRADUATE SCHOOL

Appendix A. Forms and Checklists

Checklist for Off-the-shelf Software
This checklist is included in the NASA Software Safety Guidebook. It is

intended to support in all OTS acquisition processes as a means of risk assessment

and risk management, and should be applied with this aspect of the process in mind.

The first three items are mandatory for applications in which there are potentially life-

threatening hazards (NASA 271). (The NASA Guidebook has a more detailed

version of this checklist that includes specific technical details; this more-detailed

version should be referred to for operational use).

No. Items To Be Considered Does it Apply?
(Yes/no)

Planned
Action

1* Have the vendor’s facilities and processes
been audited?

2* Are the verification and validation activities
for the OTS appropriate?

3* Can the project maintain the OTS
independent of vendor support?

4 Does software contain interfaces, firewalls,
wrappers, etc?

5 Does the software provide diagnostics?

6 Any key products influencing choices?

7 Has the software vendor been used before?

8 Is this the initial version?

9 Have competitors been researched?

10 Is the source code available?

11 Are industry standard interfaces available?

12 Has the product research been thorough?

13 Is the validation for the OTS software driver
package available?

14 Are there features that will not be used?

15 Have tools for automatic code generation
been independently validated?

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - 26 -
NAVAL POSTGRADUATE SCHOOL

16 Can previous configurations be recovered?

17 Will a processor require a recompile?

18 Has a safety impact assessment been
performed?

19 Will the OTS tools affect safety?

20 Is the OTS being used for the proper
application?

21 Is there compatibility between OTS
hardware and software?

22 Does the vendor have ISO certification?

23 Does the vendor receive quality products
from its suppliers?

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY
NAVAL POSTGRADUATE SCHOOL

2003 - 2009 Sponsored Research Topics

Acquisition Management

 Acquiring Combat Capability via Public-Private Partnerships (PPPs)

 BCA: Contractor vs. Organic Growth

 Defense Industry Consolidation

 EU-US Defense Industrial Relationships

 Knowledge Value Added (KVA) + Real Options (RO) Applied to
Shipyard Planning Processes

 Managing the Services Supply Chain

 MOSA Contracting Implications

 Portfolio Optimization via KVA + RO

 Private Military Sector

 Software Requirements for OA

 Spiral Development

 Strategy for Defense Acquisition Research

 The Software, Hardware Asset Reuse Enterprise (SHARE) repository

Contract Management

 Commodity Sourcing Strategies

 Contracting Government Procurement Functions

 Contractors in 21st-century Combat Zone

 Joint Contingency Contracting

 Model for Optimizing Contingency Contracting, Planning and Execution

 Navy Contract Writing Guide

 Past Performance in Source Selection

 Strategic Contingency Contracting

 Transforming DoD Contract Closeout

 USAF Energy Savings Performance Contracts

 USAF IT Commodity Council

 USMC Contingency Contracting

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY
NAVAL POSTGRADUATE SCHOOL

Financial Management

 Acquisitions via Leasing: MPS case

 Budget Scoring

 Budgeting for Capabilities-based Planning

 Capital Budgeting for the DoD

 Energy Saving Contracts/DoD Mobile Assets

 Financing DoD Budget via PPPs

 Lessons from Private Sector Capital Budgeting for DoD Acquisition
Budgeting Reform

 PPPs and Government Financing

 ROI of Information Warfare Systems

 Special Termination Liability in MDAPs

 Strategic Sourcing

 Transaction Cost Economics (TCE) to Improve Cost Estimates

Human Resources

 Indefinite Reenlistment

 Individual Augmentation

 Learning Management Systems

 Moral Conduct Waivers and First-tem Attrition

 Retention

 The Navy’s Selective Reenlistment Bonus (SRB) Management System

 Tuition Assistance

Logistics Management

 Analysis of LAV Depot Maintenance

 Army LOG MOD

 ASDS Product Support Analysis

 Cold-chain Logistics

 Contractors Supporting Military Operations

 Diffusion/Variability on Vendor Performance Evaluation

 Evolutionary Acquisition

 Lean Six Sigma to Reduce Costs and Improve Readiness

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY
NAVAL POSTGRADUATE SCHOOL

 Naval Aviation Maintenance and Process Improvement (2)

 Optimizing CIWS Lifecycle Support (LCS)

 Outsourcing the Pearl Harbor MK-48 Intermediate Maintenance
Activity

 Pallet Management System

 PBL (4)

 Privatization-NOSL/NAWCI

 RFID (6)

 Risk Analysis for Performance-based Logistics

 R-TOC AEGIS Microwave Power Tubes

 Sense-and-Respond Logistics Network

 Strategic Sourcing

Program Management

 Building Collaborative Capacity

 Business Process Reengineering (BPR) for LCS Mission Module
Acquisition

 Collaborative IT Tools Leveraging Competence

 Contractor vs. Organic Support

 Knowledge, Responsibilities and Decision Rights in MDAPs

 KVA Applied to AEGIS and SSDS

 Managing the Service Supply Chain

 Measuring Uncertainty in Earned Value

 Organizational Modeling and Simulation

 Public-Private Partnership

 Terminating Your Own Program

 Utilizing Collaborative and Three-dimensional Imaging Technology

A complete listing and electronic copies of published research are available on our
website: www.acquisitionresearch.org

Acquisition Research Program
GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY
NAVAL POSTGRADUATE SCHOOL

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition research Program
Graduate school of business & public policy
Naval postgraduate school
555 DYER ROAD, INGERSOLL HALL
MONTEREY, CALIFORNIA 93943

www.acquisitionresearch.org

