

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

Approved for public release, distribution is unlimited.

Prepared for: Naval Postgraduate School, Monterey, California 93943

NPS-PM-09-146

^`nrfpfqflk=oÉëÉ~êÅÜ=

péçåëçêÉÇ=oÉéçêí=pÉêáÉë=
=

Driving Automated Open-Architecture Testing:

An Operational Profile Model-Development Strategy

30 September 2009

by

Dr. Luqi, Professor
Dr. Valdis Berzins, Professor, and

Paul Dailey
Graduate School of Operational & Information Sciences

Naval Postgraduate School

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

The research presented in this report was supported by the Acquisition Chair of the
Graduate School of Business & Public Policy at the Naval Postgraduate School.

To request Defense Acquisition Research or to become a research sponsor,
please contact:

NPS Acquisition Research Program
Attn: James B. Greene, RADM, USN, (Ret)
Acquisition Chair
Graduate School of Business and Public Policy
Naval Postgraduate School
555 Dyer Road, Room 332
Monterey, CA 93943-5103
Tel: (831) 656-2092
Fax: (831) 656-2253
e-mail: jbgreene@nps.edu

Copies of the Acquisition Sponsored Research Reports may be printed from our
website www.acquisitionresearch.org

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - i -
k^s^i=mlpqdo^ar^qb=p`elli=

Abstract

The ability to automate the testing of software is critical in the successful

acquisition of future Open Architecture (OA)-based weapon and combat systems. In

the OA environment, software modules are reused in different environments, and

systems are highly modular in nature. These situations result in increased numbers

of potential software configurations. As configurations change and OA software is

put in new environments, the potential for finding or creating new bugs increases.

The concept of using an operational profile, or environment model that generates

inputs to an OA software module, based on probabilistic distributions, to assist in the

automated testing process is critical for catching such bugs. This paper describes

an ongoing research effort on operational profile models, presents a summary of

prior relevant work, and outlines an initial strategy for developing and implementing

the operational profile model concept. Following the model acquisition approach, a

recommendation for future work is presented.

Keywords: Open Architecture, Automated Testing, Software Testing,

Operational Profile

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - ii -
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - iii -
k^s^i=mlpqdo^ar^qb=p`elli=

Acknowledgments

This research effort is being conducted under the guidance of Paul Dailey’s

PhD committee—consisting of Dr. Valdis Berzins, Dr. Luqi, Dr. Ronald Fricker, Dr.

Clifford Whitcomb, Dr. Robert Harney and Dr. Peter Musial.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - iv -
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - v -
k^s^i=mlpqdo^ar^qb=p`elli=

About the Authors

Dr. Luqi is Professor of Computer Science at NPS. Her research on many

aspects of software reuse and computer-aided software development has produced

hundreds of research papers in refereed journals, conference proceedings and book

chapters. She has served as a PI or co-PI for many research projects funded by the

DoD and DoN. She has received the Presidential Young Investigator Award from

NSF and the Technical Achievement Award from IEEE.

Valdis Berzins is a Professor of Computer Science at the Naval

Postgraduate School. His research interests include software engineering, software

architecture, computer-aided design, and theoretical foundations of software

maintenance. His work includes papers on software testing, software merging,

specification languages, and engineering databases. He received BS, MS, EE, and

PhD degrees from MIT and has been on the faculty at the University of Texas and

the University of Minnesota. He has developed several specification languages,

software tools for computer-aided software design, and a fundamental theory of

software merging.

Paul Dailey is a systems engineer at the Naval Postgraduate School and has

worked for the Department of the Navy for seven years, including as a test &

evaluation engineer for the Naval Surface Warfare Center, Port Hueneme Division,

Detachment Louisville from 2002 to 2009. He holds a MS in Systems Engineering

from the Naval Postgraduate School and a BS in Electrical Engineering from the

University of Louisville. He is currently pursuing a PhD in Software Engineering from

the Naval Postgraduate School, focusing his research on the automated testing of

software.

=
=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - vi -
k^s^i=mlpqdo^ar^qb=p`elli=

=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - vii -
k^s^i=mlpqdo^ar^qb=p`elli=

=

NPS-PM-09-146

^`nrfpfqflk=oÉëÉ~êÅÜ=

péçåëçêÉÇ=oÉéçêí=pÉêáÉë=
=

Driving Automated Open-Architecture Testing:

An Operational Profile Model Development Strategy

30 September 2009

by

Dr. Luqi, Professor
Dr. Valdis Berzins, Professor, and

Paul Dailey
Graduate School of Operational & Information Sciences

Naval Postgraduate School

Disclaimer: The views represented in this report are those of the author and do not reflect the official policy position of
the Navy, the Department of Defense, or the Federal Government.

=
=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - viii -
k^s^i=mlpqdo^ar^qb=p`elli=

=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - ix -
k^s^i=mlpqdo^ar^qb=p`elli=

Table of Contents

Introduction...1

Ongoing Operational Profile Research Effort...3

Summary of Prior Relevant Work ..7

Testing in an Open Environment..7

Determining when It Is Safe Not to Retest a Component following
Changes in Configuration...8

Cost of Automated Testing...13

Testing with Operational Profiles..16

Operational Profile Model Development Methodology..................................19

Process Overview ..19

Steps to Develop and Operational Profile Model......................................19

Recommendations for Future Work ..25

List of References...27

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - x -
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 1 -
k^s^i=mlpqdo^ar^qb=p`elli=

Introduction

As more open systems are being fielded by the US Navy and its allies,

traditional system boundaries and, subsequently, interfaces become more varied

and more challenging to define. The modularity of open systems and software adds

significant flexibility in their configuration, enabling components to be added or

modified to meet specific requirements with relative ease when compared to non-

open systems. With this flexibility comes increased difficulty of conducting testing

using traditional testing approaches. New methods are required to effectively test

such systems due to the increased potential for configuration changes.

Current US Navy combat and weapon system test procedures require an

integration test event with every change to the software or system configuration to

certify that the software-intensive system-of-systems is stable and functional. These

integration test events are costly, require substantial coordination, and are often only

conducted once every 1 to 2 years. As more systems are moving to a modular open

architecture (OA), software configurations are changing with increased frequency,

requiring more testing—which is expensive and time consuming. As the need for

software testing increases, new testing methods are required to keep up.

Automated software testing seems like a logical choice to deal with the increased

demand. Many people are working on various strategies to implement automated

testing in this domain. One idea which could assist in the overall effort is the use of

operational profile models. The combination of automated testing (driven by an

operational profile model) with other research efforts in this domain (that focus on

reducing the amount of testing required during a configuration change) is key to

realizing a successful software test strategy for US Navy OA weapon and combat

systems (Berzins & Dailey, 2009).

An operational profile model, in terms of this study, is an a priori model that

provides inputs to an OA software module under test. It does this by sampling from

probability density functions (PDFs) that model specific inputs from the actual

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 2 -
k^s^i=mlpqdo^ar^qb=p`elli=

environment to the software module. For this research, the operational profile

model’s purpose is to drive automated testing of OA software aimed at probabilistic

reliability assessments supported by statistical confidence levels. Ideally, the

automated testing process would utilize the operational profile model for the

generation of inputs to the software under test, and analysis could be done on

system outputs in an automated black-box approach. This study further focuses on

determining how to most effectively develop and implement such models within the

US Navy OA weapon system software domain.

Testing driven by an operational profile model is very efficient because it

generally identifies failures in the order of how often they occur. This approach,

therefore, rapidly reduces failure rates as testing proceeds, and the faults that create

frequent failures are generally identified first (Musa, 2004). Using operational profile

models for testing of OA systems is also ideal because of the standards put in place

to define the architecture. The same standards are used by all software developers

who are working to develop similar functioning software and to achieve successful

integration within the open system. If the operational profile model is developed with

the standards in mind, then the same profile model could be used to test multiple

iterations or releases of similar-functioning software. The opposite also applies

when testing within the OA domain. If a software module is being reused from a

previous application, testing it all over again within its new domain may seem to

some as unnecessary because it is being reused to avoid unnecessary development

costs. However, it is necessary to retest proven software when its environment

changes, and having an operational profile model to drive software testing is an

efficient way to model the new environment.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 3 -
k^s^i=mlpqdo^ar^qb=p`elli=

Ongoing Operational Profile Research Effort

When developing an operational profile model to be used for testing OA

software, a designer must define the boundaries of the software module to be tested

and the interfaces between it and its environment. Such boundaries and interfaces

should be definable based on OA standards for the particular type of software. The

latest OA standards within the US Navy weapon system community are defined by

the Navy Standards Working Group (NSWG).

The main task of this ongoing research effort is to derive a process for

developing an operational profile model. Most of the effort is devoted to determining

how to use historical and/or real-time source data to derive the PDFs that make up

the operational profile model. One of the main technical issues designers must

resolve to effectively use historical data and/or real-time data is how to choose a

realistic granularity for the profile model that will also result in adequate levels of

confidence in the model’s accuracy. Either discrete or continuous PDFs from some

family of distributions, combined with a small number of parameters that can be

estimated from the data are used to make up the modeled inputs for the system

under test. The available source data is finite and usually does not provide unlimited

or high-levels of resolution, thus requiring some degree of approximation for the

construction of the PDFs. Along with the approximations, some degree of statistical

uncertainty in the accuracy of the model exists and should be calculated by the

profile developer. The broader challenge is determining what methodology of

calculation should be used, as well as linking the results of the calculation to

confidence levels of the accuracy of the PDFs.

It is important for designers to understand the set of all operational states in

which the software module functions. To achieve this understanding, designers

could develop multiple profiles to replicate the different states, or designers could

manipulate the distribution sampling from one prototype so it would cover all

possibilities if the environment behavior is properly characterized.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 4 -
k^s^i=mlpqdo^ar^qb=p`elli=

Other considerations include understanding the dependencies that may exist

between different inputs or between inputs and outputs. A good understanding of

the relationships—along with capturing the relationships, possibly using conditional

statistics—is critical to properly modeling the operational environment.

In summary, the designers’ ability to develop a complete operational profile

model based on limited historical source data is vital for enabling successful

automated testing. This ongoing research is a necessary step in the successful

evolution of software testing for US Navy OA combat systems and weapon system

software programs.

There are four main goals of this ongoing research effort:

1. Determine an overall methodology for developing an operational profile
model to drive automatic OA software testing.

2. Determine how to efficiently use an operational profile model in the US
Navy OA weapon system software automated testing domain.

3. Determine how to calculate the reliability of the software component
being tested using the operational profile model.

4. Determine how to practically derive and calculate confidence in the
accuracy of PDFs that accurately represent messages coming from the
actual environment for a software module under test, including existing
dependencies and multiple states of operation.

A PDF can either be represented discretely or continuously. When

developing a discrete PDF, designers should organize source data points in

meaningful ways—like a histogram, for example, which represents the range of

possible inputs for the given message or signal. Designers could then analyze and

extrapolate it into a complete discrete probability distribution. This completely

defined probability distribution could be used empirically, or it could be modified to

reflect certain operational conditions prior to sampling during testing. When

developing a continuous distribution, designers need to estimate parameters of the

input distribution such as distribution type, mean, standard deviation, etc. Just like

the discrete distributions described above, designers could leave the derived PDF

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 5 -
k^s^i=mlpqdo^ar^qb=p`elli=

alone, or they could modify it to reflect a particular operating condition and make it

ready to be sampled from during testing. Depending on the type of software input

and available source data, one method may be more useful than the other. Both

options are considered during the course of this research.

Modification of the initially calculated PDF may be desired in several cases.

Designers could modify the test distribution to overestimate the mass on the tail

ends of the distribution. This would ultimately test a wider range of inputs for the OA

software and, in some cases, would result in a more robust system under

unexpected boundary conditions. Depending on the implementation, testers often

desire to develop both normal and worst-case operational profiles so that different

operating scenarios can be covered. This approach ensures that the software will

perform adequately not only in a normal operational mode, but also when under

stress.

Confidence in the accuracy of the derived PDFs can be calculated based on

the sample size and expectation in a confidence interval calculation. This type of

calculation can be automatic and can be used to assess whether or not PDF is an

accurate representation of the actual environment variable within some level of

confidence. For discrete PDFs, testers can generate histograms for sampling based

on a variable bin size instead of the typical fixed interval that allows for the same

number of samples to exist in each bin, thus varying the accuracy of the model but

fixing the confidence level.

Once a collection of statistically sound PDFs are developed which cover all

inputs for a given software module under test, testers combine them together into an

operational profile model that can generate a collection of samples based on the

PDFs and other user-specified or programmed criteria—otherwise known as test

cases. Certain dependencies could exist between system inputs; thus, an

operational-specific program will be generated that defines distributions with the

captured dependencies, as well as how sampling should occur when trying to

replicate certain operational states. Lastly, there will be some user-interface

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 6 -
k^s^i=mlpqdo^ar^qb=p`elli=

between the model and an external automated testing control source that will

command the model to run in a particular state and start generating outputs. This

operational program, the collection of PDFs, and the interface to the automated

testing control program will make up the operational profile model.

When attempting to demonstrate this concept completely, it will also be

necessary for the model to perform some automated analysis of the program output.

An oracle should be made by profile developers which will flag errors in the software

component’s behavior during testing. This functionality is not really part of the

operational profile of the system, but it is a necessary step of the automated testing

process. In addition, it can ideally be implemented as part of the profile model

operational program—which, in total, would have the operational profile, the user-

interface, and the oracle and possibly other test-related reporting features.

For a US Naval weapon system prototype implementation, NPS researchers

will identify specific software modules, along with their interfaces, using input from

the NSWG and other system requirements specification sources. The interfaces will

be characterized based on a limited amount of real-world data in all modes of

operation, and a concept-demonstration prototype operational profile model will be

generated by NPS researchers including the predicted confidence levels in the

profile. The accuracy of the prototype will be checked by running multiple test cases

and comparing the test results to a complete set of actual, real-world manual test

results. The goal of this accuracy checking is to determine the minimum acceptable

confidence level in the model. This level enables the testing to be effectively and

reliably conducted. The designers will standardize all methods, calculations, and

algorithms used to create the PDFs based on applicability to particular message or

signal types. As part of the operational profile model, the designer will develop and

combine a user interface, output checking oracle, and other necessary functionality

needed to conduct automatic testing. Then, the designer will use the lessons

learned from the implementation of a prototype, combined with other analyses, to

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 7 -
k^s^i=mlpqdo^ar^qb=p`elli=

put together an optimized methodology for acquiring operational profiles within the

US Navy weapon system domain.

Summary of Prior Relevant Work

Testing in an Open Environment
One of OAs benefits is to reduce the risk of bugs by having defined standards

for interfacing components. Testing in an OA environment requires a modified

approach when compared to traditional software testing. Testing expenses required

for OA systems include specialized testing tools, test preparation and management,

unit, functional, integration, regression and user acceptance testing. Benefits

provided by OA in the testing domain include the following:

Open Standards can reduce the extent of testing at a component unit level, if

open source or vendor implementations are used. Integration testing may be

reduced if other components of the system, especially 3rd party components, have

been previously been designed and tested to be compatible with the relevant Open

Standards. Over time, the use of OSR-conformant components can also reduce the

cost of regression testing.

Modularity best supports unit testing when well-defined interfaces

encompass the full functionality of the component, and testing can be designed

before development is completed. Low dependency metrics in a system reduce the

number of integration tests that are needed because there are fewer points of

variability at the system level.

Extensibility can directly support testing by making it easy to instrument the

component and the system with no impact on the system functionality. Functional

extensions to a component are also well-defined; thus, extending unit and systems

tests should be relatively straightforward. Even regression testing is unlikely to

require extensive modification.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 8 -
k^s^i=mlpqdo^ar^qb=p`elli=

Interoperability requires additional testing when components are created.

However, OA returns the investment by facilitating integration in subsequent use of

components—thus leveraging prior testing efforts associated with component design

and development.

These benefits are nullified when the process is constrained by traditional US

Navy combat system and weapon system testing approaches. Current practices

require a complete system integration test event to be conducted with every

configuration change, often occurring once every two years. This approach was

adopted long ago because of the safety and integration concerns that come with

software-intensive weapon and combat systems. Complete system integration

testing is costly under traditional system architectures and often requires retesting of

proven system elements that did not change from one baseline to the next. Testing

in this way increased the time it took to field new technologies or capabilities due to

the cost-driven, bi-annual schedule. This approach will be even more inefficient if

used on OA-based systems. The modularity and scalability benefits of OA allow for

quick configuration changes to update and tailor capabilities to mission needs.

These benefits will be nullified if the current US Navy test strategy is used, as the

cost would grow exponentially with constant complete integration testing; likewise,

the needed configuration changes would not be made when needed. Because of

this, Test & Evaluation (T&E) could be the Achilles heel for US Navy OA initiatives.

New technology, processes and policies are needed to safely reduce this effort and

free resources for testing new functionality (Berzins & Dailey, 2009). These new

techniques should be capable of determining when it is safe not to retest a

component when the overall system configuration changes.

Determining when It Is Safe Not to Retest a Component
following Changes in Configuration

In his 2008 text, Berzins explains that if the requirements related to a

component have not changed, and the behavior of the components has not

changed, then retesting may not be necessary. The range of conditions under which

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 9 -
k^s^i=mlpqdo^ar^qb=p`elli=

a component is expected to provide its operational capabilities is particularly relevant

to testing and re-testing. The rest of this section addresses how to statically and

dynamically check that the behavior of a component has not changed, assuming for

the moment that its requirements and range of operating conditions have not

changed.

A type of dependency analysis known as program slicing can be used to

identify parts of the unchanged code that have the same behavior in the new release

as in previous one (Weisser, 1984). A program slice at a given observation point is

a self-contained subset of the code in the sense that it contains all of the code that

can affect the behavior visible at the observation point. If two different programs

have the same slice for a given observation point, then they have the same visible

behavior at that point. Consequently, if the new release has the same slice as the

old release for a given service, then that service will have exactly the same behavior

in the new release as in the old one and, consequently, may not need regression

testing (Gallagher, 1991). This fact is useful because program slices can be

computed for software systems on practical (large) scales. The testing-reduction

method that follows from this observation is to compute the slice of each service with

respect to the new release and the old release, and retest only the services for

which these slices differ.

In the context of technology-advancement upgrades, the test-reduction

method described above must be augmented with focused, automated testing to

produce a substantial reduction in retesting. Technology upgrades usually run on a

new version of the operating system. If the source code of the operating system is

proprietary and, hence, not available for static analysis (commonly true, except for

open source systems such as LINUX), then the only safe assumption is that all

operating system services have been impacted by the upgrade to the new version.

Thus, any service whose slice includes a dependency on a system call would be

potentially impacted and would have to be retested, based on the simple slicing

approach outlined in the previous paragraph. This is likely to include most of the

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 10 -
k^s^i=mlpqdo^ar^qb=p`elli=

application-level modules—severely limiting the amount of savings that can be

obtained using slicing alone.

Automated testing, however, can enable larger reductions in retesting if it is

focused on the middleware interface to the underlying operating system services.

Fortunately, interviews with representative stakeholders confirmed that most Navy

systems with open architectures are designed around a middleware interface that

encapsulates all operating system calls. Such middleware interfaces are also

prevalent in other DoD systems, including the US Army’s Future Combat System

(FCS). Application architectures are typically designed in this way to ease the job of

porting the application to new operating systems, whether they are new releases of

the same product or different products. Consequently, each new release of the

operating system and the neighboring middleware layer are both designed to

preserve the observable behavior of the previously available system calls if at all

possible—even if the details of the implementation may vary from one release to the

next. If we know that the observable behavior of a given system call is the same in

the old and the new version of the operating system, then we can truncate the slice

at the middleware layer for that call, and conclude that the behavior of an application

service is unaffected by the OS change if its abbreviated slices in the two versions

are the same. The proposed enhancement to dependency analysis using program

slicing is to check this property for each system call in the middleware layer via

automated testing.

This same strategy can also be applied at higher levels of middleware. For

example, for the common case of applications that have been developed for the

Java or .NET platforms, the interface to operating system resources is the

framework runtime, such as the interface to the Java foundation classes. One

related viable strategy for reducing testing of unchanged application code is

bounding slicing by the interfaces at this level and using automated testing to show

equivalent behaviors of the two releases at these interfaces. A related, common

pattern of changes that should not affect behavior involves framework evolution, in

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 11 -
k^s^i=mlpqdo^ar^qb=p`elli=

which applications are recoded to migrate from “deprecated” (soon to become

obsolete) interfaces to the corresponding new versions of the interfaces. Although

such changes produce differences in the code, they are intended to preserve

behavior, and should be amenable to the automated test strategy. Thus, modules,

one level above the framework runtime interfaces, are additional candidates for

automated testing and slicing cutoff boundaries.

Automated testing is attractive in these contexts because a simple, reliable

implementation of a “test oracle” is possible for the encapsulated operating system’s

services. A “test oracle” is a process for automatically determining which test

outputs pass and which ones fail. The “unchanged behavior” condition can be easily

checked by software for a given set of input data. This is possible since both the old

and the new versions of the operating system are available for testing, and test

scaffolding software can compare the results of the two versions via equality tests.

The existence of such a “test oracle” implies that the OS middleware testing process

can be completely automated—enabling economic and practical testing with

statistically significant sample sizes that support very high confidence levels, or, in

some cases, even exhaustive testing of the operating system interfaces that

supports definite conclusions. The proposed automated testing process would, thus,

classify all of the services in the middleware interface to the operating system into

two groups: those whose behavior is the same in both versions of the operating

system (the preserved services), and those whose behavior differs in the two

versions (the modified services). We expect the first group to be much larger than

the second group.

In such cases, we can cut off slices at the system calls to the preserved

services, and conclude that unmodified application components do not have to be

retested unless their slices differ or contain system calls that invoke one of the

modified services. The operating system interface always needs to be thoroughly

retested, but this can be done by the affordable automated process described

above.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 12 -
k^s^i=mlpqdo^ar^qb=p`elli=

The above analysis depends on the assumption that we can accept a

statistical inference about the unchanged behavior of the operating system’s calls, if

the statistical confidence level is high enough. Since most military decisions must

be based on information that has the same degree of uncertainty, we do not expect

lack of certainty to be a problem in principle. We, therefore, consider how to

determine what level of confidence would be “high enough,” and how many test

cases are necessary to reach that level of confidence.

We start with a consideration that should be meaningful to the stakeholders: if

the mean time between observations of a behavioral difference in a given operating

system’s service is substantially (k times) longer than a mission, it is acceptable to

ignore risks due to the possibility of such an unexpected difference. The meaning of

“substantially” can be expressed as a numerical safety factor k that can be

understood and set by system stakeholders based on their tolerance for risk.

Next, we measure the mean number of executions per mission es for each

service s in the middleware interface to the operating system. The objective of the

automated testing for each service s is to ensure the mean number of executions

between observed differences in the behavior of service s is at least Ns, where

Ns = k es

Theorem 4.3 from Howden (1987) can then be used to determine the required

number of test cases Ts for each service:

Ts = Ns log2 Ns

If we run Ts test cases that are independently drawn from the probability

distribution characterizing the mission (called the operational profile), the theorem

will enable us to conclude that the mean number of executions is at least Ns with a

statistical confidence level (1 – 1/Ns); however, this is contingent upon none of the Ts

test cases showing any differences in the behavior of the services under the new

version of the operating system from those in the previously released version.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 13 -
k^s^i=mlpqdo^ar^qb=p`elli=

The rationale for this choice of confidence level is that it makes the probability

of making a false positive conclusion no more than the acceptable frequency of

behavioral differences—thus scaling the risk due to random sampling errors to

match the specified maximum acceptable failure rate. False positive conclusions

correspond to cases in which the frequency of behavioral differences in the new

release of the operating system service in question is actually greater than the target

bound (1/Ns), but the automated testing procedure failed to observe a difference due

to random sampling fluctuations that caused conforming results to appear purely by

chance. The test set size Ts has been chosen to make the probability of such a

chance observation at most (1/Ns).

Thorough statistical testing of the operating system interfaces has the

additional benefit of increasing the confidence that hardware differences (and

possibly different versions of the compilers, linkers and loaders) have not affected

the behavior of the applications built using these services.

Cost of Automated Testing
There are several different kinds of automated testing. The most common

kind is semi-automated testing. This approach automates the type of testing

currently performed manually. It is commonly the first kind of automated testing

implemented in an organization because it does not involve any process changes.

In this type of approach, the test cases are still developed individually by test

engineers, but the test cases are run automatically, and the results are classified into

pass or fail categories automatically—often by comparison to previously captured

test outputs that were originally individually examined and categorized by people. In

this approach, execution and categorization of test results is automated, but the

choice of test cases and the initial pass/fail decisions are not. This approach saves

appreciable time and effort relative to a completely manual approach, but the human

effort required is still proportional to the number of test cases.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 14 -
k^s^i=mlpqdo^ar^qb=p`elli=

Another approach particularly relevant in our context is automated statistical

testing. In this approach, the choice of test cases and the initial pass/fail decisions

are automated, as well. This makes a great difference because the human effort

involved does not increase with the number of test cases to be executed. This

enables economical application of the very large test sets needed to achieve the

coverage required to support high levels of statistical confidence in the dependability

of the software. The high levels of statistical confidence are needed to avoid testing

for other unchanged code based on indirect evidence that the behavior of the

underlying services on which the unchanged code depends has not changed.

The context identified in the previous section is well suited for automated

statistical testing, because the choice of test cases and the initial pass/fail decisions

are easily automated in that context: the first can be done by random sampling from

the operational profile, and the second by comparison of the results produced by the

previous release of the software to those produced by the new release.

The variation in the number of the test cases Ts required as a function of the

acceptable risk of false positive conclusions (1/Ns) is illustrated in Table 1.

Ns C Ts
103 0.999 1.0 x 104
104 0.9999 1.3 x 105
105 0.99999 1.7 x 106
106 0.999999 2.0 x 107
107 0.9999999 2.3 x 108
108 0.99999999 2.7 x 109
109 0.999999999 3.0 x 1010

Table 1. Number of Test Cases Required
for Different Levels of Risk Tolerance

Ns: Desired lower bound on mean number of executions between differences

C: Statistical confidence level

Ts: Number of independent random test cases required

Figure 1 shows how the cost characteristics of the proposed automated

testing approach compare to the costs of manual testing. The cost curves are close

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 15 -
k^s^i=mlpqdo^ar^qb=p`elli=

to straight lines; the fixed costs of automated testing are larger than for manual

testing, and the marginal cost of adding another test case is much smaller for

automated testing than for manual testing.

Figure 1. Testing Cost Characteristics

In order to determine the crossover points, we must obtain and analyze

experimental data. This process is still ongoing. However, we expect automated

testing to be affordable—even for the very large numbers of test cases needed for

high confidence in stability of OS services across different releases. We also expect

manual and semi-automated approaches not to be affordable when we test to high

confidence.

Regarding the time and other resources to perform the proposed automated

statistical testing, we can note the following:

1. It typically takes a small amount of time to perform a single system call.

2. Testing using independent, random samples is easily parallelizable
and could be effectively spread over large numbers of processors
using well-established techniques—such as Google’s Map Reduce
programming model (Lammel, 2008)—if very high confidence levels
are needed.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 16 -
k^s^i=mlpqdo^ar^qb=p`elli=

3. Behavior of operating system calls can be tested independently of
other shipboard systems. Such testing does not require interactions
with human operators.

Since the testing process is completely automated, the variable cost of these

tests is due to computing time and hardware, but not to human effort. The benefit of

the automated statistical test approach described here is that there are no variable

costs for labor. Since computing resources are currently inexpensive and steadily

getting cheaper, even the relatively large numbers of test cases needed for high

confidence are likely to be affordable.

This approach does involve some fixed costs for human effort that may be

higher than in less-disciplined manual approaches. These costs are due to the need

for the following activities:

1. Measurement of operational profiles—i.e., the frequency distributions
of operating system calls and their associated input parameters.
Instrumented versions of the software can be used during exercises to
collect measurements of the operational profiles, or, if the
computational overhead of doing this is acceptable, measurements
could also be collected during actual operations. Ongoing research is
developing systematic, computer-assisted methods for this process.

2. Coding more sophisticated test-driver software that includes code for
generating random samples from the measured operational profiles,
code that implements test oracles as described above, and code that
keeps track of testing statistics and reports them.

Testing with Operational Profiles
An operational profile has been defined as the set of input events that the

software will receive during execution, along with the probability that the events will

occur and the set of all input events generated by external hardware and software

systems that the software is expected to interact with during execution (Voas, 2000).

Taking that definition a bit further with respect to probabilities, an operational

profile model, in terms of this study, is a statistical model—developed with some

previous knowledge of the population—that provides inputs to an OA software

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 17 -
k^s^i=mlpqdo^ar^qb=p`elli=

system module under test based on a sampling from PDFs (which represent the

interfaces from the actual environment to the software module). The operational

profile model’s purpose is to drive automated testing of OA software aimed at

probabilistic reliability assessments supported by statistical confidence levels.

Ideally, the automated testing process utilizes the operational profile model for the

generation of inputs to the software under test and possibly analysis of the system

outputs.

Accurate estimates of operational profiles, preferably based on actual

measurements, are necessary because in all practical cases, the reliability of a

software system is meaningless without firm knowledge of the operational profile.

This claim is based on the hypothesis that all real systems have at least one input

value x for which they perform correctly, and at least one other input value y for

which they do not. If we know x and y, we can construct a spectrum of possible

operational profiles for which the reliability of the same system ranges from 0 to 1

and attains every value in between.

The above line of reasoning shows that the only systems whose reliabilities

do not depend on the operational environment are those that fail for all possible

inputs (reliability uniformly 0, not interesting), and those that operate correctly for all

possible inputs (reliability uniformly 1, not attainable in practice for large systems).

For all other systems, the reliability is determined by the operational profile

and can vary widely for different operational contexts. This has serious implications

for component reuse, which is a cornerstone of the Navy OA initiative.

Operational profiles have been used by the testing research community for

many years and have been applied in many contexts. For example, they have been

measured and used to assess the reliability of telephone-switching software.

Testing driven by an operational profile is very efficient because it identifies

failures (and, hence, the faults causing them), on the average, in the order of how

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 18 -
k^s^i=mlpqdo^ar^qb=p`elli=

often they occur. This approach rapidly reduces failure intensity as a test proceeds,

and the faults that cause frequent failures are found and removed first. Users will

also detect failures on average in order of their frequency, if they have not already

been found in test (Musa, 2004).

When we want to maximize the reliability of a fielded system (and thereby

maximally enhance the user/customer experience) and have no better information

about how to find bugs, any other allocation of testing resources is sub-optimal.

Testing in accordance with an operational profile can, therefore, be a key part of a

test automation strategy (Binder, 2004).

An operational profile is the estimated relative frequency (i.e., probability) for

each “operation” that a system under test supports. Operations map easily to use

cases—hence operational profiles and object-oriented development work well

together. However, the Unified Modeling Language (UML) standard for Use Cases

does not provide sufficient information for automated testing. Extended Use Cases

are consistent with the UML, and include domain and probability information

necessary for automated testing (Binder, 1999).

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 19 -
k^s^i=mlpqdo^ar^qb=p`elli=

Operational Profile Model Development
Methodology

Process Overview
The methodology defined in this section defines how to develop an

operational profile model used to test a US Navy OA weapons or combat systems

software component under test. This approach is broken down into several areas—

including identifying the component, understanding its operation and interfaces,

characterizing the inputs statistically, characterizing the outputs (for input

dependency analysis and for understanding of how to detect bugs), deriving testing

profiles, creating the operational profile user-interface and core functionality, and

lastly, developing the supporting documentation.

This approach was developed by NPS as part of the ongoing Operational

Profile Model research effort and is in the process of being validated via the

development of a concept-demonstration prototype model. There it will be critiqued

and optimized as the study continues. Based on the results of the prototype model

development and component testing, we will present a refined approach to acquire

an operational profile model for testing of US Navy OA weapons system software at

the completion of the ongoing research study.

Steps to Develop and Operational Profile Model
1. Identify Component Boundaries

a. Identify Component

b. Identify Component’s Environment

2. Understand Component Operation

a. Identify Inputs

b. Identify Outputs

c. Identify Controls

d. Identify Mechanisms

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 20 -
k^s^i=mlpqdo^ar^qb=p`elli=

e. Understand Component’s Operational Requirements

f. Understand Component’s Technical Requirements

g. Identify States of Operation

3. Define Component Interfaces

a. Define Inputs

b. Define Input Formats

c. Define Outputs

d. Define Output Formats

4. Characterize Inputs (For Operational Profile PDF Derivation)

a. Gather Available Real-world/Historical Input Data

b. Organize Real-world/Historical Input Data

c. Analyze Real-world/Historical Input Data for Each Historical

Environment

i. Relate Operational Data to Software Inputs

ii. Assess Software Input Dependencies

1. Assess Dependencies between Inputs

2. Assess Dependencies with Time

3. Assess Dependencies between Inputs and Outputs

4. Assess Dependencies with Operational State

iii. Derive Operational Probabilistic Characterization for Each Input

1. Utilize Kernel Density Estimation (KDE) for Continuous

PDFs

2. Utilize Variable-width Histogram Bin Approach for

Discrete PDFs

3. Utilize Bayesian Approach for Probabilistic Dependencies

4. Utilize COTS Analysis Tools for Calculations & Analysis

a. S-Plus/R

b. MATLAB

c. Oracle Crystal Ball

iv. Calculate/Determine How to Maximize Confidence in Results

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 21 -
k^s^i=mlpqdo^ar^qb=p`elli=

1. Calculate Confidence Based on Sample Size

2. Utilize Variable-width Histogram Bin Approach to Fix

Confidence

v. Repeat for Each Historical Environment

d. Assess Gaps in Real-world/Historical Input Data

e. Determine Historical and Current Operational Environment Differences

i. Analyze Current Environment Changes

ii. Relate Environment Differences to Affected Input Changes

f. Modify Historical Probabilistic Characterizations to Reflect Current

Environment

i. Analyze Profiles of Historical Environments

1. Relate Calculations to Historical Environments

2. Relate Confidence Level to Available Data

ii. Predict Necessary Changes to Inputs for the Current

Environment

1. Utilize Bayesian Approach for Dependency Analysis

2. Minimize Use of Subjective Analysis (if possible)

iii. Acquire Relevant Data for Current Environment Analysis (if

possible)

iv. Analyze Relevant New Environment Data to Compare with

Predicted Changes (if possible)

v. Assess Software Input Dependencies

vi. Derive Operational Probabilistic Characterization for Each

Current Environment Input

vii. Calculate/Determine How to Maximize Confidence in Current

Environment

5. Characterize Outputs (for Oracle Development)

a. Define Component Operational Failures

i. Define Failures by Event

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 22 -
k^s^i=mlpqdo^ar^qb=p`elli=

ii. Define by Defining Success, and Relate Any Other Behavior as

Failure

b. Relate Operational Failures to Specific Observable Output Behavior

c. Determine Necessary Conditions/Analysis Required to Detect Output

Failures

6. Identify Testing Profiles

a. Derive Operational Testing Profile(s) for Operational Test & Evaluation

(OT&E)

b. Derive Stress-testing Profile(s) for Developmental Test & Evaluation

(DT&E)

7. Develop Operational Profile Model User Interface

a. Develop Component Loading Interface

b. Develop Operational Profile Loading Interface

i. Include Fields Used to Load Desired Probability Distributions for

Each Input

ii. Include Fields for Selecting Desired Number of Test Cases to

be Generated

iii. Include Fields for Starting/Stopping Test

c. Develop Output Analyzer

i. Include Fields Used for Defining Conditions of Failure

ii. Include Fields for Loading Failure Analysis Scripts

d. Develop Analytical Interface

i. Include Fields Identifying Current Progress of Testing

1. Number/Percentage of Tests Complete

2. Number/Percentage of Failed Runs

3. Analysis of Failed Runs (Real Time or Upon Completion)

4. Calculation of Confidence in Software Reliability

8. Develop Operational Profile Model Core Functionality

a. Develop/Code Operational Profile Model Input Generator

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 23 -
k^s^i=mlpqdo^ar^qb=p`elli=

b. Develop/Code Operational Profile Model Interfaces to User &

Component

c. Develop/Code Operational Profile Output Analyzer Oracle & Data

Logger

9. Develop Operational Profile Supporting Documentation

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 24 -
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 25 -
k^s^i=mlpqdo^ar^qb=p`elli=

Recommendations for Future Work

To realize the benefits of automated testing driven by an operational profile

model, future work will need to be done in support of Operational Profile Models and

in other related domains. The next step in this domain will be focused on the

implementation of an operational profile model concept demonstration prototype,

which will be used to validate and refine the proposed development methodology

outlined above. A way to validate both the accuracy of the operational profile model

and the reliability of the software being tested needs to be developed and refined.

Also, if specific environment inputs exist that may lead to failures with severe

consequences and that cannot be confidently estimated using conventional

techniques, it may be necessary to develop new techniques for these specific cases.

Lastly, research into the possibility of using operational profile models in an “open-

loop” testing mode—instead of a black-box mode—would drastically reduce

automated testing computing time for the testing of components with multiple states

of operation. This open-loop approach would make it possible for any state to be set

at the same time as a specific input—without the need of previous input files to get

the component to the state of operation.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 26 -
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 27 -
k^s^i=mlpqdo^ar^qb=p`elli=

List of References

Berzins, V. (2008, April 8). Which unchanged components to retest after a
technology upgrade. In Proceedings of the 5th Annual Acquisition Research
Symposium (pp 142-153). Monterey, CA: Naval Postgraduate School.

Berzins, V., & Dailey, P. (2009, May 14). How to check if it is safe not to retest a
component. In Proceedings of the 6th Annual Acquisition Research
Symposium (pp. 189-200). Monterey, CA: Naval Postgraduate School.

Binder, R.V. (1999). Testing object-oriented systems: Models, patterns, and tools.
Boston, MA: Addison-Wesley.

Binder, R.V. (2004, December). mVerify Corporation. Automated testing with an
operational profile. DoD Software Tech News, 8(1).

Gallagher, K. (1991, August). Using program slicing in software maintenance. IEEE
Transactions on Software Engineering, 17(8), 751-760.

Howden, W. (1987). Functional program testing and analysis. New York: McGraw-
Hill.

Lammel, R. (2008, January). Google’s map reduce programming model—Revisited.
Science of Computer Programming, 70(1), 1-30.

Musa, J.D. (2004). Software reliability engineering: More reliable software faster and
cheaper. Section 2.1: AuthorHouse.

Voas, J. (2000, March/April). Will the real operational profile please stand up? IEEE
Software, 0740-7459.

Weisser, M. (1984, July). Program slicing. IEEE Transactions of Software
Engineering, SE-10(4), 352-357.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 28 -
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =
k^s^i=mlpqdo^ar^qb=p`elli=

2003 - 2009 Sponsored Research Topics

Acquisition Management

 Acquiring Combat Capability via Public-Private Partnerships (PPPs)
 BCA: Contractor vs. Organic Growth
 Defense Industry Consolidation
 EU-US Defense Industrial Relationships
 Knowledge Value Added (KVA) + Real Options (RO) Applied to

Shipyard Planning Processes
 Managing the Services Supply Chain
 MOSA Contracting Implications
 Portfolio Optimization via KVA + RO
 Private Military Sector
 Software Requirements for OA
 Spiral Development
 Strategy for Defense Acquisition Research
 The Software, Hardware Asset Reuse Enterprise (SHARE) repository

Contract Management

 Commodity Sourcing Strategies
 Contracting Government Procurement Functions
 Contractors in 21st-century Combat Zone
 Joint Contingency Contracting
 Model for Optimizing Contingency Contracting, Planning and Execution
 Navy Contract Writing Guide
 Past Performance in Source Selection
 Strategic Contingency Contracting
 Transforming DoD Contract Closeout
 USAF Energy Savings Performance Contracts
 USAF IT Commodity Council
 USMC Contingency Contracting

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =
k^s^i=mlpqdo^ar^qb=p`elli=

Financial Management

 Acquisitions via Leasing: MPS case
 Budget Scoring
 Budgeting for Capabilities-based Planning
 Capital Budgeting for the DoD
 Energy Saving Contracts/DoD Mobile Assets
 Financing DoD Budget via PPPs
 Lessons from Private Sector Capital Budgeting for DoD Acquisition

Budgeting Reform
 PPPs and Government Financing
 ROI of Information Warfare Systems
 Special Termination Liability in MDAPs
 Strategic Sourcing
 Transaction Cost Economics (TCE) to Improve Cost Estimates

Human Resources

 Indefinite Reenlistment
 Individual Augmentation
 Learning Management Systems
 Moral Conduct Waivers and First-tem Attrition
 Retention
 The Navy’s Selective Reenlistment Bonus (SRB) Management System
 Tuition Assistance

Logistics Management

 Analysis of LAV Depot Maintenance
 Army LOG MOD
 ASDS Product Support Analysis
 Cold-chain Logistics
 Contractors Supporting Military Operations
 Diffusion/Variability on Vendor Performance Evaluation
 Evolutionary Acquisition
 Lean Six Sigma to Reduce Costs and Improve Readiness

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =
k^s^i=mlpqdo^ar^qb=p`elli=

 Naval Aviation Maintenance and Process Improvement (2)
 Optimizing CIWS Lifecycle Support (LCS)
 Outsourcing the Pearl Harbor MK-48 Intermediate Maintenance

Activity
 Pallet Management System
 PBL (4)
 Privatization-NOSL/NAWCI
 RFID (6)
 Risk Analysis for Performance-based Logistics
 R-TOC AEGIS Microwave Power Tubes
 Sense-and-Respond Logistics Network
 Strategic Sourcing

Program Management

 Building Collaborative Capacity
 Business Process Reengineering (BPR) for LCS Mission Module

Acquisition
 Collaborative IT Tools Leveraging Competence
 Contractor vs. Organic Support
 Knowledge, Responsibilities and Decision Rights in MDAPs
 KVA Applied to AEGIS and SSDS
 Managing the Service Supply Chain
 Measuring Uncertainty in Earned Value
 Organizational Modeling and Simulation
 Public-Private Partnership
 Terminating Your Own Program
 Utilizing Collaborative and Three-dimensional Imaging Technology

A complete listing and electronic copies of published research are available on our
website: www.acquisitionresearch.org

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

^Åèìáëáíáçå=êÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=ëÅÜççä=çÑ=ÄìëáåÉëë=C=éìÄäáÅ=éçäáÅó=
k~î~ä=éçëíÖê~Çì~íÉ=ëÅÜççä=
RRR=avbo=ol^aI=fkdboplii=e^ii=
jlkqbobvI=`^ifclokf^=VPVQP=

www.acquisitionresearch.org

