

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

Approved for public release, distribution is unlimited.

Prepared for: Naval Postgraduate School, Monterey, California 93943

UCI-AM-10-021

^`nrfpfqflk=oÉëÉ~êÅÜ=

pmlkploba=obmloq=pbofbp=
=

Investigating the Acquisition of Software Systems that Rely
on Open Architecture and Open Source Software

March 2010

by

Dr. Walt Scacchi, Senior Research Scientist,

Thomas A. Alspaugh, Assistant Professor and
Hazel Asuncion, Post-doctoral Researcher

Institute for Software Research

University of California, Irvine

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

The research presented in this report was supported by the Acquisition Chair of the
Graduate School of Business & Public Policy at the Naval Postgraduate School.

To request Defense Acquisition Research or to become a research sponsor,
please contact:

NPS Acquisition Research Program
Attn: James B. Greene, RADM, USN, (Ret)
Acquisition Chair
Graduate School of Business and Public Policy
Naval Postgraduate School
555 Dyer Road, Room 332
Monterey, CA 93943-5103
Tel: (831) 656-2092
Fax: (831) 656-2253
e-mail: jbgreene@nps.edu

Copies of the Acquisition Sponsored Research Reports may be printed from our
website www.acquisitionresearch.org

Executive Summary
In 2007-08, we began an investigation of problems, issues, and opportunities that arise during the

acquisition of software systems that rely on open architectures and open source software. The current

effort funded for 2009 seeks to continue and build on the results in this area, while refining its focus to

center on the essential constraints and tradeoffs we have identified for software-intensive systems with

open architecture (OA) and continuously evolving open source software (OSS) elements. The U.S. Air

Force, Army, and Navy have all committed to an open technology development strategy that

encourages the acquisition of software systems whose requirements include the development or

composition of an OA for such systems, and the use of OSS systems, components, or development

processes when appropriate. Our goal is to further develop and document foundations for emerging

policy and guidance for acquiring software systems that require OA and that incorporate OSS elements.

This report documents and describes the findings and results that we have produced as a result of our

research into the area of the acquisition of software systems that rely on OA and OSS. In particular, it

includes four research papers that have been refereed, reviewed, presented, and published in national

and international research conferences, symposia, and workshops.

1

Research Description

OSS is an integrated web of people, processes, and organizations, including project teams

operating as virtual organizations [Scacchi 2002, 2007]. There is a basic need to understand how to

identify an optimal mix of OSS within Open Architectures (OA) as products, production processes,

practices, community activities, and multi-project (or multi-organization) software ecosystem.

However, the relationship among OA, OSS, requirements, and acquisition is poorly understood [cf.

Scacchi 2002, Naegle and Petross 2007]. Subsequently, in 2007-08, we began by examining how

different OSS licenses can encumber software systems within OA, which therefore give rise to new

requirements for how best to acquire software-intensive systems with OA and OSS elements [Scacchi

and Alspaugh 2008].

Across the three military services within the DoD, OA means different things and is seen as the

basis for realizing different kinds of outcomes [Justice 2007, Navy 2007, Riechers 2007]. Thus, it is

unclear whether the acquisition of a software system that is required to incorporate an OA, as well as

utilize OSS technology and development processes [Wheeler 2007], for one military service will

realize the same kinds of benefits anticipated for OA-based systems by another service. Somehow,

DoD acquisition program managers must make sense of or reconcile such differences in expectations

and outcomes from OA strategies in each service and across DoD. Yet there is little explicit guidance

or reliance on systematic empirical studies for how best to develop, deploy, and sustain complex

software-intensive military systems in the different OA and OSS presentations and documents that

have so far been disseminated [Starrett 2007, Weathersby 2007, Wheeler 2007].

It is becoming clear that verification and validation (V&V) is a crucial activity for OSS in OA.

Two key benefits of OSS are its reliability and its openness to rapid, agile evolution in response to

changing needs. Following Justice [2007], we envision that warfighters will be not only users of OSS

but also contributing “developers” to it, as they know what is needed "right now" to give them the edge

2

over their opponents and are best placed to translate that quickly into new system capabilities.

However, it is still important that OSS/OA systems be reliable and remain open. The benefit of having

a new feature to respond to a current threat is reduced if the change causes a needed existing feature to

stop working, or in the worst case causes the system to fail unexpectedly. With development activities

extended out close to "the tip of the spear" it is also necessary to extend V&V out to the same

developers and their quick-response development. Not only do they need to be able to quickly validate

the changes they have made, they also need to be able to do quick, highly automated regression testing

to identify any existing functions that the new changes have interfered with. At the same time, DoD

needs a structure for managing the evolution of OSS and OA systems at higher levels, to deal with the

decisions of which "spear-tip" changes to fold into the system for larger groups of users, and when, and

to resolve the inevitable conflicts that will arise as different groups of developers take the system in

different, sometimes conflicting directions. In addition, verification must confirm that the changed

system remains open, as well as correct. V&V must be done quickly and convincingly at these broader

levels as well, and will be important in supporting decisions about which modifications to disseminate

when. The recent work Berzins [2008] presented at the 2008 Acquisition Research Symposium shows one

approach that applies a high degree of automation in order to make regression testing more efficient

and more manageable in response to system modifications.

We now turn to address the problems for acquisition research in this area.

Problem for Acquisition Research

OA seems to imply software system architectures incorporating OSS components and open

application program interfaces (APIs). But not all software system architectures incorporating OSS

components and open APIs will produce OA [cf. Scacchi and Alspaugh 2008], since OA depends on:

(a) how/why OSS and open APIs are located within the system architecture, (b) how OSS and open

APIs are implemented, embedded, or interconnected, (c) whether the copyright licenses assigned to

3

different OSS components encumber all/part of a software system's architecture into which they are

integrated. Similarly, (d) alternative architectural configurations and APIs for a given system may or

may not produce an OA. Subsequently, we believe this can lead to situations in which if program

acquisition stipulates a software-intensive system with an OA and OSS, and the architectural design of

a system constrains system requirements (i.e., what requirements can be satisfied by a given system

architecture, or given system requirements what architecture is implied), then the resulting software

system may or may not embody an OA.

OSS processes encourage users (here, warfighters) to become contributing developers, and in an

OA context this entails distributing V&V to them as well. A traditional approach to system and

component requirements may or may not support OSS components’ rapid and fluid evolution, and the

distributed, efficient V&V that will be needed at all levels from system down to components. The need

to manage evolution at a high level also imposes constraints on requirements and, quite probably,

architectures.

Thus, given the goal of realizing an OA strategy, together with the use of evolving OSS

components and open APIs, how should program acquisition, system requirements, software V&V,

open architectures, and post-deployment system support be aligned to achieve this goal? As such, this

is the central research problem we are investigating in order to identify principles, best practices, and

knowledge for how best to insure the success of the OA strategy when OSS and open APIs are required

or otherwise employed. Without such knowledge, program acquisition managers and PEOs are unlikely

to acquire software-intensive systems that will result in an OA that is clean, robust and transparent.

This may frustrate the ability of program managers or PEOs to realize faster, better, and cheaper

software acquisition, development, and post-deployment support.

 Issues for Acquisition Research

Based on current research into the acquisition of OA systems with OSS components [Scacchi

4

and Alspaugh 2008], this research project investigated the following kinds of research questions: How

does the interaction of requirements and architectures for OA systems incorporating OSS components

facilitate or inhibit acquisition practices over time? What are the best available ways and means for

continuously verifying and validating the functionality, correctness, and openness of OA when OSS

components are employed? How do OA systems evolve over time when incorporating continuously

improving OSS components? How can use of continuously evolving OSS in OA be combined with the

need to verify and validate critical systems and to manage their evolution? How do reliability and

predictability trade-off against the cost and flexibility of an OA system when incorporating OSS

components? How should OA software systems be developed and deployed to support warfighter

modification in the field or participation in post-deployment system support, when OSS components

are employed?

Prospects for longer-term Acquisition-related research

Each of the military services has committed to orienting their major system acquisition

programs around the adoption of an OA strategy that in turn embraces and encourages the adoption,

development, use, and evolution of OSS. Thus, it would seem there is a significant need for sustained

research that investigates the interplay and inter-relationships between (a) current/emerging guidelines

for the acquisition of software-intensive systems within the DoD community, and (b) how software

systems that employ an OA incorporating OSS products and production processes are essential to

improving the effectiveness of future, software-intensive program acquisition efforts.

Findings and Results

Based on the research studies conducted during this project during the 2009 project year, we

produced a series of four papers that have been reviewed and refereed by software engineering, open

source software, open architecture, and acquisition researchers. Each of these papers has been jointly

5

authored by the members of our project team, Walt Scacchi, Thomas Alspaugh, and Hazel Asuncion,

and each has been presented at top-tier international research conferences, national symposia, or

workshops, and all have been published. Thus, we are reasonably confident about the quality and

nature of our findings, as well as to the veracity of the research approach we have pursued, and the

computational tools and analytical methods we have employed along the way. Furthermore, we are

continuing to build on these results during the next annual cycle of research beginning in 2010.

Our first paper, “Software Licenses, Open Source Components, and Open Architectures,”

appears in Proc. 6th. Annual Acquisition Research Symposium, Monterey, CA, May 2009. This paper

lays the foundation for our approach and direction for problems to investigate, as are documented in the

remaining three papers. It was presented and well received at the ARS, and received many favorable

comments from members of the Acquisition community in attendance.

Our second paper, “Analyzing Software Licenses in Open Architecture Software

Systems,” Proc. Workshop on Emerging Trends in FLOSS Research and Development, Intern. Conf.

Software Engineering, Vancouver, Canada, May 2009. This paper represents findings that are framed

to specifically address the relationship between OA, OSS, and software licenses, which subsequently

became part of the core of the doctoral dissertation of our project team member, Hazel Asuncion. This

effort was expanded in much great detail, as shown in her dissertation [Asuncion 2009], and

documented on her research seminar held at the Institute for Software Research in June 2009. See

http://www.ics.uci.edu/~hasuncio/assets/ISR09_License.pdf.

Our third paper, “Intellectual Property Rights Requirements for Heterogeneously Licensed

Systems” in Proc. 17th. Intern. Conf. Requirements Engineering (RE09), Atlanta, GA, 24-33,

September 2009, likely represents the major research results to date during the 2009 project period.

This study introduces the formal logic scheme we developed to specify heterogeneous OA software

licenses in a form that can subsequently be analyzed using the computational tools and techniques

6

http://www.ics.uci.edu/~wscacchi/Papers/New/ICSE2009-FLOSS-Workshop.pdf
http://www.ics.uci.edu/~wscacchi/Papers/New/ICSE2009-FLOSS-Workshop.pdf
http://www.ics.uci.edu/~wscacchi/Papers/New/Alspaugh-Asuncion-Scacchi-RE09.pdf
http://www.ics.uci.edu/~wscacchi/Papers/New/Alspaugh-Asuncion-Scacchi-RE09.pdf
http://www.ics.uci.edu/~hasuncio/assets/ISR09_License.pdf

developed by Asuncion [2009]. In this regard, this study demonstrates the viability of our approach to

be able to verify and validate the rights and obligations associated with different software licenses that

are found in complex OA with OSS system components. Furthermore, the study demonstrates that this

approach can be applied to OA at different stages in the development and deployment, thus increasing

the value of the approach and its potential contribution.

Our fourth and last paper, “The Role of Software Licenses in Open Architecture

Ecosystems,” Intern. Workshop on Software Ecosystems, Intern. Conf. Software Reuse, Falls Church,

VA, September 2009, demonstrates how our approach can be further extended to address the analysis

of software licenses challenges across the supply chain of commercial and governmental software

system contractors and customers. This also increases the value of the approach and its potential

contribution.

Final Remarks

Each of the four research papers that constitute the bulk of our project deliverables follow in the

remaining parts of this report. We welcome the opportunity to respond to any questions or comments

following from our research efforts, along with a willingness to describe our view of how these results

can be applied to future open architecture systems that contain software system components that may

include those subject to different, possibly conflicting, open source software licenses.

References

- Asuncion, H. (2009). Architecture-Centric Traceability for Stakeholders, unpublished Doctoral

Dissertation, Department of Informatics, School of Information and Computer Sciences, University of

California, Irvine, December 2009. Related Web site: http://www.isr.uci.edu/~hasuncio/acts/

- Berzins, V. (2008). Which Unchanged Components to Retest after a Technology Upgrade, Proc. 5th

Annual Acquisition Research Symposium, NPS-AM-08-031, Naval Postgraduate School, Monterey,

CA, May.

- Justice, Brig. General Nick (2007). Deploying Open Technologies and Architectures within Military

Systems, Presentation at 3rd DoD Open Conference, Deployment of Open Technologies and

architectures within Military Systems, AFEI Symposium, Arlington VA, 12 December.

7

http://www.isr.uci.edu/~hasuncio/acts/
http://www.ics.uci.edu/~wscacchi/Papers/New/AlspauchAsuncionScacchi-IWSECO-July09.pdf
http://www.ics.uci.edu/~wscacchi/Papers/New/AlspauchAsuncionScacchi-IWSECO-July09.pdf

- Naegle, B. and Petross, D. (2007). Software Architecture: Managing Design for Achieving Warfighter

Capability, Proc. 5th Annual Acquisition Research Symposium, NPS-AM-07-104, Naval Postgraduate

School, Monterey, CA, May.

- Navy (2007), Naval Open Architecture Contract Guidebook (V. 1.1), 6 December 2007.

- Riechers, C., (2007). The Role of Open Technology in Improving USAF Software Acquisition,

Presentation at “Open Source - Open Standards - Open Architecture,” AFEI Symposium, Arlington

VA, 14 March 2007.

- Scacchi, W., (2002). Understanding the Requirements for Developing Open Source Software

Systems, IEE Proceedings--Software, 149(1), 24-39, February 2002.

- Scacchi, W., (2006). Understanding the Evolution of Free/Open Source Software, in N.H. Madhavji,

J.F. Ramil and D. Perry (eds.), Software Evolution and Feedback: Theory and Practice, 181-206, John

Wiley and Sons Inc, New York, 2006.

- Scacchi, W., (2007). Free/Open Source Software Development: Recent Research Results and

Methods, in M. Zelkowitz (Ed.), Advances in Computers, 69, 243-295, 2007.

- Scacchi, W. and Alspaugh, T., (2008). Emerging Issues in the Acquisition of Open Source Software

within the U.S. Department of Defense, Proc. 5th Annual Acquisition Research Symposium, NPS-AM-

08-036, Naval Postgraduate School, Monterey, CA, May.

- Starrett, E. (2007). Software Acquisition in the Army, Crosstalk: The Journal of Defense Software

Engineering, 4-8, May, http://stsc.hill.af.mil/crosstalk.

- Weathersby, J.M., (2007). Open Source Software and the Long Road to Sustainability within the U.S.

DoD IT System, The DoD Software Tech News, 10(2), 20-23, June.

- Wheeler, D.A., (2007). Open Source Software (OSS) in U.S. Government Acquisitions, The DoD

Software Tech News, 10(2), 7-13, June.

8

http://stsc.hill.af.mil/crosstalk

Software Licenses, Open Source Components, and Open Architectures

Thomas A. Alspaugh, Hazeline U. Asuncion, and Walt Scacchi
Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3455 USA
{alspaugh,hasuncion,wcacchi}@ics.uci.edu

Abstract

A substantial number of enterprises and independ-
ent software vendors are adopting a strategy in which
software-intensive systems are developed with an open
architecture (OA) that may contain open source soft-
ware (OSS) components or components with open
APIs. The emerging challenge is to realize the benefits
of openness when components are subject to different
copyright or property licenses. In this paper we iden-
tify key properties of OSS licenses, present a license
analysis scheme to identify license conflicts arising
from composed software elements, and apply it to pro-
vide guidance for software architectural design
choices whose goal is to enable specific licensed com-
ponent configurations. Our scheme has been imple-
mented in an operational environment and demon-
strates a practical, automated solution to the problem
of determining overall rights and obligations for alter-
native OAs.

1. Introduction

It has been common for OSS projects to require that
developers contribute their work under conditions that
ensure the project can license its products under a spe-
cific OSS license. For example, the Apache Contribu-
tor License Agreement grants enough rights to the
Apache Software Foundation for the foundation to
license the resulting systems under the Apache Li-
cense. This sort of license configuration, in which the
rights to a system’s components are homogenously
granted and the system has a well-defined OSS license,
was the norm and continues to this day.

However, we more and more commonly see a dif-
ferent license configuration, in which the components
of a system do not have the same license. The resulting
system may not have any recognized OSS license at
all—in fact, our research indicates this is the most

likely outcome—but instead, if all goes well in its de-
sign, there will be enough rights available in the sys-
tem so that it can be used and distributed, and perhaps
modified by others and sublicensed, if the correspond-
ing obligations are met. These obligations are likely to
differ for components with different licenses; a BSD
(Berkeley Software Distribution) licensed component
must preserve its copyright notices when made part of
the system, for example, while the source code for a
modified component covered by MPL (the Mozilla
Public License) must be made public, and a component
with a reciprocal license such as the Free Software
Foundation’s GPL (General Public License) might
carry the obligation to distribute the source code of
that component but also of other components that con-
stitute “a whole which is a work based on” the GPL’d
component. The obligations may conflict, as when a
GPL’d component’s reciprocal obligation to publish
source code of other components is combined with a
proprietary license’s prohibition of publishing source
code, in which case there may be no rights available
for the system as a whole, not even the right of use,
because the obligations of the licenses that would per-
mit use of its components cannot simultaneously be
met.

The central problem we examine and explain in this
paper is to identify principles of software architecture
and software licenses that facilitate or inhibit success
of the OA strategy when OSS and other software com-
ponents with open APIs are employed. This is the
knowledge we seek to develop and deliver. Without
such knowledge, it is unlikely that an OA that is clean,
robust, transparent, and extensible can be readily pro-
duced. On a broader scale, this paper seeks to explore
and answer the following kinds of research questions:
• What license applies to an OA system composed

with components with different licenses?
• How do alternative OSS licenses facilitate or in-

hibit the development of OA systems?

9

• How should software license constraints be speci-
fied so it is possible to automatically determine the
overall set of rights and obligations associated
with a configured software system architecture?

This paper may help establish a foundation for how
to analyze and evaluate dependencies that might arise
when seeking to develop software systems that em-
body an OA when different types of software compo-
nents or software licenses are being considered for
integration into an overall system configuration.

In the remainder of this paper, we examine software
licensing constraints. This is followed by an analysis
of how these constraints can interact in order to deter-
mine the overall license constraints applicable to the
configured system architecture. Next, we describe an
operational environment that demonstrates automatic
determination of license constraints associated with a
configured system architecture, and thus offers a solu-
tion to the problem we face. We close with a discus-
sion of the conclusions that follow.

2. Background

There is little explicit guidance or reliance on sys-
tematic empirical studies for how best to develop, de-
ploy, and sustain complex software systems when dif-
ferent OA and OSS objectives are at hand. Instead, we
find narratives that provide ample motivation and be-
lief in the promise and potential of OA and OSS with-
out consideration of what challenges may lie ahead in
realizing OA and OSS strategies. Ven [2008] is a re-
cent exception.

We believe that a primary challenge to be addressed
is how to determine whether a system, composed of
subsystems and components each with specific OSS or
proprietary licenses, and integrated in the system’s
planned configuration, is or is not open, and what li-
cense constraints apply to the configured system as a
whole. This challenge comprises not only evaluating
an existing system at run-time, but also at design-time
and build-time for a proposed system to ensure that the
result is “open” under the desired definition, and that
only the acceptable licenses apply; and also under-
standing which licenses are acceptable in this context.
Because there are a range of types and variants of li-
censes [cf. OSI 2008], each of which may affect a sys-
tem in different ways, and because there are a number
of different kinds of OSS-related components and
ways of combining them that affect the licensing issue,
a first necessary step is to understand the kinds of
software elements that constitute a software architec-
ture, and what kinds of licenses may encumber these
elements or their overall configuration.

OA seems to simply mean software system archi-
tectures incorporating OSS components and open ap-
plication program interfaces (APIs). But not all soft-
ware system architectures incorporating OSS compo-
nents and open APIs will produce an OA, since the
openness of an OA depends on: (a) how/why OSS and
open APIs are located within the system architecture,
(b) how OSS and open APIs are implemented, embed-
ded, or interconnected, (c) whether the copyright (In-
tellectual Property) licenses assigned to different OSS
components encumber all/part of a software system's
architecture into which they are integrated, and (d) the
fact that many alternative architectural configurations
and APIs exist that may or may not produce an OA [cf.
Antón and Alspaugh 2007, Scacchi and Alspaugh
2008]. Subsequently, we believe this can lead to situa-
tions in which new software development or acquisi-
tion requirements stipulate a software system with an
OA and OSS, but the resulting software system may or
may not embody an OA. This can occur when the ar-
chitectural design of a system constrains system re-
quirements—raising the question of what requirements
can be satisfied by a given system architecture, when
requirements stipulate specific types or instances of
OSS (e.g., Web browsers, content management serv-
ers) to be employed, or what architecture style [Bass,
Clements, and Kazman 2003] is implied by a given set
of system requirements.

Thus, given the goal of realizing an OA and OSS
strategy together with the use of OSS components and
open APIs, it is unclear how to best align acquisition,
system requirements, software architectures, and OSS
elements across different software license regimes to
achieve this goal [Scacchi and Alspaugh 2008].

3. Understanding open architectures

The statement that a system is intended to embody
an open architecture using open software technologies
like OSS and APIs, does not clearly indicate what pos-
sible mix of software elements may be configured into
such a system. To help explain this, we first identify
what kinds of software elements are included in com-
mon software architectures whether they are open or
closed [cf. Bass, Clements, Kazman 2003].

1. Software source code components – (a) standalone

programs, (b) libraries, frameworks, or middle-
ware, (c) inter-application script code (e.g., C shell
scripts) and (d) intra-application script code (e.g.,
to create Rich Internet Applications using domain-
specific languages (e.g., XUL for Firefox Web

10

browser [Feldt 2007] or “mashups” [Nelson and
Churchill 2006]).

2. Executable components -- These are programs for
which the software is in binary form, and its
source code may not be open for access, review,
modification, and possible redistribution. Execu-
table binaries can be viewed as “derived works”
[Rosen 2005].

3. Application program interfaces/APIs – The avail-
ability of externally visible and accessible APIs to
which independently developed components can
be connected is the minimum condition required
to form an “open system” [Meyers and Obendorf
2001].

4. Software connectors – In addition to APIs, these
may be software either from libraries, frameworks,
or application script code whose intended purpose
is to provide a standard or reusable way of associ-
ating programs, data repositories, or remote ser-
vices through common interfaces. The High Level
Architecture (HLA) is an example of a software
connector scheme [Kuhl, Weatherly, Damann
2000], as are CORBA, Microsoft's .NET, Enter-
prise Java Beans, and LGPL libraries.

5. Configured system or sub-system architectures –
These are software systems that can be built to
conform to an explicit architectural design. They
include software source code components, execu-
table components, APIs, and connectors that are
organized in a way that may conform to a known
“architectural style” such as the Representational
State Transfer [Fielding and Taylor 2002] for
Web-based client-server applications, or may rep-
resent an original or ad hoc architectural pattern
[Bass 2003]. Each of the software elements, and
the pattern in which they are arranged and inter-
linked, can all be specified, analyzed, and docu-
mented using an Architecture Description Lan-
guage and ADL-based support tools [Bass 2003,
Medvidovic 1999].

Figure 1 provides an overall view of an archetypal

software architecture for a configured system that in-
cludes and identifies each of the software elements
above, as well as including free/open source software
(e.g., Gnome Evolution) and closed source software
(WordPerfect) components. In simple terms, the con-
figured system consists of software components (grey
boxes in the Figure) that include a Mozilla Web
browser, Gnome Evolution email client, and WordPer-
fect word processor, all running on a Linux operating
system that can access file, print, and other remote
networked servers (e.g. an Apache Web server). These
components are interrelated through a set of software

connectors (ellipses in the Figure) that connect the
interfaces of software components (small white boxes
attached to a component) and link them together. Mod-
ern day enterprise systems or command and control
systems will generally have more complex architec-
tures and a more diverse mix of software components
than shown in the figure here. As we examine next,
even this simple architecture raises a number of OSS
licensing issues that constrain the extent of openness
that may be realized in a configured OA.

Figure 1. An archetypal software architecture
depicting components (grey boxes), connec-
tors (ellipses), interfaces (small boxes on
components), and data/control links

4. Understanding open software licenses

A particularly knotty challenge is the problem of li-
censes in OSS and OA. There are a number of differ-
ent OSS licenses, and their number continues to grow.
Each license stipulates different constraints attached to
software components that bear it. External references
are available which describe and explain many differ-
ent licenses that are now in use with OSS [Fontana
2008, OSI 2008, Rosen 2005, St. Laurent 2004].

More and more software systems are designed,
built, released, and distributed as OAs composed of
components from different sources, some proprietary
and others not. Systems include components that are
statically bound or interconnected at build-time, while
other components may only be dynamically linked for

11

execution at run-time, and thus might not be included
as part of a software release or distribution. Software
components in such systems evolve not only by ongo-
ing maintenance, but also by architectural refactoring,
alternative component interconnections, and compo-
nent replacement (via maintenance patches, installation
of new versions, or migration to new technologies).
Software components in such systems may be subject
to different software licenses, and later versions of a
component may be subject to different licenses (e.g.,
from CDDL (Sun’s Common Development and Distri-
bution License) to GPL, or from GPLv2 to GPLv3).

Software systems with open architectures are sub-
ject to different software licenses than may be common
with traditional proprietary, closed source systems
from a single vendor. Software architects/developers
must increasingly attend to how they design, develop,
and deploy software systems that may be subject to
multiple, possibly conflicting software licenses. We
see architects, developers, software acquisition manag-
ers, and others concerned with OAs as falling into
three groups. The first group pays little or no heed to
license conflicts and obligations; they simply focus on
the other goals of the system. Those in the second
group have assets and resources, and to protect these
they may have an army of lawyers to advise them on
license issues and other potential vulnerabilities; or
they may constrain the design of their systems so that
only a small number of software licenses (possibly just
one) are involved, excluding components with other
licenses independent of whether such components rep-
resent a more effective or more efficient solution. The
third group falls between these two extremes; members
of this group want to design, develop, and distribute
the best systems possible, while respecting the con-
straints associated with different software component
licenses. Their goal is a configured OA system that
meets all its goals, and for which all the license obliga-
tions for the needed copyright rights are satisfied. It is
this third group that needs the guidance the present
work seeks to provide.

There has been an explosion in the number, type,
and variants of software licenses, especially with open
source software (cf. OSI 2008). Software components
are now available subject to licenses such as the Gen-
eral Public License (GPL), Mozilla Public License
(MPL), Apache Public License, (APL), Academic li-
censes (e.g., BSD, MIT), Creative Commons, Artistic,
and others as well as Public Domain (either via explicit
declaration or by expiration of prior copyright license).
Furthermore, licenses such as these can evolve, result-
ing in new license versions over time. But no matter
their diversity, software licenses represent a legally
enforceable contract that is recognized by government

agencies, corporate enterprises, individuals, and judi-
cial courts, and thus they cannot be taken trivially. As
a consequence, software licenses constrain open archi-
tectures, and thus architectural design decisions.

So how might we support the diverse needs of dif-
ferent software developers, with respect to their need
to design, develop, and deploy configured software
systems with different, possibly conflicting licenses for
the software components they employ? Is it possible to
provide automated means for helping software devel-
opers determine what constraints will result at design-
time, build-time, or run-time when their configured
system architectures employ diverse licensed compo-
nents? These are the kind of questions we address in
this paper.

4.1. Software licenses: Rights and obligations

Copyright, the common basis for software licenses,
gives the original author of a work certain exclusive
rights, which for software include the right to use,
copy, modify, merge, publication, distribution, sub-
licensing, and sell copies. These rights may be licensed
to others; the rights may be licensed individually or in
groups, and either exclusively so that no one else can
exercise them or (more commonly) non-exclusively.
After a period of years, the rights enter the public do-
main, but until then the only way for anyone other than
the author to have any of the copyright rights is to li-
cense them.

Licenses may impose obligations that must be met
in order for the licensee to realize the assigned rights.
Commonly cited obligations include the obligation to
buy a legal copy to use and not distribute copies (pro-
prietary licenses); the obligation to preserve copyright
and license notices (academic licenses); the obligation
to publish at no cost source code you modify (MPL);
or the reciprocal obligation to publish all source code
included at build-time or statically linked (GPL).

Licenses may provide for the creation of derivative
works (e.g., a transformation or adaptation of existing
software) or collective works (e.g., a Linux distribu-
tion that combines software from many independent
sources) from the original work, by granting those
rights possibly with corresponding obligations.

In addition, the author of an original work can make
it available under more than one license, enabling the
work’s distribution to different audiences with differ-
ent needs. For example, one licensee might be happy to
pay a license fee in order to be able to distribute the
work as part of a proprietary product whose source
code is not published, while another might need to
license the work under MPL rather than GPL in order
to have consistent licensing across a system. Thus we

12

now see software distributed under any one of several
licenses, with the licensee choosing from two (“dual
license”) or three (Mozilla’s “tri-license”) licenses.

The basic relationship between software license
rights and obligations can be summarized as follows: if
you meet the specified obligations, then you get the
specified rights. So, informally, for the academic li-
censes, if you retain the copyright notice, list of license
conditions, and disclaimer, then you can use, modify,
merge, sub-license, etc. For MPL, if you publish modi-
fied source code and sub-licensed derived works under
MPL, then you get all the MPL rights. And so forth for
other licenses. However, one thing we have learned
from our efforts to carefully analyze and lay out the
obligations and rights pertaining to each license is that
license details are difficult to comprehend and track—
it is easy to get confused or make mistakes. Some of
the OSS licenses were written by developers, and often
these turn out to be incomplete and legally ambiguous;
others, usually more recent, were written by lawyers,
and are more exact and complete but can be difficult
for non-lawyers to grasp. The challenge is multiplied
when dealing with configured system architectures that
compose multiple components with heterogeneous
licenses, so that the need for legal interpretations be-
gins to seem inevitable [cf. Fontana 2008, Rosen
2005]. Therefore, one of our goals is to make it possi-
ble to architect software systems of heterogeneously-
licensed components without necessarily consulting
legal counsel. Similarly, such a goal is best realized
with automated support that can help architects under-
stand design choices across components with different
licenses, and that can provide support for testing build-
time releases and run-time distributions to make sure
they achieve the specified rights by satisfying the cor-
responding obligations.

4.2. Expressing software licenses

Historically, most software systems, including OSS
systems, were entirely under a single software license.
However, we now see more and more software sys-
tems being proposed, built, or distributed with compo-
nents that are under various licenses. Such systems
may no longer be covered by a single license, unless
such a licensing constraint is stipulated at design-time,
and enforced at build-time and run-time. But when
components with different licenses are to be included
at build-time, their respective licenses might either be
consistent or conflict. Further, if designed systems
include components with conflicting licenses, then one
or more of the conflicting components must be ex-
cluded in the build-time release or must be abstracted
behind an open API or middleware, with users re-

quired to download and install to enable the intended
operation. (This is common in Linux distributions sub-
ject to GPL, where for example users may choose to
acquire and install proprietary run-time components,
like proprietary media players). So a component li-
cense conflict need not be a show-stopper if identified
at design time. However, developers have to be able to
determine which components’ licenses conflict and to
take appropriate steps at design, build, and run times,
consistent with the different concerns and requirements
that apply at each phase [cf. Scacchi and Alspaugh
2008].

In order to fulfill our goals, we need a scheme for
expressing software licenses that is more formal and
less ambiguous than natural language, and that allows
us to identify conflicts arising from the various rights
and obligations pertaining to two or more component’s
licenses. We considered relatively complex structures
(such as Hohfeld’s eight fundamental jural relations
[Hohfeld 1913]) but, applying Occam’s razor, selected
a simpler structure. We start with a tuple <actor, op-
eration, action, object> for expressing a right or obli-
gation. The actor is the “licensee” for all the licenses
we have examined. The operation is one of the follow-
ing: “may”, “must”, or “must not”, with “may” ex-
pressing a right and “must” and “must not” expressing
obligations; following Hohfeld, the lack of a right
(which would be “may not”) correlates with a duty to
not exercise the right (“must not”), and whenever lack
of a right seemed significant in a license we expressed
it as a negative obligation with “must not”. The action
is a verb or verb phrase describing what may, must, or
must not be done, with the object completing the de-
scription. We specify an object separately from the
action in order to minimize the set of actions. A license
then may be expressed as a set of rights, with each
right associated (in that license) with zero or more ob-
ligations that must be fulfilled in order to enjoy that
right. Figure 2 displays the tuples and associations for
two of the rights and their associated obligations for
the academic BSD software license. Note that the first
right is granted without corresponding obligations.

Figure 2. A portion of the BSD license tuples

We now turn to examine how OA software systems
that include components with different licenses can be

13

designed and analyzed while effectively tracking their
rights and obligations.

When designing an OA software system, there are
heuristics that can be employed to enable architectural
design choices that might otherwise be excluded due to
license conflicts. First, it is possible to employ a “li-
cense firewall” which serves to limit the scope of re-
ciprocal obligations. Rather than simply interconnect-
ing conflicting components through static linking of
components at build time, such components can be
logically connected via dynamic links, client-server
protocols, license shims (e.g., via LGPL connectors),
or run-time plug-ins. Second, the source code of stati-
cally linked OSS components must be made public.
Third, it is necessary to include appropriate notices and
publish required sources when academic licenses are
employed. However, even using design heuristics such
as these (and there are many), keeping track of license
rights and obligations across components that are in-
terconnected in complex OAs quickly become too
cumbersome. Thus, automated support needs to be
provided to help overcome and manage the multi-
component, multi-license complexity.

5. Automating analysis of software license
rights and obligation

We find that if we start from a formal specification
of a software system’s architecture, then we can asso-
ciate software license attributes with the system’s com-
ponents, connectors, and sub-system architectures and
calculate the copyright rights and obligations for the
system. Accordingly, we employ an architectural de-
scription language specified in xADL [2005] to de-
scribe OAs that can be designed and analyzed with a
software architecture design environment [Medvidovic
1999], such as ArchStudio4 [2006]. We have taken
this environment and extended it with a Software Ar-
chitecture License Traceability Analysis module [cf.
Asuncion 2008]. This allows for the specification of
licenses as a list of attributes (license tuples) using a
form-based user interface, similar to those already used
and known for ArchStudio4 and xADL [ArchStudio
2006, Medvidovic 1999].

Figure 3 shows a screenshot of an ArchStudio4 ses-
sion in which we have modeled the OA seen in Fig-
ure 1. OA software components, each of which has an
associated license, are indicated by darker shaded
boxes. Light shaded boxes indicate connectors. Archi-
tectural connectors may or may not have associated
license information; those with licenses (such as archi-
tectural connectors that represent functional code) are
treated as components during license traceability

analysis. A directed line segment indicates a link.
Links connect interfaces between the components and
connectors. Furthermore, the Mozilla component as
shown here contains a hypothetical subarchitecture for
modeling the role of intra-application scripting, as
might be useful in specifying license constraints for
Rich Internet Applications. This subarchitecture is
specified in the same manner as the overall system
architecture, and is visible in Figure 5. The automated
environment allows for tracing and analysis of license
attributes and conflicts.

 Figure 4 shows a view of the internal XML repre-
sentation of a software license. Analysis and calcula-
tions of rights, obligations, and conflicts for the OA
are done in this form. This schematic representation is
similar in spirit to that used for specifying and analyz-
ing privacy and security regulations associated with
certain software systems [Breaux and Anton 2008].

With this basis to build on, it is now possible to
analyze the alignment of rights and obligations for the
overall system:

1. Propagation of reciprocal obligations

Reciprocal obligations are imposed by the li-
cense of a GPL’d component on any other com-
ponent that is part of the same “work based on the
Program” (i.e. on the first component), as defined
in GPL. We follow the widely-accepted interpreta-
tion that build-time static linkage propagate the
reciprocal obligations, but the “license firewalls”
do not. Analysis begins, therefore, by propagating
these obligations along all connectors that are not
license firewalls.

2. Obligation conflicts

An obligation can conflict with another obliga-
tion contrary to it, or with the set of available
rights, by requiring a copyright right that has not
been granted. For instance, the Corel proprietary
license for the WordPerfect component, CTL
(Corel Transactional License), may be taken to en-
tail that a licensee must not redistribute source
code. However, an OSS license, GPL, may state
that a licensee must redistribute source code.
Thus, the conflict appears in the modality of the
two otherwise identical obligations, “must not” in
CTL and “must” in GPL. A conflict on the same
point could occur also between GPL and a com-
ponent whose license fails to grant the right to dis-
tribute its source code.

This phase of the analysis is affected by the
overall set of rights that are required. If conflicts
arise involving the union of all obligations in all

14

components’ licenses, it may be possible to elimi-
nate some conflicts by selecting a smaller set of
rights, in which case only the obligations for those
rights need be considered.

Figure 5 shows a screenshot in which the Li-
cense Traceability Analysis module has identified
obligation conflicts between the licenses of two
pairs of components (“WordPerfect” and “Linux
OS”, and “GUIDisplayManager” and “GUIScript-
Interpreter”).

3. Rights and obligations calculations

The rights available for the entire system (use,
copy, modify, etc.) then are calculated as the inter-
section of the sets of rights available for each
component of the system.

The obligations required for the whole system
then are the union of the specific obligations for
each component that are associated with those
rights. Examples of specific obligations are “Li-
censee must retain copyright notices in the binary
form of module.c” or “Licensee must publish
the source code of component.java version
1.2.3.”

Figure 6 shows a report of the calculations for the
hypothetical subarchitecture of the Mozilla component
in our archetypal architecture, exhibiting an obligation
conflict and the single copyright right (to run the sys-
tem) that the prototype tool shows would be available
for the subarchitecture as a whole if the conflict is re-
solved; a production tool would also list the rights
(none) currently available.

If a conflict is found involving the obligations and
rights of linked components, it is possible for the sys-
tem architect to consider an alternative linking scheme,
employing one or more connectors along the paths
between the components that act as a license firewall,
thereby mitigating or neutralizing the component-
component license conflict. This means that the archi-
tecture and the environment together can determine
what OA design best meets the problem at hand with
available software components. Components with con-
flicting licenses do not need to be arbitrarily excluded,
but instead may expand the range of possible architec-
tural alternatives if the architect seeks such flexibility
and choice.

At build-time (and later at run-time), many of the
obligations can be tested and verified, for example that
the binaries contain the appropriate notices for their
licenses, and that the source files are present in the
correct version on the Web. These tests can be gener-
ated from the internal list of obligations and run auto-

matically. If the system’s interface were extended to
add a control for it, the tests could be run by a de-
ployed system.

The prototype License Traceability Analysis mod-
ule provides a proof-of-concept for this approach. We
encoded the core provisions of four licenses in XML
for the tool—GPL, MPL, CTL, and AFL (Academic
Free License)—to examine the effectiveness of the
license tuple encoding and the calculations based upon
it. While it is clear that we could use a more complex
and expressive structure for encoding licenses, in en-
coding the license provisions to date we found that the
tuple representation was more expressive than needed;
for example, the actor was always “licensee” and
seems likely to remain so, and we found use for only
three operations or modalities. At this writing, the
module shows proof of concept for calculating with
reciprocal obligations by propagating them to adjacent
statically-linked modules; the extension to all paths not
blocked by license firewalls is straightforward and is
independent of the scheme and calculations described
here. Reciprocal obligations are identified in the tool
by lookup in a table, and the meaning and scope of
reciprocality is hard-coded; this is not ideal, but we
considered it acceptable since the legal definition in
terms of the reciprocal licenses will not change fre-
quently. We also focused on the design-time analysis
and calculation rather than build- or run-time as it in-
volves the widest range of issues, including representa-
tions, rights and obligations calculations, and design
guidance derived from them.

Based on our analysis approach, it appears that the
questions of what license (if any) covers a specific
configured system, and what rights are available for
the overall system (and what obligations are needed for
them) are difficult to answer without automated li-
cense-architecture analysis. This is especially true if
the system or sub-system is already in operational run-
time form [cf. Kazman and Carrière 1999]. It might
make distribution of a composite OA system somewhat
problematic if people cannot understand what rights or
obligations are associated with it. We offer the follow-
ing considerations to help make this clear. For exam-
ple, a Mozilla/Firefox Web browser covered by the
MPL (or GPL or LGPL, in accordance with the
Mozilla Tri-License) may download and run intra-
application script code that is covered by a different
license. If this script code is only invoked via dynamic
run-time linkage, or via a client-server transaction pro-
tocol, then there is no propagation of license rights or
obligations. However, if the script code is integrated
into the source code of the Web browser as persistent
part of an application (e.g., as a plug-in), then it could
be viewed as a configured sub-system that may need to

15

be accessed for license transfer or conflict implica-
tions. Another different kind of example can be antici-
pated with application programs (like Web browsers,
email clients, and word processors) that employ Rich
Internet Applications or mashups entailing the use of
content (e.g., textual character fonts or geographic
maps) that is subject to copyright protection, if the
content is embedded in and bundled with the scripted
application sub-system. In such a case, the licenses
involved may not be limited to OSS or proprietary
software licenses.

In the end, it becomes clear that it is possible to
automatically determine what rights or obligations are
associated with a given system architecture at design-
time, and whether it contains any license conflicts that
might prevent proper access or use at build-time or
run-time, given an approach such as ours.

6. Discussion

Software system configurations in OAs are intended
to be adapted to incorporate new innovative software
technologies that are not yet available. These system
configurations will evolve and be refactored over time
at ever increasing rates [Scacchi 2007], components
will be patched and upgraded (perhaps with new li-
cense constraints), and inter-component connections
will be rewired or remediated with new connector
types. As such, sustaining the openness of a configured
software system will become part of ongoing system
support, analysis, and validation. This in turn may re-
quire ADLs to include OSS licensing properties on
components, connectors, and overall system configura-
tion, as well as in appropriate analysis tools [cf. Bass,
Clements, and Kazman 2003, Medvidovic 1999].

Constructing these descriptions is an incremental
addition to the development of the architectural design,
or alternative architectural designs. But it is still time-
consuming, and may present a somewhat daunting
challenge for large pre-existing systems that were not
originally modeled in our environment.

Advances in the identification and extraction of
configured software elements at build time, and their
restructuring into architectural descriptions is becom-
ing an ever more automatable endeavor [cf. Choi 1990,
Kazman 1999, Jansen 2008]. Further advances in such
efforts have the potential to automatically produce
architectural descriptions that can either be manually
or semi-automatically annotated with their license con-
straints, and thus enable automated construction and
assessment of build-time software system architec-
tures.

The list of recognized OSS licenses is long and
ever-growing, and as existing licenses are tested in the
courts we can expect their interpretations to be clari-
fied and perhaps altered; the GPL definition of “work
based on the Program”, for example, may eventually
be clarified in this way, possibly refining the scope of
reciprocal obligations. Our expressions of license
rights and obligations are for the most part compared
for identical actors, actions, and objects, then by look-
ing for “must not” in one and either “must” or “may”
in the other, so that new licenses may be added by
keeping equivalent rights or obligations expressed
equivalently. Reciprocal obligations, however, are
handled specially by hard-coded algorithms to traverse
the scope of that obligation, so that addition of obliga-
tions with different scope, or the revision of the under-
standing of the scope of an existing obligation, re-
quires development work. Possibly these issues will
be clarified as we add more licenses to the tool and
experiment with their application in OA contexts.

Lastly, our scheme for specifying software licenses
offers the potential for the creation of shared reposito-
ries where these licenses can be accessed, studied,
compared, modified, and redistributed.

7. Conclusion

The relationship between open architecture, open
source software, and multiple software licenses is
poorly understood. OSS is often viewed as primarily a
source for low-cost/free software systems or software
components. Thus, given the goal of realizing an OA
strategy together with the use of OSS components and
open APIs, it has been unclear how to best align soft-
ware architecture, OSS, and software license regimes
to achieve this goal. Subsequently, the central problem
we examined in this paper was to identify principles of
software architecture and software copyright licenses
that facilitate or inhibit how best to insure the success
of an OA strategy when OSS and open APIs are re-
quired or otherwise employed. In turn, we presented an
analysis scheme and operational environment that
demonstrates that an automated solution to this prob-
lem exists.

We have developed and demonstrated an opera-
tional environment that can automatically determine
the overall license rights, obligations, and constraints
associated with a configured system architecture
whose components may have different software li-
censes. Such an environment requires the annotation of
the participating software elements with their corre-
sponding licenses. These annotated software architec-
tural descriptions can be prescriptively analyzed at

16

design-time as we have shown, or descriptively ana-
lyzed at build-time or run-time. Such a solution offers
the potential for practical support in design-, build-,
and run-time license conformance checking and the
ever-more complex problem of developing large soft-
ware systems from configurations of software elements
that can evolve over time.

8. Acknowledgments

The research described in this report has been sup-
ported by grants #0534771 from the U.S. National
Science Foundation, and Acquisition Research Pro-
gram at the Naval Postgraduate School. No endorse-
ment implied.

References

Alspaugh, T.A and Antón, A.I., (2007). Scenario Support for
Effective Requirements, Information and Software Technol-
ogy, 50(3), 198-220.

ArchStudio (2006). ArchStudio 4 Software and Systems
Architecture Development Environment. Institute for Soft-
ware Research, University of California, Irvine.
http://www.isr.uci.edu/projects/archstudio/

Asuncion, H. (2008). Towards Practical Software Traceabil-
ity, in Companion of the 30th Intern. Conf. Software Engi-
neering, 1023-1026, Leipzig, Germany.

Bass, L., Clements, P., and Kazman, R., (2003). Software
Architecture in Practice, 2nd Edition, Addison-Wesley Pro-
fessional, New York..

Breaux, T.D. and Anton, A.I. (2008). Analyzing Regulatory
Rules for Privacy and Security Requirements, IEEE Trans.
Software Engineering, 34(1), 5-20.

Choi, S. and Scacchi, W. (1990). Extracting and Restructur-
ing the Design of Large Systems, IEEE Software, 7(1), 66-
71.

Feldt, K., (2007). Programming Firefox: Building Rich
Internet Applications with XUL, O'Reilly Press, Sebastopol,
CA.

Fontana, R., Kuhn, B.M., Molgen, E., et al. (2008). A Legal
Issues Primer for Open Source and Free Software Projects,
Software Freedom Law Center, Version 1.5.1,
http://www.softwarefreedom.org/resources/2008/
foss-primer.pdf

Fielding, R. and Taylor, R.N., (2002). Principled Design of
the Modern Web Architecture, ACM Transactions Internet
Technology, 2(2), 115-150.

Hohfeld, W.N. (1913). Some Fundamental Legal Concep-
tions as Applied in Judicial Reasoning. Yale Law Journal,
23(1), 16-59.

Jansen, A., Bosch, J., and Avgeriou, P. (2008). Documenting
After the Fact: Recovering Architectural Design Decisions, J.
Systems and Software, 81(4), 536-557.

Kazman, R. and Carrière, J. (1999). Playing Detective: Re-
constructing Software Architecture from Available Evidence.
J. Automated Software Engineering, 6(2), 107-138.

Kuhl, F., Weatherly, R., and Dahmann, J., (2000). Creating
Computer Simulation Systems: An Introduction to the High
Level Architecture, Prentice-Hall PTR, Upper Saddle River,
New Jersey.

Medvidovic, N.,Rosenblum, D.S., and Taylor, R.N. (1999).
A Language and Environment for Architecture-Based Soft-
ware Development and Evolution. In Proc. 21st Intern. Conf.
Software Engineering (ICSE '99). 44-53, IEEE Computer
Society. Los Angeles, CA.

Meyers, B.C. and Obendorf, P., (2001). Managing Software
Acquisition: Open Systems and COTS Products, Addison-
Wesley, New York.

Nelson L. and Churchill, E.F., (2006). Repurposing: Tech-
niques for Reuse and Integration of Interactive Services,
Proc. 2006 IEEE Intern. Conf. Information Reuse and Inte-
gration, September.

OSI (2008). The Open Source Initiative,
http://www.opensource.org/

Rosen, L. (2005). Open Source Licensing: Software Freedom
and Intellectual Property Law, Prentice-Hall PTR, Upper
Saddle River, New Jersey.
http://www.rosenlaw.com/oslbook.htm

Scacchi, W., (2002). Understanding the Requirements for
Developing Open Source Software Systems, IEE Proceed-
ings--Software, 149(1), 24-39, February.

Scacchi, W. (2007). Free/Open Source Software Develop-
ment: Recent Research Results and Emerging Opportunities,
Proc. European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software Engi-
neering, Dubrovnik, Croatia, 459-468.

Scacchi, W. and Alspaugh, T.A. (2008). Emerging Issues in
the Acquisition of Open Source Software within the U.S.
Department of Defense, Proc. 5th Annual Acquisition Re-
search Symposium, Vol. 1, 230-244, NPS-AM-08-036, Na-
val Postgraduate School, Monterey, CA

St. Laurent, A.M., (2004). Understanding Open Source and
Free Software Licensing, O'Reilly Press, Sebastopol, CA.

17

Ven, K. and Mannaert, H., (2008). Challenges and Strategies
in the Use of Open Source Software by Independent Soft-
ware Vendors, Information and Software Technology, 50,
991-1002.

Wheeler, D.A., (2007). Open Source Software (OSS) in U.S.
Government Acquisitions, The DoD Software Tech News,
10(2), 7-13, June.

xADL (2005). xADL 2.0: Highly-extensible architecture
description language for software and systems. Institute for
Software Research, University of California, Irvine.
http://www.isr.uci.edu/projects/xarchuci/

Figure 3. An ArchStudio 4 model of the open software architecture of Figure 1

Figure 4. A view of the internal schematic representation of the Mozila Public License

18

Figure 5. License conflicts have been identified between two pairs of components

Figure 6. A report identifying the obligations, conflicts, and rights for the architectural model

19

Analyzing Software Licenses in Open Architecture Software Systems

Thomas A. Alspaugh
Department of Computer Science

Georgetown University
Washington, DC 20057 USA

alspaugh@cs.georgetown.edu

Hazeline U. Asuncion and Walt Scacchi
Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3455 USA
{hasuncion,wscacchi}@ics.uci.edu

Abstract

A substantial number of enterprises and independ-
ent software vendors are adopting a strategy in which
software-intensive systems are developed with an open
architecture (OA) that may contain open source soft-
ware (OSS) components or components with open
APIs. The emerging challenge is to realize the benefits
of openness when components are subject to different
copyright or property licenses. In this position paper,
we identify key properties of OSS licenses, present a
license analysis scheme, and discuss our approach for
automatically analyzing license interactions.

1. Introduction

Open architectures have generally referred to the
ability to use third party components to create a soft-
ware system. Oreizy uses the term to refer to his cus-
tomization technique of making the architecture model
an explicit and malleable part of the deployed system
[16], while the Department of Defense community uses
the term to refer to guidelines on acquiring and com-
posing third party components into a software system
[18]. Today, we see more and more software-intensive
systems developed using an OA strategy not only with
open source software (OSS) components but also pro-
prietary components with open APIs (e.g. [20]). De-
veloping systems using the OA technique can lower
development costs [18]. Composing a system with
heterogeneously-licensed components, however, in-
creases the likelihood of liabilities stemming from in-
compatible licenses. Thus, in this paper, we define an
OA system as a software system consisting of compo-
nents that are either open source or proprietary with
open API, whose overall system rights at a minimum
allow its use and redistribution.

OA systems were formerly composed solely of ho-
mogenously-licensed OSS components. These OSS
projects have commonly required developers to con-

tribute their work under conditions that ensure the pro-
ject can license its products under a specific OSS li-
cense. This is changing, however. More systems are
being composed of software components associated
with different licenses. The resulting system may not
have any recognized OSS license at all—but if the sys-
tem is designed well and if the corresponding obliga-
tions are met, copyright rights may be available to al-
low its redistribution and sublicensing.

Due to the sheer number of license types, variants,
versions, and the various stipulations attached to each
of these licenses, analyzing the compatibility or lack
thereof between the various licenses in a system is ex-
tremely difficult. Licenses are often incomplete or
hard to understand. Licenses are also legally binding.

Thus, we aim to identify principles of software ar-
chitecture and software licenses that facilitate success
of an OA system. We present a systematic approach to
analyzing license interaction within a system using a
formal license model that can adequately express the
majority of current license types. We then incorporate
this model into xADL, an extensible architecture de-
scription language that rigorously represents a software
system [10]. We discuss our automated support for
analyzing licenses within ArchStudio4 [11].

2. Background

There is little explicit guidance on how best to de-
velop, deploy, and sustain complex software systems
when different OA and OSS objectives are at hand.
Ven [21] and German [8] are recent exceptions.

OA may simply seem to mean software system ar-
chitectures incorporating OSS components and open
application program interfaces (APIs). But not all
software system architectures incorporating OSS com-
ponents and open APIs will produce an OA, since the
available license rights of an OA depend on: (a)
how/why OSS and open APIs are located within the
system architecture, (b) how OSS and open APIs are

20

implemented, embedded, or interconnected, (c)
whether the licenses of different OSS components en-
cumber all/part of a software system's architecture into
which they are integrated, and (d) the fact that many
alternative architectural configurations and APIs exist
that may or may not produce an OA system (cf. [3,
18]). Thus, new software development or acquisition
requirements may stipulate a software system with an
OA and OSS, but the resulting system may or may not
have the rights needed to embody an OA system.

3. Understanding open architectures

Stating that an OA system comprises OSS and open
API components does not clearly indicate what possi-
ble mixes of software elements may be configured into
such a system. To help explain this, we first identify
software elements included in common software archi-
tectures that affect whether they are open or closed [5].

Software source code components – These can be
either (a) standalone programs, (b) libraries, frame-
works, or middleware, (c) inter-application script code
(e.g., C shell scripts) and (d) intra-application script
code (e.g., to create Rich Internet Applications using
domain-specific languages such as XUL for Firefox
Web browser [6] or “mashups” [15]).

Executable components -- These are programs in
binary form, and its source code may not be open for
access, review, modification, and possible redistribu-
tion. Executable binaries are a compilation of source
code and they can be viewed as “derived works” [17].

Application program interfaces/APIs – The avail-
ability of externally visible and accessible APIs is the
minimum requirement to form an “open system” [14].

Software connectors – Software intended to pro-
vide a standard or reusable way of communication
through common interfaces, e.g. High Level Architec-
ture (HLA) [12], CORBA, MS .NET, and GNU Lesser
General Public License (LGPL) libraries.

Configured system or sub-system architectures –
These are software systems which may comprise of
components with different licenses, affecting the over-
all system license. To minimize license interaction, a
configured system or sub-architecture may be sur-
rounded by a license firewall, a layer of dynamic links,
client-server connections, license shims, or other con-
nectors that block the propagation of reciprocal obliga-
tions. The Affero General Public License (AGPL) [2]
prohibits using license firewalls.

4. Understanding open software licenses

A particularly knotty challenge is the problem of
heterogeneous licenses in software systems. There has

been an explosion in the number, type, and variants of
software licenses, especially with open source software
(cf. [1]). License types include General Public License
(GPL), Mozilla Public License (MPL), Apache Public
License, (APL), academic licenses such as Berkeley
Software Distribution (BSD) and MIT, Creative Com-
mons, Artistic, and Public Domain (either via explicit
declaration or by expiration of prior copyright license).
Within each license types are numerous variants. Fur-
thermore, licenses can evolve, resulting in new license
versions over time. Finally, each license stipulates
different constraints to software components that bear
it. Discussions of many different licenses currently
used with OSS are available [1, 7, 17, 19].

The way components are configured also affects the
license of the overall system. Furthermore, the com-
ponent configurations at build-time and run-time may
have different license implications. For instance,
components may be statically bound or interconnected
at build-time, while other components may only be
dynamically linked for execution at run-time, and thus
might not be included as part of a software release or
distribution. On top of this, software maintenance such
as architectural refactoring, alternative component in-
terconnections, and component replacement (via main-
tenance patches, installation of new versions, or migra-
tion to new technologies) can all have effects on the
overall license of the system.

4.1. Software licenses: rights and obligations

Copyright, the common basis for software licenses,
gives the original author of a work certain exclusive
rights, e.g. right to use, copy, modify, merge, publish,
distribute, sub-license, and sell copies. These rights
may be licensed to others, individually or in groups,
and either exclusively or non-exclusively. After a pe-
riod of years, the rights enter the public domain. Until
then copyright may only be obtained through licensing.

Licenses may impose obligations that must be met
in order for the licensee to realize the assigned rights.
Commonly cited obligations include the obligation to
publish at no cost the source code you modify (MPL)
or the reciprocal obligation to publish all source code
included at build-time or statically linked (GPL). The
obligations may conflict, as when a GPL’d compo-
nent’s reciprocal obligation to publish source code of
other components is combined with a proprietary li-
cense’s prohibition of publishing source code. In this
case, rights may not be available for the system as a
whole, not even the right of use, because the two obli-
gations cannot simultaneously be met.

The basic relationship between software license
rights and obligations can be summarized as follows: if

21

the specified obligations are met, then the specified
rights are granted. For example, if you publish modi-
fied source code and sub-licensed derived works under
MPL, then you get all the MPL rights for the original
and modified code. However, license details are diffi-
cult to comprehend and track—it is easy to get con-
fused or make mistakes. Licenses written by develop-
ers are often incomplete and legally ambiguous, while
those written by lawyers, are more exact and complete
but can be difficult for non-lawyers to grasp. The chal-
lenge is multiplied when dealing with configured sys-
tems that compose multiple components with hetero-
geneous licenses, so that the need for legal interpreta-
tions begins to seem inevitable (cf. [7, 17]).

4.2. Expressing software licenses

We propose a scheme for expressing software li-
censes that is more formal and less ambiguous than
natural language, and that allows us to identify con-
flicts arising from the various rights and obligations
pertaining to two or more component’s licenses. We
considered relatively complex structures (such as
Hohfeld’s eight fundamental jural relations [9]) but,
applying Occam’s razor, selected a simpler structure.
We start with a tuple <actor, operation, action, ob-
ject> for expressing a right or obligation. The actor is
the “licensee” for all the licenses we have examined.
The operation is one of the following: “may”, “must”,
or “must not”, with “may” expressing a right and
“must” and “must not” expressing obligations. A copy-
right right is only available to entities who have been
granted a sublicense. Thus, only the listed rights are
available, and the absence of a right means that it is not
available. The action is a verb or verb phrase describ-
ing what may, must, or must not be done, with the ob-
ject completing the description. We specify an object
separately from the action to minimize the set of ac-
tions. A license may be expressed as a set of rights,
with each right associated with zero or more obliga-
tions that must be fulfilled in order to enjoy that right.
Figure 1 displays the tuples and associations for two of
the rights and their associated obligations for the aca-
demic BSD software license. Note that the first right is
granted without corresponding obligations.

When designing an OA software system, there are
heuristics that can be employed to enable architectural
design choices that might otherwise be excluded due to
license conflicts. First, it is possible to employ a li-
cense firewall that serves to limit the scope of recipro-
cal obligations. Rather than simply interconnecting
conflicting components through static linking of com-
ponents at build-time, such components can be logi-
cally connected via dynamic links, client-server proto-

cols, license shims (e.g., via LGPL connectors), or run-
time plug-ins. Second, the source code of statically
linked OSS components must be made public. Third, it
is necessary to include appropriate notices and publish
required sources when academic licenses are em-
ployed. However, even using design heuristics such as
these (and there are many), keeping track of license
rights and obligations across interconnected compo-
nents in complex OAs quickly become too cumber-
some. Thus, automated support is needed to manage
the multi-component, multi-license complexity.

Figure 1. A portion of the BSD license tuples

5. Automating software license analysis

If we start from a formal specification of a software
system’s architecture, we can associate software li-
cense attributes with the system’s components, connec-
tors, and sub-system architectures and calculate the
copyright rights and obligations for the system’s con-
figuration. Accordingly, we use an architectural de-
scription language specified in xADL [10] to describe
OAs that can be designed and analyzed with a software
architecture design environment [13], such as
ArchStudio4 [11]. ArchStudio4 currently has software
traceability tool support (cf. [4]) and we have extended
it with a Software Architecture License Traceability
Analysis module (see Fig 2). This allows for the speci-
fication of licenses as a list of attributes (license tuples)
using a form-based user interface in ArchStudio4.

We analyze rights and obligations as follows:
Propagation of reciprocal obligations. We follow

the widely-accepted interpretation that build-time static
linkage propagate the reciprocal obligations, but the
“license firewalls” do not. Analysis begins, therefore,
by propagating these obligations along all connectors
that are not license firewalls.

Obligation conflicts. An obligation can conflict
with another obligation, or with the set of available
rights, by requiring a copyright right that has not been
granted. For instance, a proprietary license may require
that a licensee must not redistribute source code, but
GPL states that a licensee must redistribute source
code. Thus, the conflict appears in the modality of the
two otherwise identical obligations, “must not” in a
proprietary software and “must” in GPL.

Rights and obligations calculations. The rights
available for the entire system (use, copy, modify, etc.)
are calculated as the intersection of the sets of rights
available for each component of the system. If a con-

22

flict is found involving the obligations and rights of
linked components, it is possible for the system archi-
tect to consider an alternative linking scheme, e.g. us-
ing one or more connectors along the paths between
the components that act as a license firewall. This
means that the architecture and the environment to-
gether can determine what OA design best meets the
problem at hand with available software components.
Components with conflicting licenses do not need to be
arbitrarily excluded, but instead may expand the range
of possible architectural alternatives if the architect
seeks such flexibility and choice.

Figure 2: License traceability analysis tool

6. Ongoing work

We are currently encoding major license types such

as GPL, MPL, CTL to examine the effectiveness of the
license tuple encoding and the calculations based upon
it. Thus far, we are finding that the tuple representa-
tion is sufficiently expressive for our needs. We are
also currently evaluating the effectiveness of our
automated license analysis on an actual heterogene-
ously licensed system. In addition, we are exploring
the impact of patent and other provisions in licenses.
Finally, we are studying how the design time and
build-time analysis of component configuration relates
to the eventual run-time license of a system.

7. Acknowledgments

Effort funded by grants 0534771 and 0808783 from
the U.S. NSF & Acquisition Research Program at the
Naval Postgraduate School. No endorsement implied.

8. References

[1] Open Source Initiative. http://www.opensource.org, 2008.
[2] Affero Inc. Affero General Public License.
http://www.affero.org/oagpl.html, 2007.
[3] Alspaugh, T.A. and Antón, A.I. Scenario Support for
Effective Requirements. Information and Software Technol-
ogy. 50(3), p. 198-220, February, 2007.

[4] Asuncion, H. Towards Practical Software Traceability. In
Proc. of the 30th International Conf on Software Engineering
Doctoral Symposium. Leipzig, Germany, 2008.
[5] Bass, L., Clements, P., et al. Software Architecture in
Practice. 2nd ed. Addison-Wesley Prof: New York, 2003.
[6] Feldt, K. Programming Firefox: Building Rich Internet
Applications with XUL.O'Reilly Press: Sebastopol, CA, 2007.
[7] Fontana, R., Kuhn, B.M., et al. A Legal Issues Primer for
Open Source and Free Software Projects. http://www.
sofwarefreedom.org/resources/2008/foss-primer.pdf, Soft-
ware Freedom Law Center, Report Version 1.5.1, 2008.
[8] German, D.M. and Hassan, A.E. License Integration Pat-
terns: Dealing with Licenses Mismatches in Component-
Based Development. In Proc. of the 31st International Con-
ference on Software Engineering (ICSE 2009). Vancouver,
Canada, May 16-24, 2009.
[9] Hohfeld, W.N. Some Fundamental Legal Conceptions as
Applied in Judicial Reasoning. Yale Law Journal. 23(1), p.
16-59, 1913.
[10] Institute for Software Research. xADL 2.0. University of
California, Irvine. http://www.isr.uci.edu/projects/xarchuci/
[11] Institute for Software Research. ArchStudio 4. Univ. of
Calif, Irvine, 2006.http://www.isr.uci.edu/projects/archstudio
[12] Kuhl, F., Weatherly, R., et al. Creating Computer Simu-
lation Systems: An Introduction to the High Level Architec-
ture. Prentice-Hall: Upper Saddle River, New Jersey, 1999.
[13] Medvidovic, N., Rosenblum, D.S., et al. A Language
and Environment for Architecture-Based Software Develop-
ment and Evolution. In Proc. of the 21st International Con-
ference on Software Engineering (ICSE '99). p. 44-53, Los
Angeles, CA, May 16-22, 1999.
[14] Meyers, B.C. and Obendorf, P. Managing Software
Acquisition: Open Systems and COTS Products. Addison-
Wesley: New York, 2001.
[15] Nelson, L. and Churchill, E.F. Repurposing: Techniques
for Reuse and Integration of Interactive Services. In Proc. of
the Int. Conf. Information Reuse and Integration. Sep, 2006.
[16] Oreizy, P. Open Architecture Software: A Flexible Ap-
proach to Decentralized Software Evolution. Thesis (Ph. D.,
Information and Computer Science), University of Califor-
nia, 2000.http://www.ics.uci.edu/~peymano/papers/thesis.pdf
[17] Rosen, L. Open Source Licensing: Software Freedom
and Intellectual Property Law. Prentice-Hall PTR: Upper
Saddle River, New Jersey, 2005.
[18] Scacchi, W. and Alspaugh, T.A. Emerging Issues in the
Acquisition of Open Source Software by the U.S. Depart-
ment of Defense. In Proc. of the 5th Annual Acquisition Re-
search Symposium. May 13-15, 2008.
[19] St. Laurent, A.M. Understanding Open Source and Free
Software Licensing. O'Reilly Press: Sebastopol, CA, 2004.
[20] Unity Technologies. End User Lic.Agreement. http://
unity3d.com/unity/unity-end-user-license-2.x.html 2008.
[21] Ven, K. and Mannaert, H. Challenges and Strategies in
the Use of Open Source Software by Independent Software
Vendors. Info and Software Tech. 50, p. 991-1002, 2008.

23

Intellectual Property Rights Requirements for
Heterogeneously-Licensed Systems

Thomas A. Alspaugh
Department of Computer Science

Georgetown University
Washington, DC 20057 USA
alspaugh@cs.georgetown.edu

Hazeline U. Asuncion and Walt Scacchi
Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3455 USA

{hasuncion,wscacchi}@ics.uci.edu

Abstract

Heterogeneously-licensed systems pose new challenges
to analysts and system architects. Appropriate intellectual
property rights must be available for the installed system,
but without unnecessarily restricting other requirements,
the system architecture, and the choice of components both
initially and as it evolves. Such systems are increasingly
common and important in e-business, game development,
and other domains. Our semantic parameterization anal-
ysis of open-source licenses confirms that while most li-
censes present few roadblocks, reciprocal licenses such as
the GNU General Public License produce knotty constraints
that cannot be effectively managed without analysis of the
system’s license architecture. Our automated tool supports
intellectual property requirements management and license
architecture evolution. We validate our approach on an ex-
isting heterogeneously-licensed system.

1. Introduction

Until recently, the norm for licensed software has been
that software is used and distributed under the terms of
a single license, with all its components homogeneously
licensed under a single proprietary or open-source soft-
ware (OSS) license. It is increasingly common to see
heterogeneously-licensed (HtL) systems, whose compo-
nents are not under the same license [8, 18, 20]. For web
systems this has become so common that commercial tools
for creating such “mashups” have been available for several
years [9, 11]. Carefully constrained design, possibly aided
by license exceptions from the copyright owners, may en-
able the resulting system to have a single specific license
[8]. Otherwise the system as a whole has no single license,
but rather one or more rights that are the intersection of all
the component license’s rights, and the union of their obli-

gations. An example of a HtL system is the Unity game
development tool, whose license agreement lists eleven dis-
tinct licenses for its components, in addition to its overall
license terms granting the right to use the system [20].

The intellectual property (IP) in a system—copyrights,
patents, trademarks, trade dress, and trade secrets—is pro-
tected and made available through the licenses of the system
and its components. IP requirements are expressed in terms
of these licenses and the rights and obligations they entail,
and include

• the right to use, distribute, sublicense, etc.;
• the component selection strategy (whether limited to

specific licenses, or open to “best-of-breed”);
• interoperation of systems with specific IP regimes;
• the extent to which the system will be an open archi-

tecture (OA); and
• how it is distributed to, constituted by, and (for OA

systems) evolved by users.

The IP requirements interact with the system’s design-
time, distribution-time, and run-time architectures in dis-
tinct ways, with the possibility of rights that conflict with
other licenses’ obligations, obligations that conflict across
licenses, and unobtainable rights. The result can be a sys-
tem that can’t legally be sublicensed, distributed, or used, or
that involves its developers, distributors, or users in legal li-
abilities. Of course, some will ignore these legal issues (and
anecdotal evidence indicates that many do), but companies
and governments cannot afford to. Source code scanning
services provided by third-party vendors address only one
after-the-fact aspect of this problem. While heuristics ex-
ist for managing IP requirements and are used in HtL sys-
tem development practice, they impose costs, unnecessarily
limit the design space, and can result in a suboptimal, un-
satisfactory system.

Software licenses and IP rights represent a new class of
nonfunctional requirements, and constrain the development
of systems with open architectures.

24

As part of our ongoing investigation of OSS and OA sys-
tems, we performed a grounded theory, semantic parameter-
ization analysis of nine OSS licenses [4]. From this analysis
and related work on OSS licensing [7, 17, 19], we were able
to produce a metamodel for software licenses and for the
contexts in which they are applied, and a calculus for license
rights and obligations in license and context models. Using
them, we calculate rights and obligations for specific sys-
tems, identify conflicts and unsupported rights, and evaluate
alternative architectures and components and guide choices.
We argue that these calculations are needed in developing
systems of components whose licenses can conflict, whose
design-time, distribution-time, and run-time architectures
are not identical, whose component licenses may change
through evolution, or for which a “best-of-breed” compo-
nent strategy is desired. We have validated the approach by
encoding the copyright rights and obligations for a group of
OSS and proprietary licenses, implementing an architecture
tool to automate calculations on the licenses, and applying it
to an OSS-OA reference architecture. These models bring
into clear relief the knotty constraints produced by inter-
actions among proprietary licenses and reciprocal licenses
such as the GNU General Public License (GPL), Mozilla
Public License (MPL), and IBM’s Common Public License
(CPL). We have also discovered a novel second possible
mechanism of interaction, through sources shared among
compiled components under different licenses.

The main contributions of this work are the concept of
a license firewall (Section 3.3); a metamodel for software
licenses (Section 5); the concept of a license architecture
(Section 5); an analysis process for determining the rights
available for a system and their corresponding obligations
(Section 6); an implementation of this analysis in an archi-
tecture development environment (Section 7); and the con-
cept of a virtual license (Section 8).

The remainder of the paper is organized as follows. Sec-
tion 2 outlines a motivating example from our own expe-
rience. Section 3 gives background. Related work is in
Section 4. We discuss our analysis and metamodel of OSS
licenses in Section 5, and the system contexts and calcula-
tions on them in Section 6. Section 7 presents our tool sup-
port and its application to the reference model. We discuss
implications in Section 8 and conclude in Section 9.

2. A motivating example

Heterogeneous software licenses can limit architectural
choices when building and distributing multi-component
systems, as illustrated by our recent experience prototyp-
ing a new multimedia content management portal that in-
cluded support for videoconferencing and video recording
and publishing. Our prototype was based on an Adobe
Flash Media Server (FMS), and we developed both broad-

cast and multi-cast clients for video and audio that shared
their data streams through the FMS. FMS is a closed source
media server whose number of concurrent client connec-
tions is limited by a license fee. As the FMS license did
not allow for redistribution, we could invite remote users
to try out our clients and media services, but we could not
offer to share the run-time environment that included the
FMS. We could distribute our locally-developed clients and
service source code. However, other potential developers
at remote locations would then need to download and in-
stall a licensed copy of the FMS, and then somehow re-
build our system using the source code we provided and
their local copy of the FMS. In our view, this created a bar-
rier to sharing the emerging results from our prototyping
effort. We subsequently undertook to replace the FMS with
Red5, an open source Flash media server, so we could dis-
tribute a run-time version of our content management portal
to remote developers. Now these developers could install
and use our run-time system, or download the source code,
build, and share their own run-time version. Our experience
shows how common software R&D efforts can be hampered
in surprising ways by software components whose hetero-
geneous licenses limit distribution and sharing of work in
progress.

3. Background

3.1. Intellectual Property (IP)

An individual can own a tangible thing, and have prop-
erty rights in it such as the rights to use it, improve it, sell
it or give it away, or prevent others from doing so, subject
to some statutory restrictions. Similarly, an individual can
own intellectual property (IP) of various types, and have
specific property rights in the intangible intellectual prop-
erty, such as the rights to copy, use, change, distribute, or
prevent others from doing so, again subject to some statu-
tory restrictions. In the United States and most other coun-
tries, intellectual property is defined by

• copyright for a specific original expression of an idea,
• patent for an invention,
• trademark for a symbol identifying the origin of prod-

ucts,
• trade dress for distinctive product packaging, and
• trade secret for an idea kept confidential.

Software licenses are primarily concerned with copy-
rights and patents, and mention trademarks only to restrict
a licensee’s use of them; licenses rarely discuss trade dress
or trade secrets [17]. In this paper we focus on copyright
aspects of licenses.

Copyright is defined by Title 17 of the U.S. Code and
by similar law in most other countries. It grants exclu-

25

sive rights to the author of an original work in any tangi-
ble means of expression, namely the rights to reproduce
the copyrighted work; prepare derivative works; distribute
copies; and (for certain kinds of work) perform or display it.
Because the rights are exclusive, the author can prevent oth-
ers from exercising them, except as allowed by “fair use”.
The author can also grant others any or all of the rights
or any part of them; one of the functions of a software li-
cense is to grant such rights, and define the conditions under
which they are granted.

Copyright subsists in the expression of the original work,
that is, the rights begin from the moment the work is ex-
pressed. In the U.S. a copyright lasts for the author’s life-
time plus 70 years, or 95 years for works for hire [21].

3.2. Open-Source Software (OSS)

In contrast to traditional proprietary licenses, used by
companies to retain control of their software and restrict ac-
cess and rights to it outside of the company, OSS licenses
are designed to encourage sharing of software and to grant
as many rights as possible. OSS licenses may be classified
as academic or reciprocal. The academic licenses, includ-
ing the Berkeley Software Distribution (BSD) license, the
Massachusetts Institute of Technology (MIT) license, the
Apache Software License (ASL), and the Artistic License,
grant nearly all rights and impose few obligations. Anyone
can use the software, create derivative works from it, or in-
clude it in proprietary projects; typically the obligations are
to not remove the copyright and license notices from the
software.

Reciprocal licenses encourage sharing of software in
a different way, by imposing the condition that the
reciprocally-licensed software not be combined (for vary-
ing definitions of “combined”) with any software that is not
then released in turn under the reciprocal license. The goal
is to ensure that as open software is improved, by whomever
and for whatever purpose, it remains open. The means is
by preventing improvements from vanishing behind closed,
proprietary licenses. Examples of reciprocal licenses are
GPL, MPL, and CPL.

Licenses of both types typically disclaim liability, assert
that no warranty is implied, and obligate licensees to not use
the licensor’s name or trademark. Newer licenses tend to
discuss patent issues, either giving a limited patent license
along with the other rights, or stating that patent rights are
not included.

Several newer licenses add interesting degrees of flex-
ibility. Most licenses grant the right to sublicense under
the same license, or in some cases under any version of
the same license. IBM’s CPL grants the right to subli-
cense under any license that meets certain conditions; CPL
itself meets them, of course, but several other licenses do

as well. Finally, the Mozilla Disjunctive Tri-License li-
censes the core Mozilla components under any one of three
licenses (MPL, GPL, or the GNU Lesser General Public Li-
cense LGPL); OSS developers can choose the one that best
suits their needs for a particular project and component.

The Open Source Initiative (OSI) maintains standards
for OSS licenses, reviews OSS licenses under those stan-
dards, and gives its approval to those that meet them [16].
OSI publishes a standard repository of approximately 70 ap-
proved OSS licenses.

It has been common for OSS projects to require that
developers contribute their work under conditions that en-
sure the project can license its products under a specific
OSS license. For example, the Apache Contributor Li-
cense Agreement grants enough of each author’s rights to
the Apache Software Foundation for the foundation to li-
cense the resulting systems under the Apache Software Li-
cense. This sort of license configuration, in which the rights
to a system’s components are homogenously granted and
the system has a well-defined OSS license, was the norm
and continues to this day.

3.3. Open Architecture (OA)

Open architecture (OA) software is a customization tech-
nique introduced by Oreizy [15] that enables third parties
to modify a software system through its exposed archi-
tecture, evolving the system by replacing its components.
Almost a decade later, we see more and more software-
intensive systems developed using an OA strategy not only
with open source software (OSS) components but also pro-
prietary components with open APIs (e.g. [20]). Develop-
ing systems using the OA technique can lower development
costs [18]. Composing a system with HtL components,
however, increases the likelihood of liabilities stemming
from incompatible licenses. Thus, in this paper, we define
an OA system as a software system consisting of compo-
nents that are either open source or proprietary with open
API, whose overall system rights at a minimum allow its use
and redistribution.

OA may simply seem to mean software system architec-
tures incorporating OSS components and open application
program interfaces (APIs). But not all such architectures
will produce an OA, since the available license rights of an
OA depend on: (a) how and why OSS and open APIs are
located within the system architecture, (b) how OSS and
open APIs are implemented, embedded, or interconnected,
and (c) the degree to which the licenses of different OSS
components encumber all or part of a software system’s ar-
chitecture into which they are integrated [1, 18].

The following kinds of software elements appearing in
common software architectures can affect whether the re-
sulting systems are open or closed [2].

26

Software source code components—These can be ei-
ther (a) standalone programs, (b) libraries, frameworks, or
middleware, (c) inter-application script code such as C shell
scripts, or (d) intra-application script code, as for creating
Rich Internet Applications using domain-specific languages
such as XUL for the Firefox Web browser [6] or “mashups”
[14]. Each may have its own license.

Executable components—These components are in bi-
nary form, and the source code may not be open for ac-
cess, review, modification, or possible redistribution [17].
If proprietary, they often cannot be redistributed, and so are
present in the design- and run-time architectures but not at
distribution-time.

Software services—An appropriate software service
can replace a source code or executable component.

Application program interfaces/APIs—Availability of
externally visible and accessible APIs is the minimum re-
quirement to form an “open system” [13]. APIs are not and
cannot be licensed, and can limit the propagation of license
obligations.

Software connectors—Software whose intended pur-
pose is to provide a standard or reusable way of commu-
nication through common interfaces, e.g. High Level Ar-
chitecture [12], CORBA, MS .NET, Enterprise Java Beans,
and GNU Lesser General Public License (LGPL) libraries.
Connectors can also limit the propagation of license obliga-
tions.

Methods of connection—These include linking as part
of a configured subsystem, dynamic linking, and client-
server connections. Methods of connection affect license
obligation propagation, with different methods affecting
different licenses.

Configured system or subsystem architectures—
These are software systems whose internal architecture may
comprise components with different licenses, affecting the
overall system license. To minimize license interaction, a
configured system or sub-architecture may be surrounded
by what we term a license firewall, namely a layer of dy-
namic links, client-server connections, license shims, or
other connectors that block the propagation of reciprocal
obligations.

Figure 1 provides an overall view of a reference ar-
chitecture that includes all the software elements above.
This reference architecture has been instantiated in a
number of configured systems that combine OSS and
closed source components. One such system handles
time sheets and payroll at the university; another im-
plements the web portal for a university research lab
(http://proxy.arts.uci.edu/gamelab/). The configured sys-
tems consist of software components such as a Mozilla Web
browser, Gnome Evolution email client, and WordPerfect
word processor, all running on a Linux operating system ac-
cessing file, print, and other remote networked servers such

Web Browser
User Interface

Email & Calendar
User Interface

Word Processor
User Interface

Web
Browser

Email &
Calendar

Local
Server

Operating
System

Web App
Server

Word
Processor

Inter-
Application
Scripting

Middle-
ware 1

Network
Protocol

Connector 1 Connector 2 Connector 3

API 1

API 2 API 3

API 4

Intra-
Application
Scripting

Figure 1. Reference architecture for a
heterogeneously-licensed e-business sys-
tem; connectors (which have no license) are
italicized

as an Apache Web server. The components are intercon-
nected through a set of software connectors that bridge the
interfaces of components and combine the provided func-
tionality into the system’s services.

4. Related work

There has been little explicit guidance on how best to de-
velop, deploy, and sustain complex software systems when
different OA and OSS objectives are at hand. Ven [22] and
German [8] are recent exceptions.

Ven discusses the challenges faced by independent soft-
ware vendors who develop software using OSS and propri-
etary components, focusing on the evolution and mainte-
nance of modified OSS components [22].

German models a license as a set of grants, each of which
has a set of conjoined conditions necessary for the grant to
be given [8]. Interaction between licenses is analyzed by
examining pairs of licenses in the context of five types of
component connection. He also identify twelve patterns for
avoiding license mismatches, found in a large group of OSS
projects, and characterize the patterns using their model.
Our license model extends German’s to address semantic
connections between obligations and rights.

Legal scholars have examined OSS licenses and how

27

they interact in the legal domain, but not how licenses apply
to specific HtL systems and contexts [7, 19]. For example,
Rosen surveys eight existing OSS licenses and creates two
more of his own, the Open Source License and the Aca-
demic Free License, written to professional legal standards
[17]. He examines license interactions primarily in terms
of the categories of reciprocal and non-reciprocal licenses,
rather than in terms of specific licenses.

Breaux et al. have analyzed regulatory rules in another
domain, that of privacy and security [3, 4]. We adapt their
approach in our analysis of OSS licenses.

Our previous work examines how best to align acquisi-
tion, system requirements, architectures, and OSS elements
across different software license regimes to achieve the goal
of combining OSS and OA [18].

5. Analyzing software licenses

A particularly knotty challenge is the problem of hetero-
geneous licenses in software systems. In order to illuminate
the specifics of this challenge and provide a basis for ad-
dressing it, we analyzed a representative group of common
OSS licenses and (for contrast) a proprietary license, using
an approach based on Breaux’s semantic parameterization
[4].

We analyzed these licenses:

1. Apache 2.0
2. Berkeley Software Distribution (BSD)
3. Common Public License (CPL)
4. Eclipse Public License 1.0
5. GNU General Public License 2 (GPL)
6. GNU Lesser General Public License 2.1 (LGPL)
7. MIT
8. Mozilla Public License 1.1 (MPL)
9. Open Software License 3.0 (OSL)

10. Corel Transactional License (CTL)

We obtained the text of the nine OSS license from the
Open Source Initiative web site [16], and the text of the
proprietary CTL license from Corel’s web site [5].

The stages of the analysis were:

1. First we disambiguated forward and backward ref-
erences, identified synonyms, and distinguished pol-
ysemes that expressed different meanings with identi-
cal wording. We identified terms of art from copyright
law, such as “Derived Work”, and specialized terms
defined for a particular license, such as “work based
on the Program” for GPL and “Electronic Distribu-
tion Mechanism” for MPL. From this we constructed
(automatically) a concordance to aid us in the remain-
der of the analysis. The concordance indexed the in-
stances of each distinguished word term, excluding mi-

Figure 2. GPL 2 concordance, sect. 2.0 par. 1

Action

Copyright
Action

Actor Modality Object License

License Right Obligation+ *

?

Tuple

Licensor

Licensee

Figure 3. The metamodel for licenses

nor words such as articles, conjunctions, and preposi-
tions whose use in a particular license carried no spe-
cialized meaning, and tagged each sentence with its
section, paragraph, and sentence sequence numbers.
Figure 2 shows a portion of the concordance for GPL.

2. Next we identified the parts of each license that had
no legal force, such as GPL 2’s “Preamble” section,
or that dealt with any rights or obligations other than
those for copyright, such as patents, trademarks, im-
plied warranty, or liability, iterating with the concor-
dance to confirm the identifications. The remainder of
our analysis focused on copyright.

3. Using the concordances across the licenses, and guided
by legal work on OSS licenses [7, 17, 19], we iden-
tified words and phrases with the same intensional
meaning, and textual structures parallel among the li-
censes. From these we iterated to identify natural lan-
guage patterns each of which could be used as a re-
stricted natural language statement (RNLS) to express
the licenses.

Our metamodel, derived from the patterns we identi-
fied, is shown in Figure 3. A license consists of one or
more rights, each of which entails zero or more obligations.
Rights and obligations have the same structure, a tuple com-
prising an actor (the licensor or licensee), a modality, an ac-
tion, an object of the action, and possibly a license referred
to by the action.

28

Abstract Right

Concrete Right

Abstract Obligation

Concrete Obligation

Modality Object License
(optional)

May
or

Need Not

Must
or

Must Not

Concrete License

Any Under This
License

Any Source
Under This License
Any Component

Under This License

Concrete Object

Right's Object
All Sources Of
Right's Object

X Scope Sources
X Scope

Components

This License
or

Object's License

Concrete License
or

Right's License

Figure 4. Modality, object, and license

We found a wide variety of license actions, some of
which are defined in copyright law or derived from it and
are distinguished as copyright actions. The possible modal-
ities, objects, and licenses are shown in Figure 4.

The RNLS textual form of an example abstract right,
(one not bound to a specific object) extracted from the BSD
license is

Licensee · may · distribute <Any Source> under
<This License>

where “distribute under” is a copyright action and the ab-
stract object <Any Source> quantifies the right over all
sources licensed under the license containing the right (here,
BSD); an example concrete obligation is

Licensee · must · retain the [BSD] copyright no-
tice in [file.c]

where “retain the copyright notice” is an action that is not
a copyright action, BSD is the concrete license the action
references, and file.c is the concrete object the action
references. The RNLS actions are defined with tokens
identifying where the tuple’s object and (if present) license
are inserted, for example in the GPL action “sublicense %
under ˆ” which becomes “sublicense OBJECT under LI-
CENSE”. Figure 5 is an informal illustration of how actions
may contain concrete objects and licenses, references to ob-
jects or licenses bound elsewhere, or quantifiers using the
information in the license architecture abstraction described
below to produce sets of rights or obligations.

We used the metamodel to express the software li-
censes and their rights, obligations, and lower level com-
ponents as Java objects. The constants for the two actors,
the four modalities, and the two license quantifiers were

RIGHT Actor Mod. Action Obj.

OBLIGATION Actor Mod. Action Obj.

Lic.

OBLIGATION Actor Mod. Action Lic.

OBLIGATION Actor Mod. Action

LICENSE

RIGHT Actor Mod. Action Obj.

Obj.

Obj. Lic.

Lic.

Constant
Variable or
Quantifier

Key

RIGHT Actor Mod. Action Obj.
LICENSE

ARCHITECTURE

Figure 5. Object/license references, infor-
mally

modify

modify and
distribute

modify
and use

modify and
sublicense

sublicense
unmodified

license

use
unmodified

use

sublicense
distribute

unmodified

copy

merge
with

Figure 6. Partial order of copyright actions;
actions defined in the Copyright Act in bold

implemented as singleton objects of classes that imple-
mented their semantics. Copyright actions became defined
constants of the Action class, while the remaining non-
copyright actions were unified if their intensional meanings
were identical. From this basis we constructed singleton
objects for each license, reusing the same object for each
instance of its concept in the licenses.

From our analysis we confirmed that the copyright ac-
tions form a partial order, in which a higher copyright im-
plies the rights it is connected to below it.

Figure 6 shows a portion of the copyright partial order,
using brief phrases to identify each defined action. The
relation defining the order is “implied by”. For example,
“copy” is implied by “sublicense unmodified”, since it ac-
complishes nothing to sublicense copies without making
copies, so if we are obligated to sublicense an unmodified
component but fail to have the right to copy it, we cannot
meet our obligation and do not have whatever rights de-
mand it. The copyright actions are the ones specifically
mentioned in the Copyright Act [21]; we incorporated all
actions appearing in the licenses we analyzed into the full
ordering.

This model of licenses gives a basis for reasoning about
licenses, applying them to actual systems, and calculating
the results. The additional information we need about the
system is defined by the list of quantifiers that can appear
as objects in the rights and obligations. The information

29

Sources

Components

Licenses

Scopes
(sets of components

 and sources, each with
a defining license)

Figure 7. The license architecture metamodel

needed is the license architecture (LA), an abstraction of
the system architecture:

1. the set of components of the system;
2. the relation mapping each component to its license;
3. the relation mapping each component to its set of

sources; and
4. the relation from each component to the set of com-

ponents in the same license scope, for each license for
which “scope” is defined (e.g. GPL), and from each
source to the set of sources of components in the scope
of its component (Figure 7).

With this information and definitions of the licenses in-
volved, we calculate rights and obligations for individual
components or for the entire system, and guide HtL system
design.

We note that the obligation quantifiers we identified in
OSS licenses include ones that can set up conflicts through
the license scopes, as is well known for GPL and other re-
ciprocal licenses. However, we also identified an obligation
quantifier over all sources of a component, and note that
it raises the possibility of a conflict arising through com-
ponents that share a source. We believe this conflict path is
novel, and are investigating in what contexts, if any, it could
occur.

6. Analyzing license architectures

In order to make calculations about the rights and obli-
gations for a specific system, we iterate over its compo-
nents, instantiating each component’s license with the com-
ponent’s information. From the resulting concrete rights
and obligations, we can determine the set of rights available
for the system as a whole, and the set of concrete obliga-
tions that must be met in order to get those rights.

The instantiation proceeds conceptually as follows.
Each of the abstract rights in every license has as its ob-

ject either “Any Under This License”, “Any Source Under
This License”, or “Any Component Under This License”.

An abstract right R in license L is made into one or more
concrete rights by replacing “Any Component” with each
component licensed under L in succession, “Any Source”
similarly with sources, and “Any” with either. If the abstract
right R’s license is “Object’s License”, then in each concrete
right r the license is replaced by r’s object’s license.

Each of R’s obligations O is made into one or more con-
crete obligations o for each r. If O’s object is “Right’s Ob-
ject”, then there will be a single o, and r’s object is used
as its object; if O’s object is “All Sources Of Right’s Ob-
ject”, then there will be an o for each source s of r’s object
(which must be a component), and that o’s object will be
s; if O’s object is “L′ Scope Components” for some license
L′, then there will be an o for each component c in r’s ob-
ject’s scope, under the definition of “scope” in L′, and that
o’s object will be c; and if O’s object is “L′ Scope Sources”
then analogously for each such component’s sources.

However, we do not yet know how to fulfill these con-
crete obligations. We generate the correlative right from the
correlate of the obligation’s modality (“may” for “must”,
“need not” for “must not”) and the remaining parts of the
obligation. If the correlative right is a copyright right, we
must use its object’s license to fulfill it: we seek the license
of this right’s object, find an abstract right that generalizes
this right, and iterate the process for this abstract right and
the parts of the correlative right. If there is no such right in
the license, we iterate it again for the right’s successive con-
taining rights in the partial order of copyright rights, hoping
to get all the rights that include it. If not, we save the cor-
relative right as an unfulfilled correlative right.

If the correlative right is not a copyright right, we do not
have to obtain it through a license. However, we must still
check whether it conflicts with an obligation. After all the
obligations have been determined, we compare it against
them, looking for the opposite obligation, the obligation
that matches the right’s actor, action, object, and modal-
ity, but has the opposite modality (“must not” for “may”,
“must” for “need not”). If we find such an obligation, then
there is a right-obligation conflict.

Finally, we go through the concrete obligations looking
for pairs of obligations identical except for their modali-
ties. A pair of such obligations indicates an obligation-
obligation conflict.

The presence of any unfulfilled correlative rights, right-
obligation conflicts, or obligation-obligation conflicts indi-
cates that the full set of license rights can’t be achieved for
all the components in the system. However, we may not
need the full set of rights. More commonly we need a sub-
set of the copyright rights, for example the rights to use and
distribute the system. This is equivalent to having that set
of rights for each component of the system, determined by
examining each component’s rights for the desired rights.

If rights are those desired, then the collected concrete

30

Figure 8. The license architecture analysis tool identifying unavailable rights

obligations for then forms the basis for automated testing
that IP obligations have been met [18].

The process outlined above is not one that developers
would be keen to follow manually. In the next section we
discuss an approach for automating it, both to examine its
potential usefulness as an HtL system development tool and
to validate the analysis process.

7. Automating the analysis

We implemented the analysis tool within the traceability
view of the ArchStudio software architecture environment
[10]. We annotated the xADL software architecture model
with component licenses and sources and used subarchitec-
tures to model scopes. This approach provides:

• The ability to model software systems and specify the
corresponding licenses at different levels of granular-
ity. We provide the option of specifying licenses at
a fine-grained level, for example licenses assigned to
components at the level of a single Web service, such
as the Google Desktop Query API, or at a coarse-
grained level, for example one license assigned to a set
of services provided by Google Desktop APIs http:
//code.google.com/apis/desktop/.

• The ability to model software systems at different ar-
chitecture levels and to analyze license interactions
across the different architecture levels. For instance,
if a sub-subsystem X contains heterogeneous licenses
and is itself part of a bigger system Y with heteroge-
neous licenses, our approach is able to analyze license
interactions between sub-subsystem X and System Y.
We expect to analyze license interactions across multi-
ple architecture levels.
• The modeling approach maps well to the way real soft-

ware systems are configured.
• Automated license analysis is informed by the addi-

tional knowledge of the system configuration. This is
one of our contributions beyond current techniques and
approaches. Simply modifying the system configura-
tion can result in different sets of available rights or
required obligations. Thus, the same set of compo-
nents may be analyzed with or without specific license
firewalls inserted among them.

Figure 8 shows an analysis of a design that specializes
the reference architecture in Figure 1.

Scalability is always an issue for any approach. We con-
clude that our initial algorithm is quadratic in the number of
components with licenses, which for architectures of up to
several hundred components is manageable. The approach

31

requires modeling the system architecture, in common with
many other research approaches, and annotating it to pro-
duce the license architecture, which we feel is a worthwhile
tradeoff for developers following a best-of-breed strategy or
who need to manage reciprocal and proprietary components
or design-, distribution-, and run-time architectures that dif-
fer in significant ways.

The integration of the analysis with architecture design
and evaluation supports easy management of licenses across
the software development lifecycle and across product vari-
ations. For instance, as the software evolves, analysts may
consider replacing a proprietary word processing compo-
nent with an OSS component. By simply modifying the
architecture model and running the automated license anal-
ysis, the analyst learns the new set of rights and obligations.
Similarly, an analyst can create product variations to suit
a particular deployment platform or customer IP require-
ments. These product variations can be stored with Arch-
Studio and retrieved or analyzed at any later time.

8. Discussion

Our efforts in this study are motivated in part by a desire
to understand how best to accommodate the development
of complex software systems whose components may be
subject to different IP licenses. These licenses stipulate the
rights and obligations that must be ensured. However, sys-
tem composition can incorporate components with different
licenses at architectural design time, at distribution time, or
at installed release run time. Thus, we must consider what
overall license schemes we can accommodate, as well as
identify the consequences (freedoms and constraints) each
scheme can realize.

There are at least two kinds of software license/IP
schemes that impose requirements on how software sys-
tems will be developed: (a) a single license for the complete
software system, and (b) a heterogeneous license scheme of
rights and obligations for the complete system incorporat-
ing components with different licenses. We consider each
in turn.

A single license scheme—There is often a desire to spec-
ify a single license at architecture design time in order to in-
sure a composed software system with single license com-
patible scheme at distribution time, and also at run time.
Software licenses like GPL encourage this as part of their
overall IP strategy for insuring software freedom. Similarly,
there is desire to determine whether a single known license
can cover a designed or released system [8]. However, a sin-
gle license regime cannot in general be guaranteed to occur
by chance; instead it is most effectively determined by de-
sign. In either case, it must be specified as a nonfunctional
requirement for software development. But satisfying such
a requirement limits the choice of software components that

can be included in the system design and the system compo-
sition at distribution- and run-time to those compatible (or
subsumed) with the required overall system license. Conse-
quently, our goal in this case is to insure a simple, homoge-
neous scheme relying on known licenses to determine the
propagation and enforcement of their constraints.

A heterogeneous license scheme—In contrast to a sin-
gle license scheme, a heterogeneous license scheme allows
a software system to incorporate components with differ-
ent IP licenses. Such a scheme gives more degrees of free-
dom than a single license scheme. For example, it allows
for best-of-breed component selection, considering compo-
nents with a range of licenses rather than only those with a
specific license. It also allows for specification and design
of software systems conforming to a reference architecture
[2]. This enables a higher degree of software reuse through
inclusion of reusable software components that have a sub-
stantial prior investment in their development and use. Sim-
ilarly, when relying on a reference architecture, design-time
component choices need not be encumbered by license con-
straints, since the resulting system license rights and obliga-
tions need only be determined at distribution-time and run-
time. Furthermore, the distribution- and run-time system
compositions are not limited to a single license; instead they
are constrained only by the license rights and obligations
that ensue for the entire system.

In a heterogeneous license scheme, the overall system
rights and obligations can form a virtual license—a license
whose rights and obligations can be determined, tested, and
satisfied at any time, without being a previously approved
license type, e.g. via the OSI license approval scheme [16].

This enables prototyping both software system composi-
tions and new software license types, and determining their
effect when later mixed with existing software components
or licenses. However, determining the scope of rights and
obligations in an overall composed system will be challeng-
ing without an automated tool such as the one we demon-
strated.

Overall, the key observation is that there is a choice of
ways to proceed in terms of guidance both for those who
seek a single license regime for all components and system
compositions, as in GPL-based software, and for those who
seek to work with multiple software component licenses in
order to develop the best possible system designs they can
realize.

Finally, it now appears possible to design a pure software
IP requirements analysis tool whose purpose is to reconcile
the rights and obligations of different licenses, whether new
or established. Such a tool will not depend on specific soft-
ware architectures or distributions for analysis. It may be of
value especially to legal scholars or IP lawyers who want
to design or analyze alternative IP rights and obligations
schemes, as well as to software engineers who want to de-

32

velop systems with assurable IP rights and obligations. That
tool is beyond the scope of our effort here. But it is note-
worthy that such a tool can emerge from careful analysis of
the requirements for open architecture software systems of
HtL components.

9. Conclusion

Software licenses and IP rights represent a new class of
nonfunctional requirements that increasingly constrain the
development of heterogeneously-licensed systems. There
has been no model to support analysis and management of
these requirements in the context of specific systems, and
the heuristics used in practice to deal with them unnecessar-
ily limit the design and implementation choices. It has not
been possible to follow a best-of-breed strategy in select-
ing components without unduly constraining architectural
decisions.

In this paper we have presented a metamodel for soft-
ware licenses through which they can be made the bases
of IP rights calculations on system architectures. We de-
fined the concepts of a license firewall, license architecture,
and virtual license, providing a basis for analyzing and un-
derstanding the issues involved in HtL system IP rights.
We outlined an algorithm for calculating concrete rights
and obligations for system architectures that identifies con-
flicts and needed rights, and validated the metamodel and
algorithm by formalizing licenses, incorporating model, li-
censes, and algorithm into the ArchStudio environment, and
calculating IP rights and obligations for an existing refer-
ence architecture and an instantiation.

Future work includes abstracting our approach to work
with licenses in the absence of specific systems, extending
it to patent aspects of OSS licenses, and applying it to the
challenges of software acquisition.

Acknowledgments

This research is supported by grants #0534771 and
#0808783 from the U.S. National Science Foundation and
Acquisition Research Program at the Naval Postgraduate
School. No endorsement implied.

The authors thank Paul N. Otto for reviewing the discus-
sion of IP law; all remaining faults are due to the authors.

References

[1] T. A. Alspaugh and A. I. Antón. Scenario support for ef-
fective requirements. Inf. and Softw. Tech., 50(3):198–220,
Feb. 2008.

[2] L. Bass, P. Clements, and R. Kazman. Software Architecture
in Practice. Addison-Wesley, 2003.

[3] T. D. Breaux and A. I. Anton. Analyzing regulatory rules
for privacy and security requirements. IEEE Transactions
on Software Engineering, 34(1):5–20, 2008.

[4] T. D. Breaux, A. I. Anton, and J. Doyle. Semantic param-
eterization: A process for modeling domain descriptions.
ACM Trans. on Softw. Eng. and Meth., 18(2), 2008.

[5] Corel Transactional License, 2008. http://apps.
corel.com/clp/terms.html.

[6] K. Feldt. Programming Firefox: Building Rich Internet Ap-
plications with Xul. O’Reilly Media, Inc., 2007.

[7] R. Fontana, B. M. Kuhn, E. Moglen, M. Norwood, D. B.
Ravicher, K. Sandler, J. Vasile, and A. Williamson. A Legal
Issues Primer for Open Source and Free Software Projects.
Software Freedom Law Center, 2008.

[8] D. M. German and A. E. Hassan. License integration pat-
terns: Dealing with licenses mismatches in component-
based development. In 28th International Conference on
Software Engineering (ICSE ’09), May 2009.

[9] D. Hinchcliffe. Assembling great software: A round-up of
eight mashup tools, Sept. 2006.

[10] Institute for Software Research. ArchStudio 4. Technical
report, University of California, Irvine, 2006. http://
www.isr.uci.edu/projects/archstudio/.

[11] C. Kanaracus. Adobe readying new mashup tool for busi-
ness users. InfoWorld, July 2008.

[12] F. Kuhl, R. Weatherly, and J. Dahmann. Creating computer
simulation systems: an introduction to the high level archi-
tecture. Prentice Hall, 1999.

[13] B. C. Meyers and P. Oberndorf. Managing Software Acqui-
sition: Open Systems and COTS Products. Addison-Wesley
Professional, 2001.

[14] L. Nelson and E. F. Churchill. Repurposing: Techniques for
reuse and integration of interactive systems. In Int. Conf. on
Information Reuse and Integration (IRI-08), page 490, 2006.

[15] P. Oreizy. Open Architecture Software: A Flexible Approach
to Decentralized Software Evolution. PhD thesis, University
of California, Irvine, 2000.

[16] Open Source Initiative, 2008.
http://www.opensource.org/.

[17] L. Rosen. Open Source Licensing: Software Freedom and
Intellectual Property Law. Prentice Hall, 2005.

[18] W. Scacchi and T. A. Alspaugh. Emerging issues in the ac-
quisition of open source software within the U.S. Depart-
ment of Defense. In 5th Annual Acquisition Research Sym-
posium, May 2008.

[19] A. M. St. Laurent. Understanding Open Source and Free
Software Licensing. O’Reilly Media, Inc., 2004.

[20] Unity End User License Agreement, Dec. 2008. http://

unity3d.com/unity/unity-end-user-license-2.

x.html.
[21] U.S. Copyright Act, 17 U.S.C., 2008.

http://www.copyright.gov/title17/.
[22] K. Ven and H. Mannaert. Challenges and strategies in the

use of open source software by independent software ven-
dors. Inf. and Softw. Tech., 50(9-10):991–1002, 2008.

33

The Role of Software Licenses in
Open Architecture Ecosystems

Thomas A. Alspaugh, Hazeline U. Asuncion, and Walt Scacchi

Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3455 USA
{alspaugh,hasuncion,wscacchi}@ics.uci.edu

Abstract. The role of software ecosystems in the development and evo-
lution of open architecture systems has received insufficient consider-
ation. Such systems are composed of heterogeneously-licensed compo-
nents, open source or proprietary or both, in an architecture in which
evolution can occur by evolving existing components or by replacing
them. The software licenses of the components both facilitate and con-
strain the system’s ecosystem, and the rights and duties of the licenses are
crucial in producing an acceptable system. We discuss software ecosys-
tems of open architecture systems from the perspective of an architect
or an acquisition organization, and outline how our automated tool and
environment help address their challenges, support reuse, and assist in
managing coevolution and component interdependence.

1 Introduction

A substantial number of development organizations are adopting a strategy in
which a software-intensive system is developed with an open architecture (OA)
[1], whose components may be open source software (OSS) or proprietary with
open application programming interfaces (APIs). Such systems evolve not only
through the evolution of their individual components, but also through replace-
ment of one component by another, possibly from a different producer or under
a different license. With this approach, the organization becomes an integrator
of components largely produced elsewhere, connected with shims as necessary to
achieve the desired result. An OA development process results in an ecosystem
in which the integrator is influenced from one direction by the goals, interfaces,
license choices, and release cycles of the component producers, and in another
direction by the needs of its consumers. As a result the software components
are reused more widely, and the resulting OA systems can achieve reuse benefits
such as reduced costs, increased reliability, and potentially increased agility in
evolving to meet changing needs. An emerging challenge is to realize the benefits
of this approach when the individual components are heterogeneously licensed,
each potentially with a different license, rather than a single OSS license as in
uniformly-licensed OSS projects or a single proprietary license as in proprietary
development.

34

This challenge is inevitably entwined with the software ecosystems that arise
for OA systems. We find that an OA software ecosystem involves organizations
and individuals producing and consuming components, and supply paths from
producer to consumer; but also

– the OA of the system(s) in question,
– the open interfaces met by the components,
– the degree of coupling in the evolution of related components, and
– the rights and obligations resulting from the software licenses under which

various components are released, that propagate from producers to con-
sumers.

Producers

Components

Integrators

OA Systems

System
Consumers

Mozilla
Foundation

Thunderbird

license

Firefox

license

Gnome

Gnome
Foundation

license

AbiWord

AbiSource
Community

license

WordPerfect

Corel

license

Independent
Software
Vendors

Government
Contractors

sys. rights,
obligations

sys. rights,
obligations

sys. rights,
obligations

Fig. 1. A hypothetical ecosystem in which OA systems are developed

In order to most effectively use an OA approach in developing and evolving
a system, it is essential to consider this OA ecosystem. An OA system draws
on components from proprietary vendors and open source projects. Its archi-
tecture is made possible by the existing general ecosystem of producers, from
which the initial components are chosen. The choice of a specific OA begins
a specialized software ecosystem involving components that meet (or can be
shimmed to meet) the open interfaces used in the architecture. We do not claim

35

this is the best or the only way to reuse components or produce systems, but
it is an ever more widespread way. In this paper we build on previous work on
heterogeneously-licensed systems [2–4] by examining how OA development af-
fects and is affected by software ecosystems, and the role of component licenses
in OA software ecosystems.

A motivating example of this approach is the Unity game development tool,
produced by Unity Technologies [5]. Its license agreement, from which we quote
below, lists eleven distinct licenses and indicates the tool is produced, apparently
using an OA approach, using at least 18 externally produced components or
groups of components:

1. The Mono Class Library, Copyright 2005-2008 Novell, Inc.
2. The Mono Runtime Libraries, Copyright 2005-2008 Novell, Inc.
3. Boo, Copyright 2003-2008 Rodrigo B. Oliveira
4. UnityScript, Copyright 2005-2008 Rodrigo B. Oliveira
5. OpenAL cross platform audio library, Copyright 1999-2006 by authors.
6. PhysX physics library. Copyright 2003-2008 by Ageia Technologies, Inc.
7. libvorbis. Copyright (c) 2002-2007 Xiph.org Foundation
8. libtheora. Copyright (c) 2002-2007 Xiph.org Foundation
9. zlib general purpose compression library. Copyright (c) 1995-2005 Jean-loup

Gailly and Mark Adler
10. libpng PNG reference library
11. jpeglib JPEG library. Copyright (C) 1991-1998, Thomas G. Lane.
12. Twilight Prophecy SDK, a multi-platform development system for virtual reality

and multimedia. Copyright 1997-2003 Twilight 3D Finland Oy Ltd
13. dynamic bitset, Copyright Chuck Allison and Jeremy Siek 2001-2002.
14. The Mono C# Compiler and Tools, Copyright 2005-2008 Novell, Inc.
15. libcurl. Copyright (c) 1996-2008, Daniel Stenberg <daniel@haxx.se>.
16. PostgreSQL Database Management System
17. FreeType. Copyright (c) 2007 The FreeType Project (www.freetype.org).
18. NVIDIA Cg. Copyright (c) 2002-2008 NVIDIA Corp.

An OA system can evolve by a number of distinct mechanisms, some of which
are common to all systems but others of which are a result of heterogeneous
component licenses in a single system.
By component evolution— One or more components can evolve, altering the
overall system’s characteristics.
By component replacement— One or more components may be replaced
by others with different behaviours but the same interface, or with a different
interface and the addition of shim code to make it match.
By architecture evolution— The OA can evolve, using the same components
but in a different configuration, altering the system’s characteristics. For exam-
ple, as discussed in Section 4, changing the configuration in which a component
is connected can change how its license affects the rights and obligations for the
overall system.
By component license evolution— The license under which a component
is available may change, as for example when the license for the Mozilla core

36

components was changed from the Mozilla Public License (MPL) to the current
Mozilla Disjunctive Tri-License; or the component may be made available under
a new version of the same license, as for example when the GNU General Public
License (GPL) version 3 was released.
By a change to the desired rights or acceptable obligations— The OA
system’s integrator or consumers may desire additional license rights (for exam-
ple the right to sublicense in addition to the right to distribute), or no longer
desire specific rights; or the set of license obligations they find acceptable may
change. In either case the OA system evolves, whether by changing components,
evolving the architecture, or other means, to provide the desired rights within
the scope of the acceptable obligations. For example, they may no longer be will-
ing or able to provide the source code for components within the reciprocality
scope of a GPL-licensed module.

The interdependence of integrators and producers results in a co-evolution of
software within an OA ecosystem. Producers may manage their evolution with
a loose coordination among releases, for example as between the Gnome and
Mozilla organizations. Releases of producer components create a tension through
the ecosystem relationships with the releases of OA systems using those compo-
nents, as integrators accomodate the choices of available, supported components
with their own goals and needs. As discussed in our previous work [4], license
rights and obligations are manifested at each component’s interface, then medi-
ated through the system’s OA to entail the rights and corresponding obligations
for the system as a whole. As a result, integrators must frequently re-evaluate
an OA system’s rights and obligations. In contrast to homogeneously-licensed
systems, license change across versions is a characteristic of OA ecosystems, and
architects of OA systems require tool support for managing the ongoing licensing
changes.

We propose that such support must have several characteristics.
– It must rest on a license structure of rights and obligations (Section 5),

focusing on obligations that are enactable and testable. For example, many
OSS licenses include an obligation to make a component’s modified code
public, and whether a specific version of the code is public at a specified
Web address is both enactable (it can be put into practice) and testable. In
contrast, the GPL v.3 provision “No covered work shall be deemed part of an
effective technological measure under any applicable law fulfilling obligations
under article 11 of the WIPO copyright treaty” is not enactable in any
obvious way, nor is it testable — how can one verify what others deem?

– It must take account of the distinctions between the design-time, build-
time, and distribution-time architectures (Sections 4, 5, 6) and the rights
and obligations that come into play for each of them.

– It must distinguish the architectural constructs significant for software li-
censes, and embody their effects on rights and obligations (Section 4).

– It must define license architectures (Section 6).
– It must provide an automated environment for creating and managing li-

cense architectures. We are developing a prototype that manages a license
architecture as a view of its system architecture [4].

37

– Finally, it must automate calculations on system rights and obligations so
that they may be done easily and frequently, whenever any of the factors
affecting rights and obligations may have changed (Section 7).

In the remainder of this paper, we survey some related work (Section 2),
provide an overview of OSS licenses and projects (Section 3), define and discuss
characteristics of open architectures (Section 4), introduce a structure for licenses
(Section 5), outline license architectures (Section 6), sketch our approach for
license analysis (Section 7), and conclude (Section 8).

2 Related Work

Jansen et al. discuss the perspective of software vendors on software ecosystems
[6]. Scacchi examines how free/open source software projects become part of a
multi-project ecosystem, interdependent in the context of evolution and reuse
[7]. The present work examines the point of view of organizations that develop
or acquire OA systems.

Brown and Booch discuss issues that arise in the reuse of OSS components,
such as that interdependence causes changes to propagate, and versions of the
components evolve asynchronously giving rise to co-evolution of interrelated code
in the OA [8]. If the components evolve, the OA system itself is evolving. The
evolution can also include changes to the licenses, and the licenses can change
from version to version.

Ven and Mannaert discuss the challenges independent software vendors face
in combining OSS and proprietary components, with emphasis on how OSS
components evolve and are maintained in this context [9].

Scacchi and Alspaugh examine the features of software architecture and OSS
licenses that affect the success of an OA strategy [3].

There are a number of discussions of OSS licenses, such as Rosen [10] and
Fontana et al. [11].

3 Open-Source Software (OSS)

Traditional proprietary licenses allow a company to retain control of software it
produces, and restrict the access and rights that outsiders can have. OSS licenses,
on the other hand, are designed to encourage sharing and reuse of software,
and grant access and as many rights as possible. OSS licenses are classified as
academic or reciprocal. Academic OSS licenses such as the Berkeley Software
Distribution (BSD) license, the Massachusetts Institute of Technology license,
the Apache Software License, and the Artistic License, grant nearly all rights
to components and their source code, and impose few obligations. Anyone can
use the software, create derivative works from it, or include it in proprietary
projects. Typical academic obligations are simply to not remove the copyright
and license notices.

38

Reciprocal OSS licenses take a more active stance towards sharing and reusing
software by imposing the obligation that reciprocally-licensed software not be
combined (for various definitions of “combined”) with any software that is not
in turn also released under the reciprocal license. The goals are to increase the
domain of OSS by encouraging developers to bring more components under its
aegis, and to prevent improvements to OSS components from vanishing behind
proprietary licenses. Example reciprocal licenses are GPL, the Mozilla Public
License (MPL), and the Common Public License,

Both proprietary and OSS licenses typically disclaim liability, assert no war-
ranty is implied, and obligate licensees to not use the licensor’s name or trade-
marks. Newer licenses often cover patent issues as well, either giving a restricted
patent license or explicitly excluding patent rights.

The Mozilla Disjunctive Tri-License licenses the core Mozilla components
under any one of three licenses (MPL, GPL, or the GNU Lesser General Public
License LGPL); OSS developers can choose the one that best suits their needs
for a particular project and component.

The Open Source Initiative (OSI) maintains a widely-respected definition of
“open source” and gives its approval to licenses that meet it [12]. OSI maintains
and publishes a repository of approximately 70 approved OSS licenses.

Common practice has been for an OSS project to choose a single license
under which all its products are released, and to require developers to contribute
their work only under conditions compatible with that license. For example, the
Apache Contributor License Agreement grants enough of each author’s rights
to the Apache Software Foundation for the foundation to license the resulting
systems under the Apache Software License. This sort of rights regime, in which
the rights to a system’s components are homogenously granted and the system
has a single well-defined OSS license, was the norm in the early days of OSS and
continues to be practiced.

4 Open Architecture (OA)

Open architecture (OA) software is a customization technique introduced by
Oreizy [1] that enables third parties to modify a software system through its
exposed architecture, evolving the system by replacing its components. Increas-
ingly more software-intensive systems are developed using an OA strategy, not
only with OSS components but also proprietary components with open APIs
(e.g. [5]). Using this approach can lower development costs and increase relia-
bility and function [3]. Composing a system with heterogeneously-licensed com-
ponents, however, increases the likelihood of conflicts, liabilities, and no-rights
stemming from incompatible licenses. Thus, in our work we define an OA sys-
tem as a software system consisting of components that are either open source
or proprietary with open API, whose overall system rights at a minimum allow
its use and redistribution, in full or in part.

It may appear that using a system architecture that incorporate OSS com-
ponents and uses open APIs will result in an OA system. But not all such

39

architectures will produce an OA, since the (possibly empty) set of available
license rights for an OA system depends on: (a) how and why OSS and open
APIs are located within the system architecture, (b) how OSS and open APIs
are implemented, embedded, or interconnected, and (c) the degree to which the
licenses of different OSS components encumber all or part of a software system’s
architecture into which they are integrated [3, 13].

The following kinds of software elements appearing in common software ar-
chitectures can affect whether the resulting systems are open or closed [14].

Software source code components—These can be either (a) standalone
programs, (b) libraries, frameworks, or middleware, (c) inter-application script
code such as C shell scripts, or (d) intra-application script code, as for creating
Rich Internet Applications using domain-specific languages such as XUL for the
Firefox Web browser [15] or “mashups” [16]. Their source code is available and
they can be rebuilt. Each may have its own distinct license.

Executable components—These components are in binary form, and the
source code may not be open for access, review, modification, or possible redis-
tribution [10]. If proprietary, they often cannot be redistributed, and so such
components will be present in the design- and run-time architectures but not in
the distribution-time architecture.

Software services—An appropriate software service can replace a source
code or executable component.

Application programming interfaces/APIs—Availability of externally
visible and accessible APIs is the minimum requirement for an “open system”
[17]. APIs are not and cannot be licensed, and can limit the propagation of
license obligations.

Software connectors—Software whose intended purpose is to provide a
standard or reusable way of communication through common interfaces, e.g.
High Level Architecture [18], CORBA, MS .NET, Enterprise Java Beans, and
GNU Lesser General Public License (LGPL) libraries. Connectors can also limit
the propagation of license obligations.

Methods of connection—These include linking as part of a configured sub-
system, dynamic linking, and client-server connections. Methods of connection
affect license obligation propagation, with different methods affecting different
licenses.

Configured system or subsystem architectures—These are software
systems that are used as atomic components of a larger system, and whose in-
ternal architecture may comprise components with different licenses, affecting
the overall system license. To minimize license interaction, a configured sys-
tem or sub-architecture may be surrounded by what we term a license firewall,
namely a layer of dynamic links, client-server connections, license shims, or other
connectors that block the propagation of reciprocal obligations.

Figure 2 shows a high-level view of a reference architecture that includes
all the kinds of software elements listed above. This reference architecture has
been instantiated in a number of configured systems that combine OSS and
closed source components. One such system handles time sheets and payroll

40

Web Browser
User Interface

Email & Calendar
User Interface

Word Processor
User Interface

Web
Browser

Email &
Calendar

Local
Server

Operating
System

Web App
Server

Word
Processor

Inter-
Application
Scripting

Middle-
ware 1

Network
Protocol

Connector 1 Connector 2 Connector 3

API 1

API 2 API 3

API 4

Intra-
Application
Scripting

Fig. 2. Reference architecture for a heterogeneously-licensed e-business system; con-
nectors (which have no license) are italicized

at our university; another implements the web portal for a university research
lab (http://proxy.arts.uci.edu/gamelab/). The configured systems consist
of software components such as a Mozilla Web browser, Gnome Evolution email
client, and WordPerfect word processor, all running on a Linux operating system
accessing file, print, and other remote networked servers such as an Apache Web
server. Components are interconnected through a set of software connectors that
bridge the interfaces of components and combine the provided functionality into
the system’s services.

5 Software Licenses

Copyright law is the common basis for software licenses, and gives the original
author of a work certain exclusive rights: the rights to use, copy, modify, merge,
publish, distribute, sub-license, and sell copies. The author may license these
rights, individually or in groups, to others; the license may give a right either
exclusively or non-exclusively. After a period of years, copyright rights enter the
public domain. Until then copyright may only be obtained through licensing.

Licenses typically impose obligations that must be met in order for the li-
censee to realize the assigned rights. Common obligations include the obligation
to publish at no cost any source code you modify (MPL) or the reciprocal obliga-
tion to publish all source code included at build-time or statically linked (GPL).

41

Fig. 3. Instance architecture for a heterogeneously-licensed e-business system

The obligations may conflict, as when a GPL’d component’s reciprocal obligation
to publish source code of other components is combined with a proprietary com-
ponent’s license prohibition of publishing its source code. In this case, no rights
may be available for the system as a whole, not even the right of use, because
the two obligations cannot simultaneously be met and thus neither component
can be used as part of the system.

The basic relationship between software license rights and obligations can be
summarized as follows: if the specified obligations are met, then the correspond-
ing rights are granted. For example, if you publish your modified source code
and sub-licensed derived works under MPL, then you get all the MPL rights for
both the original and the modified code. However, license details are complexm
subtle, and difficult to comprehend and track—it is easy to become confused or
make mistakes. The challenge is multiplied when dealing with configured system
architectures that compose a large number of components with heterogeneous
licenses, so that the need for legal counsel begins to seem inevitable [10, 11].

We have developed an approach for expressing software licenses that is more
formal and less ambiguous than natural language, and that allows us to cal-
culate and identify conflicts arising from the rights and obligations of two or
more component’s licenses. Our approach is based on Hohfeld’s classic group of
eight fundamental jural relations [19], of which we use right, duty, no-right, and
privilege. We start with a tuple <actor, operation, action, object> for expressing

42

Web Browser
User Interface

Email & Calendar
User Interface

Word Processor
User Interface

Mozilla
Foundation

Gnome
Foundation

Local
Server

Red Hat /
Free

Software
Foundation

Apache
Foundation

Corel

Inter-
Application
Scripting

Middle-
ware 1

Network
Protocol

Connector 1 Connector 2 Connector 3

API 1

API 2 API 3

API 4

Intra-
Application
Scripting

Fig. 4. Reference architecture components supplied by an organization, indicating the
integrator’s dependencies on suppliers, mediated by interfaces and licenses

a right or obligation. The actor is the “licensee” for all the licenses we have
examined. The operation is one of the following: “may”, “must”, “must not”,
or “need not”, with “may” and “need not” expressing rights and “must” and
“must not” expressing obligations. Because copyright rights are only available to
entities who have been granted a sublicense, only the listed rights are available,
and the absence of a right means that it is not available. The action is a verb or
verb phrase describing what may, must, must not, or need not be done, with the
object completing the description. A license may be expressed as a set of rights,
with each right associated with zero or more obligations that must be fulfilled
in order to enjoy that right. Figure 5 displays the tuples and associations for
two of the rights and their associated obligations for the academic BSD software
license. Note that the first right is granted without corresponding obligations.

Heterogeneously-licensed system designers have developed a number heuris-
tics to guide architectural design while avoiding some license conflicts. First, it is
possible to use a reciprocally-licenced component through a license firewall that
limits the scope of reciprocal obligations. Rather than connecting conflicting
components directly through static or other build-time links, the connection is
made through a dynamic link, client-server protocol, license shim (such as a Lim-
ited General Public License connector), or run-time plug-ins. A second approach
used by a number of large organizations is simply to avoid using any reciprocally-
licensed components. A third approach is to meet the license obligations (if that

43

<Licensee, may, use, the binary form of COMPONENT>

<Licensee, may, redistribute, derived or collective works in binary form of COMPONENT>

<Licensee, must, retain, copyright notices in the binary form of COMPONENT>

<Licensee, must, retain, the BSD conditions in the binary form of COMPONENT>

Fig. 5. Tuples for some rights and obligations of the BSD license

is possible) by for example retaining copyright and license notices in the source
and publishing the source code. However, even using design heuristics such as
these (and there are many), keeping track of license rights and obligations across
components that are interconnected in complex OAs quickly becomes too cum-
bersome. Thus, automated support is needed to manage the multi-component,
multi-license complexity.

6 License Architectures

Our license model forms a basis for effective reasoning about licenses in the con-
text of actual systems, and calculating the resulting rights and obligations. In
order to do so, we need a certain amount of information about the system’s con-
figuration at design-, build-, distribution-, and run-time. The needed information
comprises the license architecture, an abstraction of the system architecture:

1. the set of components of the system;
2. the relation mapping each component to its license;
3. the relation mapping each component to its set of sources; and
4. the relation from each component to the set of components in the same

license scope, for each license for which “scope” is defined (e.g. GPL), and
from each source to the set of sources of components in the scope of its
component.

Sources

Components

Licenses

Scopes
(sets of components

 and sources, each with
a defining license)

Fig. 6. The license architecture metamodel

44

With this information and definitions of the licenses involved, we can calcu-
late rights and obligations for individual components or for the entire system,
and guide heterogeneously-licensed system design.

7 License Analysis

Given a formal specification of a software system’s architecture, we can asso-
ciate software license attributes with the system’s components, connectors, and
sub-system architectures, resulting in a license architecture for the system, and
calculate the copyright rights and obligations for the system’s configuration. Due
to the complexity of license architecture analysis, and the need to re-analyze ev-
ery time a component evolves, a component’s license changes, a component is
substituted, or the system architecture changes, OA integrators really need an
automated license architecture analysis environment. We are developing a pro-
totype of such an environment [4].

We use an architectural description language specified in xADL [20] to de-
scribe OAs that can be designed and analyzed with a software architecture design
environment [21], such as ArchStudio4 [22]. We have built the Software Archi-
tecture License Analysis module on top of ArchStudio’s Traceability View [23].
This allows for the specification of licenses as a list of attributes (license tuples)
using a form-based user interface in ArchStudio4 [21, 22].

Fig. 7. Automated tool performing license analysis of instance architecture (version
information not shown)

We analyze rights and obligations as described below [4].

45

7.1 Propagation of reciprocal obligations

We follow the widely-accepted interpretation that build-time static linkage prop-
agate the reciprocal obligations, but appropriate license firewalls do not. Analysis
begins, therefore, by propagating these obligations along all connectors that are
not license firewalls.

7.2 Obligation conflicts

An obligation can conflict with another obligation, or with the set of available
rights, by requiring a copyright right that has not been granted. For instance, a
proprietary license may require that a licensee must not redistribute source code,
but GPL states that a licensee must redistribute source code. Thus, the conflict
appears in the modality of the two otherwise identical obligations, “must not”
in the proprietary license and “must” in GPL.

7.3 Rights and obligations calculations

The rights available for the entire system (use, copy, modify, etc.) are calcu-
lated as the intersection of the sets of rights available for each component of the
system. If a conflict is found involving the obligations and rights of linked com-
ponents, it is possible for the system architect to consider an alternative linking
scheme, e.g. using one or more connectors along the paths between the compo-
nents that act as a license firewall. This means that the architecture and the
automated environment together can determine what OA design best meets the
problem at hand with available software components. Components with conflict-
ing licenses do not need to be arbitrarily excluded, but instead may expand the
range of possible architectural alternatives if the architect seeks such flexibility
and choice.

8 Conclusion

This paper discusses the role of ecosystems in the development and evolution
of OA systems. License rights and obligations play a key role in how and why
an OA system evolves in its ecosystem. We note that license changes across
versions of components is a characteristic of OA systems and ecosystems. A
structure for modeling software licenses and the license architecture of a system
and automated support for calculating its rights and obligations are needed in
order to manage a system’s evolution in the context of its ecosystem. We have
outlined an approach for achieving these and sketched how they further the goal
of reusing components in developing software-intensive systems. Much more work
remains to be done, but we believe this approach turns a vexing problem into
one for which workable solutions can be obtained.

46

Acknowledgments

This research is supported by grants #0534771 and #0808783 from the U.S. Na-
tional Science Foundation, and the Acquisition Research Program at the Naval
Postgraduate School. No endorsement implied.

References

1. Oreizy, P.: Open Architecture Software: A Flexible Approach to Decentralized
Software Evolution. PhD thesis, University of California, Irvine (2000)

2. German, D.M., Hassan, A.E.: License integration patterns: Dealing with licenses
mismatches in component-based development. In: 28th International Conference
on Software Engineering (ICSE ’09). (May 2009)

3. Scacchi, W., Alspaugh, T.A.: Emerging issues in the acquisition of open source
software within the U.S. Department of Defense. In: 5th Annual Acquisition Re-
search Symposium. (May 2008)

4. Alspaugh, T.A., Asuncion, H.U., Scacchi, W.: Analyzing software licenses in open
architecture software systems. In: 2nd International Workshop on Emerging Trends
in FLOSS Research and Development (FLOSS). (May 2009)

5. Unity Technologies: End User License Agreement (December 2008) http://

unity3d.com/unity/unity-end-user-license-2.x.html.
6. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: A research

agenda for software ecosystems. In: ICSE Companion ’09: Companion of the 31st
International Conference on Software Engineering. (May 2009) 187 190

7. Scacchi, W.: Free/open source software development. In: ESEC/FSE 2007: 6th
Joint European Software Engineering Conference and ACM SIGSOFT Symposium
on the Foundations of Software Engineering. (September 2007) 459–468

8. Brown, A.W., Booch, G.: Reusing open-source software and practices: The impact
of open-source on commercial vendors. In: Software Reuse: Methods, Techniques,
and Tools (ICSR-7). (April 2002)

9. Ven, K., Mannaert, H.: Challenges and strategies in the use of open source software
by independent software vendors. Information and Software Technology 50(9-10)
(2008) 991–1002

10. Rosen, L.: Open Source Licensing: Software Freedom and Intellectual Property
Law. Prentice Hall (2005)

11. Fontana, R., Kuhn, B.M., Moglen, E., Norwood, M., Ravicher, D.B., Sandler, K.,
Vasile, J., Williamson, A.: A Legal Issues Primer for Open Source and Free Software
Projects. Software Freedom Law Center (2008)

12. Open Source Initiative: Open Source Definition (2008) http://www.opensource.

org/.
13. Alspaugh, T.A., Antón, A.I.: Scenario support for effective requirements. Infor-

mation and Software Technology 50(3) (February 2008) 198–220
14. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA (2003)
15. Feldt, K.: Programming Firefox: Building Rich Internet Applications with XUL.

O’Reilly Media, Inc. (2007)
16. Nelson, L., Churchill, E.F.: Repurposing: Techniques for reuse and integration

of interactive systems. In: International Conference on Information Reuse and
Integration (IRI-08). (2006) 490

47

17. Meyers, B.C., Oberndorf, P.: Managing Software Acquisition: Open Systems and
COTS Products. Addison-Wesley Professional (2001)

18. Kuhl, F., Weatherly, R., Dahmann, J.: Creating computer simulation systems: an
introduction to the high level architecture. Prentice Hall (1999)

19. Hohfeld, W.N.: Some fundamental legal conceptions as applied in judicial reason-
ing. Yale Law Journal 23(1) (November 1913) 16–59

20. Institute for Software Research: xADL 2.0. Technical report, University of Cali-
fornia, Irvine (2009) http://www.isr.uci.edu/projects/xarchuci/.

21. Medvidovic, N., Rosenblum, D.S., Taylor, R.N.: A language and environment for
architecture-based software development and evolution. In: ICSE ’99: Proceedings
of the 21st international Conference on Software Engineering. (1999) 44–53

22. Institute for Software Research: ArchStudio 4. Technical report, University of
California, Irvine (2006) http://www.isr.uci.edu/projects/archstudio/.

23. Asuncion, H., Taylor, R.N.: Capturing custom link semantics among heterogeneous
artifacts and tools. In: 5th International Workshop on Traceability in Emerging
Forms of Software Engineering (TEFSE). (May 2009)

48

^Åèìáëáíáçå=êÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=ëÅÜççä=çÑ=ÄìëáåÉëë=C=éìÄäáÅ=éçäáÅó=
k~î~ä=éçëíÖê~Çì~íÉ=ëÅÜççä=
RRR=avbo=ol^aI=fkdboplii=e^ii=
jlkqbobvI=`^ifclokf^=VPVQP=

www.acquisitionresearch.org

	OA-OSS-2009-FinalReport.pdf
	Investigating the Acquisition of Software Systems that Rely on Open Architecture and Open Source Software
	Executive Summary

