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Abstract 

The ability to automate the testing of software is critical in the successful 

acquisition of future Open Architecture (OA)-based weapon and combat systems.  In 

the OA environment, software modules are reused in different environments, and 

systems are highly modular in nature. These situations result in increased numbers 

of potential software configurations. As configurations change and OA software is 

put in new environments, the potential for finding or creating new bugs increases.  

The concept of using an operational profile, or environment model that generates 

inputs to an OA software module, based on probabilistic distributions, to assist in the 

automated testing process is critical for catching such bugs.  This paper describes 

an ongoing research effort on operational profile models, presents a summary of 

prior relevant work, and outlines an initial strategy for developing and implementing 

the operational profile model concept.  Following the model acquisition approach, a 

recommendation for future work is presented. 

Keywords: Open Architecture, Automated Testing, Software Testing, 

Operational Profile 
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Introduction 

As more open systems are being fielded by the US Navy and its allies, 

traditional system boundaries and, subsequently, interfaces become more varied 

and more challenging to define.  The modularity of open systems and software adds 

significant flexibility in their configuration, enabling components to be added or 

modified to meet specific requirements with relative ease when compared to non-

open systems.  With this flexibility comes increased difficulty of conducting testing 

using traditional testing approaches.  New methods are required to effectively test 

such systems due to the increased potential for configuration changes.   

Current US Navy combat and weapon system test procedures require an 

integration test event with every change to the software or system configuration to 

certify that the software-intensive system-of-systems is stable and functional.  These 

integration test events are costly, require substantial coordination, and are often only 

conducted once every 1 to 2 years.  As more systems are moving to a modular open 

architecture (OA), software configurations are changing with increased frequency, 

requiring more testing—which is expensive and time consuming.  As the need for 

software testing increases, new testing methods are required to keep up.  

Automated software testing seems like a logical choice to deal with the increased 

demand.  Many people are working on various strategies to implement automated 

testing in this domain.  One idea which could assist in the overall effort is the use of 

operational profile models.  The combination of automated testing (driven by an 

operational profile model) with other research efforts in this domain (that focus on 

reducing the amount of testing required during a configuration change) is key to 

realizing a successful software test strategy for US Navy OA weapon and combat 

systems (Berzins & Dailey, 2009). 

An operational profile model, in terms of this study, is an a priori model that 

provides inputs to an OA software module under test. It does this by sampling from 

probability density functions (PDFs) that model specific inputs from the actual 
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environment to the software module.  For this research, the operational profile 

model’s purpose is to drive automated testing of OA software aimed at probabilistic 

reliability assessments supported by statistical confidence levels.  Ideally, the 

automated testing process would utilize the operational profile model for the 

generation of inputs to the software under test, and analysis could be done on 

system outputs in an automated black-box approach.  This study further focuses on 

determining how to most effectively develop and implement such models within the 

US Navy OA weapon system software domain. 

Testing driven by an operational profile model is very efficient because it 

generally identifies failures in the order of how often they occur.  This approach, 

therefore, rapidly reduces failure rates as testing proceeds, and the faults that create 

frequent failures are generally identified first (Musa, 2004).  Using operational profile 

models for testing of OA systems is also ideal because of the standards put in place 

to define the architecture.  The same standards are used by all software developers 

who are working to develop similar functioning software and to achieve successful 

integration within the open system.  If the operational profile model is developed with 

the standards in mind, then the same profile model could be used to test multiple 

iterations or releases of similar-functioning software.  The opposite also applies 

when testing within the OA domain.  If a software module is being reused from a 

previous application, testing it all over again within its new domain may seem to 

some as unnecessary because it is being reused to avoid unnecessary development 

costs.  However, it is necessary to retest proven software when its environment 

changes, and having an operational profile model to drive software testing is an 

efficient way to model the new environment. 
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Ongoing Operational Profile Research Effort 

When developing an operational profile model to be used for testing OA 

software, a designer must define the boundaries of the software module to be tested 

and the interfaces between it and its environment.  Such boundaries and interfaces 

should be definable based on OA standards for the particular type of software.  The 

latest OA standards within the US Navy weapon system community are defined by 

the Navy Standards Working Group (NSWG). 

The main task of this ongoing research effort is to derive a process for 

developing an operational profile model. Most of the effort is devoted to determining 

how to use historical and/or real-time source data to derive the PDFs that make up 

the operational profile model.  One of the main technical issues designers must 

resolve to effectively use historical data and/or real-time data is how to choose a 

realistic granularity for the profile model that will also result in adequate levels of 

confidence in the model’s accuracy.  Either discrete or continuous PDFs from some 

family of distributions, combined with a small number of parameters that can be 

estimated from the data are used to make up the modeled inputs for the system 

under test.  The available source data is finite and usually does not provide unlimited 

or high-levels of resolution, thus requiring some degree of approximation for the 

construction of the PDFs.  Along with the approximations, some degree of statistical 

uncertainty in the accuracy of the model exists and should be calculated by the 

profile developer.  The broader challenge is determining what methodology of 

calculation should be used, as well as linking the results of the calculation to 

confidence levels of the accuracy of the PDFs. 

It is important for designers to understand the set of all operational states in 

which the software module functions.  To achieve this understanding, designers 

could develop multiple profiles to replicate the different states, or designers could 

manipulate the distribution sampling from one prototype so it would cover all 

possibilities if the environment behavior is properly characterized.   
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Other considerations include understanding the dependencies that may exist 

between different inputs or between inputs and outputs.  A good understanding of 

the relationships—along with capturing the relationships, possibly using conditional 

statistics—is critical to properly modeling the operational environment. 

In summary, the designers’ ability to develop a complete operational profile 

model based on limited historical source data is vital for enabling successful 

automated testing.  This ongoing research is a necessary step in the successful 

evolution of software testing for US Navy OA combat systems and weapon system 

software programs. 

There are four main goals of this ongoing research effort: 

1. Determine an overall methodology for developing an operational profile 
model to drive automatic OA software testing. 

2. Determine how to efficiently use an operational profile model in the US 
Navy OA weapon system software automated testing domain. 

3. Determine how to calculate the reliability of the software component 
being tested using the operational profile model. 

4. Determine how to practically derive and calculate confidence in the 
accuracy of PDFs that accurately represent messages coming from the 
actual environment for a software module under test, including existing 
dependencies and multiple states of operation. 

A PDF can either be represented discretely or continuously.  When 

developing a discrete PDF, designers should organize source data points in 

meaningful ways—like a histogram, for example, which represents the range of 

possible inputs for the given message or signal.  Designers could then analyze and 

extrapolate it into a complete discrete probability distribution.  This completely 

defined probability distribution could be used empirically, or it could be modified to 

reflect certain operational conditions prior to sampling during testing.  When 

developing a continuous distribution, designers need to estimate parameters of the 

input distribution such as distribution type, mean, standard deviation, etc.  Just like 

the discrete distributions described above, designers could leave the derived PDF 
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alone, or they could modify it to reflect a particular operating condition and make it 

ready to be sampled from during testing.  Depending on the type of software input 

and available source data, one method may be more useful than the other.  Both 

options are considered during the course of this research.   

Modification of the initially calculated PDF may be desired in several cases.  

Designers could modify the test distribution to overestimate the mass on the tail 

ends of the distribution.  This would ultimately test a wider range of inputs for the OA 

software and, in some cases, would result in a more robust system under 

unexpected boundary conditions.  Depending on the implementation, testers often 

desire to develop both normal and worst-case operational profiles so that different 

operating scenarios can be covered. This approach ensures that the software will 

perform adequately not only in a normal operational mode, but also when under 

stress. 

Confidence in the accuracy of the derived PDFs can be calculated based on 

the sample size and expectation in a confidence interval calculation.  This type of 

calculation can be automatic and can be used to assess whether or not PDF is an 

accurate representation of the actual environment variable within some level of 

confidence.  For discrete PDFs, testers can generate histograms for sampling based 

on a variable bin size instead of the typical fixed interval that allows for the same 

number of samples to exist in each bin, thus varying the accuracy of the model but 

fixing the confidence level. 

Once a collection of statistically sound PDFs are developed which cover all 

inputs for a given software module under test, testers combine them together into an 

operational profile model that can generate a collection of samples based on the 

PDFs and other user-specified or programmed criteria—otherwise known as test 

cases.  Certain dependencies could exist between system inputs; thus, an 

operational-specific program will be generated that defines distributions with the 

captured dependencies, as well as how sampling should occur when trying to 

replicate certain operational states.  Lastly, there will be some user-interface 
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between the model and an external automated testing control source that will 

command the model to run in a particular state and start generating outputs.  This 

operational program, the collection of PDFs, and the interface to the automated 

testing control program will make up the operational profile model. 

When attempting to demonstrate this concept completely, it will also be 

necessary for the model to perform some automated analysis of the program output.  

An oracle should be made by profile developers which will flag errors in the software 

component’s behavior during testing.  This functionality is not really part of the 

operational profile of the system, but it is a necessary step of the automated testing 

process. In addition, it can ideally be implemented as part of the profile model 

operational program—which, in total, would have the operational profile, the user-

interface, and the oracle and possibly other test-related reporting features. 

For a US Naval weapon system prototype implementation, NPS researchers 

will identify specific software modules, along with their interfaces,  using input from 

the NSWG and other system requirements specification sources.  The interfaces will 

be characterized based on a limited amount of real-world data in all modes of 

operation, and a concept-demonstration prototype operational profile model will be 

generated by NPS researchers including the predicted confidence levels in the 

profile.  The accuracy of the prototype will be checked by running multiple test cases 

and comparing the test results to a complete set of actual, real-world manual test 

results.  The goal of this accuracy checking is to determine the minimum acceptable 

confidence level in the model. This level enables the testing to be effectively and 

reliably conducted.  The designers will standardize all methods, calculations, and 

algorithms used to create the PDFs based on applicability to particular message or 

signal types.  As part of the operational profile model, the designer will develop and 

combine a user interface, output checking oracle, and other necessary functionality 

needed to conduct automatic testing.  Then, the designer will use the lessons 

learned from the implementation of a prototype, combined with other analyses, to 
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put together an optimized methodology for acquiring operational profiles within the 

US Navy weapon system domain. 

Summary of Prior Relevant Work 

Testing in an Open Environment 
One of OAs benefits is to reduce the risk of bugs by having defined standards 

for interfacing components.  Testing in an OA environment requires a modified 

approach when compared to traditional software testing.  Testing expenses required 

for OA systems include specialized testing tools, test preparation and management, 

unit, functional, integration, regression and user acceptance testing.  Benefits 

provided by OA in the testing domain include the following: 

Open Standards can reduce the extent of testing at a component unit level, if 

open source or vendor implementations are used.  Integration testing may be 

reduced if other components of the system, especially 3rd party components, have 

been previously been designed and tested to be compatible with the relevant Open 

Standards.  Over time, the use of OSR-conformant components can also reduce the 

cost of regression testing.   

Modularity best supports unit testing when well-defined interfaces 

encompass the full functionality of the component, and testing can be designed 

before development is completed.  Low dependency metrics in a system reduce the 

number of integration tests that are needed because there are fewer points of 

variability at the system level.   

Extensibility can directly support testing by making it easy to instrument the 

component and the system with no impact on the system functionality.  Functional 

extensions to a component are also well-defined; thus, extending unit and systems 

tests should be relatively straightforward. Even regression testing is unlikely to 

require extensive modification.   
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Interoperability requires additional testing when components are created. 

However, OA returns the investment by facilitating integration in subsequent use of 

components—thus leveraging prior testing efforts associated with component design 

and development.   

These benefits are nullified when the process is constrained by traditional US 

Navy combat system and weapon system testing approaches.  Current practices 

require a complete system integration test event to be conducted with every 

configuration change, often occurring once every two years.  This approach was 

adopted long ago because of the safety and integration concerns that come with 

software-intensive weapon and combat systems.  Complete system integration 

testing is costly under traditional system architectures and often requires retesting of 

proven system elements that did not change from one baseline to the next.  Testing 

in this way increased the time it took to field new technologies or capabilities due to 

the cost-driven, bi-annual schedule.  This approach will be even more inefficient if 

used on OA-based systems.  The modularity and scalability benefits of OA allow for 

quick configuration changes to update and tailor capabilities to mission needs.  

These benefits will be nullified if the current US Navy test strategy is used, as the 

cost would grow exponentially with constant complete integration testing; likewise, 

the needed configuration changes would not be made when needed.  Because of 

this, Test & Evaluation (T&E) could be the Achilles heel for US Navy OA initiatives.  

New technology, processes and policies are needed to safely reduce this effort and 

free resources for testing new functionality (Berzins & Dailey, 2009).  These new 

techniques should be capable of determining when it is safe not to retest a 

component when the overall system configuration changes. 

Determining when It Is Safe Not to Retest a Component 
following Changes in Configuration 

In his 2008 text, Berzins explains that if the requirements related to a 

component have not changed, and the behavior of the components has not 

changed, then retesting may not be necessary.  The range of conditions under which 
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a component is expected to provide its operational capabilities is particularly relevant 

to testing and re-testing.  The rest of this section addresses how to statically and 

dynamically check that the behavior of a component has not changed, assuming for 

the moment that its requirements and range of operating conditions have not 

changed. 

A type of dependency analysis known as program slicing can be used to 

identify parts of the unchanged code that have the same behavior in the new release 

as in previous one (Weisser, 1984).  A program slice at a given observation point is 

a self-contained subset of the code in the sense that it contains all of the code that 

can affect the behavior visible at the observation point.  If two different programs 

have the same slice for a given observation point, then they have the same visible 

behavior at that point.  Consequently, if the new release has the same slice as the 

old release for a given service, then that service will have exactly the same behavior 

in the new release as in the old one and, consequently, may not need regression 

testing (Gallagher, 1991).  This fact is useful because program slices can be 

computed for software systems on practical (large) scales.  The testing-reduction 

method that follows from this observation is to compute the slice of each service with 

respect to the new release and the old release, and retest only the services for 

which these slices differ. 

In the context of technology-advancement upgrades, the test-reduction 

method described above must be augmented with focused, automated testing to 

produce a substantial reduction in retesting.  Technology upgrades usually run on a 

new version of the operating system.  If the source code of the operating system is 

proprietary and, hence, not available for static analysis (commonly true, except for 

open source systems such as LINUX), then the only safe assumption is that all 

operating system services have been impacted by the upgrade to the new version.  

Thus, any service whose slice includes a dependency on a system call would be 

potentially impacted and would have to be retested, based on the simple slicing 

approach outlined in the previous paragraph.  This is likely to include most of the 
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application-level modules—severely limiting the amount of savings that can be 

obtained using slicing alone. 

Automated testing, however, can enable larger reductions in retesting if it is 

focused on the middleware interface to the underlying operating system services.  

Fortunately, interviews with representative stakeholders confirmed that most Navy 

systems with open architectures are designed around a middleware interface that 

encapsulates all operating system calls.  Such middleware interfaces are also 

prevalent in other DoD systems, including the US Army’s Future Combat System 

(FCS).  Application architectures are typically designed in this way to ease the job of 

porting the application to new operating systems, whether they are new releases of 

the same product or different products.  Consequently, each new release of the 

operating system and the neighboring middleware layer are both designed to 

preserve the observable behavior of the previously available system calls if at all 

possible—even if the details of the implementation may vary from one release to the 

next.  If we know that the observable behavior of a given system call is the same in 

the old and the new version of the operating system, then we can truncate the slice 

at the middleware layer for that call, and conclude that the behavior of an application 

service is unaffected by the OS change if its abbreviated slices in the two versions 

are the same.  The proposed enhancement to dependency analysis using program 

slicing is to check this property for each system call in the middleware layer via 

automated testing.  

This same strategy can also be applied at higher levels of middleware.  For 

example, for the common case of applications that have been developed for the 

Java or .NET platforms, the interface to operating system resources is the 

framework runtime, such as the interface to the Java foundation classes.  One 

related viable strategy for reducing testing of unchanged application code is 

bounding slicing by the interfaces at this level and using automated testing to show 

equivalent behaviors of the two releases at these interfaces.  A related, common 

pattern of changes that should not affect behavior involves framework evolution, in 
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which applications are recoded to migrate from “deprecated” (soon to become 

obsolete) interfaces to the corresponding new versions of the interfaces.  Although 

such changes produce differences in the code, they are intended to preserve 

behavior, and should be amenable to the automated test strategy.  Thus, modules, 

one level above the framework runtime interfaces, are additional candidates for 

automated testing and slicing cutoff boundaries. 

Automated testing is attractive in these contexts because a simple, reliable 

implementation of a “test oracle” is possible for the encapsulated operating system’s 

services.  A “test oracle” is a process for automatically determining which test 

outputs pass and which ones fail.  The “unchanged behavior” condition can be easily 

checked by software for a given set of input data.  This is possible since both the old 

and the new versions of the operating system are available for testing, and test 

scaffolding software can compare the results of the two versions via equality tests.  

The existence of such a “test oracle” implies that the OS middleware testing process 

can be completely automated—enabling economic and practical testing with 

statistically significant sample sizes that support very high confidence levels, or, in 

some cases, even exhaustive testing of the operating system interfaces that 

supports definite conclusions.  The proposed automated testing process would, thus, 

classify all of the services in the middleware interface to the operating system into 

two groups: those whose behavior is the same in both versions of the operating 

system (the preserved services), and those whose behavior differs in the two 

versions (the modified services).  We expect the first group to be much larger than 

the second group. 

In such cases, we can cut off slices at the system calls to the preserved 

services, and conclude that unmodified application components do not have to be 

retested unless their slices differ or contain system calls that invoke one of the 

modified services.  The operating system interface always needs to be thoroughly 

retested, but this can be done by the affordable automated process described 

above. 
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The above analysis depends on the assumption that we can accept a 

statistical inference about the unchanged behavior of the operating system’s calls, if 

the statistical confidence level is high enough.  Since most military decisions must 

be based on information that has the same degree of uncertainty, we do not expect 

lack of certainty to be a problem in principle.  We, therefore, consider how to 

determine what level of confidence would be “high enough,” and how many test 

cases are necessary to reach that level of confidence. 

We start with a consideration that should be meaningful to the stakeholders: if 

the mean time between observations of a behavioral difference in a given operating 

system’s service is substantially (k times) longer than a mission, it is acceptable to 

ignore risks due to the possibility of such an unexpected difference.  The meaning of 

“substantially” can be expressed as a numerical safety factor k that can be 

understood and set by system stakeholders based on their tolerance for risk.  

Next, we measure the mean number of executions per mission es for each 

service s in the middleware interface to the operating system.  The objective of the 

automated testing for each service s is to ensure the mean number of executions 

between observed differences in the behavior of service s is at least Ns, where 

Ns = k es 

Theorem 4.3 from Howden (1987) can then be used to determine the required 

number of test cases Ts for each service: 

Ts = Ns log2 Ns 

If we run Ts test cases that are independently drawn from the probability 

distribution characterizing the mission (called the operational profile), the theorem 

will enable us to conclude that the mean number of executions is at least Ns with a 

statistical confidence level (1 – 1/Ns); however, this is contingent upon none of the Ts 

test cases showing any differences in the behavior of the services under the new 

version of the operating system from those in the previously released version.  
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The rationale for this choice of confidence level is that it makes the probability 

of making a false positive conclusion no more than the acceptable frequency of 

behavioral differences—thus scaling the risk due to random sampling errors to 

match the specified maximum acceptable failure rate.  False positive conclusions 

correspond to cases in which the frequency of behavioral differences in the new 

release of the operating system service in question is actually greater than the target 

bound (1/Ns), but the automated testing procedure failed to observe a difference due 

to random sampling fluctuations that caused conforming results to appear purely by 

chance.  The test set size Ts has been chosen to make the probability of such a 

chance observation at most (1/Ns).  

Thorough statistical testing of the operating system interfaces has the 

additional benefit of increasing the confidence that hardware differences (and 

possibly different versions of the compilers, linkers and loaders) have not affected 

the behavior of the applications built using these services.  

Cost of Automated Testing  
There are several different kinds of automated testing.  The most common 

kind is semi-automated testing.  This approach automates the type of testing 

currently performed manually. It is commonly the first kind of automated testing 

implemented in an organization because it does not involve any process changes.  

In this type of approach, the test cases are still developed individually by test 

engineers, but the test cases are run automatically, and the results are classified into 

pass or fail categories automatically—often by comparison to previously captured 

test outputs that were originally individually examined and categorized by people.  In 

this approach, execution and categorization of test results is automated, but the 

choice of test cases and the initial pass/fail decisions are not.  This approach saves 

appreciable time and effort relative to a completely manual approach, but the human 

effort required is still proportional to the number of test cases. 



 

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 14 - 
k^s^i=mlpqdo^ar^qb=p`elli=

Another approach particularly relevant in our context is automated statistical 

testing.  In this approach, the choice of test cases and the initial pass/fail decisions 

are automated, as well.  This makes a great difference because the human effort 

involved does not increase with the number of test cases to be executed.  This 

enables economical application of the very large test sets needed to achieve the 

coverage required to support high levels of statistical confidence in the dependability 

of the software.  The high levels of statistical confidence are needed to avoid testing 

for other unchanged code based on indirect evidence that the behavior of the 

underlying services on which the unchanged code depends has not changed. 

The context identified in the previous section is well suited for automated 

statistical testing, because the choice of test cases and the initial pass/fail decisions 

are easily automated in that context: the first can be done by random sampling from 

the operational profile, and the second by comparison of the results produced by the 

previous release of the software to those produced by the new release. 

The variation in the number of the test cases Ts required as a function of the 

acceptable risk of false positive conclusions (1/Ns) is illustrated in Table 1. 

Ns C Ts 
103 0.999 1.0 x 104 
104 0.9999 1.3 x 105 
105 0.99999 1.7 x 106 
106 0.999999 2.0 x 107 
107 0.9999999 2.3 x 108 
108 0.99999999 2.7 x 109 
109 0.999999999 3.0 x 1010 

Table 1. Number of Test Cases Required  
for Different Levels of Risk Tolerance 

Ns: Desired lower bound on mean number of executions between differences 

C: Statistical confidence level 

Ts: Number of independent random test cases required 

Figure 1 shows how the cost characteristics of the proposed automated 

testing approach compare to the costs of manual testing.  The cost curves are close 
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to straight lines; the fixed costs of automated testing are larger than for manual 

testing, and the marginal cost of adding another test case is much smaller for 

automated testing than for manual testing. 

 

Figure 1. Testing Cost Characteristics  

In order to determine the crossover points, we must obtain and analyze 

experimental data. This process is still ongoing. However, we expect automated 

testing to be affordable—even for the very large numbers of test cases needed for 

high confidence in stability of OS services across different releases.  We also expect 

manual and semi-automated approaches not to be affordable when we test to high 

confidence. 

Regarding the time and other resources to perform the proposed automated 

statistical testing, we can note the following: 

1. It typically takes a small amount of time to perform a single system call. 

2. Testing using independent, random samples is easily parallelizable 
and could be effectively spread over large numbers of processors 
using well-established techniques—such as Google’s Map Reduce 
programming model (Lammel, 2008)—if very high confidence levels 
are needed. 
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3. Behavior of operating system calls can be tested independently of 
other shipboard systems. Such testing does not require interactions 
with human operators. 

Since the testing process is completely automated, the variable cost of these 

tests is due to computing time and hardware, but not to human effort.  The benefit of 

the automated statistical test approach described here is that there are no variable 

costs for labor.  Since computing resources are currently inexpensive and steadily 

getting cheaper, even the relatively large numbers of test cases needed for high 

confidence are likely to be affordable. 

This approach does involve some fixed costs for human effort that may be 

higher than in less-disciplined manual approaches.  These costs are due to the need 

for the following activities: 

1. Measurement of operational profiles—i.e., the frequency distributions 
of operating system calls and their associated input parameters.  
Instrumented versions of the software can be used during exercises to 
collect measurements of the operational profiles, or, if the 
computational overhead of doing this is acceptable, measurements 
could also be collected during actual operations. Ongoing research is 
developing systematic, computer-assisted methods for this process. 

2. Coding more sophisticated test-driver software that includes code for 
generating random samples from the measured operational profiles, 
code that implements test oracles as described above, and code that 
keeps track of testing statistics and reports them. 

Testing with Operational Profiles 
An operational profile has been defined as the set of input events that the 

software will receive during execution, along with the probability that the events will 

occur and the set of all input events generated by external hardware and software 

systems that the software is expected to interact with during execution (Voas, 2000). 

Taking that definition a bit further with respect to probabilities, an operational 

profile model, in terms of this study, is a statistical model—developed with some 

previous knowledge of the population—that provides inputs to an OA software 
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system module under test based on a sampling from PDFs (which represent the 

interfaces from the actual environment to the software module).  The operational 

profile model’s purpose is to drive automated testing of OA software aimed at 

probabilistic reliability assessments supported by statistical confidence levels.  

Ideally, the automated testing process utilizes the operational profile model for the 

generation of inputs to the software under test and possibly analysis of the system 

outputs.   

Accurate estimates of operational profiles, preferably based on actual 

measurements, are necessary because in all practical cases, the reliability of a 

software system is meaningless without firm knowledge of the operational profile.  

This claim is based on the hypothesis that all real systems have at least one input 

value x for which they perform correctly, and at least one other input value y for 

which they do not.  If we know x and y, we can construct a spectrum of possible 

operational profiles for which the reliability of the same system ranges from 0 to 1 

and attains every value in between.  

The above line of reasoning shows that the only systems whose reliabilities 

do not depend on the operational environment are those that fail for all possible 

inputs (reliability uniformly 0, not interesting), and those that operate correctly for all 

possible inputs (reliability uniformly 1, not attainable in practice for large systems). 

For all other systems, the reliability is determined by the operational profile 

and can vary widely for different operational contexts.  This has serious implications 

for component reuse, which is a cornerstone of the Navy OA initiative. 

Operational profiles have been used by the testing research community for 

many years and have been applied in many contexts. For example, they have been 

measured and used to assess the reliability of telephone-switching software. 

Testing driven by an operational profile is very efficient because it identifies 

failures (and, hence, the faults causing them), on the average, in the order of how 
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often they occur.  This approach rapidly reduces failure intensity as a test proceeds, 

and the faults that cause frequent failures are found and removed first.  Users will 

also detect failures on average in order of their frequency, if they have not already 

been found in test (Musa, 2004). 

When we want to maximize the reliability of a fielded system (and thereby 

maximally enhance the user/customer experience) and have no better information 

about how to find bugs, any other allocation of testing resources is sub-optimal.  

Testing in accordance with an operational profile can, therefore, be a key part of a 

test automation strategy (Binder, 2004). 

An operational profile is the estimated relative frequency (i.e., probability) for 

each “operation” that a system under test supports.  Operations map easily to use 

cases—hence operational profiles and object-oriented development work well 

together.  However, the Unified Modeling Language (UML) standard for Use Cases 

does not provide sufficient information for automated testing.  Extended Use Cases 

are consistent with the UML, and include domain and probability information 

necessary for automated testing (Binder, 1999).  
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Operational Profile Model Development 
Methodology 

Process Overview 
The methodology defined in this section defines how to develop an 

operational profile model used to test a US Navy OA weapons or combat systems 

software component under test.  This approach is broken down into several areas—

including identifying the component, understanding its operation and interfaces, 

characterizing the inputs statistically, characterizing the outputs (for input 

dependency analysis and for understanding of how to detect bugs), deriving testing 

profiles, creating the operational profile user-interface and core functionality, and 

lastly, developing the supporting documentation.   

This approach was developed by NPS as part of the ongoing Operational 

Profile Model research effort and is in the process of being validated via the 

development of a concept-demonstration prototype model.  There it will be critiqued 

and optimized as the study continues.  Based on the results of the prototype model 

development and component testing, we will present a refined approach to acquire 

an operational profile model for testing of US Navy OA weapons system software at 

the completion of the ongoing research study. 

Steps to Develop and Operational Profile Model 
1. Identify Component Boundaries 

a. Identify Component 

b. Identify Component’s Environment 

2. Understand Component Operation 

a. Identify Inputs 

b. Identify Outputs 

c. Identify Controls 

d. Identify Mechanisms 
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e. Understand Component’s Operational Requirements 

f. Understand Component’s Technical Requirements 

g. Identify States of Operation 

3. Define Component Interfaces 

a. Define Inputs 

b. Define Input Formats 

c. Define Outputs 

d. Define Output Formats 

4. Characterize Inputs (For Operational Profile PDF Derivation) 

a. Gather Available Real-world/Historical Input Data 

b. Organize Real-world/Historical Input Data 

c. Analyze Real-world/Historical Input Data for Each Historical 

Environment 

i. Relate Operational Data to Software Inputs 

ii. Assess Software Input Dependencies 

1. Assess Dependencies between Inputs 

2. Assess Dependencies with Time 

3. Assess Dependencies between Inputs and Outputs 

4. Assess Dependencies with Operational State 

iii. Derive Operational Probabilistic Characterization for Each Input 

1. Utilize Kernel Density Estimation (KDE) for Continuous 

PDFs 

2. Utilize Variable-width Histogram Bin Approach for 

Discrete PDFs 

3. Utilize Bayesian Approach for Probabilistic Dependencies 

4. Utilize COTS Analysis Tools for Calculations & Analysis 

a. S-Plus/R 

b. MATLAB 

c. Oracle Crystal Ball 

iv. Calculate/Determine How to Maximize Confidence in Results 
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1. Calculate Confidence Based on Sample Size 

2. Utilize Variable-width Histogram Bin Approach to Fix 

Confidence 

v. Repeat for Each Historical Environment 

d. Assess Gaps in Real-world/Historical Input Data 

e. Determine Historical and Current Operational Environment Differences 

i. Analyze Current Environment Changes 

ii. Relate Environment Differences to Affected Input Changes 

f. Modify Historical Probabilistic Characterizations to Reflect Current 

Environment 

i. Analyze Profiles of Historical Environments 

1. Relate Calculations to Historical Environments 

2. Relate Confidence Level to Available Data 

ii. Predict Necessary Changes to Inputs for the Current 

Environment 

1. Utilize Bayesian Approach for Dependency Analysis 

2. Minimize Use of Subjective Analysis (if possible) 

iii. Acquire Relevant Data for Current Environment Analysis (if 

possible) 

iv. Analyze Relevant New Environment Data to Compare with 

Predicted Changes (if possible) 

v. Assess Software Input Dependencies 

vi. Derive Operational Probabilistic Characterization for Each 

Current Environment Input  

vii. Calculate/Determine How to Maximize Confidence in Current 

Environment 

5. Characterize Outputs (for Oracle Development) 

a. Define Component Operational Failures 

i. Define Failures by Event  
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ii. Define by Defining Success, and Relate Any Other Behavior as 

Failure 

b. Relate Operational Failures to Specific Observable Output Behavior 

c. Determine Necessary Conditions/Analysis Required to Detect Output 

Failures 

6. Identify Testing Profiles 

a. Derive Operational Testing Profile(s) for Operational Test & Evaluation 

(OT&E) 

b. Derive Stress-testing Profile(s) for Developmental Test & Evaluation 

(DT&E) 

7. Develop Operational Profile Model User Interface 

a. Develop Component Loading Interface 

b. Develop Operational Profile Loading Interface 

i. Include Fields Used to Load Desired Probability Distributions for 

Each Input 

ii. Include Fields for Selecting Desired Number of Test Cases to 

be Generated 

iii. Include Fields for Starting/Stopping Test 

c. Develop Output Analyzer 

i. Include Fields Used for Defining Conditions of Failure 

ii. Include Fields for Loading Failure Analysis Scripts 

d. Develop Analytical Interface 

i. Include Fields Identifying Current Progress of Testing 

1. Number/Percentage of Tests Complete  

2. Number/Percentage of Failed Runs 

3. Analysis of Failed Runs (Real Time or Upon Completion) 

4. Calculation of Confidence in Software Reliability 

8. Develop Operational Profile Model Core Functionality 

a. Develop/Code Operational Profile Model Input Generator 
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b. Develop/Code Operational Profile Model Interfaces to User & 

Component 

c. Develop/Code Operational Profile Output Analyzer Oracle & Data 

Logger 

9. Develop Operational Profile Supporting Documentation 



 

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 24 - 
k^s^i=mlpqdo^ar^qb=p`elli=

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK



 

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 25 - 
k^s^i=mlpqdo^ar^qb=p`elli=

Recommendations for Future Work 

To realize the benefits of automated testing driven by an operational profile 

model, future work will need to be done in support of Operational Profile Models and 

in other related domains.  The next step in this domain will be focused on the 

implementation of an operational profile model concept demonstration prototype, 

which will be used to validate and refine the proposed development methodology 

outlined above.  A way to validate both the accuracy of the operational profile model 

and the reliability of the software being tested needs to be developed and refined.  

Also, if specific environment inputs exist that may lead to failures with severe 

consequences and that cannot be confidently estimated using conventional 

techniques, it may be necessary to develop new techniques for these specific cases.  

Lastly, research into the possibility of using operational profile models in an “open-

loop” testing mode—instead of a black-box mode—would drastically reduce 

automated testing computing time for the testing of components with multiple states 

of operation.  This open-loop approach would make it possible for any state to be set 

at the same time as a specific input—without the need of previous input files to get 

the component to the state of operation. 
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