

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=

=============k^s^i=mlpqdo^ar^qb=p`elli=

	
	 	

Approved for public release, distribution is unlimited.

Prepared for: Naval Postgraduate School, Monterey, California 93943

UCI-AM-12-195

^`nrfpfqflk=oÉëÉ~êÅÜ=

péçåëçêÉÇ=oÉéçêí=ëÉêáÉë=

Investigating Advances in the Acquisition of Secure Systems
Based on Open Architectures

30 August 2012

A Compilation of Reports by

Thomas A. Alspaugh, Project Scientist

Walt Scacchi, Senior Research Scientist

Institute for Software Research

University of California, Irvine

With contributions from

Craig Brown, Programmer/Analyst

Kari Nies, Programmer/Analyst

Institute for Software Research

University of California, Irvine

Rihoko (Inoue) Kawai,

Associate Professor, Saitama Institute of Technology

Hazeline U. Asuncion, Assistant Professor

Computing and Software Systems

University of Washington, Bothell

	

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=

=============k^s^i=mlpqdo^ar^qb=p`elli=

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

The research presented in this report was supported by the Acquisition Research
Program of the Graduate School of Business & Public Policy at the Naval
Postgraduate School.

To request defense acquisition research, to become a research sponsor, or to
print additional copies of reports, please contact any of the staff listed on the
Acquisition Research Program website (www.acquisitionresearch.net).
	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - iii -

=============k^s^i=mlpqdo^ar^qb=p`elli=

About the Authors
Thomas	A.	Alspaugh	is	a	project	scientist	at	the	Institute	for	Software	Research,	
University	of	California,	Irvine.	His	research	interests	are	in	software	engineering,	
requirements,	and	licensing.	Before	completing	his	PhD,	he	worked	as	a	software	
developer,	team	lead,	and	manager	in	industry,	and	as	a	computer	scientist	at	the	Naval	
Research	Laboratory	on	the	Software	Cost	Reduction,	or	A‐7	project.	
	
Thomas	A.	Alspaugh	
Institute	for	Software	Research	
University	of	California,	Irvine	
Irvine,	CA	92697‐3455	
Tel:	949‐824‐4130	
Fax:	949‐824‐1715	
E‐mail:	alspaugh@ics.uci.edu	
	
Walt	Scacchi	is	a	senior	research	scientist	and	research	faculty	member	at	the	Institute	
for	Software	Research,	University	of	California,	Irvine.	He	received	a	PhD	in	information	
and	computer	science	from	UC	Irvine	in	1981.	From	1981	to	1998,	he	was	on	the	faculty	
at	the	University	of	Southern	California.	In	1999,	he	joined	the	Institute	for	Software	
Research	at	UC	Irvine.	He	has	published	more	than	150	research	papers	and	has	
directed	60	externally	funded	research	projects.	In	2012,	he	serves	as	general	co‐chair	
of	the	Eighth	IFIP	International	Conference	on	Open	Source	Systems	(OSS2012).	
	
Walt	Scacchi	
Institute	for	Software	Research	
University	of	California,	Irvine	
Irvine,	CA	92697‐3455	
Tel:	949‐824‐4130	
Fax:	949‐824‐1715	
E‐mail:	wscacchi@ics.uci.edu		

Craig	Brown	was	a	programmer/analyst	at	the	Institute	for	Software	Research,	
University	of	California,	Irvine,	until	Fall	2011.	He	received	a	B.S.	In	Information	and	
Computer	Science	at	UCI	in	2009,	and	then	joined	ISR.	Starting	Fall	2011,	he	entered	the	
M.S.	Program	in	Game	Design	and	Video	Game	Development	at	The	Guildhall	at	
Southern	Methodist	University,	and	expects	to	complete	his	degree	in	Spring	2013.	

Craig	Brown		
The	Guildhall	
Southern	Methodist	University	
Cbrown84@gmail.com		
	
Kari	Nies	is	a	senior	programmer/analyst	at	the	Institute	for	Software	Research,	
University	of	California,	Irvine.	She	received	a	B.S.	and	M.S	in	Information	and	Computer	
Science	from	UCI.	She	has	been	at	ISR	since	1990.	
	
Kari	Nies	
Institute	for	Software	Research	
University	of	California,	Irvine	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - iv -

=============k^s^i=mlpqdo^ar^qb=p`elli=

Irvine,	CA	92697‐3455	
Tel:	949‐824‐8756	
Fax:	949‐824‐1715	
kari@ics.uci.edu		
	
Rihoko	(Inoue)	Kawai,	is	an	associate	professor	on	the	Faculty	of	Human	and	Social	
Studies,	Department	of	Information	Society	Studies,	at	the	Saitama	Institute	of	
Technology	in	Saitama,	Japan.	
	
Rihoko	(Inoue)	Kawai,		
Saitama	Institute	of	Technology	
Saitama,	Japan		
rihoko@nii.ac.jp	
	
Hazeline	U.	Asuncion,	is	an	assistant	professor	in	the	Department	of	Computing	and	
Software	Systems	at	the	University	of	Washington,	Bothwell.	Her	research	interests	
focus	on	software	architecture,	workflows,	and	software	acquisition.	
	
Hazeline	U.	Asuncion	
Computing	and	Software	Systems	
University	of	Washington,	Bothell	
Bothell,	WA	98011‐8246	USA	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - v -

=============k^s^i=mlpqdo^ar^qb=p`elli=

Acknowledgments

Support	for	this	research	and	the	production	of	research	publications	included	comes	
primarily	from	grant	#N00244‐12‐1‐0004	from	the	Acquisition	Research	Program	at	
the	Naval	Postgraduate	School.	Additional	support	also	contributing	to	this	effort	
includes	grant	#N0024‐10‐1‐0064	from	the	Center	for	Edge	Power,	also	at	the	Naval	
Postgraduate	School,	and	grant	#0808783	from	the	National	Science	Foundation.	No	
review,	approval,	or	endorsement	is	implied.	
	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - vi -

=============k^s^i=mlpqdo^ar^qb=p`elli=

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

THIS	PAGE	INTENTIONALLY	LEFT	BLANK	
	
	

=
=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - vii -

==============k^s^i=mlpqdo^ar^qb=p`elli=
=

UCI-AM-12-195

^`nrfpfqflk=oÉëÉ~êÅÜ=

péçåëçêÉÇ=êÉéçêí=ëÉêáÉë=
	
	

Investigating Advances in the Acquisition of Secure Systems
Based on Open Architectures

30 August 2012

A Compilation of Reports by

Thomas A. Alspaugh, Project Scientist

Walt Scacchi, Senior Research Scientist

Institute for Software Research

University of California, Irvine

With contributions from

Craig Brown, Programmer/Analyst

Kari Nies, Programmer/Analyst

Institute for Software Research

University of California, Irvine

Rihoko (Inoue) Kawai,

Associate Professor, Saitama Institute of Technology

Hazeline U. Asuncion, Assistant Professor

Computing and Software Systems

University of Washington, Bothell

	

Disclaimer:	The	views	represented	in	this	report	are	those	of	the	author	and	do	not	reflect	the	official	policy	position	of	the	
Navy,	the	Department	of	Defense,	or	the	Federal	Government.	

=
=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - viii -

==============k^s^i=mlpqdo^ar^qb=p`elli=
=

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

THIS	PAGE	INTENTIONALLY	LEFT	BLANK	
	
	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - ix -

================k^s^i=mlpqdo^ar^qb=p`elli=

Table of Contents

Table of Contents ... ix	

Executive Summary .. xii	

Investigating Advances in the Acquisition of Secure Systems
Based on Open Architectures ... 1	

Overview and Background for this Research ... 1	

Problem for Acquisition Research .. 3	

Issues for Acquisition Research ... 3	

Inter-Project Research Coordination .. 3	

Prospects for Longer-Term Acquisition-Related Research 4	

Statement of Research Status and Results.. 4	

References ... 5	

Addressing Challenges in the Acquisition of Secure Software
Systems With Open Architectures ... 9	

Abstract .. 9	

Introduction .. 9	

Challenges of Securing Systems With Open Architectures 10	

Securing Software Systems ... 13	

Product Lines: Alternatives, Versions, Variants of OA Elements 16	

Secure Software Product Lines within an OA Software Ecosystem 17	

Case Study: A Secure Product Line for an Enterprise System 21	

Discussion and Conclusions .. 28	

References ... 28	

Acknowledgments .. 31	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - x -

================k^s^i=mlpqdo^ar^qb=p`elli=

Exploring the Potential of Virtual Worlds for Decentralized
Command and Control... 33	

Abstract .. 33	

Overview .. 33	

Developing a DECENT Prototype .. 34	

Developing Virtual Worlds of Physical Places .. 35	

Under-Explored Topics for DECENT .. 41	

Conclusions and Recommendations for Future Study 44	

References ... 45	

Acknowledgments .. 47	

Software Licenses, Open Source Components, and Open
Architectures .. 48	

Abstract .. 49	

Introduction .. 49	

Background .. 50	

Understanding Open Architectures .. 51	

Understanding Open Software Licenses .. 53	

Automating Analysis of Software License Rights and Obligation 60	

Solutions and Recommendations ... 67	

Conclusion ... 68	

References ... 69	

Acknowledgments .. 71	

Key Terms & Definitions ... 71	

Appendix: An Interpretation of the BSD 3-Clause License 72	

The Challenge of Heterogeneously Licensed Systems in Open
Architecture Software Ecosystems .. 74	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - xi -

================k^s^i=mlpqdo^ar^qb=p`elli=

Abstract .. 75	

Introduction .. 75	

Related Work ... 79	

Open Source Software ... 81	

Open Architecture .. 83	

Software Licenses .. 87	

License Analysis .. 89	

Conclusion ... 92	

References ... 92	

Acknowledgments .. 95	

Software Licenses, Coverage, and Subsumption .. 96	

Abstract .. 97	

Introduction .. 97	

Related Work ... 101	

Questions of Interest .. 102	

Textual Analysis ... 102	

Other Features ... 105	

Actions, the Central Construct .. 105	

Action Parameterization ... 106	

Parameterized Subsumption .. 107	

Discussion .. 108	

Conclusion ... 110	

References ... 111	

Acknowledgements .. 112	

Licensing Security .. 113	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - xii -

================k^s^i=mlpqdo^ar^qb=p`elli=

Abstract .. 113	

Introduction .. 113	

Security Licenses ... 115	

Effectiveness, Manageability, Evolvability .. 117	

Recent Events .. 118	

Exclusive Security Rights ... 119	

References ... 119	

Acknowledgements .. 121	

2003 - 2012 Sponsored Research Topics ... 122	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - xiii -

===========================k^s^i=mlpqdo^ar^qb=p`elli=

Executive Summary

In	2007–2008,	we	began	an	investigation	of	problems,	issues,	and	opportunities	that	
arise	during	the	acquisition	of	software	systems	that	rely	on	open	architectures	and	
open	source	software.	The	current	effort	funded	for	2011–2012	seeks	to	continue	and	
build	on	the	results	in	this	area,	while	refining	its	focus	to	center	on	the	essential	
constraints	and	tradeoffs	we	have	identified	for	software‐intensive	systems	with	open	
architecture	(OA)	and	continuously	evolving	open	source	software	(OSS)	elements.	The	
U.S.	Air	Force,	Army,	and	Navy	have	all	committed	to	an	open	technology	development	
strategy	that	encourages	the	acquisition	of	software	systems	whose	requirements	
include	the	development	or	composition	of	an	OA	for	such	systems,	and	the	use	of	OSS	
systems,	components,	or	development	processes	when	appropriate.	Our	goal	is	to	
further	investigate,	discover,	develop	and	document	foundations	for	emerging	policy	
and	guidance	for	acquiring	software	systems	that	require	OA	and	that	incorporate	OSS	
elements.	
	
The	research	described	in	this	final	report	for	the	2011–2012	project	year	focuses	on	
continuing	investigation	and	refinement	of	techniques	for	reducing	the	acquisition	costs	
of	complex	software	systems.	Over	the	past	few	years,	we	have	investigated,	
demonstrated,	and	refined	techniques	and	tools	that	articulate	interaction	between	
system	requirements	and	software	architecture	that	can	increase	or	decrease	the	cost	
of	software	system	acquisition.	We	have	developed	software	architecture	modeling	
techniques,	notational	schemes,	and	formal	logic	that	can	be	incorporated	into	
automated	tools	that	allow	for	the	construction	of	open	architecture	systems	using	
proprietary	and	open	source	software	components.	Such	capabilities	allow	for	
increased	choice	and	flexibility	for	how	best	to	satisfy	system	requirements	through	
alternative	software	architectures	that	can	accommodate	different	components	and	
system	configurations.	Such	capabilities	help	reduce	system	acquisition	costs.	In	the	
proposed	effort,	we	continue	these	investigations	by	incorporating	reusable	software	
product	line	(SPL)	techniques	within	OA	systems	composed	from	proprietary	and	open	
source	software	(OSS)	components	subject	to	different	intellectual	property	rights	
licenses,	and	where	software	components	are	subject	to	different	security	
requirements.	The	combination	of	SPLs	and	OSS	components	within	secure	OA	systems	
represents	a	significant	opportunity	for	reducing	the	acquisition	costs	of	software‐
intensive	systems	by	the	DoD	and	other	government	agencies.	
	
This	report	documents	and	describes	the	findings	and	results	that	we	have	produced	as	
a	result	of	our	research	into	the	area	of	the	acquisition	of	secure	software	systems	that	
rely	on	OA,	OSS,	and	SPLs.	In	particular,	it	includes	six	research	papers	that	have	been	
refereed,	reviewed,	presented,	and	published	in	national	and	international	research	
conferences,	symposia,	and	workshops.	
	
The	first	of	these	papers	(Scacchi	&	Alspaugh,	2012)	was	originally	presented	at	the	
2012	Acquisition	Research	Symposium	in	May	2012.	Five	other	refereed	research	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - xiv -

===========================k^s^i=mlpqdo^ar^qb=p`elli=

papers	were	also	produced	and	are	included	in	this	report.	In	particular,	one	paper	
investigates	how	OSS	and	game‐based	virtual	worlds	were	leveraged	in	a	related	study	
(Scacchi,	Brown,	&	Nies,	2012)	co‐sponsored	by	the	Center	for	the	Edge	Power	at	the	
Naval	Postgraduate	School,	where	we	applied	these	methods	to	explore	and	
demonstrate	the	ability	to	rapidly	prototype	SPL‐based	OA	systems	for	military	
command	and	control	(C2)	systems.	We	believe	this	is	a	promising	related	line	of	
research	that	merits	further	study.	
	
Finally,	to	help	contextualize	our	research	effort	and	results,	we	provide	some	
background	on	emerging	issues	in	the	acquisition	of	software‐intensive	systems	that	
require	OA	and	encourage	or	embrace	the	utilization	of	OSS,	such	as	rapid,	distributed	
evolution	to	meet	immediate	warfighter	needs	and	its	interplay	with	validation	and	
system	management.	Last,	we	identify	the	results	from	our	research	efforts	in	the	form	
of	refereed	publications.	These	publications	cover	the	problems,	issues,	opportunities,	
and	approach	for	acquisition	research	we	identified	for	study	during	the	2011–2012	
project	effort.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 1 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Investigating Advances in the Acquisition of
Secure Systems Based on Open Architectures

Overview and Background for this Research
Across	the	three	military	Services	within	the	Department	of	Defense	(DoD),	open	
architecture	(OA)	and	OA	systems	mean	different	things	and	are	seen	as	the	basis	for	
realizing	different	kinds	of	technological,	economic,	and	acquisition	outcomes	(Scacchi	
&	Alspaugh,	2008).	Thus,	it	is	unclear	whether	the	acquisition	of	a	software	system	that	
realizes	an	OA,	as	well	as	one	that	utilizes	open	source	software	(OSS)	technology	and	
development	processes,	for	one	military	Service	will	realize	the	same	kinds	of	benefits	
anticipated	for	OA‐based	systems	by	another	Service.	Somehow,	DoD	acquisition	
program	managers	must	make	sense	of	or	reconcile	such	differences	in	expectations	
and	outcomes	from	OA	strategies	in	each	Service	and	across	the	DoD.	But	there	is	now	
more	explicit	guidance	for	how	best	to	develop,	deploy,	and	sustain	complex	software‐
intensive	military	systems	utilizing	OA	and	OSS	components	(DoD	Open	Systems	
Architecture	[DoDOSA],	2011;	Hissam,	Weinstock,	&	Bass,	2010).	
	
Security	is	an	essential	issue	in	military	software	acquisition.	However,	we	have	found	
little	effective	guidance	for	addressing	it	in	ways	that	can	take	advantage	of	the	
characteristics	of	OA	systems	based	on	software	product	lines	(SPLs).Thus,	there	is	an	
essential	need	for	new	knowledge	and	process	guidance	that	program	managers	and	
others	in	the	acquisition	workforce	can	readily	use	to	realize	the	potential	benefits	
arising	from	SPL‐based	OA	systems.	Further,	we	anticipate	that	with	growing	
awareness	of	emerging	cyber	warfare	threats,	the	security	of	OA	systems	will	
potentially	be	mandated	and	thus	become	part	of	program	acquisition	processes.	This	
in	turn	raises	concern	about	potential	cost	growth	and	whether	the	acquisition	
workforce	is	well	prepared	to	provide	the	needed	oversight,	review,	and	approval.	
The	Software	Assurance	Acquisition	Working	Group’s	extensive	report	(Polydys	&	
Wisseman,	2008)	makes	clear	how	important	security	is	in	software	acquisition;	it	is	
mentioned	on	most	pages	of	the	report.	The	recommended	approaches	for	improving	
the	security	of	software	systems	involve	manual	reviews	and	process	improvements.	
Reviews	by	experts	are	recommended	and	discussed	for	requirements,	architectures,	
components,	tests,	and	so	forth,	with	a	new	review	required	for	each	new	version;	we	
believe	this	could	constitute	a	serious	and	time‐consuming	burden,	especially	in	the	
context	of	tight	budgets,	short	timelines,	and	reductions	in	the	acquisition	workforce.	
However,	no	specific	guidance	is	offered	for	OA	or	SPL	systems	by	these	reports.		
CMU’s	Software	Engineering	Institute	is	prominent	in	SPL	research	and	practical	
guidance.	The	current	Framework	for	Software	Product	Line	Practice	(Northrop	and	
Clements,	2007)	mentions	security	as	one	of	the	desired	quality	goals	or	attributes,	
along	with	reliability,	usability,	and	others,	but	offers	no	specific	guidance	for	
addressing	it.	Recent	papers	from	SEI	presented	at	the	Acquisition	Research	
Symposium	(Bergey	&	Jones,	2010;	Jones	&	Bergey,	2011)	discuss	the	benefits	of	an	SPL	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 2 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

strategy	but	do	not	explain	how	security	fits	into	the	specification	or	documentation	of	
OAs.	
There	appears	to	have	been	comparatively	little	research	published	on	the	topic	of	
security	and	software	product	lines,	even	without	considering	open	architecture,	and	
very	little	on	security	and	open	architecture.	One	of	the	stronger	examples	(Mellado,	
Fernández‐Medina,	&	Piattini,	2010)	summarizes	a	line	of	research	over	four	years	that	
addresses	security	requirements	for	software	product	lines	(but	not	OAs),	and	guides	
requirements	activities	with	the	goal	of	addressing	security	concerns	in	a	way	that	
corresponds	to	the	characteristics	of	a	software	product	line.	Their	approach	is	process‐
oriented,	supported	by	a	research	tool	that	manages	the	various	repositories	of	
information	that	are	developed,	but	informal	and	primarily	manual	and	dependent	on	
expert	practitioners.	Only	the	requirements	phase	of	development	is	addressed.	
The	current	guidance	for	program	managers	acquiring	OA	systems	(DoDOSA,	2011)	
points	to	the	need	to	identify	and	review	the	use	of	“security	engines”	that	can	support	
security	enforcement	tasks	within	system	development	or	deployment.	Similarly,	
current	guidance	on	best	practices	on	improving	cost	effectiveness	in	program	
acquisition	(Better	Buying	Power	[BBP],	2012)	offers	no	clear	directions	for	how	best	to	
address	or	manage	specific	cost	issues	that	arise	during	secure	OA	system	acquisition.	
However,	recent	acquisition	research	indicates	there	is	also	a	need	for	a	more	articulate	
and	streamlined	process	that	acquisition	workers	can	follow	to	insure	that	all	relevant	
aspects	of	OA	system	security	have	been	addressed	in	an	easy	to	review	format	(cf.	
Scacchi	&	Alspaugh,	2012a).	Similarly,	current	research	further	points	to	the	need	to	
address	software	reuse	(Mactal	&	Spruill,	2012)	and	testing	processes	(Berzins,	2012)	
when	SPLs	are	employed	in	OA	systems	as	cost	reduction	and	quality	improvement	
strategies.	
	
Most	of	the	guidance	to	date	for	acquisition	of	secure	open	architecture	software	
product	lines	may	be	summarized	as	follows:	collect	experts	in	security	requirements,	
architecture,	and	tests;	have	them	review	and/or	guide	the	manual/informal	
development	of	requirements,	architecture,	and	tests	for	the	product	line;	and	repeat	all	
or	selected	parts	of	the	process	for	each	new	version	and	product	line	instance.	We	find	
little	guidance	for	incorporating	formality,	for	effectively	using	software	tools,		and	then	
addressing	and	taking	advantage	of	the	specific	characteristics	of	OA	and	SPL.	Similarly,	
there	is	little	guidance	regarding	the	best	process	to	identify	and	review	OA	system	
security	when	incorporating	OSS	components	and	other	reusable	SPL	elements.	There	
is	no	guidance	for	how	to	adapt	or	streamline	such	a	process	to	reduce	costs	of	
acquiring	different	kinds	of	systems	(e.g.,	enterprise	information	systems,	command	
and	control	systems,	embedded	weapon	systems),	nor	what	information	to	consider	or	
knowledge	to	acquire	to	enable	a	more	effective	acquisition	workforce.	
Consequently,	this	leads	us	to	consider	the	following	questions:	What	is	the	most	
effective	way	to	articulate	a	process	for	the	most	cost‐effective	acquisition	of	secure	OA	
systems	that	can	be	streamlined	to	the	needs	of	specific	kinds	of	reusable	software	
systems?	What	issues	or	research	questions	for	acquisition	research	follow	from	such	a	
problem?	What	research	approach	can	best	explore	the	opportunities	for	acquisition	
research	built	from	related	research	efforts	in	OA,	reusable	SPL,	and	software	
architectural	analysis	that	can	also	inform	future	acquisition	cost	reduction	practices	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 3 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

and	improve	acquisition	workforce	capabilities?	We	briefly	elaborate	on	these	
questions,	in	turn,	through	the	remainder	of	this	proposal.	

Problem for Acquisition Research
OAs	imply	software	system	architectures	incorporating	OSS	components	and	
proprietary	components	with	open	application	program	interfaces	(APIs)	that	also	
conform	to	open	standards	(DoDOSA,	2011).	Given	the	goal	of	how	best	to	acquire	
secure	OA	systems,	together	with	the	use	of	evolving	OSS	components,	reusable	SPLs,	
and	proprietary	system	components	with	open	APIs,	how	should	program	acquisition	
and	cost	reduction	processes,	system	requirements,	software	verification	and	validation	
(V&V),	open	architectures,	and	post‐deployment	system	support	be	aligned	to	achieve	
this	goal?	This	is	a	core	research	problem	we	seek	to	investigate.	We	seek	to	identify	
principles,	best	practices,	and	process	activities	for	how	best	to	ensure	the	success	of	
the	OA	strategy	when	security	requirements	must	be	addressed	with	system	
components	that	may	or	may	not	be	secure.	Without	such	knowledge,	program	
acquisition	managers	and	Program	Executive	Offices	(PEOs)	are	unlikely	to	acquire	
reusable	software‐intensive	systems	that	will	result	in	an	OA	that	is	clean,	robust	and	
transparent.	This	may	frustrate	the	ability	of	program	managers	or	PEOs	to	realize	
faster,	better,	and	cheaper	software	acquisition,	development,	and	post‐deployment	
support.	

Issues for Acquisition Research
Based	on	current	research	into	the	acquisition	of	secure	OA	systems	with	OSS	
components	and	reusable	SPLs	(Scacchi	&	Alspaugh,	2011,	2012a),	this	research	project	
also	seeks	to	explore	and	answer	the	following	kinds	of	research	questions:	How	does	
the	interaction	of	requirements	and	architectures	for	secure	OA	systems	incorporating	
OSS	components	facilitate	or	inhibit	acquisition	processes	over	time?	What	are	the	best	
available	processes	for	continuously	verifying	and	validating	the	functionality,	
correctness,	openness,	and	security	of	OA	when	OSS	components	and	SPLs	are	
employed?	How	can	the	use	of	continuously	evolving	OSS	within	a	reusable	OA	or	SPL	
be	combined	with	the	need	to	verify	and	validate	critical	systems	security	requirements	
and	to	manage	their	evolution?	How	do	reliability	and	predictability	trade‐off	against	
the	cost	and	flexibility	of	a	secure	OA	system	when	incorporating	reusable	SPL	
components?	How	should	secure	OA	software	systems	be	developed	and	deployed	to	
support	warfighter	modification	in	the	field	or	participation	in	post‐deployment	system	
support,	when	OSS	components	are	employed?		

Inter-Project Research Coordination
We	believe	we	are	extremely	well	positioned	to	leverage	our	current	research	work	and	
results	(e.g.,	Alspaugh,	Asuncion,	&	Scacchi,	2009a,	2009b;	Scacchi	&	Alspaugh,	2008,	
2011,	2012a,	2012b)	with	the	effort	describe	in	this	report.	We	build	on	our	current	
research	efforts	in	OSS	(Scacchi,	2007,	2010)	and	software	requirements‐architecture	
interactions	(Scacchi,	2009;	Scacchi	&	Alspaugh,	2008),	as	well	as	our	track	record	in	
prior	acquisition	research	studies.	Similarly,	we	find	current	related	research	supported	
by	the	DoD	addressing	related	issues	in	OSS	(Hissam	et	al.,	2010)	also	influences	our	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 4 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

proposed	effort.	In	addition,	our	effort	builds	from	and	contributes	to	research	on	
software	system	acquisition	within	the	DoD,	focusing	on	software	reuse	(Mactal	&	
Spruill,	2012),	SPLs	(Bergey	&	Jones,	2010;	Guertin	&	Clements,	2010),	open	innovation	
and	emerging	software	component	markets	(Guertin	&	Womble,	2012),	efficient	testing	
of	component‐based	OA	systems	and	SPLs	(Berzins,	2012),	and	the	improvement	of	
software	system	acquisition	through	workforce	upgrades	and	government–industry	
teaming	(Heil,	2010).	We	thus	believe	our	complementary	research	places	us	at	an	
extraordinary	advantage	to	conduct	the	proposed	study	that	addresses	a	major	
strategic	acquisition	goal	of	the	DoD	and	the	military	services	(DoDOSA,	2011).	

Prospects for Longer-Term Acquisition-Related Research
The	military	Services	have	committed	to	orienting	their	major	system	acquisition	
programs	around	the	adoption	of	an	OA	strategy	that	in	turn	embraces	and	encourages	
the	adoption,	development,	use,	and	evolution	of	OSS	(DoDOSA,	2011).	Thus,	it	would	
seem	that	there	is	a	significant	need	for	sustained	research	that	investigates	the	
interplay	and	inter‐relationships	between	(a)	current/emerging	guidelines	for	the	
acquisition	of	software‐intensive	systems	within	the	DoD	community	(including	
contract	management	and	software	development	issues),	and	(b)	how	secure,	reusable	
software	product	lines	that	employ	an	OA	incorporating	OSS	products	and	production	
processes	are	essential	to	improving	the	effectiveness	of	future,	software‐intensive	
program	acquisition	efforts.	

Statement of Research Status and Results
The	proposed	effort	continues	to	build	on	a	line	of	research	that	starts	with	our	paper,	
Scacchi	and	Alspaugh	(2008),	and	continues	through	the	most	recent	research	paper,	
Scacchi	and	Alspaugh	(2012a).	Nearly	twenty	externally	reviewed	and	published	
research	papers	have	resulted	from	this	sustained	research	effort,	which	includes	
papers	presented	at	the	Acquisition	Research	Symposium	every	year	since	2008.	This	
final	report	for	2011–2012	highlights	many	of	the	ways	that	the	new	effort	builds	on	
the	prior	efforts	in	areas	addressing	OSS,	OA,	SPLs,	software	licenses,	and	secure	
software—most	recently,	strategies	and	methods	for	specifying	the	requirements	for	
acquiring	secure	OA	software	systems	that	conform	to	SPLs.	In	particular,	the	newly	
proposed	effort	focuses	on	articulating	and	streamlining	the	process,	and	also	on	
identifying	cost	reduction	opportunities	for	acquiring	secure	OA	software	systems	
conforming	to	reusable	SPLs,	in	ways	that	produce	new	knowledge	for	the	acquisition	
workforce.	Last,	we	are	proud	to	note	that	each	of	the	following	chapters	in	the	
remainder	of	this	final	report	have	been	published	in	international	research	journals,	
conferences,	or	workshops,	or	included	as	chapters	in	invited	edited	books,	and	all	have	
gone	through	peer	review.	We	believe	our	efforts	thus	continue	to	bring	advances	in	
acquisition	research	in	our	area	of	specialization	to	broader	academic,	government,	and	
industrial	research	audiences.		
The	publications	in	which	each	of	the	following	chapters	in	this	report	appear	are	listed	
as	follows:	

1. Scacchi,	W.,	&	Alspaugh,	T.	A.	(May,	2012).	Addressing	the	challenges	in	the	
acquisition	of	secure	systems	with	open	architectures.	In	Proceedings	of	the	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 5 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Ninth	Annual	Acquisition	Research	Symposium.	Retrieved	from	
http://acquisitionresearch.net		

2. Scacchi,	W.,	Brown,	C.,	&	Nies,	K.	(2012,	June).	Exploring	the	potential	of	virtual	
worlds	for	decentralized	command	and	control.	In	Proceedings	of	the	17th	
International	Command	and	Control	Research	and	Technology	Symposium	
(ICCRTS).	Retrieved	from	
http://dodccrp.org/events/17th_iccrts_2012/post_conference/papers/096.pdf		

3. Alspaugh,	T.	A.,	Asuncion,	H.	A.,	&	Scacchi,	W.	(2012,	in	press).	Software	licenses,	
open	source	components,	and	open	architectures.	In	I.	Mistrik,	A.	Tang,	R.	
Bahsoon,	&	J.	A.	Stafford	(Eds.),	Aligning	enterprise,	system,	and	software	
architectures.	Hershey,	PA:	Business	Science	Reference.	

4. Alspaugh,	T.	A.,	Asuncion,	H.	A.,	&	Scacchi,	W.	(2012,	in	press).	The	challenge	of	
heterogeneously	licensed	systems	in	open	architecture	software	ecosystems.	In	
S.	Jansen,	S.	Brinkkemper,	&	M.	Cusumano	(Eds.),	Software	ecosystems.	
Cheltenham,	UK:	Edward	Elgar.	

5. Alspaugh,	T.	A.,	Scacchi,	W.,	&	Kawai,	R.	(2012,	September).	Software	licenses,	
coverage,	and	subsumption.	In	Proceedings	of	the	Fifth	International	Workshop	
on	Requirements	Engineering	and	Law.	Retrieved	from	
http://www.ics.uci.edu/~wscacchi/Papers/New/Alspaugh‐Scacchi‐Kawai‐
RELAW12.pdf		

6. Alspaugh,	T.	A.,	&	Scacchi,	W.	(2012,	September).	Security	licensing.	In	
Proceedings	of	the	Fifth	International	Workshop	on	Requirements	Engineering	and	
Law.	Washington,	DC:	IEEE	Computer	Society.	

Last,	we	propose	to	continue	this	line	of	research	study	and	results	through	ongoing	
studies	that	investigate	how	best	to	support	the	acquisition	of	secure	OA	systems	that	
incorporate	both	OSS	and	proprietary	closed	source	software	system	elements	in	ways	
that	enable	simple	yet	dramatic	streamlining	improvements	in	software	system	
acquisition	processes	performed	by	program	managers	and	others	in	the	acquisition	
workforce.	We	thus	welcome	any	comments,	questions,	or	suggestions	for	how	our	
research	studies	or	results	might	best	be	aligned	with	new	program	acquisitions,	
especially	those	focusing	on	the	development	and	deployment	of	next‐generation,	
software‐intensive	command	and	control	systems,	whether	for	conventional	or	cyber	
command	missions	and	operations.	

References	
Alspaugh,	T.	A,	Asuncion,	H.,	&	Scacchi,	W.	(2009a).	Software	licenses,	open	source	

components,	and	open	architectures.	In	Proceedings	of	the	Sixth	Annual	
Acquisition	Research	Symposium	(Vol.	1,	pp.	258–275).	Retrieved	from	
http://www.acquisitionresearch.net		

Alspaugh,	T.	A,	Asuncion,	H.,	&	Scacchi,	W.	(2009b,	September).	Intellectual	property	
rights	requirements	for	heterogeneously	licensed	systems.	In	Proceedings	of	
the	17th	International	Conference	on	Requirements	Engineering	(RE	’09)	(pp.	
24–33).	Los	Alamitos,	CA:	IEEE.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 6 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Alspaugh,	T.	A,	Scacchi,	W.,	&	Asuncion,	H.	(2010,	November).	Software	licenses	in	
context:	The	challenge	of	heterogeneously	licensed	systems.	Journal	of	the	
Association	for	Information	Systems,	11(11),	730–755.	

Better	Buying	Power	(BBP).	(2012).	Better	buying	power	(public	site).	Retrieved	
from	Defense	Acquisition	University	website:	
https://acc.dau.mil/CommunityBrowser.aspx?id=432727&lang=en‐US?		

Bergey,	J.,	&	Jones,	L.	(2010).	Exploring	acquisition	strategies	for	adopting	a	software	
product	line	approach.	In	Proceedings	of	the	Seventh	Annual	Acquisition	
Research	Symposium	(Vol.	1,	pp.	111–122).	Retrieved	from	
http://www.acquisitionresearch.net		

Berzins,	V.	(2012).	Certifying	tools	for	test	reduction	in	open	architecture.	In	
Proceedings	of	the	Ninth	Annual	Acquisition	Research	Symposium	(Vol.	1,	pp.	
185–194).	Retrieved	from	http://www.acquisitionresearch.net		

Department	of	Defense	Open	Systems	Architecture	(DoDOSA,	December).	(2011).	
Department	of	Defense	open	systems	architecture	contract	guidebook	for	
program	managers	(Vol.	0.1).	Retrieved	from	
https://acc.dau.mil/OSAGuidebook		

Guertin,	N.,	&	Clements,	P.	(2010).	Comparing	acquisition	strategies:	Open	
architecture	versus	product	lines.	In	Proceedings	of	the	Seventh	Annual	
Acquisition	Research	Symposium	(Vol.	1,	pp.	78–90).	Retrieved	from	
http://www.acquisitionresearch.net		

Guertin,	N.,	&	Womble,	B.	(2012).	Competition	and	the	DoD	marketplace.	In	
Proceedings	of	the	Ninth	Annual	Acquisition	Research	Symposium	(Vol.	1,	pp.	
76–82).	Retrieved	from	http://www.acquisitionresearch.net		

Heil,	J.	(2010).	Enabling	software	acquisition	improvement:	Government	and	
industry	software	development	team	acquisition	model.	In	Proceedings	of	the	
Seventh	Annual	Acquisition	Research	Symposium	(Vol.	1,	pp.	203–218).	
Retrieved	from	http://www.acquisitionresearch.net		

Hissam,	S.,	Weinstock,	C.	B.,	&	Bass,	L.	(2010).	On	open	and	collaborative	software	
development	in	the	DoD.	In	Proceedings	of	the	Seventh	Annual	Acquisition	
Research	Symposium	(Vol.	1,	pp.	219–235).	Retrieved	from	
http://www.acquisitionresearch.net	

Jones,	L.,	&	Bergey,	J.	(2011).	An	architecture‐centric	approach	for	acquiring	
software‐reliant	system.	In	Proceedings	of	the	Eighth	Annual	Acquisition	
Research	Symposium.	Retrieved	from	http://www.acquisitionresearch.net		

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 7 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Mactal,	R.,	&	Spruill,	N.	(2012).	A	framework	for	reuse	in	the	DoN.	In	Proceedings	of	
the	Ninth	Annual	Acquisition	Research	Symposium	(Vol.	1,	pp.	149–164).	
Retrieved	from	http://www.acquisitionresearch.net		

Mellado,	D.,	Fernández‐Medina,	E.,	&	Piattini,	M.	(2010).	Automated	support	for	
security	requirements	engineering	in	software	product	line	domain	
engineering.	Information	and	Software	Technology,	52(10),	1094–1117.	

Northrop,	L.,	&	Clements,	P.	(with	Bachmann,	F.	et	al.).	(2007).	A	framework	for	
software	product	line	practice,	version	5.0.	Retrieved	from	
http://www.sei.cmu.edu/productlines/frame_report/index.html	

Polydys,	M.	L.,	&	Wisseman,	S.	(2008).	Software	assurance	in	acquisition:	Mitigating	
risks	to	the	enterprise.	Retrieved	from	https://buildsecurityin.us‐
cert.gov/swa/acqact.html	

Scacchi,	W.	(2007).	Free/open	source	software	development:	Recent	research	
results	and	methods.	In	M.	Zelkowitz	(Ed.),	Advances	in	Computers	(Vol.	69,	
pp.	243–295),	Elsevier,	New	York.	

Scacchi,	W.	(2009).	Understanding	requirements	for	open	source	software.	In	K.	
Lyytinen,	P.	Loucopoulos,	J.	Mylopoulos,	&	W.	Robinson	(Eds.),	Design	
requirements	engineering:	A	ten‐year	perspective	(LNBIP	14,	pp.	467–494).	
Springer	Verlag,	New	York.	

Scacchi,	W.	(2010).	The	future	of	research	in	free/open	source	software	
development.	In	Proceedings	of	the	ACM	Workshop	on	the	Future	of	Software	
Engineering	Research	(FoSER)	(pp.	315–319).	Santa	Fe,	NM,	ACM,	New	York.	

Scacchi,	W.,	&	Alspaugh,	T.	(2008).	Emerging	issues	in	the	acquisition	of	open	source	
software	within	the	U.S.	Department	of	Defense.	In	Proceedings	of	the	Fifth	
Annual	Acquisition	Research	Symposium	(NPS‐AM‐08‐036).	Retrieved	from	
http://www.acquisitionresearch.net		

Scacchi,	W.,	&	Alspaugh,	T.	(2011).	Advances	in	the	acquisition	of	secure	systems	
based	on	open	architectures.	In	Proceedings	of	the	Eighth	Annual	Acquisition	
Research	Symposium	(Vol.	1,	pp.	50–69).	Retrieved	from	
http://www.acquisitionresearch.net		

Scacchi,	W.,	&	Alspaugh,	T.	(2012a).	Addressing	challenges	in	the	acquisition	of	
secure	software	systems	with	open	architectures.	In	Proceedings	of	the	Ninth	
Annual	Acquisition	Research	Symposium	(Vol.	1,	pp.	165–184).	Retrieved	from	
http://www.acquisitionresearch.net		

Scacchi,	W.,	&	Alspaugh,	T.	(2012b).	Understanding	the	role	of	licenses	and	evolution	
in	open	architecture	software	ecosytems.	Journal	of	Systems	and	Software,	
85(7),	1479‐1494,	July	2012.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 8 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Womble,	B.,	Schmidt,	W.,	Arendt,	M.,	&	Fain,	T.	(2011).	Delivering	savings	with	open	
architecture	and	product	lines.	In	Proceedings	of	the	Eighth	Annual	
Acquisition	Research	Symposium	(Vol.	1,	pp.	7–31).	Retrieved	from	
http://www.acquisitionresearch.net		

Yau,	S.	S.,	&	Chen,	Z.	(2006).	A	framework	for	specifying	and	managing	security	
requirements	in	collaborative	systems.	In	Proceedings	of	the	Third	
International	Conference	on	Autonomic	and	Trusted	Computing	(ATC	2006)	
(pp.	500–510).	Lecture	Notes	in	Computer	Science,	2006,	vol.	4158,	Springer,	
New	York.	

	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 9 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Addressing Challenges in the Acquisition of Secure
Software Systems With Open Architectures

Walt	Scacchi	&Thomas	A.	Alspaugh	

Abstract
We	seek	to	articulate	and	address	a	number	of	emerging	challenges	in	continuously	
assuring	the	security	of	open	architecture	(OA)	software	systems	throughout	the	
system	acquisition	life	cycle.	It	is	now	clear	that	future	systems	must	resist	coordinated	
international	attacks	on	vulnerable	software‐intensive	systems	that	are	of	high	value	
and	control	complex	systems.	But	current	approaches	to	system	security	are	most	often	
piecemeal	with	little	or	no	support	for	guiding	which	system	security	requirements	
must	be	addressed	across	different	system	processing	elements	and	data	levels,	and	
how	those	security	requirements	can	be	manifested	during	the	design,	building,	and	
deployment	of	OA	software	systems.	We	present	a	framework	that	organizes	OA	system	
security	elements	and	mechanisms	in	forms	that	can	be	aligned	with	different	stages	of	
acquisition—spanning	system	design,	building,	and	run‐time	deployment,	as	well	as	
system	evolution.	We	provide	a	case	study	to	show	our	scheme	and	how	it	can	be	
applied	to	common	enterprise	systems.	

Introduction
We	seek	to	research,	develop,	and	refine	new	concepts,	techniques,	and	tools	for	
continuously	assuring	the	security	of	large‐scale,	open	architecture	(OA)	software	
systems	composed	from	software	components	that	include	proprietary/closed	source	
software	(CSS)	and	open	source	software	(OSS).	Federal	government	acquisition	policy,	
as	well	as	many	leading	enterprise	information	technology	(IT)	centers,	now	encourage	
the	use	of	CSS	and	OSS,	and	thus	OA,	in	the	development,	deployment,	and	evolution	of	
complex,	software‐intensive	systems.	
	
We	seek	to	prototype	and	demonstrate	a	new	innovative	approach	and	supporting	
technology	that	can	develop	new	principles	for	correctness	and	security	properties	for	
OA	systems.	This	includes	developing	basic	principles	to	determine	the	security	and	
performance	properties	of	software	systems,	the	conditions	under	which	these	
properties	hold,	and	the	methods	used	to	prove	these	properties	of	interest	for	systems.	
Of	particular	interest	are	networked	OA	software	systems	that	are	adapted	or	evolve	to	
dynamic	conditions	and	threats	during	their	development,	deployment,	and	usage,	
including	those	that	may	rely	on	new	technologies	like	OA	mobile	devices	(STIG	2012,	
Smalley,	2012)	or	other	IT	systems	relying	on	open	source	technologies	(CIO	2010;	
Garcia,	2010;	Gizzi,	2011;	Navy.mil,	2010).	In	particular,	such	study	may	be	of	value	to	
securing	new	cyber	warfare	technologies	(DoD	2011;	Scacchi,	Brown,	&	Nies,	2011).	
Our	efforts	may	also	lead	to	fundamental	advancements	for	secure	information	sharing	
between	information	producers	and	consumers,	in	order	to	realize	more	secure	
information	management,	sharing,	and	interaction.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 10 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Challenges of Securing Systems With Open Architectures
Coordinated	international	attacks	on	vulnerable	software‐intensive	systems	that	are	of	
high	value	and	control	complex	systems	are	becoming	ever	more	apparent.	As	the	
StuxNet	case	demonstrates,	security	threats	to	software	systems	are	multi‐valent,	
multi‐modal,	and	distributed	across	independently	developed	software	system	
components	(“Stuxnet,”	n.d.).	Similarly,	it	is	now	clear	that	physically	isolated/confined	
systems	are	vulnerable	to	external	security	attacks,	via	portable	storage	devices	like	
USB	drives,	modified	end‐user	devices	(e.g.,	keyboards,	mice	[“Attack	of	the	Computer	
Mouse,”	2011]),	and	social	engineering	techniques	(Sawers,	2011).	This	requires	new	
security	measures	and	policies	necessary	to	defend	such	systems	through	new	threat	
prevention	and	detection	methods,	as	well	as	appropriate	response	mechanisms.	Thus,	
what	makes	a	system	or	system	architecture	secure	changes	over	time,	as	new	threats	
emerge	and	as	systems	evolve	to	meet	new	functional	requirements.	Consequently,	
there	is	need	for	an	approach	to	continuously	assure	the	security	of	complex,	evolving	
OA	systems	in	ways	that	are	practical	and	scalable,	yet	robust,	tractable,	and	adaptable.	
However,	the	best	practices	for	developing	OA	systems	whose	components	may	be	
subject	to	differing	security	requirements	(i.e.,	security	rights	and	obligations)	are	
unclear.	Such	practices	are	yet	to	be	identified.	This	puts	IT	centers,	system	integrators,	
and	service	providers	at	a	disadvantage	when	seeking	to	develop	new	software‐
intensive	systems	whose	costs	may	be	lower	due	to	the	integration	of	mature	OSS	
components	that	are	interfaced	to	pre‐existing	or	new	CSS	components.	OA	systems	
thus	present	new	challenges	for	assuring	software	system	security.	
	
Software	system	security	mechanisms	for	enabling	security	requirements	or	policies	
are	often	employed	on	an	ad	hoc	basis,	since	there	are	neither	convenient	or	interactive	
tools,	nor	formal	techniques,	for	specifying	the	security	requirements	of	an	OA	system,	
or	its	components.	Instead,	what	is	available	are	disjoint	mechanisms	for	implementing	
individual	system	security	features	(Loscocco	et	al.,	1998;	Spencer	et	al.,	1999),	such	as	
the	following:	

● mandatory	access	control	lists,	firewalls;	

● multi‐level	security;	

● authentication	(including	certificate	authority	and	passwords);	

● cryptographic	support	(including	public	key	certificates);	

● encapsulation	(including	virtualization,	hidden	versus	public	APIs),	hardware	
confinement	(memory,	storage,	and	external	device	[port]	isolation;	Sun,	
Wang,	Zhang,	&	Stavrou,	2012),	and	type	enforcement	capabilities;	

● secure	programming	practices	(including	secure	coding	standards,	data	type	
and	value	range	checking;	Seacord,	2008);	

● data	content	or	control	signal	flow	logging/auditing;	

● honey‐pots	and	traps;	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 11 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

● security	technical	information	guides	for	configuring	the	security	parameters	
for	applications	(STIG	2012)	and	operating	systems	(Smalley,	2012);	

● functionally	equivalent	but	diverse	multi‐variant	software	executables	
(Franz,	2010;	Salamat,	Jackson,	Wagner,	Wimmer,	&	Franz,	2011).	

But	there	is	a	gap	between	these	mechanisms	and	any	concept	of	a	comprehensive	
security	policy,	whether	for	a	system	or	any	of	its	components,	and	no	obvious	way	to	
integrate	and	evaluate	them	as	a	group.	Similarly,	it	is	unclear	what	relationships	arise	
or	are	in	place	among	these	different	security	mechanisms.	Further,	what	guidance	is	
needed	regarding	which	security	mechanism	to	use	where,	when,	why,	and	how,	and	
how	to	update	their	usage	or	configuration	as	extant	system	security	policy	evolves?	
The	mechanisms	are	also	mostly	software	implementation	choices	rather	than	system	
architectural	choices;	no	system‐specific	framework	(like	an	architecture)	exists	in	
which	software	implementation	choices	can	be	pulled	together	in	patterns	that	can	be	
designed	to	meet	specific	security	policies	and	goals.	But	in	an	OA	system,	it	may	be	
unclear	or	unlikely	that	system	integrators	will	find	mature	OSS	or	CSS	components	
that	supply	all	of	the	system	security	features	that	the	integrator	or	the	customer	
requires	on	a	timely,	cost‐effective	basis.	
	
Next,	OA	systems	evolve	through	more	pathways	than	traditional	systems,	as	follows:	

● individual	components	evolve	through	update	revisions	(e.g.,	security	
patches)	made	by	the	component’s	developers;	

● individual	components	are	updated	with	new,	functionally	enhanced	
versions	from		 outside	providers;	

● individual	components	are	replaced	by	different	components	from	other	
sources;	

● component	interfaces	evolve,	either	due	to	the	system	developers	or	outside	
sources;	

● system	architecture	and	configuration	evolve	as	the	developers	adapt	it	to	
address	new	functional	requirements;		

● system	functional	and	security	requirements	evolve,	either	due	to	the	
system	developers,	recognized	gaps,	or	outside	stakeholders.	

● system	security	policies,	mechanisms,	security	components,	and	system	
configuration	parameter	settings	also	change	over	time.	

These	additional	evolution	paths	are	tied	to	the	benefits	of	using	OA	systems	with	OSS	
components	but	they	also	present	new	challenges	for	security.	OA	systems	are	
continually	evolving,	and	in	our	view,	this	fact	is	fundamentally	unaddressed	by	prior	
work	in	security.	
	
Beyond	these	issues,	we	must	consider,	how	should	customers	specify	what	security	
system	features	they	want	their	delivered	systems	to	support?	How	can	the	history	of	
security	failures	(vulnerabilities),	faults	(exploits),	possible	cyber‐warfare	attacks	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 12 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

(threats),	and	possible	responses	(updating	system	configuration	with	new	elements	
that	resist	new	threats,	close	new	vulnerability,	and	prevent	newly	discovered	exploits),	
to	guide	the	evolution	of	approaches	for	developing	secure	OA	systems?	How	can	
answers	to	questions	like	these	help	formulate	a	technological	innovation	element	of	
the	DoD	strategy	for	operating	in	cyberspace	(DoD	2011)?	Questions	like	this	remain	
unresolved	at	present.	
	
Verification	of	the	usage	of	security	mechanisms	in	software	systems	is	unclear,	and	
often	focused	either	at	the	whole	system	(macro)	level,	or	program	function	or	coding	
(micro)	level,	but	generally	not	at	the	architectural	component	and	interconnection	
(meso)	level,	and	not	for	combinations	and	alternative	configurations	of	CSS	and	OSS	
components	with	different	security	histories.	We	believe	there	is	a	new	or	under‐
explored	opportunity	to	address	security	requirements	at	the	architectural	level.	
As	such,	we	see	the	following	basic	challenges	in	assuring	OA	system	security:	

● how	to	verify	the	security	of	OA	system	designs	throughout	system	
development,	deployment,	and	post‐deployment	support;	and	

● how	to	validate	the	effectiveness	of	OA	system	security	measures,	and	feed	
back	evolving	knowledge	of	vulnerabilities	and	exploits	into	the	ongoing	
development	(continuous	evolution)	stream	for	existing	and	planned	
systems	in	an	operational,	testable	form	that	system	designers	can	use,	and	
program	managers	can	assess.	

Similarly,	we	see	the	following	basic	challenges	in	assuring	security	of	OA	software	
systems:	

● how	best	to	develop	complex	OA	systems	whose	OSS	or	CSS	system	
components	may	originally	come	from	trusted	sources,	but	in	which	these	
components,	the	architectural	configuration,	and	security	requirements	are	
subject	to	multiple	sources	of	adaptation	and	evolution;	

● how	to	go	beyond	“many	eyes”	(large	number	of	skilled	reviewers)	to	
establish	a	scalable	basis	for	automated	or	semi‐automated	verification	of	
software	system	security	properties	as	the	system	continually	evolves;	

● how	to	best	achieve	continuous	software	system	security	assurance	as	a	
system	is	adapted	and	evolved	to	address	new	security	requirements	and	
technology	progress;	

● how	best	to	protect	OA	systems	through	biologically	inspired	natural	
defenses	that	provide	adaptive	and	resilient	mechanisms	including	agile	
response,	isolation,	and	fail‐soft	recovery	to	immediate	attacks,	as	well	as	
adaptation	via	dynamic	reconfiguration,	multi‐version	mechanisms,	
(artificial)	ecological	diversity	responses	to	sustained	vulnerabilities	or	
threats	(Shrobe,	2011);	and	

● how	to	create	reference	models	and	security	policy	requirements	that	
articulate	security	scenarios	appropriate	for	oversight	during	system	
acquisition,	as	well	as	during	system	design,	implementation,	deployment,	
and	beyond?	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 13 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Securing Software Systems
The	key	ideas	in	our	approach	to	develop	and	demonstrate	a	new	solution	to	the	
challenges	is	to	specify	verifiable	security	requirements	of	OA	systems	using	formalized	
“security	licenses”	(Scacchi	&	Alspaugh,	2011),	and	to	use	an	explicit,	evolvable	
software	architecture	to	mediate	and	carry	the	paths	of	interactions	among	them.	
Security	licenses	must	specify	the	security	requirements	and	access/update	rights	and	
obligations	within	an	OA	system,	its	CSS	and	OSS	components,	and	their	
interconnections	(e.g.,	APIs,	databases,	shared	files,	communication	protocols)	that	
defend	against	threats	and	enable	appropriate	responses	to	attacks	or	
suspicious/anomalous	system	behaviors.	Subsequently,	the	goal	of	our	approach	is	to	
articulate	and	refine	the	ways	and	means	for	expressing	and	verifying	that	the	security	
requirements	of	OA	system	components	match	up	appropriately	and	together	support	
the	security	requirements	of	the	entire	OA	system,	at	architectural	design	time,	while	
enabling	the	automated	verification	of	system	builds/compositions	and	deployable,	as	
well	as	of	executable,	run‐time	versions	of	the	system.	
	
Software	licenses	represent	a	collection	of	rights	and	obligations	for	what	can	or	cannot	
be	done	with	a	licensed	software	component.	Licenses	can	thus	denote	both	functional	
and	non‐functional	requirements	that	apply	to	software	systems	or	system	components	
during	their	development	and	deployment.	But	rights	and	obligations	are	not	limited	to	
concerns	or	constraints	applicable	only	to	software	as	IP.	Instead,	they	can	be	written	in	
ways	that	stipulate	functional	or	non‐functional	requirements	of	different	kinds.	
Consider,	for	example,	that	desired	or	necessary	software	system	security	properties	
can	also	be	expressed	as	rights	and	obligations	addressing	system	confidentiality,	
integrity,	accountability,	system	availability,	and	assurance.	This	kind	of	approach	
provides	new	principles	of	correctness	for	software	IP	requirements	(cf.	Breaux	&	
Antón,	2005,	2008).	
	
Traditionally,	developing	robust	specifications	for	non‐functional	software	system	
security	properties	in	natural	language	often	produces	specifications	that	are	
ambiguous,	misleading,	and	inconsistent	across	system	components,	and	lacking	
sufficient	details	(Yau	&	Chen,	2006).	Using	a	semantic	model	and	logic	to	formally	
specify	the	rights	and	obligations	required	for	a	software	system	or	component	to	be	
secure	(Breaux	&	Antón,	2005,	2008;	Yau	&	Chen,	2006)	means	that	it	may	be	possible	
to	develop	both	a	“security	architecture”	notation	and	model	specification	that	
associates	given	security	rights	and	obligations	across	a	software	system,	or	system	of	
systems.	Similarly,	it	suggests	the	possibility	of	developing	computational	tools	or	
interactive	architecture	development	environments	that	can	be	used	to	specify,	model,	
and	analyze	a	software	system’s	security	architecture	at	different	times	in	its	
development—design	time,	build	time,	and	run	time.	We	have	already	demonstrated	
how	such	an	approach	can	work,	when	limiting	attention	to	IP	rights	and	obligations.	
The	approach	we	have	been	developing	for	the	past	few	years	for	modeling	and	
analyzing	software	system	IP	license	architectures	for	OA	systems	(Alspaugh,	Asuncion,	
&	Scacchi,	2009;	Alspaugh,	Scacchi,	&	Asuncion,	2010;	Scacchi	&	Alspaugh,	2008)	,	may	
therefore	be	extendable	to	also	address	OA	systems	with	heterogeneous	software	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 14 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

security	license	rights	and	obligations	(Scacchi	&	Alspaugh,	2011).	Furthermore,	the	
idea	of	common	or	reusable	software	security	licenses	may	be	analogous	to	the	
reusable	security	requirements	templates	proposed	by	Firesmith	(2004)	at	the	
Software	Engineering	Institute.	Such	security	requirement	templates	may	simplify	and	
guide	the	efforts	of	customers	(or	contracting	officers)	to	more	readily	specify	workable	
requirements	that	can	be	readily	verified	through	system	development,	deployment,	
and	post‐deployment	support.	
	
Security	licenses	can	be	specified,	modeled,	and	analyzed	continuously	from	initial	
system	architectural	design	through	post‐deployment	support	and	system	evolution,	
with	key	points	for	security	license	analysis	occurring	at	design	time,	build/linking	
time,	and	deployment/run	time.	Such	security	licenses	can	be	stated	both	(a)	
informally,	using	restricted	natural	language	for	human	readability,	authorship,	
description	of	non‐functional	security	requirements,	as	well	as	(b)	formally,	specifying	
functional	security	requirements	in	a	computer‐processable	form	using	a	logic‐based	
scheme	and	modeling	notation,	with	automated	production	of	(a)	from	(b)	and	
automated	architecture‐mediated	inferences	using	(b).	Analysis	of	system/s	security	
requirements	can	therefore	be	integrated	into	the	software	architecture	tool	used	to	
express	and	evolve	the	architecture,	so	that	the	analysis	evolves	automatically	in	
parallel	with	the	architecture.	
	
In	general	terms,	a	security	license	is	analogous	to	a	software	copyright	license	such	as	
GPL	(GNU	General	Public	License;	Free	Software	License,	2007).	Software	licenses	
consist	of	intellectual	property	(IP)	rights	granted	by	the	license,	and	corresponding	
license	obligations	needed	to	obtain	the	rights.	Our	innovation	is	to	similarly	specify	the	
security	obligations	and	rights	of	OA	system	components	using	elements	found	in	
known	security	capabilities,	which	we	can	then	model,	analyze,	and	support	throughout	
the	system’s	development	and	evolution,	and	use	to	guide	system	design	and	
instantiation.	Our	initial	investigation	of	security	licenses	(Scacchi	&	Alspaugh,	2011)	
has	identified	rights	and	obligations	such	as	the	following:	

● the	obligation	for	a	user	to	verify	his/her	authority	to	see	compartment	T,	by	
password	or	other	specified	authentication	process;	

● the	obligation	for	a	specific	component	to	have	been	vetted	for	the	capability	
to	read	and	update	data	in	compartment	T;	

● the	obligation	for	all	components	connected	to	specified	component	C	to	
grant	it	the	capability	to	read	and	update	data	in	compartment	T;	

● the	obligation	to	reconfigure	a	system	in	response	to	detected	threats,	when	
given	the	right	to	select	and	include	different	component	versions,	or	
executable	component	variants;	

● the	right	to	read	and	update	data	in	compartment	T	using	the	licensed	
component;	

● the	right	to	replace	specified	component	C	with	some	other	component;	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 15 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

● the	right	to	add	or	update	specified	component	D	in	a	specified	
configuration;	

● the	right	to	add,	update,	or	remove	a	security	mechanism;	and	

● the	right	to	update	security	license	L.	

Further,	formally	specified	OA	security	licenses	are	verifiable,	as	well	as	grounded	in	
functional	and	testable	system	security	capabilities.	
	
The	security	reasoning	chains	among	the	security	licenses	are	mediated	by	the	system	
architecture,	and	evolve	automatically	with	it,	much	like	they	can	for	IP	licenses	
(Alspaugh	et	al.,	2009;	Alspaugh,	Asuncion,	&	Scacchi,	2011;	Alspaugh	et	al.,	2010).	Each	
kind	of	security	license	details	how	its	obligations	are	propagated	architecturally	to	
other	system	components.	The	results	of	this	propagation,	coupled	with	automated	
identification	of	gaps,	conflicts,	and	subsumptions,	are	communicated	to	analysts	as	
architecturally	organized	arguments	supporting	the	existence	of	the	identified	issues.	
The	arguments	provide	context‐appropriate	guidance,	in	terms	of	the	system	
architecture	and	the	security	licenses	of	the	components	involved,	for	resolution	of	
security	problems	through	the	evolution	of	the	system	design.	
	
Our	approach	neither	assumes	nor	proves	that	individual	elements	of	an	OA	system	are	
secure,	but	instead	seeks	to	determine	what	security	rights	and	obligations	are	in	effect	
at	any	time	for	the	overall	system	architecture	as	a	function	of	the	security	rights	and	
obligations	of	its	components.	This	means	that	it	is	possible	to	configure	a	secure	OA	
system	whose	components	may	be	insecure,	or	not	equally	secure.	Our	approach	also	
supports	determination	of	where	or	how	OA	system	security	rights	or	obligations	may	
be	in	conflict,	mismatch,	or	subsume	one	another	as	individual	system	components	or	
connectors	are	adapted	to	evolve	over	time.	As	an	organization's	security	policies	(i.e.,	
their	security	requirements)	evolve	and	adapt,	the	OA	system’s	security	rights	and	
obligations	are	evolved	to	match	and	satisfy	them,	as	long	as	all	security	requirements	
can	be	expressed	through	description	logic	relationships	among	them.	
	
Security	rights	and	obligations	are	characterized	in	terms	of	enterprise	security	policies	
and	goals;	within	that	closed	world,	our	approach	enables	specification	of	the	security	
properties	that	an	open	system	architecture	must	match	or	satisfy.	These	security	
requirements	also	direct	acquisition	program	managers’	and	architecture	analysts’	
attention	to	problem	areas	with	the	greatest	impact	on	system	security.	Where	our	
approach	identifies	a	conflict	or	mismatch,	it	indicates	an	actual,	open‐world	weakness	
in	the	security	of	the	OA	system	under	analysis.	The	chain	of	reasoning	is	mediated	by	
the	system’s	architecture,	with	its	units	defined	piecewise	in	each	component's	security	
license	and	evolving	continuously	as	the	system	architecture,	configuration,	and	
security	requirements	evolve.	As	new	kinds	or	types	of	vulnerability,	threats,	or	exploits	
emerge,	as	well	as	new	categories	of	effective	responses	and	emerging	alternative	
security	mechanisms,	we	seek	to	elaborate	and	demonstrate	how	this	approach	can	
continuously	accommodate	the	specification	and	analysis	of	changing	security	
requirements.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 16 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Product Lines: Alternatives, Versions, Variants of OA Elements
In	producing	a	secure	OA	system	in	a	software	product	line,	there	are	several	levels	of	
variation	available	for	producing	artificial	diversity	among	equivalent	instances	and	for	
selecting	and	evolving	in	the	face	of	threats.	
	
At	the	highest	level	of	granularity,	a	system	developer	or	integrator	can	choose	among	
alternative	producers	of	similar	components,	services,	and	platforms	(Sun	et	al.,	2012):	
For	example,	we	can	find	functionally	similar	alternatives	from	software	(component)	
producers	of	Web	browsers	like	Mozilla	(Firefox,	Camino,	Sea	Monkey)	versus	Google	
(Chrome)	versus	Microsoft	(Internet	Explorer),	versus	others.	Similarly,	for	word	
processors,	we	find	alternatives	including	Microsoft	(Word)	versus	abisoft.com	
(AbiWord)	versus	Google	(Google	Docs,	which	is	a	remote	Web	service	rather	than	a	
component),	versus	others.	Likewise,	for	email	and	calendar	applications,	we	find	
alternatives	like	Microsoft	Outlook,	Gnome	Evolution,	Google	Mail,	and	Google	Calendar,	
among	others.	For	operating	systems,	we	find	Red	Hat	Enterprise	Linux,	Microsoft	
Windows,	Apple	OSX,	and	Google	Android,	among	others.	Finally,	note	that	some	
producers	produce	more	than	one	alternative	of	the	same	kind	of	component	or	service,	
such	as	Mozilla’s	Web	browsers	(Firefox,	Camino,	SeaMonkey),	so	that	a	choice	among	
those	particular	components	does	not	result	in	a	change	of	producers.	
	
Functionally	similar	components	and	services	may	not	be	exactly	interchangeable,	
unless	their	interfaces	are	similar	or	identical.	As	such,	it	may	be	necessary,	for	
example,	to	modify	OA	system	topology,	or	to	replace	connector	types	and	other	
architectural	measures	may	be	necessary	to	change	from	one	producer	to	another,	
depending	on	the	functionality	needed	to	satisfy	functional	requirements.	However,	in	
general,	the	overall	functionality	provided	by	the	system	remains	substantially	the	
same,	but	now	the	diversity	among	alternative	system	instances	is	the	greatest:	not	only	
is	the	component,	service,	or	platform	distinct	between	two	instances,	but	its	
architectural	connections	in	the	system	will	be	distinct,	as	will	be	the	software	
development	process	and	organization	that	produced	it,	so	the	chances	of	a	common	
vulnerability	are	greatly	minimized.	Subsequently,	when	functionally	similar	
components,	connectors,	or	configurations	exist,	such	that	equivalent	alternatives,	
versions,	or	variants	may	be	substituted	for	one	another,	then	we	have	a	strong	
relationship	among	these	OA	system	elements	that	is	called	a	product	family	
(Narayanaswamy	&	Scacchi,	1987;	Bosch,	2006)	or	a	product	line	(Clements	&	
Northrop,	2001).	
	
As	described	above,	a	shift	from	one	alternative	to	another	ordinarily	requires	a	change	
in	architecture,	software	connectors,	and	other	measures.	Changes	between	some	
alternatives	will	also	produce	a	change	of	producers,	while	others	will	not.	However,	
when	components	or	connectors	provide	alternative	implementations	of	the	
functionality	they	provide,	then	these	are	designated	as	versions.	For	example,	most	
Linux	operating	systems	support	multiple	file	systems	for	data	storage,	though	
developers	or	integrators	select	their	preferred	file	system	for	inclusion	at	either	design	
time	or	build	time.	Similarly,	for	connectors	to	remote	Web	servers,	developers	or	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 17 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

integrators	may	specify	unencrypted	(e.g.,	HTTP)	or	encrypted	(e.g.,	HTTPS)	data	
communication	protocols	for	use	in	a	Web‐based	enterprise	system.	Next,	at	the	OA	
system	configuration	level,	selection	of	alternative	components	or	connectors,	or	of	
different	versions	of	components	or	connectors	result	in	different	overall	system	
versions	that	conform	to	a	system	product	line.	Further,	recent	advances	in	source	code	
compilation	now	allow	for	creation	of	functionally	identical	variants	of	software	
components,	though	each	variant	has	a	different	run‐time	image	in	the	computer,	
through	code	randomization	techniques	(Franz,	2010;	Salamat	et	al.,	2011).	Last,	
software	product	lines	can	be	bound	to	a	network	of	software	producers,	system	
integrators,	and	system	users/consumers	through	a	software	ecosystem	(Bosch,	2009),	
such	that	secure	systems	can	be	realized	through	composition	or	configuration	at	the	
software	ecosystem	level	(Scacchi	and	Alspaugh	2012).	Consequently,	we	now	have	a	
complete	and	robust	basis	for	specifying	OA	systems	that	can	include	components,	
connectors,	or	application	systems	from	alternative	producers,	or	with	different	
versions	or	variants	included.	This	is	now	our	basis	for	moving	forward	to	address	the	
challenges	of	creating	secure	OA	systems	through	secured	software	product	lines.	

Secure Software Product Lines within an OA Software
Ecosystem
Given	the	basis	for	software	product	lines	for	OA	systems,	we	now	address	how	to	
frame	and	align	software	system	architectures	with	software	security	mechanisms.	We	
use	the	following	scheme	to	address	this,	as	shown	in	Table	1.	
	

Table 1. Different System Security Elements Whose Rights and Obligations
Depend on Capabilities Supported by Lower Level Elements

	
	

System	security	policies	provide	the	overall	context	for	the	kinds	of	security	
mechanisms	or	capabilities	(e.g.,	mandatory	role‐based	data	access	control)	required	by	
a	particular	system.	The	requirements	must	be	realized	through	multiple	levels	of	
system	composition	that	span	a	processing	space	from	people	to	processing	platforms,	
and	through	data/content	space	that	is	processed	during	system	usage/operation.	
Aligning	system	security	elements	with	security	mechanisms	gives	rise	to	the	following	
associations:	
	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 18 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Platform:	base	technological	elements	that	constitute	the	computer	environment	that	
hosts	the	target	system.	

● Hardware:	specifies	hardware	confinement	constraints	needed	to	securely	
operate	the	software	system	configuration,	potentially	to	address	memory,	
storage,	and	external	device	port	isolation	(see	SecureSwitch	[Sun	et	al.,	
2012]).	Hardware	may	be	configured	as	an	embedded	processor,	mobile	
computer	(e.g.,	smartphone	or	tablet),	personal	computer,	multi‐processor	
computation	server,	or	multi‐server	data	center.	

● Virtual	machine:	a	software	layer	that	can	isolate	and	confine	the	operating	
system,	component	applications,	or	application	services	from	direct	control	
of	system	hardware,	network	operations,	or	operating	system	processes.	
OSes,	software	systems,	components,	or	connectors	can	each	run	within	
their	own	virtual	machine,	in	alternative	configurations,	as	long	as	they	are	
completely	confined	at	a	higher	level	of	system	security	and	do	not	overlap	
virtual	machine	boundaries	(Spencer	et	al.,	1999;	Smalley,	2012).	

● Network:	message	filtering	and	access	control	firewalls	for	data/control	
flows	that	move	across	external	hardware	system	security	boundaries.	

● Operating	systems:	mandatory	access	control	(Loscocco	et	al,	1998;	Spencer	
et	al.,	1999),	capability	type	enforcement	(Smalley,	2012),	OS	configuration	
parameters	(STIG	2012),	run‐time	audit	logs,	all	currently	coded	and	
managed	by	system	integrators/administrators.	

Connectors:	software	mechanisms	that	implement	secure	communication	mechanisms	
within	and	across	system	boundaries.	Connectors	enable	security	mechanisms	
providing:	

● data	cryptography	(encryption/decryption)	before/after	data	transfer;	

● component‐connector–specific	firewalls	that	can	be	implemented	via	(pre‐
conditions)	constraints	on	in‐bound	data	flow	and	plug‐in/helper	
application	invocation,	or	on	out‐bound	data	flow	and	external	program	
invocations	(post‐conditions);	and	

● multi‐version	connector	configurations	between	components	that	allow	for	
artificial	diversity	and	dynamic	reconfiguration	potential	through	
functionally	similar	versions.	

Components:	software	mechanisms	that	implement	application	functionality	required	
for	the	targeted	system	to	operate	as	intended.	Components	enable	security	
mechanisms	providing:	

● access/usage	authentication	control	obligations	(e.g.,	login	with	authorized	
identification	and	password)	for	which	people	in	what	roles	(e.g.,	developer,	
system	integrator,	system	administrator,	system	user)	have	the	specified	set	
of	rights	to	view/update	data,	data	control	flow	invocations,	or	external	
program	invocations;	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 19 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

● encapsulated	components	as	services	within	virtual	machines	to	confine	
potential	exploits,	while	mitigating	their	propagation;	

● alternative	versions	that	increase	artificial	diversity	and	enable	dynamic	
replacement	with	functionally	similar	alternatives;	

● multiple	versions	that	allow	for	changes	in	vulnerability	space,	including	
concurrent	versions	with	replicated	input	data,	but	different	out	data	
connector	(routing)	configurations;	and	

● multiple	variants	that	reduce	vulnerability	to	component	version	attacks.	

System	configuration:	the	composition	and	interrelationship	of	components	and	
connectors	that	together	realize	the	system	architecture,	at	design	time,	build	time,	or	
run	time.	System	configuration	(or	composition	[Bosch,	2006])	enables	security	by	
providing	the	

● ability	to	host	multiple	(one	or	more)	alternative,	version,	or	variant	system	
configurations	on	one	or	more	processors	(either	single‐core	[Sun	et	al.,	
2012],	multi‐core,	multi‐blade,	or	multi‐site)	that	can	be	dynamically	
selected	in	response	to	security	policy	directives	or	in	response	to	detected	
threats;	

● ability	to	host	concurrently	running	multiple	(one	or	more)	alternative,	
version,	or	variant	system	configurations	on	one	or	more	processors	(either	
multi‐core,	multi‐blade,	or	multi‐site)	that	can	be	dynamically	selected	in	
response	to	security	policy	directives	or	in	response	to	detected	threats;	and	

● ability	to	(formally)	specify	system	configuration	as	an	open	architecture	at	
design	time,	build	time,	and	deployment	run	time,	along	with	automated	
tools	that	can	verify	the	consistency,	completeness,	and	traceability.	

Developers,	system	integrators,	and	users:	denote	the	people	authorized	and	trusted	
to	work	on	or	with	the	configured	systems	or	its	elements	over	time,	depending	on	their	
externally	assigned	role(s).	

● Developers	should	employ	software	development	environments,	tools,	or	
processes	that	reinforce	security‐safe	software	coding	practices	of	
components	or	connectors	they	implement	as	products	(Seacord,	2008).	

● Developers	should	produce	multiple,	unique	executable	variants	of	the	
components	or	connectors	they	produce	and	distribute.	

● System	integrators	design	OA	system	architecture.	

● System	integrators	build	OA	system	configurations	that	select	from	one	or	
more	component	or	connector	alternatives,	versions,	and	variants.	

● System	integrators	deploy	one	or	more	run‐time	system	configuration	
variants	that	can	be	readily	installed	and	appropriate	parameters	entered	by	
system	administrators	or	end‐users.	

● System	integrators	or	system	administrators,	or	automated	mechanisms	
under	their	control,	must	be	able	to	monitor	and	access	system	execution	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 20 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

audit	logs,	to	determine	if	threats	or	anomalous	system	behaviors	are	
detected,	and	to	dynamically	reconfigure	system	configuration	or	security	
parameters	in	order	to	move	the	executable	system	into	a	more	trusted	
operational	state.	

● Users	must	be	provided	with	online	identifiers	or	identification	methods	
that	enable	them	to	access	security	controlled	systems	via	one	or	more	
alternative	authentication	mechanisms	in	place.	

In	parallel	with	these	processing	security	spaces	are	the	following	data	security	spaces:	
	
User	I/O	data:	data	that	may	exist	only	as	it	passes	across	communication	channels.	
Examples	are	keystrokes	and	mouse	movements	communicated	from	a	keyboard	or	
mouse	to	a	processor,	voice	data	from	microphones	and	to	speakers,	wifi	packets,	and	
so	forth.	This	data	may	be	discarded	or	incorporated	into	ephemeral	data.	
	
Ephemeral	data:	data	that	exists	in	memory	for	a	brief	time	before	being	either	
discarded	or	incorporated	into	persistent	data.	Examples	are	Web	forms	that	have	been	
filled	out	but	not	submitted,	and	data	in	various	sorts	of	hardware	buffers.	
	
Persistent	data:	data	that	exists	for	a	substantial	time	on	local	disks	or	solid‐state	
storage	devices,	USB	memory	sticks,	DVD‐ROM,	or	server	storage.		
	
Security	policies:	provide	overall	guidance	and	requirements	for	what	security	
mechanisms	and	regimes	are	to	be	designed,	implemented,	and	satisfied	during	the	
deployment,	operation,	and	evolution	of	a	specified	system.	Security	policies	

● should	provide	non‐functional	requirements	regarding	the	membership,	
structure,	and	behavioral	specifications	of	each	of	the	proceeding	categories	
of	security	elements	at	minimum,	or	further	specification	of	security	sub‐
elements	within	each	category,	as	per	the	security	exposure	of	the	system	
being	addressed.	

○ Non‐functional	requirements	may	only	specify	rights	provided	when	
corresponding	obligations	are	fulfilled	that	cannot	be	automated	or	
verified	in	lower	level	security	elements.	

○ Non‐functional	requirements	should	be	expressible	in	human‐
readable	and	computer‐processable	forms	within	the	system	security	
policy	license.	

● must	provide	functional	requirements	regarding	the	membership,	structure,	
and	behavioral	specifications	of	each	of	the	proceeding	categories	of	security	
elements	at	minimum,	or	further	specification	of	security	sub‐elements	
within	each	category,	as	per	the	security	exposure	of	the	system	being	
addressed.	

○ Functional	requirements	are	those	that	can	be	formalized,	automated,	
and	verified	by	corresponding	automated	mechanisms	available	at	
lower	level	security	elements.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 21 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

○ Functional	requirements	may	only	specify	rights	provided	when	
corresponding	obligations	are	fulfilled	that	must	be	automated	or	
verified	in	lower	level	security	elements.	

○ Functional	requirements	should	be	expressible	in	human‐readable	
and	computer‐processable	forms	within	the	system	security	policy	
license.	

The	case	study	that	follows	describes	where	these	different	system	security	elements	
appear	in	forms	that	can	be	available	for	review	by	authorized	Program	Acquisition	
personnel.		

Case Study: A Secure Product Line for an Enterprise System
Let	us	consider	what	needs	to	be	specified	during	the	acquisition	of	an	enterprise	
system	that	incorporates	common	office	productivity	applications	that	run	on	a	
personal	computer	networked	to	remote	servers.	Such	a	system	can	include	a	Web	
browser,	word	processor,	email,	and	calendaring	applications	that	are	configured	to	
operate	on	a	personal	computer,	where	the	PC’s	operating	system,	Web	browser,	and	
other	applications	need	to	be	configured	to	access	remote	data/Web	content	servers.	
Figure	1	shows	part	of	the	system	ecosystem	of	software	producers	and	the	
components	they	can	provide	for	our	enterprise	system.	
	

	
Figure 1. A Partial View of a Software Ecosystem of Producers and

the Software Components for an Enterprise System They Produce

Figure	2	shows	the	design‐time	architecture	of	such	an	enterprise	system.	What	might	a	
secure	product	line	for	a	system	like	this	involve,	and	how	might	it	provide	benefits	and	
security	qualities	to	be	specified	for	design	time,	build	time,	and	run	time?	How	can	its	
OA	and	product‐line	characteristics	contribute	to	security	throughout	the	acquisition	
system	life	cycle?	
	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 22 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

	
Figure 2. A Design-Time Reference Model of an OA System That

Accommodates Multiple Alternative System Configurations

	
Figure 3. A View of an OA Software Ecosystem That Provides

Alternative, Functionally Similar Components Compatible With the Reference
Design-Time Architecture

We	envision	an	approach	in	which	non‐functional	requirements,	such	as	security,	
reliability,	and	evolvability	requirements	at	acquisition	time,	are	elaborated	at	design	
and	build	times	by	specific	functional	requirements	that	explain	how	and	to	what	
degree	the	non‐functional	requirements	are	going	to	be	satisfied	at	run	time.	Analogous	
to	our	previous	work	with	intellectual	property	(IP)	licensing,	we	envision	that	these	
requirements	are	structured	in	the	same	logical	forms	as	IP	licenses	(with	specific	
rights	that	are	obtained	only	by	fulfilling	specific	obligations),	and	managed	through	the	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 23 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

architecture	by	the	same	approach	of	calculating	which	obligations	are	satisfiable,	in	
what	way,	and	as	a	result	what	rights	are	available	(Alspaugh	et	al.,	2009;	Alspaugh	et	
al.,	2010;	Scachhi	&	Alspaugh,	2011).	
	
Figure	3	illustrates	a	possible	OA	software	ecosystem	for	this	product	line.	Here	a	
number	of	possible	producers	and	alternative	components	have	been	placed	into	play,	
and	four	specific	instance	architectures	(produced	in	four	specific	ecosystems)	have	
been	sketched.	With	appropriate	architectural	topologies,	and	appropriate	shim	
components	and	connectors	inserted	between	the	major	components,	each	of	these	
four	instance	architectures	can	support	the	same	functionality.	It	is	also	possible	to	
achieve	different	nonfunctional	qualities	including	security	qualities	through	the	four	
choices,	for	example,	by	requiring	that	OS	be	an	appropriate	Security‐Enhanced	version	
of	Linux	(SEL	2012),	or	by	requiring	that	the	network	protocol	connector	be	HTTPS.	
	
Within	the	overall	ecosystem	of	Figure	3,	Figure	4	shows	one	possible	instance	
ecosystem	involving	specific	producers	(Mozilla,	abisource.org,	gnome.org,	Red	Hat)	
and	specific	alternatives	(Firefox,	AbiWord,	Evolution,	Fedora).	
	
Acquisition‐time	requirements	such	as	the	use	of	SE	Linux	and	the	use	of	HTTPS	could	
be	satisfied	by	this	choice;	with	an	appropriate	architecture,	the	IP	licensing	obligations	
could	also	be	satisfied.	At	design	time,	the	functional	requirements	would	need	to	be	
satisfied	by	appropriately	specified	shims	inserted	among	the	principal	components,	
and	if	such	shims	could	be	designed,	then	this	would	be	the	proof	that	the	acquisition‐
time	nonfunctional	requirements	could	also	be	satisfied.	Figure	5	shows	a	run‐time	
view	of	this	instance	architecture,	resulting	from	the	specific	OA	ecosystem	and	
instantiating	the	overall	ecosystem	of	Figure	3	and	the	software	product	line	the	
software	system	is	an	instance	of.	
	
This	instance	architecture	has	both	a	manageable	IP	license	regime	that	insures	its	
openness,	and	a	manageable	security	regime.	For	IP,	in	this	architectural	instance,	all	
component	versions	can	be	selected	to	use	permissive	licenses	(Web	browser,	Web	
server)	or	reciprocal	GPL	licenses	(word	processor,	email,	calendar,	and	operating	
system);	they	are	cleanly	separated	by	dynamic	run‐time	links,	which	are	a	type	of	
connector	that	does	not	transmit	IP	obligations	or	rights,	though	it	allows	for	control	
flow	integration,	and	data	flow	interoperation.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 24 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

	
Figure 4. A Selection Among Alternative Components That Can Be

Included at Build Time to Produce an Integrated System Compatible With the
Design-Time Reference

	
Figure 5. An End-User Run-Time Version of the Selected Alternative
Components, utilizing Security-Enhanced Linux (SEL 2012).

Figure	6	outlines	an	alternative	system	configuration	and	the	instance	ecosystem	that	
produces	it.	This	instance	architecture	substitutes	services	for	components	in	the	case	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 25 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

of	Google	Docs	for	the	word	processing	functionality	and	Google	Calendar	for	the	
calendar	functionality.	With	appropriate	shims	and	changes	to	the	architectural	
topology,	this	combination	of	major	components	could	also	support	the	system’s	
functional	requirements,	and	because	the	services	are	accessed	through	client–server	
connections,	which	block	the	propagation	of	most	license	obligations,	there	are	a	
number	of	ways	to	satisfy	the	IP	constraints	imposed	by	the	component	and	service	
licenses.	
	
This	alternative	configuration	also	highlights	possible	acquisition‐time	concerns	and	
the	nonfunctional	requirements	and	security	license	issues	that	follow	from	them.	For	
example,	a	remote	service	such	as	Google	Docs	provides	benefits	and	imposes	costs	
with	respect	to	a	compiled	component	such	as	AbiWord.	On	the	one	hand,	the	remote	
service	makes	some	qualities	easier	to	achieve	(data	sharing,	backup,	etc.),	but	on	the	
other	hand,	may	make	some	qualities	harder	to	achieve	(data	security	over	a	network	
connection	and	in	the	“cloud,”	up‐time	of	the	service,	little	or	no	control	over	when	new	
versions	of	the	service	are	used,	compared	to	complete	control	over	when	new	versions	
of	a	component	are	integrated).		

	
Figure 6. A Second System Configuration, Using Alternative but

Functionally Similar Components

The	alternative	configuration	gives	rise	to	a	number	of	questions	addressing	both	
acquisition‐time	concerns	and	for	non‐functional	system	requirements,	such	as:	

● Who	in	the	ecosystem	of	human	actors	for	this	system	has	the	right	to	make	
the	decisions	to	use	a	service	in	place	of	a	component,	or	one	component	
version	in	place	of	another?	What	obligations	are	they	required	to	satisfy	
first?	These	questions	are	of	concern	at	acquisition	time	and,	we	claim,	are	
addressable	by	acquisition	licenses	that	restrict	rights	and	impose	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 26 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

obligations	important	to	system	acquisition	officers	just	as	IP	licenses	do	for	
IP	rights	and	obligations	important	to	software	producers.	

● When	can	these	decisions	be	made?	In	traditional	development	processes,	
these	would	occur	at	design	time,	but	in	the	larger	view	we	propound	here,	
such	decisions,	or	rather	the	policies	or	acquisition	licenses	that	control	
them,	are	perhaps	more	properly	considered	at	acquisition	time.	As	
explained	in	the	remainder	of	this	section,	it	is	also	possible	that	in	order	to	
achieve	specific	security	qualities,	they	might	be	made	at	build	or	run	time,	
in	response	to	specific	threats.	

Figure	7	shows	a	run‐time	view	of	this	alternative	configuration.	To	the	end	user,	this	
system	appears	quite	similar	to	the	one	in	Figure	5,	and	the	differences	might	scarcely	
be	noticed,	which	raises	the	next	set	of	possibilities.	
	

	
Figure 7. An End-User View of the Alternative Run-Time System

Configuration

Both	these	instance	architectures	specify	specific	alternatives	for	the	major	
components,	for	example,	Firefox	for	the	Web	browser	component.	But	which	version	
of	Firefox?	For	example,	it	is	quite	possible	that	both	the	instance	architectures	
discussed	above	could	be	implemented	using	either	Firefox	10	or	Firefox	11,	satisfying	
all	the	functional	requirements	with	no	change	to	the	instance	architecture	and	no	
revision	of	software	shims.	Who	has	the	power	to	decide	to	use	version	10	rather	than	
version	11?	How	late	in	the	software	process	can	this	decision	be	made—for	example,	
could	it	be	made	as	late	as	system	startup	time	by	a	system	user,	in	response	to	a	
particular	security	attack	on	the	previous	configuration?	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 27 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

	
At	the	conceptually	lowest	level,	the	advent	of	code	randomization	and	multi‐variant	
software	executables	leads	to	the	possibility	of	substituting	essentially	equivalent	
variants	of	the	same	component,	most	obviously	at	build	time.	The	decision	to	
substitute	one	variant	for	another,	or	the	decision	to	allow	the	substitution,	can	be	
made	through	the	entire	range	of	development	times	from	acquisition	time	to	run	time.	
The	substitution	can	be	put	into	effect	by	a	human	actor	or	by	a	software	monitor	
following	a	security	policy,	either	randomly	or	in	response	to	specific	events	in	the	
environment.	
	
Finally,	an	orthogonal	consideration	is	the	use	of	containment	vessels	to	encapsulate	
components	or	subsystems	within	a	virtual	machine,	to	monitor	and	control	
interactions	among	components	and	subsystems	in	order	to	block	attacks	and	protect	
vulnerable	parts	of	a	system.	Figure	8	shows	a	screenshot	in	ArchStudio	of	a	design‐
time	architecture	utilizing	eight	containment	vessels,	seven	for	individual	components	
and	connectors	and	the	eighth	for	the	group	of	components	and	connectors	associated	
with	the	OS.	

	
Figure 8. A Security Configuration Alternative for the Run-Time

Configuration Instance That Encapsulates OA System Components and
Connectors Within Different Virtual Machines (e.g., Using Xen (2012)).

For	security,	the	GPL’d	Fedora	can	employ	the	SELinux	capabilities	to	restrict	all	
shell/operating	systems	commands	through	mandatory	access	control	and	type	
enforcement	(see	Figure	8),	while	other	components	can	all	be	contained	within	one	
(for	minimal	security	confinement)	or	more	(for	increased	security	confinement	on	a	
per	component	basis)	Xen‐based	virtual	machines	(again,	See	Figure	8).	The	
interoperability	of	SELinux	and	Xen	is	now	a	common	feature	of	many	large	Linux	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 28 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

system	installations	(e.g.,	Amazon.com	now	has	more	than	500,000	Linux	systems	
running	Xen;	(SEL	2012;	Xen	2012).	

Discussion and Conclusions
Our	goal	in	this	study	is	to	develop	and	demonstrate	a	new	approach	to	address	
challenges	in	the	acquisition	of	secure	OA	software	systems.	Program	managers,	
acquisition	officers,	and	contract	managers	will	increasingly	be	called	on	to	provide	
review	and	approval	of	security	measures	that	are	employed	during	the	design,	
implementation,	and	deployment	of	OA	systems.	We	seek	to	make	this	a	simpler	and	
more	transparent	endeavor.	This	requires	security	policies	that	are	appropriate	for	
review	and	approval	during	acquisition	by	people	who	may	not	be	expert	in	the	
specifics	of	how	best	to	insure	that	secure	systems	will	result.	Our	view	is	to	address	
this	need	by	investigating	how	best	to	specify	or	model	system	security	in	ways	that	can	
accommodate	security	as	a	continuous	process	that	must	be	supported	throughout	the	
system	acquisition	life	cycle	for	OA	systems	(Scacchi	&	Alspaugh,	2008,	2011).	
	
Our	efforts	reported	here	reveal	that	it	is	possible	to	employ	a	scheme	through	which	
complex	OA	systems	can	be	designed,	built,	and	deployed	with	alternative	components	
and	connectors	into	functionally	similar	system	versions,	in	ways	that	allow	for	overall	
system	security	through	the	use	of	multiple	security	mechanisms.	We	described	a	
scheme	for	how	to	realize	and	specify	such	OA	system	configurations	in	ways	that	are	
inherently	compatible	with	existing	security	mechanisms,	and	this	scheme	does	not	
assume	that	individual	system	elements	must	be	secure	before	inclusion	into	the	
secured	system’s	configuration.	Central	to	our	scheme	is	the	incorporation	of	software	
product	line	concepts	that	are	integrated	with	security	mechanisms	in	a	coherent	way	
that	is	amenable	to	automated	support	and	acquisition	management.	We	also	provided	
a	case	study	that	reveals	where	and	how	we	specify	a	secure	OA	enterprise	system	
product	line	in	ways	that	can	accommodate	the	diverse	needs	of	software	producers	
and	developers,	system	integrators,	users,	and	acquisition	managers.	What	remains	as	
an	important	next	step	for	this	line	of	research	effort	is	to	more	fully	articulate	how	to	
simply	and	transparently	specify	OA	system	security	using	streamlined	security	policies	
that	utilize	the	kind	of	system	security	licenses	we	anticipate	(Scacchi	&	Alspaugh,	
2011),	as	well	as	designing	and	developing	a	prototype	automated	system	that	can	
support	the	modeling	and	analysis	of	OA	system	security	policies,	alternative	version	
OA	system	configurations,	and	different	OA	security	licenses.	

References
[AAS09]	Alspaugh,	T.	A.,	Asuncion,	H.,	&	Scacchi,	W.	(2009,	August	31–September	4).	

Intellectual	property	rights	requirements	for	heterogeneously	licensed	
systems.	In	Proceedings	of	the	17th	IEEE	International	Requirements	
Engineering	Conference	(RE	’09)	(pp.	24–33).	Los	Alamitos,	CA:	IEEE.	

[AAS11]	Alspaugh,	T.	A.,	Asuncion,	H.,	&	Scacchi,	W.	(2011,	July).	Presenting	software	
license	conflicts	through	argumentation.	In	Proceedings	of	the	23rd	
International	Conference	on	Software	Engineering	and	Knowledge	Engineering.	
Knowledge	Systems	Institute,	Skokie,	IL.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 29 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

[ASA10]	Alspaugh,	T.	A.,	Scacchi,	W.,	&	Asuncion,	H.	(2010,	November).	Software	
licenses	in	context:	The	challenge	of	heterogeneously	licensed	systems.	
Journal	of	the	Association	for	Information	Systems,	11(11),	730–755.	

[Bo06]	Bosch,	J.	(2006,	December).	The	challenges	of	broadening	the	scope	of	
software	product	families.	Communications	of	the	ACM,	49(12),	41–44.	

[Bo09]	Bosch,	J.	(2009).	From	software	product	lines	to	software	ecosystems.	In	
Proceedings	of	the	13th	International	Software	Product	Line	Conference	(SPLC	
’09)	(pp.	111–119).	ACM,	New	York.	

[BA05]	Breaux,	T.	D.,	&	Antón,	A.	I.	(2005).	Analyzing	goal	semantics	for	rights,	
permissions,	and	obligations.	In	Proceedings	of	the	13th	IEEE	International	
Conference	on	Requirements	Engineering	(RE	’05)	(pp.	177–188).	Los	
Alamitos,	CA:	IEEE.	

[BA08]	Breaux,	T.	D.,	&	Antón,	A.	I.	(2008).	Analyzing	regulatory	rules	for	privacy	
and	security	requirements.	IEEE	Transactions	on	Software	Engineering,	34(1),	
5–20.	

[CN01]	Clements,	P.,	&	Northrop,	L.	(2001).	Software	product	lines:	Practices	and	
patterns.	New	York,	NY:	Addison‐Wesley.	

[CIO10]	Chief	Information	Officer,	Department	of	Defense	(DoD)	Open	Source	
Software	(OSS)	FAQ	(2010).	Frequently	asked	questions	regarding	open	source	
software	(OSS)	and	the	Department	of	Defense	(DoD).	Retrieved	from	
http://dodcio.defense.gov/OpenSourceSoftwareFAQ.aspx			

[DoD11]	DoD	(2011).		Department	of	Defense	strategy	for	operating	in	cyberspace.	
(2011,	July).	Retrieved	from	
http://www.defense.gov/news/d20110714cyber.pdf	

[FM11]Falliere,	M.,	Murchu,	L.	O.,	&	Chien,	E.	(2011,	February).	W32.Stuxnet	dossier,	
version	1.4.	Retrieved	from	
http://www.symantec.com/content/en/us/enterprise/media/security_resp
onse/whitepapers/w32_stuxnet_dossier.pdf	

[F04]	Firesmith,	D.	(2004,	January–February).	Specifying	reusable	security	
requirements.	Journal	of	Object	Technology,	3(1),	61–75.	

[Fr10]	Franz,	M.	(2010,	September	21–23).	E	unibus	pluram:	Massive‐scale	software	
diversity	as	a	defense	mechanism.	In	Proceedings	of	the	New	Security	
Paradigms	Workshop	(NSPW	’10)	(pp.	7–16).	Retrieved	from	
http://www.ics.uci.edu/~franz/Zurich/MassiveScaleDiversity.pdf	

	[Ga10]	Garcia,	P.	(2010).	Maritime	C2	strategy:	An	innovative	approach	to	system	
transformation.	In	Proceedings	of	the	15th	International	Command	&	Control	
Research	&	Technology	Symposium	(Paper	147).	Retrieved	from	
http://www.dtic.mil/cgi‐
bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA526453	

	[Gi11]	Gizzi,	N.	(2011).	Command	and	control	rapid	prototyping	continuum	
(C2RPC)	transition:	Bridging	the	valley	of	death.	In	Proceedings	of	the	Eighth	
Annual	Acquisition	Research	Symposium	(Vol.	1,	pp.	127–154).	Retrieved	from	
http://www.acquisitionresearch.net	

[GPL07]	GPL	(2007).	GNU	General	Public	License,	version	3.	Free	Software	
Foundation.	Retrieved	from	http://www.gnu.org/licenses/gpl.html	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 30 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

[H11]	H,	Attack	of	the	computer	mouse.	(2011,	June	29).	The	H	Online	Security.	
Retrieved	from	http://h‐online.com/‐1270018,	accessded	1	April	2012.		

[LSM98]	Loscocco,	P.,	Smalley,	S.,	Muckelbauer,	P.,	Taylor,	R.,	Turner,	S.,	&	Farrell,	J.	
(1998).	The	inevitability	of	failure:	The	flawed	assumption	of	security	in	
modern	computing	environment.	In	Proceedings	of	the	21st	National	
Information	Systems	Security	Conference	(pp.	303–314),	National	Institute	for	
Standards	and	Technology,	Silver	Springs,	MD.	

[NS87]	Narayanaswamy,	K.,	&	Scacchi,	W.	(1987).	Maintaining	configurations	of	
evolving	software	systems.	IEEE	Transactions	on	Software	Engineering,	13(4),	
323–334.	

	[Navy10]	Navy.mil.	(2010).	PEO	IWS	releases	open	architecture	contract	guidebook	
update.	Retrieved	from	
http://www.navy.mil/search/display.asp?story_id=53661,	accessed	1	April	
2012.	

[SEL12]	SEL,	SELinux	on	Xen.	(2012).	Retrieved	from	
http://wiki.prgmr.com/mediawiki/index.php/SELinux_on_Xen,	accessed	1	
April	2012.	

[SJW11]	Salamat,	B.,	Jackson,	T.,	Wagner,	G.,	Wimmer,	C.,	&	Franz,	M.	(2011,	July).	
Run‐time	defense	against	code	injection	attacks	using	replicated	execution.	
IEEE	Transactions	on	Dependable	and	Secure	Computing,	8(4).	588‐601.	

[Saw11]	Sawers,	P.	(2011,	June	28).	US	Govt.	plant	USB	sticks	in	security	study,	60%	
of	subjects	take	the	bait.	TNW:	The	Next	Web.	Retrieved	from	
http://thenextweb.com/industry/2011/06/28/us‐govt‐plant‐usb‐sticks‐in‐
security‐study‐60‐of‐subjects‐take‐the‐bait.	

[SA08]	Scacchi,	W.,	&	Alspaugh,	T.	(2008).	Emerging	issues	in	the	acquisition	of	open	
source	software	within	the	U.S.	Department	of	Defense.	In	Proceedings	of	the	
Fifth	Annual	Acquisition	Research	Symposium	(NPS‐AM‐08‐036;	Vol.	1,	pp.	
230–244).	Retrieved	from	http://www.acquisitionresearch.net	

	[SA11]	Scacchi,	W.,	&	Alspaugh,	T.	(2011).	Advances	in	the	acquisition	of	secure	
systems	based	on	open	architectures.	In	Proceedings	of	the	Eighth	Annual	
Acquisition	Research	Symposium	(Vol.	1,	pp.	50–69).	Retrieved	from	
http://www.acquisitionresearch.net	

[SA12]	Scacchi,	W.,	&	Alspaugh,	T.	(2012).	Understanding	the	Role	of	Licenses	and	
Evolution	in	Open	Architecture	Software	Ecosystems,	Journal of Systems
and Software, 85(7), 1479-1494, July 2012.	

	[SBN11]	Scacchi,	W.,	Brown,	C.,	&	Nies,	K.	(2011,	July).	Investigating	the	use	of	
computer	games	and	virtual	worlds	for	decentralized	command	and	control	
(Final	Report,	Grant	#N00244‐10‐1‐006).	University	of	California,	Irvine,	
Institute	for	Software	Research.	Retrieved	from	
http://www.ics.uci.edu/~wscacchi/ProjectReports/NPS‐
Reports/DECENT.pdf	

[Se08]	Seacord,	R.	(2008).	The	CERT	C	secure	coding	standard.	New	York,	NY:	
Addison‐Wesley.	

[Sh11]	Shrobe,	H.	(2011,	November).	Secure	computing	systems.	Presentation	at	the	
Darpa	Colloquium	on	Future	Directions	in	CyberSecurity,	Arlington,	VA.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 31 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Retrieved	from	
www.darpa.mil/WorkArea/DownloadAsset.aspx?id=2147484460		

[Sm12]	Smalley,	S.	(2012).	The	case	for	Security	Enhanced	(SE)	Android.	Retrieved	
from	
https://events.linuxfoundation.org/images/stories/pdf/lf_abs12_smalley.pdf		

[SSL99]	Spencer,	R.,	Smalley,	S.,	Loscocco,	P.,	Hibler,	M.,	Andersen,	D.,	&	Lepreau,	J.	
(1999).	The	Flask	Security	Architecture:	System	support	for	diverse	security	
policies.	In	Proceedings	of	the	Eighth	USENIX	Security	Symposium	(pp.	123–
139),	USENIX	Association,	Berkeley,	CA.		

[STIG11]	STIG,	Security	technical	information	guide,	Android	2.2	(Dell).	Retrieved	
from	http://iase.disa.mil/stigs/net_perimeter/wireless/smartphone.html,	
accessed	1	April	2012.	

[Stux11]	Stuxnet.	(n.d.).	In	Wikipedia.	Retrieved	from	
http://en.wikipedia.org/wiki/Stuxnet	,	accessed	1	April	2012.	

[SWZ12]	Sun,	K.,	Wang,	J.,	Zhang,	F.,	&	Stavrou,	A.	(2012).	SecureSwitch:	BIOS‐
assisted	isolation	and	switch	between	trusted	and	untrusted	commodity	
OSes.	In	Proceedings	of	the	19th	Annual	Network	and	Distributed	System	
Security	Symposium.	Internet	Society,	
http://www.internetsociety.org/sites/default/files/P10_2.pdf,	accessed	1	
April	2012.	

[Xen12]	Xen,		Xen	Hypervisor	Project.	Retrieved	from	
http://www.xen.org/products/xenhyp.html,	accessed	1	July	2012.	

[YC06]	Yau,	S.	S.,	&	Chen,	Z.	(2006).	A	framework	for	specifying	and	managing	
security	requirements	in	collaborative	systems.	In	Proceedings	of	the	Third	
International	Conference	on	Autonomic	and	Trusted	Computing	(ATC	2006)	
Springer,	New	York,	(pp.	500–510).	

Acknowledgments
Research	described	in	this	report	was	supported	by	grant	#N447602‐12‐1‐0004	from	
the	Acquisition	Research	Program	at	the	Naval	Postgraduate	School,	and	from	grant	
#0808783	from	the	National	Science	Foundation.	No	review,	approval,	or	endorsement	
implied.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 32 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

THIS	PAGE	INTENTIONALLY	LEFT	BLANK	
	
	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 33 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Exploring the Potential of Virtual Worlds for
Decentralized Command and Control

Walt	Scacchi,	Craig	Brown,	&	Kari	Nies	

Abstract
This	report	describes	results	from	a	research	study	investigating	how	virtual	world	
(VW)	concepts,	techniques,	and	tools	can	be	employed	to	create	an	online	environment	
that	supports	experiments	in	Decentralized	Command	and	Control	(DCC).	We	refer	to	
this	project	and	the	VW	we	have	prototyped	collectively	as	the	DECENT	project	and	
system	platform.	DECENT	is	a	platform	for	exercising	and	assessing	the	potential	of	a	
game‐based	VW	approach	to	decentralized	C2,	as	well	as	for	comparing		our	efforts	
with	others	closely	related.	Overall,	we	find	this	effort	gives	rise	to	very	promising	
results	that	point	to	additional	opportunities	and	system	extensions	for	new	ways	to	
consider	the	potential	of	decentralized	approaches	to	C2	that	merit	further	systematic	
investigation	and	experimentation.	This	report	provides	a	description	of	the	approach	
to	prototyping	and	initially	evaluating	some	of	the	potential	of	DCC	systems	based	on	
VW	technologies.	

Overview
Decentralized	Command	and	Control	(DCC)	is	emerging	as	a	new	strategic	thrust	(DoD,	
2012).	DCC	is	envisioned	as	a	new	approach	and	model	for	how	to	organize	and	
experience	command	and	control	systems,	mission	planning	and	scheduling	processes,	
and	physically	decentralized	user	practices,	using	low‐cost	or	free	open	source	software	
technologies.	DCC	systems	are	anticipated	to	operate	as	virtual	enterprises	that	are	
physically	distributed	but	logically	centralized.	They	are	used	at	the	edge	of	a	multi‐site	
organization,	and	thus	can	engage	participants	in	different	locations.	
	
This	report	describes	results	from	a	research	study	investigating	how	virtual	world	
(VW)	concepts,	techniques,	and	tools	can	be	employed	to	create	an	online	environment	
that	supports	experiments	in	DCC.	We	refer	to	this	project	and	the	VW	we	have	
prototyped	collectively	as	the	DECENT	project	and	system	platform.	DECENT	is	a	
platform	for	exercising	and	assessing	the	potential	of	a	VW‐based	approach	to	
decentralized	C2,	as	well	as	for	comparing	our	efforts	with	others	closely	related.	A	
companion	paper	further	describes	how	DECENT	has	been	used	to	support	the	creation	
and	experimentation	with	C2	mission	planning	games	(Scacchi,	Brown,	&	Nies,	2012).	
Overall,	we	find	this	effort	gives	rise	to	very	promising	results	that	point	to	additional	
opportunities	and	system	extensions	for	new	ways	to	consider	the	potential	of	
decentralized	approaches	to	C2	that	merit	further	systematic	investigation	and	
experimentation.		
	
Our	choice	to	employ	VW	technologies	is	in	part	influenced	by	the	growing	
pervasiveness	of	such	technologies,	their	availability	as	open	source	software	in	user	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 34 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

modifiable	forms,	and	their	widespread	use	by	a	new	generation	of	online	computer	
users	who	may	see/anticipate	that	such	technologies	will	become	ubiquitous	in	future	
enterprise	settings.		
	
Next,	our	interest	is	not	to	simply	replicate	or	mirror	existing	C2	systems,	nor	their	
traditional	patterns	of	usage.	Such	usage	generally	assumes	both	centralized,	
hierarchical	organizational	authority	and	centralized	location	of	users.	Instead,	our	
interest	is	to	explore	the	alternative	space	where	decentralized	approaches	to	
organizational	decision‐making	and	workplace	location	(e.g.,	top‐down	but	physically	
dispersed	versus	peer‐to‐peer	and	physically	dispersed)	may	be	subject	to	
experimental	variance	and	study.	
	
We	similarly	identify	and	compare	a	small	set	of	related	technologies	that	could	be	
compared	to	the	efficacy	of	the	VW	technologies	that	we	employ	(OpenSim	[2012],	an	
open	source	software	toolkit	for	building,	navigating,	and	socially	interacting	in	VWs).	
OpenSim	provides	many	interesting	affordances,	some	of	which	are	common	to	most	
VWs.	But	it	is	these	affordances	that	merit	further	study.	Understanding	the	potential	
for	how	VWs	may	be	designed,	built,	deployed,	and	evolved	seems	to	be	a	significant	
opportunity	area	for	further	study.	In	addition,	there	is	still	a	need	to	determine	how	
best	to	evaluate	and	compare	the	efficacy	of	VWs	that	seek	to	mirror	physical	sites	or	
physically	located	human	problem	solving	and	social	interaction.	There	is	also	a	need	to	
evaluate	and	compare	the	efficacy	of	alternative	VW	and	computer	game	development	
technologies,	whether	open	source	software,	or	proprietary,	closed	source	software.	
Last,	we	also	find	that	decentralized	VW‐based	approaches	may	offer	the	potential	to	
substantially	reduce	the	cost	and	dramatically	shorten	the	time	to	design,	build,	and	
deploy	C2	systems	that	embrace	new	generations	of	low‐cost,	mobile	technologies	that	
future	C2	workforces	may	expect,	whether	for	use	in	physical	or	virtual/cyberspace	
worlds.	So	much	remains	to	be	studied,	and	the	time	for	appropriate	and	realistic	
research	investments	is	at	hand.	In	the	near	term,	such	research	is	likely	to	still	be	
considered	risky,	but	the	longer‐term	benefits	may	most	quickly	arise	and	be	
demonstrated	through	such	near‐	to	mid‐term	research	investments.	This	future	
opportunity	is	now	at	hand.	

Developing a DECENT Prototype
In	the	effort	described	here,	we	have	prototyped	a	computer	game	and	virtual	world	
(CGVW)	environment	we	call	the	DECENT	project.	Our	efforts	here	represent	a	
substantial	departure	from	current	C2	practice,	and	thus	do	not	seek	to	primarily	
provide	an	incremental	improvement	to	centralized	C2	efforts.	However,	our	research	
is	informed	by	such	efforts,	like	the	C2	Rapid	Deployment	Continuum	(C2RPC)	
highlighted	in	Figure	1,	as	they	are	critical	to	enhancing	and	demonstrating	upgrades	to	
current	C2	operations	which	have	high	consequence	(Garcia,	2010;	Gizzi,	2011).		

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 35 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

	
Figure 1. Common Information Objects and Software Applications

That May Be Involved in C2 Operations/Tasking, as Identified in Publicly
Accessible C2RPC (2010) Materials

In	such	settings,	C2	operations/tasks	entail	the	creation,	update,	and	
sharing/presentation	of	information	reports	for	C2	decision‐making	purposes,	which	
may	include	mission	plans	and	resource	assignment	schedules	expressed	as	timelines	
or	spreadsheets,	for	example.	
	
However,	as	our	efforts	represent	a	basic	research	investigation,	we	can	pursue	more	
risky	pathways	and	edgy	alternatives	that	may	or	may	not	yield	significant	advances.	
Furthermore,	our	attention	is	directed	to	technologies	that	enable	network‐centric,	
decentralized	“edge”	approaches	to	C2	(Albert	&	Hayes,	2003).	Consequently,	our	goal	
is	to	advance	scientific	and	technical	knowledge	for	how	decentralized	C2	might	be	put	
into	practice	in	the	future,	especially	with	regard	to	future	workforces	who	may	have	
grown	up	playing	computer	games	and/or	exploring	virtual	worlds.		

Developing Virtual Worlds of Physical Places
In	order	to	achieve	the	highest	quality	for	DECENT,	development	began	by	examining	
existing	C2	structures	and	identifying	key	features	to	replicate.	Ground‐based	C2	
facilities	usually	have	several	large	screens	on	several	walls,	used	for	the	display	of	two	
types	of	information:	shared	information	that	must	be	available	to	several	personnel	
simultaneously,	and	key	information	that	is	either	higher	priority	or	more	topically	
relevant.	These	C2	elements	can	be	seen	in	Figure	2.	While	these	large	public	displays	
are	viewable	by	anyone	in	the	command	room,	most	C2	workers	also	have	their	own	
personal	computer	(often	with	multiple	displays),	housed	on	desks	with	assorted	
papers,	files,	schedules,	and	so	forth.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 36 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

	
Figure 2. Photograph of a Physical C2 Facility at Hanscom Air Force

Base [Hanscom 2010].

Note	in	Figure	2.	both	shared	(wall	screens)	and	private	resources	(tabletop	displays)	can	be	seen,	with	
other	mission	tasking	resources.	
	
Systems	used	in	C2	facilities	require	a	range	of	software,	and	information	from	one	user	
may	affect	the	relevance	of	another’s	information.	Personnel	are	thus	typically	
organized	in	a	way	that	optimizes	communication,	with	the	most	frequent	
communication	being	between	neighbors.	Nevertheless,	spaces	in	C2	facilities	often	
seem	crowded	and	cluttered,	despite	the	need	for	efficiency.	

Virtual World Space

Using	images	like	the	one	in	Figure	2,	we	have	created	a	virtual	C2	world.	Taking	
advantage	of	the	malleable	nature	of	virtual	worlds,	we	can	make	C2	rooms	with	more	
space	and	a	less	cluttered	or	cramped	appearance.	All	of	the	important	aspects	and	
features	common	to	C2	facilities	have	been	faithfully	and	dutifully	recreated.	Simple	
tables	contain	monitors,	input	devices,	paperwork	(which	can	be	modified	or	made	
interactive),	and	speakerphone	boxes.	The	virtual	workspace	can	be	filled	with	
clipboards,	pens,	soda	cans,	coffee	mugs,	and	other	cosmetic/non‐functional	objects.	
This	variability	allows	each	DECENT	implementation	to	be	customized	by	whoever	is	
running	the	training	system.	Chairs	allow	the	user’s	avatar	to	be	anchored	to	(i.e.,	
seated)	within	given	workspace,	and	two	monitors	act	as	that	user’s	private	
information	displays,	such	as	DECENT	training	game	data	specific	to	that	user.	These	
details	can	all	be	seen	in	Figure	3.	
	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 37 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Two	of	DECENT’s	walls	have	large	displays	for	the	display	of	public	information,	
including	the	main	screen	for	the	DECENT	training	game.	These	images	may	be	easily	
changed,	and	can	be	used	to	display	streaming	video,	as	well	as	static	images	and	the	
DECENT	mission	planning	training	game.	Due	to	the	nature	of	virtual	worlds,	the	
modeling	of	bulky	physical	items	necessary	for	actual	C2	centers,	such	as	computation	
and	data	reduction	servers,	PC	boxes,	and	cabinets	can	be	deferred	to	a	later	time	or	
ignored	entirely.	
	

	
Figure 3. Perspective View of User-Controlled Avatars in a C2

Mirrored VW Operating in DECENT

Note. The wall display in the upper right corner is an embedded video stream from a remote server.

Comparing Physical Places and Virtual Worlds

The	strategy	we	have	investigated	in	the	DECENT	environment	is	to	prototype	a	
mirrored	virtual	world	for	C2	that	resembles	and	may	operate	like	the	physical	world	
C2.	In	this	way,	we	seek	to	explore	and	examine	when/how	the	similarities	and	
differences	between	the	two	can	reveal	potentially	significant	insights,	opportunities,	or	
advantages	that	one	may	pose	over	the	other.	For	example,	in	studies	with	VWs	at	the	
Naval	Postgraduate	School’s	Center	for	the	Edge,	there	has	been	sustained	study	
examining	how	hypotheses	about	different	models	of	team	organization	or	theories	of	
management	might	affect	the	course	and	outcome	of	play	in	the	ELICIT	multiplayer	
online	counterterrorism	intelligence	game	(Bergin	et	al.,	2010;	Hudson	&	Nissen,	2010,	
2011;	Wynn,	Ruddy,	&	Nissen,	2010).	Among	other	things,	these	studies	seek	to	
investigate	the	efficacy	of	organizational	form,	team	play,	and	outcome	in	the	ELICIT	
game	when	played	in	a	physical	setting	(a	large	unadorned	meeting	room)	in	
comparison	to	a	virtual	setting,	seen	in	Figure	4.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 38 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

	
Figure 4. On-Screen View of a Virtual Meeting Room That Mirrors

Common Meeting Rooms, Used to Study Team-Oriented ELICIT Game Play
(Hudson & Nissen, 2010)

Studies	by	Bergin	et	al.	(2010)	suggest	that	decision‐making	performance	in	physical	
and	virtual	worlds	can	favor	the	physical.	This	may	be	due	to	the	environmental	
richness	and	tacit	knowledge	affordances	that	familiar	work	spaces	and	co‐worker	
gestures/gazes	provide,	compared	to	the	paucity	of	similar	affordances	in	a	VW.	
However,	DECENT	VW	may	offer	other	benefits	like	low	cost,	appropriateness	for	large‐
scale	training,	and	absence	of	a	centralized	(potentially	vulnerable)	C2	physical	center.	
Elsewhere,	other	research	groups	have	been	experimenting	with	the	creation	of	mirror	
worlds	that	intermix	physical	world	sites,	with	VW	interfaces	and	navigational	and	
interactive	controls	to	devices	in	the	physical	site.	One	noteworthy	example	is	the	effort	
by	Back,	et	al.	(2010),	who	modeled	a	physical	factory	(the	TCHO	chocolate	factory	
located	in	San	Francisco),	as	part	of	their	efforts	at	Fuji	Xerox	Palo	Alto	Laboratory	
(FXPAL).	Their	VW	system	includes	both	desktop	PC–based	and	smartphone‐based	
software	clients	that	allow	a	user	to	navigate	the	VW	space,	and	to	enable/disable	
designated	sensors	(Web	cameras)	located	in	the	physical	site,	and	thus	demonstrate	
the	potential	to	remotely	control	or	monitor	devices	in	the	physical	site	though	the	VW	
client	interface,	shown	in	Figure	5.		
	
The	FXPAL	system	thus	demonstrates	the	potential	for	mixed	reality	applications	that	
span	and	interlink	physical	world	sites	that	are	mirrored	in	a	VW.	Their	efforts,	in	turn,	
can	be	compared	with	one	of	our	earlier	efforts	that	focused	on	the	modeling	and	
simulation	of	semiconductor	fabrication	processes	and	the	diagnosis	of	manufacturing	
devices	for	training	technicians	(Scacchi,	2010).	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 39 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

	
Figure 5. Smart-Phone (iPhone)–Based Views for Monitoring and

Controlling Devices in a Physical Factory
(Back, Kimber, et al., 2010)

However,	this	effort	was	based	on	abstractions	of	semiconductor	and	nanotechnology	
fabrication	facilities	on	site	at	University	of	California,	Irvine,	but	generalized	into	
configurations	that	were	suggested	by	the	project	sponsor	at	Intel	Corporation	(Scacchi,	
2010).	

Platform for VW Development: OpenSim

Due	to	its	ease	of	use	and	rapid	development	capabilities,	DECENT	is	currently	
implemented	in	OpenSim,	an	open‐source	workalike	of	the	closed‐source	Second	Life	
VW	platform.	Second	Life	(2012)	is	the	current	market	leader	in	rapid	virtual	world	
development	and	operation,	with	a	high	level	of	design	flexibility	and	built‐in	tools	for	
easy	environment	creation	and	maintenance.	This	makes	it	and	OpenSim	ideal	for	the	
creation	of	prototypes.	Using	OpenSim	has	allowed	us	to	rapidly	create	a	functional	C2	
VW	analog,	and	populate	it	with	users	for	concept	prototyping,	testing,	and	
experimentation.	The	degree	of	design	freedom	provided	by	OpenSim	has	allowed	
DECENT	to	evolve	from	a	promising	concept,	into	a	functional	training,	
experimentation,	or	demonstration	environment.	
	
While	in	OpenSim,	DECENT	has	the	potential	to	seamlessly	interact	and	crossover	with	
other	currently	existing	military	projects,	such	as	the	Military	Open	Simulator	
Enterprise	Strategy	(MOSES;	2012)	combat	training	environment	and	the	Naval	
Underwater	Warfare	Center	(NUWC)	campus	(Aguiar	&	Monte,	2011).	Adding	DECENT	
to	either	MOSES	or	NUWC	is	a	matter	of	adding	a	new	region	and	importing	the	
DECENT	assets,	or	establishing	a	hypergrid	connection	(described	later	in	this	report,	
and	in	Lopes,	2011)	or	federation	between	these	disparate	virtual	worlds.	This	could	be	
done	as	many	or	as	few	times	as	needed,	and	each	instance	of	DECENT	would	act	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 40 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

independently.	The	person	responsible	for	MOSES	and	NUWC,	Douglas	Maxwell,	has	
stated,	“All	of	[OpenSim's]	features	are	desirable	for	the	new	virtual	trainers	needed	to	
meet	the	changing	situation	demands	on	modern	warfighters”	(Neville,	2011).	Last,	
using	the	OpenSim/Second	Life	modeling	tools,	it	is	possible	to	create	relatively	
complex	objects,	as	well	as	associating	behavioral	scripts	(using	LSL)	to	enable	rich	
animated	behaviors	to	be	associated	with	different	objects.	

SecondLife Versus OpenSim

While	OpenSim	is	an	open	source	project	based	on	the	Second	Life	platform,	each	has	
its	own	strengths	and	weaknesses,	as	described	by	Korolov	(2011):	
	
Cost:	The	cost	of	running	a	Second	Life	server	is	$295	each	month,	as	it	must	be	hosted	
on	a	Linden	Labs	server.	OpenSim	can	be	acquired,	installed,	and	run	for	free.	It	can	be	
installed	on	a	dedicated	server	to	host	one	or	more	VWs	which	can	also	be	configured	
into	a	local/wide‐area	grid	through	the	OpenSim	Hypergrid	(Lopes,	2011),	described	in	
this	section.	Reasonably	simple	versions	of	OpenSim	are	available	in	download	formats	
that	allow	for	distribution	via	portable	USB	flash	storage	(thumb)	drives,	which	means	
their	potential	to	become	widespread	and	disruptive	is	emerging.	We	currently	host	
five	dedicated	OpenSim	servers	at	UCI.	
	
Users:	Second	Life	is	a	community,	so	it	comes	with	a	large	established	base	of	users	
from	all	conceivable	backgrounds.	OpenSim	has	access	to	smaller	groups	of	existing	
users	if	connected	to	existing	OpenSim	servers,	but	is	more	often	run	as	a	stand‐alone	
server,	only	used	by	those	whom	the	administrators	give	access	to.	
	
Stability:	Second	Life	maintains	high	stability	for	functions	used	by	the	largest	majority	
of	its	users,	but	is	unreliable	for	mission‐critical	operations	due	to	problems	with	voice‐
chat	and	reoccurring	connectivity	issues.	OpenSim	tends	to	have	much	more	stable	
connectivity	and	voice‐chat,	(and	now	integrated	instant	messaging	support	within	and	
across	worlds)	due	to	the	smaller	number	of	users	and	lower	required	bandwidth.	
	
Asset	Ownership:	Linden	Labs	retains	the	rights	to	all	assets	created	in	Second	Life	
(but	not	content	uploaded	to	it),	regardless	of	who	created	it;	users	pay	for	a	license	to	
use	Second	Life	and	modify	the	contents	of	a	region,	but	gain	no	ownership	of	actual	
content.	Furthermore,	Linden	Labs	reserves	the	right	to	revoke	access	to	Second	Life.	In	
contrast,	owners	of	OpenSim	servers	determine	the	use	policies	and	ownership	of	their	
servers,	as	well	as	control	access	to	their	servers.	
	
Scripting:	Second	Life	uses	the	Linden	Scripting	Language	(LSL),	a	domain‐specific	
scripting	language.	OpenSim	supports	LSL,	but	can	be	modified	to	support	many	other	
scripting	languages,	including	JavaScript	and	Lua	(which	is	a	popular	scripting	language	
employed	by	many	computer	games,	including	World	of	Warcraft).	

The OpenSim Hypergrid

In	addition	to	the	reasons	laid	out	about	by	Korolov	(2011),	we	have	decided	to	work	
with	OpenSim	because	of	its	connections	to	the	OpenSim	Hypergrid	(2012).	The	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 41 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Hypergrid	is	a	system	used	to	connect	one	OpenSim	server	to	others,	and	allows	for	the	
seamless	transfer	of	avatars	between	any	of	these	interconnected	OpenSim	worlds,	as	
depicted	in	Figure	6.	Some	large	worlds	span	multiple	servers.	The	virtual	worlds	are	
connected	to	each	other	via	virtual	world	hyperlinks,	similar	to	the	links	between	Web	
pages.	The	virtual	world	hyperlinks	are	places	in	the	virtual	worlds	that	act	as	
doorways	or	entry/exit	points	for	other	worlds.	To	access	one,	a	user	simply	moves	his	
avatar	to	the	VW	hyperlink	and	activates	it.	VW	hyperlinks	could	be	used	to	connect	
DECENT	to	existing	OpenSim‐based	military	training	systems,	such	as	the	hypergrid	for	
the	MOSES	Server	Map	(2012)	facility,	as	displayed	in	Figure	7.	
	

	
Figure 6. OpenSim Hypergird Supports User/Avatar Teleportation to

Move From One VW Region to Another VW Region, Possibly on a Different
Networked Server (Lopes, 2011).

Under-Explored Topics for DECENT
To	no	surprise,	there	are	many	other	topics	for	investigation	that	were	beyond	the	
scope	of	resources	available	for	us	to	explore.	For	example,	most	CG	software	
technologies	offer	little	or	no	ready	support	for	integration	of	external	application	
programs	or	other	software	components.	So	our	efforts	to	model	and	simulate	a	
decentralized	C2	virtual	world	make	no	attempt	to	undertake	such	integration	studies.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 42 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

	
Figure 7. Overview of the MOSES Hypergrid and Server Assignment

Map Used in the Military OpenSim Enterprise Strategy by the U.S. Army
(MOSES Server Map 2012)

Note. Some hypergrid cells are empty, indicating available capacity for future development of new
virtual worlds. Map shown in Figure as of September 2011.

Next,	the	underlying	software	architectures	of	CGVW	are	rarely	disclosed	or	made	open,	
even	when	realized	using	open	source	software	(OSS)	components.	So	it	is	a	major	
technical	challenge	to	evaluate,	assess,	or	compare	at	a	deep	technical	level	what	
architectural	choices	or	trade‐offs	have	been	made	in	designing,	building,	and/or	
deploying	an	operational	game‐based	VW	system.	In	simple	terms,	this	makes	
comparing	OSS	VW	technologies	like	Delta3D	(see	http://www.delta3d.org/),	OpenSim,	
and	any	of	dozens	of	OSS	game	engines	accessible	on	the	Web	(e.g.,	via	search	at	
SourceForge.net)	impractical	at	present.	Thus,	there	is	a	basic	research	need	to	develop	
open	architecture	(OA)	frameworks	for	specifying	CGVW	systems	(Scacchi	&	Alspaugh,	
2008).	
	
Similarly,	the	topic	of	securing	a	game‐based	VW	for	military	C2	applications	is	a	major	
concern.	VWs	like	DECENT	are	envisioned,	developed,	and	extended	as	an	open	
architecture	system	(Scacchi	&	Alspaugh,	2008).	Recent	advances	in	developing	
architectural	level	security	schemes	for	designing,	building,	and	deploying	open	
architecture	software	systems	are	relevant	and	readily	applicable	to	VWs	applications,	
as	well	as	Web‐based	system	architectures,	such	as	those	for	the	C2RPC	(2010).	For	
example,	Scacchi	and	Alspaugh	(2011)	have	developed	and	demonstrated	a	conceptual	
approach	based	on	existing	research	technologies	that	can	be	used	to	specify,	model,	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 43 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

and	analyze	the	security	of	an	OA	system	with	secure/contained	elements,	as	suggested	
in	Figures	8	and	9.		

	
Figure 8. Secure Architectural Design for Generic Software

Applications Common to C2 Systems
(Scacchi & Alspaugh, 2011)

Last,	most	CG	software	technologies	provide	very	basic	security	mechanisms,	and	thus	
are	quite	amenable	to	remote	attacks,	penetration,	and	possible	code	injections.	
Furthermore,	game‐based	VW	may	allow	for	new	modes	of	malware	that	may	enable	
activities	including	avatar	impersonation	or	remote	control	(e.g.,	who/what	is	
controlling	this	avatar,	and	with	what	authorization?)	and	other	ill‐defined	
vulnerabilities.	So	CGVW	technologies	should	not	be	considered	for	deployment	
purposes	until	more	robust	security	capabilities	are	in	place,	tested,	validated,	
monitored,	and	evolved	(cf.	Scacchi	&	Alspaugh,	2011),	such	as	those	in	the	C2RPC	
(Garcia,	2010;	Gizzi,	2011).	However,	they	may	be	appropriate	for	experimentation	
with	future	C2	system	architectures	that	may	include	Web‐based	and	game‐based	VW	
software	elements,	that	may	be	accessible	from	smartphones,	as	well	as	open	to	access,	
monitor,	and	control	physical	devices	and	sensors	deployed	in	physical	world	settings,	
whether	on	land,	sea,	air,	or	space.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 44 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

	
Figure 9. Sample Run-Time Software Application Deployment for

Generic Software Applications Available for Use in C2 Systems
(Scacchi & Alspaugh, 2011)

Conclusions and Recommendations for Future Study
This	report	seeks	to	describe	and	document	the	results	of	a	small‐scale,	one‐year	
research	study	that	investigates	how	virtual	world	concepts,	techniques,	and	tools	can	
be	employed	to	support	experimental/prototyping	efforts	for	command	and	control	
applications.	We	reported	on	our	efforts	to	investigate	and	prototype	a	VW	we	called	
DECENT	as	a	platform	for	exercising	and	assessing	the	potential	of	a	VW‐based	
approach	to	decentralized	C2,	as	well	as	to	compare	our	efforts	with	others	closely	
related.	A	companion	paper	provides	additional	details	and	supporting	materials	on	
DECENT	(Scacchi	et	al.,	2012),	and	to	our	results	presented	here.	Overall,	we	found	this	
effort	gave	rise	to	very	promising	results	that	point	to	additional	opportunities	and	
system	extensions	for	new	ways	to	consider	the	potential	of	decentralized	approaches	
to	C2	that	merit	further	systematic	investigation	and	experimentation.		
	
We	similarly	identified	and	compared	a	small	set	of	related	technologies	that	could	be	
compared	to	the	efficacy	of	the	VW	technologies	that	we	employed	(OpenSim,	an	open	
source	software	toolkit	for	building,	navigating,	and	socially	interacting).	OpenSim	
provides	many	interesting	affordances,	some	of	which	are	common	to	most	VWs.	In	
particular,	the	potential	exists	for	creating	and	disseminating	free	open	source	
software–based	versions	of	DECENT	or	similar	DCC	software	systems	using	pocket‐
friendly	mobile	storage	devices	(e.g.,	USB	flash	storage)	that	can	then	be	installed	on	
most	PCs.	The	DECENT	prototype	thus	demonstrates	a	transformative	reduction	in	the	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 45 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

cost	of	rapidly	creating	and	deploying	C2	systems	that	can	support	DCC,	as	well	as	
supporting	the	potential	to	integrate	and	control	cyber	space	applications	and	remote	
commands.		
	
Understanding	the	potential	for	how	VWs	may	be	designed,	built,	deployed,	and	evolved	
seems	to	be	a	significant	opportunity	area	for	further	study.	In	addition,	there	is	still	a	
need	to	determine	how	best	to	evaluate	and	compare	the	efficacy	of	VWs	that	seek	to	
mirror	physical	sites	or	physically	located	human	problem	solving	and	social	
interaction.	There	is	also	a	need	to	evaluate	and	compare	the	efficacy	of	alternative	VW	
and	computer	game	development	technologies,	whether	open	source	software,	or	
proprietary,	closed	source	software.	
	
Last,	much	remains	to	be	studied,	and	the	time	for	appropriate	and	realistic	research	
investments	is	at	hand.	In	the	near	term,	such	research	is	likely	to	still	be	considered	
risky,	but	the	longer‐term	benefits	may	most	quickly	arise	and	be	demonstrated	
through	such	near‐	to	mid‐term	research	investments.	This	is	the	future	opportunity	
now	at	hand.	

References
Aguiar,	S.,	&	Monte,	P.	(2011).	Virtual	worlds	for	C2	design,	analysis,	and	

experimentation.	In	Proceedings	of	the	16th	International	Command	&	Control	
Research	&	Technology	Symposium..	Retrieved	from	http://www.dtic.mil/cgi‐
bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA547157		

Albert,	D.	S.,	&	Hayes,	R.	E.	(2003).	Power	to	the	edge:	Command	and	control	in	the	
information	age.	Washington,	DC:	Command	and	Control	Research	Program.	
Retrieved	from	http://www.dodccrp.org/files/Alberts_Power.pdf	

Back,	M.,	Kimber,	D.,	Rieffel,	E.,	Dunnigan,	A.,	Liew,	B.,	Gattepally,	S.,	Foote,	J.,	Shingu,	J.,	
&	Vaughan,	J.	(2010).	The	virtual	chocolate	factory:	Mixed	reality	industrial	
collaboration	and	control.	In	Proceedings	of	the	International	Conference	on	
Multimedia	(MM	’10)	(1505–1506).	New	York,	NY:	ACM.		

Bergin,	R.,	Adams,	A.,	Junior,	R.,	Hudgens,	B.,	Chinn	Yee	Lee,	J.,	&	Nissen,	M.	(2010).	
Command	&	control	in	virtual	environments:	Laboratory	experimentation	to	
compare	virtual	with	physical.	In	Proceedings	of	the	15th	International	
Command	&	Control	Research	&	Technology	Symposium	(Paper	075).	Retrieved	
from	http://www.dtic.mil/cgi‐
bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA524136		

C2RPC.	Command	and	Control	Rapid	Deployment	Continuum	(2010).	Command	and	
control	rapid	deployment	continuum	overview.	Retrieved	from	
http://www.afcea‐sd.org/wp‐
content/uploads/2010/12/YoungAFCEA_C2RPC.pdf	

Department	of	Defense	(DoD).	(2012,	January	17).	Joint	operational	access	concept	
(JOAC),	version	1.0.	Retrieved	from	
http://www.defense.gov/pubs/pdfs/JOAC_Jan%202012_Signed.pdf		

Garcia,	P.	(2010).	Maritime	C2	strategy:	An	innovative	approach	to	system	
transformation.	In	Proceedings	of	the	15th	International	Command	&	Control	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 46 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Research	&	Technology	Symposium	(Paper	147).	Retrieved	from	
http://www.dtic.mil/cgi‐
bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA526453	

Gizzi,	N.	(2011).	Command	and	control	rapid	prototyping	continuum	(C2RPC)	
transition:	Bridging	the	valley	of	death.	In	Proceedings	of	the	Eighth	Annual	
Acquisition	Research	Symposium	(Vol.	1,	pp.	127–154).	Retrieved	from	
http://www.acquisitionresearch.net	

Granlund,	R.,	Smith,	K.,	&	Granlund,	H.	(2011).	C3	conflict:	A	simulation	environment	
for	studying	teamwork	in	command	and	control.	In	Proceedings	of	the	16th	
International	Command	&	Control	Research	&	Technology	Symposium..	
Retrieved	from	http://www.dtic.mil/cgi‐
bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA547134		

Hanscom	Air	Force	Base	(2010).	Hanscom	Air	Force	Base	Air	and	Space	Operations	
Center,	
http://www.hanscom.af.mil/shared/media/photodb/web/web_030314‐F‐
9999G‐003.jpg	,	accessed	1	April	2010.	

Hudson,	K.,	&	Nissen,	M.	(2010).	Command	&	control	in	virtual	environments:	
Designing	a	virtual	environment	for	experimentation.	In	Proceedings	of	the	
15th	International	Command	&	Control	Research	&	Technology	Symposium	
(Paper	052).	Retrieved	from	http://www.dtic.mil/cgi‐
bin/GetTRDoc?AD=ADA524141		

Hudson,	K.,	&	Nissen,	M.	(2011).	Understanding	the	potential	of	virtual	worlds	in	
improving	C2	performance.	In	Proceedings	of	the	16th	International	Command	
&	Control	Research	&	Technology	Symposium.	Retrieved	from	
http://www.dtic.mil/dtic/tr/fulltext/u2/a546920.pdf		

Korolov,	M.	(2011).	Second	Life	vs.	OpenSim,	Retrieved	from	
http://www.hypergridbusiness.com/2011/05/second‐life‐vs‐opensim/		

Lopes,	C.	V.	(2011,	September–October).	Hypergrid:	Architecture	and	protocol	for	
virtual	world	interoperability.	IEEE	Internet	Computing,	15(5),	22–29.	

MOSES.	(2012).	Military	open	simulator	enterprise	strategy.	Retrieved	from	
http://fvwc.army.mil/moses/.	Currently	located	at	
http://brokentablet.arl.army.mil/index.html		

MOSES	Server	Map.	(2012).	Image	Retrieved	from	
http://fvwc.army.mil/moses/server‐allocation‐map/.	Current	MOSES	server	
map	at	http://107.7.21.240/map/		

Neville,	J.	(2011,	May	21).	Army	extends	MOSES	to	other	researchers.	Hypergrid	
Business.	Retrieved	from	http://www.hypergridbusiness.com/2011/05/army‐
extends‐moses‐to‐other‐researchers/	

OpenSim.	(2012).	The	Open	Simulator	Project.	Retrieved	from	
http://opensimulator.org/	

OpenSim	Hypergrid.	(2012).	The	OpenSimulator	Hypergrid.	Retrieved	from	
http://opensimulator.org/wiki/Hypergrid	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 47 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Scacchi,	W.	(2010).	Game‐based	virtual	worlds	as	decentralized	virtual	activity	
systems.	In	W.	S.	Bainbridge	(Ed.),	Online	worlds:	Convergence	of	the	real	and	
the	virtual	(Human–computer	interaction	series;	pp.	225–236).	London,	UK:	
Springer‐Verlag	London	Limited.		

Scacchi,	W.,	&	Alspaugh,	T.	(2008).	Emerging	issues	in	the	acquisition	of	open	source	
software	within	the	U.S.	Department	of	Defense.	In	Proceedings	of	the	Fifth	
Annual	Acquisition	Research	Symposium	(NPS‐AM‐08‐036;	Vol.	1,	pp.	230–244).	
Retrieved	from	http://www.acquisitionresearch.net	

Scacchi,	W.,	&	Alspaugh,	T.	(2011).	Advances	in	the	acquisition	of	secure	systems	
based	on	open	architectures.	In	Proceedings	of	the	Eighth	Annual	Acquisition	
Research	Symposium	(Vol.	1,	pp.	50–69).	Retrieved	from	
http://www.acquisitionresearch.net	

Scacchi,	W.,	Brown,	C.,	&	Nies,	K.	(2012,	June).	Exploring	the	potential	of	computer	
games	for	decentralized	command	and	control.	In	Proceedings	of	the	17th	
International	Command	&	Control	Research	&	Technology	Symposium.	Retrieved	
from	
http://dodccrp.org/events/17th_iccrts_2012/post_conference/papers/104.pd
f		

Scacchi,	W.	et	al.	(2011,	February).	The	future	of	research	in	computer	games	and	
virtual	worlds.	NSF	Workshop	Report.	(Technical	report	UCI‐ISR‐12‐8).	
Retrieved	from	http://www.isr.uci.edu/tech_reports/UCI‐ISR‐12‐8.pdf	

Second	Life.	(2012).	What	is	Second	Life?	Retrieved	from	
http://secondlife.com/whatis/		

Wynn, D., Ruddy, M., & Nissen, M. (2010). Command	&	control	in	virtual	
environments:	Tailoring	software	agents	to	emulate	specific	people.	In	
Proceedings	of	the	15th	International	Command	&	Control	Research	&	Technology	
Symposium	(Paper	019).	Retrieved	from	
http://www.dtic.mil/dtic/tr/fulltext/u2/a524166.pdf	

Acknowledgments
The	research	described	in	this	report	was	supported	by	grant	#N00244‐10‐1‐0064	
from	the	Center	for	the	Edge	Power	and	grant	#00244‐12‐1‐0004	from	the	Acquisition	
Research	Program,	both	at	the	Naval	Postgraduate	School,	Monterey,	CA.	No	
endorsement,	review,	or	approval	implied.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 48 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

THIS	PAGE	INTENTIONALLY	LEFT	BLANK	
	
	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 49 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Software Licenses, Open Source Components, and
Open Architectures

Thomas	A.	Alspaugh,	Hazeline	U.	Asuncion,	&	Walt	Scacchi	

Abstract
A	substantial	number	of	enterprises	and	independent	software	vendors	are	adopting	a	
strategy	in	which	software‐intensive	systems	are	developed	with	an	open	architecture	
(OA)	that	may	contain	open	source	software	(OSS)	components	or	components	with	
open	application	program	interfaces	(APIs).	The	emerging	challenge	is	to	realize	the	
benefits	of	openness	when	components	are	subject	to	different	copyright	or	property	
licenses.	In	this	chapter,	we	identify	key	properties	of	OSS	licenses,	present	a	license	
analysis	scheme	to	identify	license	conflicts	arising	from	composed	software	elements,	
and	apply	this	scheme	to	provide	guidance	for	software	architectural	design	choices	
whose	goal	is	to	enable	specific	licensed	component	configurations.	Our	scheme	has	
been	implemented	in	an	operational	environment	and	demonstrates	a	practical,	
automated	solution	to	the	problem	of	determining	overall	rights	and	obligations	for	
alternative	OAs	as	a	technique	for	aligning	such	architectures	with	enterprise	strategies	
supporting	open	systems.		

Introduction
A	substantial	number	of	enterprises	and	independent	software	vendors	are	adopting	a	
strategy	in	which	software‐intensive	systems	are	developed	with	open	source	software	
(OSS)	components	or	components	with	open	application	program	interfaces	(APIs).	It	
has	been	common	for	both	independent	and	corporate‐sponsored	OSS	projects	to	
require	that	developers	contribute	their	work	under	conditions	that	ensure	the	project	
can	license	its	products	under	a	specific	OSS	license.	For	example,	the	Apache	
Contributor	License	Agreement	grants	enough	rights	to	the	Apache	Software	
Foundation	for	the	foundation	to	license	the	resulting	systems	under	the	Apache	
License.	This	sort	of	license	configuration,	in	which	the	rights	to	a	system’s	components	
are	homogeneously	granted	and	the	system	has	a	well‐defined	OSS	license,	has	been	the	
dominant	practice	and	continues	to	this	day.	
	
However,	we	more	and	more	commonly	see	a	different	enterprise	software	
configuration,	in	which	the	components	of	an	enterprise	system	do	not	have	the	same	
license.	The	resulting	system	may	not	have	any	recognized	OSS	license	at	all—in	fact,	
our	research	indicates	this	is	the	most	likely	outcome—but	instead,	if	all	goes	well	in	its	
design,	there	will	be	enough	rights	available	in	the	system	so	that	it	can	be	used	and	
distributed,	and	perhaps	modified	by	others	and	sub‐licensed,	if	the	corresponding	
obligations	are	met	(Alspaugh,	Asuncion,	&	Scacchi,	2009).	These	obligations	are	likely	
to	differ	for	components	with	different	licenses;	a	BSD	(Berkeley	Software	Distribution)	
licensed	component	must	preserve	its	copyright	notices	when	made	part	of	the	system,	
for	example,	while	the	source	code	for	a	modified	component	covered	by	MPL	(the	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 50 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Mozilla	Public	License)	must	be	made	public,	and	a	component	with	a	reciprocal	license	
such	as	the	Free	Software	Foundation’s	GPL	(General	Public	License)	might	carry	the	
obligation	to	distribute	the	source	code	of	that	component	but	also	of	other	components	
that	constitute	“a	whole	which	is	a	work	based	on”	the	GPL’d	component.	The	
obligations	may	conflict,	as	when	a	GPL’d	component’s	reciprocal	obligation	to	publish	
source	code	of	other	components	is	combined	with	a	proprietary	license’s	prohibition	
of	publishing	source	code,	in	which	case,	there	may	be	no	rights	available	for	the	system	
as	a	whole,	not	even	the	right	of	use,	because	the	obligations	of	the	licenses	that	would	
permit	use	of	its	components	cannot	simultaneously	be	met.	
	
The	central	problem	we	examine	and	explain	in	this	chapter	is	to	identify	principles	of	
software	architecture	and	software	licenses	that	facilitate	or	inhibit	success	of	the	OA	
strategy	when	OSS	and	other	software	components	with	open	APIs	are	employed.	This	
is	the	knowledge	we	seek	to	develop	and	deliver.	Without	such	knowledge,	it	is	unlikely	
that	an	OA	that	is	clean,	robust,	transparent,	and	extensible	can	be	readily	produced.	On	
a	broader	scale,	this	chapter	seeks	to	explore	and	answer	the	following	kinds	of	
research	questions:		

● What	license	applies	to	an	OA	enterprise	system	composed	of	software	
components	that	are	subject	to	different	licenses?	

● How	do	alternative	OSS	licenses	facilitate	or	inhibit	the	development	of	
OA	systems	for	an	enterprise?	

● How	should	software	license	constraints	be	specified	so	it	is	possible	for	
an	enterprise	to	automatically	determine	the	overall	set	of	rights	and	
obligations	associated	with	a	configured	enterprise	software	system	
architecture?	

This	chapter	may	help	establish	a	foundation	for	how	to	analyze	and	evaluate	
dependencies	that	might	arise	when	seeking	to	develop	software	systems	that	embody	
an	OA	when	different	types	of	software	components	or	software	licenses	are	being	
considered	for	integration	into	an	overall	enterprise	system	configuration.		
In	the	remainder	of	this	chapter,	we	examine	software	licensing	constraints.	This	is	
followed	by	an	analysis	of	how	these	constraints	can	interact	in	order	to	determine	the	
overall	license	constraints	applicable	to	the	configured	system	architecture.	Next,	we	
describe	an	operational	environment	that	demonstrates	automatic	determination	of	
license	constraints	associated	with	a	configured	system	architecture,	and	thus	offers	a	
solution	to	the	problem	we	face.	We	close	with	a	discussion	of	some	issues	raised	by	our	
work.	

Background
There	is	little	explicit	guidance	or	reliance	on	systematic	empirical	studies	for	how	best	
to	develop,	deploy,	and	sustain	complex	software	systems	when	different	OA	and	OSS	
objectives	are	at	hand.	Instead,	we	find	narratives	that	provide	ample	motivation	and	
belief	in	the	promise	and	potential	of	OA	and	OSS	without	consideration	of	what	
challenges	may	lie	ahead	in	realizing	OA	and	OSS	strategies.	Ven	(2008)	is	a	recent	
exception.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 51 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

We	believe	that	a	primary	challenge	to	be	addressed	is	how	to	determine	whether	a	
system—composed	of	subsystems	and	components,	each	with	specific	OSS	or	
proprietary	licenses,	and	integrated	in	the	system’s	planned	configuration—is	or	is	not	
open,	and	what	license	constraints	apply	to	the	configured	system	as	a	whole.	This	
challenge	comprises	not	only	evaluating	an	existing	system	at	run	time,	but	also	at	
design	time	and	build	time,	for	a	proposed	system	to	ensure	that	the	result	is	“open”	
under	the	desired	definition,	and	that	only	the	acceptable	licenses	apply,	and	also	
understanding	which	licenses	are	acceptable	in	this	context.	Because	there	are	a	range	
of	types	and	variants	of	licenses	(cf.	Open	Source	Initiative	[OSI],	2011),	each	of	which	
may	affect	a	system	in	different	ways,	and	because	there	are	a	number	of	different	kinds	
of	OSS‐related	components	and	ways	of	combining	them	that	affect	the	licensing	issue,	a	
first	necessary	step	is	to	understand	the	kinds	of	software	elements	that	constitute	a	
software	architecture,	and	what	kinds	of	licenses	may	encumber	these	elements	or	
their	overall	configuration.		
	
OA	seems	to	simply	mean	software	system	architectures	incorporating	OSS	components	
and	open	application	program	interfaces	(APIs).	But	not	all	software	system	
architectures	incorporating	OSS	components	and	open	APIs	will	produce	an	OA,	since	
the	openness	of	an	OA	depends	on	(a)	how	(and	why)	OSS	and	open	APIs	are	located	
within	the	system	architecture;	(b)	how	OSS	and	open	APIs	are	implemented,	
embedded,	or	interconnected	in	the	architecture;	(c)	whether	the	copyright	
(Intellectual	Property)	licenses	assigned	to	different	OSS	components	encumber	all	or	
part	of	a	software	system’s	architecture	into	which	they	are	integrated;	and	(d)	whether	
alternative	architectural	configurations	and	APIs	exist	that	may	or	may	not	produce	an	
OA	(cf.	Antón	&	Alspaugh,	2007;	Scacchi	&	Alspaugh,	2008).	Subsequently,	we	believe	
that	such	ambiguity	can	lead	to	situations	in	which	new	software	development	or	
acquisition	requirements	stipulate	a	software	system	with	an	OA	and	OSS,	but	the	
resulting	software	system	may	or	may	not	embody	an	OA.	This	can	occur	when	the	
architectural	design	of	a	system	constrains	system	requirements—raising	the	question	
of	what	requirements	can	be	satisfied	by	a	given	system	architecture,	when	
requirements	stipulate	specific	types	or	instances	of	OSS	(e.g.,	Web	browsers,	content	
management	servers)	to	be	employed	(Scacchi,	2002;	Scacchi	2009),	or	what	
architecture	style	(Bass,	Clements,	&	Kazman,	2003)	is	implied	by	a	given	set	of	system	
requirements.		
	
Thus,	given	the	goal	of	realizing	an	OA	and	OSS	strategy	together	with	the	use	of	OSS	
components	and	open	APIs,	it	is	unclear	how	to	best	align	acquisition,	system	
requirements,	software	architectures,	and	OSS	elements	across	different	software	
license	regimes	to	achieve	this	goal	(Alspaugh,	Scacchi,	&	Asuncion,	2010;	Scacchi	&	
Alspaugh,	2008).	

Understanding Open Architectures
The	statement	that	a	system	is	intended	to	embody	an	open	architecture	using	open	
software	technologies	like	OSS	and	APIs,	does	not	clearly	indicate	the	possible	mix	of	
software	elements	that	may	be	configured	into	such	a	system.	To	help	explain	this,	we	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 52 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

first	identify	what	kinds	of	software	elements	are	included	in	common	software	
architectures	whether	they	are	open	or	closed	(cf.	Bass	et	al.,	2003).	

● Software	source	code	components—These	include:	(a)	standalone	
programs;	(b)	libraries,	frameworks,	or	middleware;	(c)	inter‐application	
script	code	(e.g.,	C	shell	scripts);	and	(d)	intra‐application	script	code	(e.g.,	
to	create	Rich	Internet	Applications	using	domain‐specific	languages	(e.g.,	
XUL	for	Firefox	Web	browser	[Feldt,	2007]	or	“mashups”	[Nelson	&	
Churchill,	2006]).		

● Executable	components—These	are	programs	for	which	the	software	is	in	
binary	form,	and	its	source	code	may	not	be	open	for	access,	review,	
modification,	and	possible	redistribution.	Executable	binaries	can	be	
viewed	as	“derived	works”	(Rosen,	2005).	

● Application	program	interfaces	(APIs)—The	availability	of	externally	
visible	and	accessible	APIs	to	which	independently	developed	
components	can	be	connected	is	the	minimum	condition	required	to	form	
an	“open	system”	(Meyers	&	Oberndorf,	2001).		

● Software	connectors—In	addition	to	APIs,	these	may	be	software	either	
from	libraries,	frameworks,	or	application	script	code	whose	intended	
purpose	is	to	provide	a	standard	or	reusable	way	of	associating	programs,	
data	repositories,	or	remote	services	through	common	interfaces.	The	
High	Level	Architecture	(HLA)	is	an	example	of	a	software	connector	
scheme	(Kuhl,	Weatherly,	&	Dahmann,	2000),	as	are	CORBA,	Microsoft’s	
.NET,	Enterprise	Java	Beans,	and	LGPL	libraries.	

● Configured	system	or	sub‐system	architectures—These	are	software	
systems	that	can	be	built	to	conform	to	an	explicit	architectural	design.	
They	include	software	source	code	components,	executable	components,	
APIs,	and	connectors	that	are	organized	in	a	way	that	may	conform	to	a	
known	“architectural	style”	such	as	the	Representational	State	Transfer	
(Fielding	&	Taylor,	2002)	for	Web‐based	client–server	applications,	or	
may	represent	an	original	or	ad	hoc	architectural	pattern	(Bass	et	al.,	
2003).	Each	of	the	software	elements,	and	the	pattern	in	which	they	are	
arranged	and	interlinked,	can	all	be	specified,	analyzed,	and	documented	
using	an	Architecture	Description	Language	(ADL)	and	ADL‐based	
support	tools	(Bass	et	al.,	2003;	Medvidovic,	Rosenblum,	&	Taylor,	1999).	

Figure	1	provides	an	overall	view	of	an	archetypal	software	architecture	for	a	
configured	system	that	includes	and	identifies	each	of	the	software	elements	listed	in	
this	section,	as	well	as	free/open	source	software	(e.g.,	Gnome	Evolution)	and	closed	
source	software	(WordPerfect)	components.	In	simple	terms,	the	configured	system	
consists	of	software	components	(grey	boxes	in	Figure	1)	that	include	a	Mozilla	Web	
browser,	Gnome	Evolution	email	client,	and	WordPerfect	word	processor,	all	running	
on	a	Linux	operating	system	that	can	access	file,	print,	and	other	remote	networked	
servers	(e.g.,	an	Apache	Web	server).	These	components	are	interrelated	through	a	set	
of	software	connectors	(ellipses	in	Figure	1)	that	connect	the	interfaces	of	software	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 53 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

components	(small	white	boxes	attached	to	a	component)	and	link	them	together.	
Modern‐day	enterprise	systems	or	command	and	control	systems	will	generally	have	
more	complex	architectures	and	a	more	diverse	mix	of	software	components	than	
shown	in	the	figure	here.	As	we	examine	next,	even	this	simple	architecture	raises	a	
number	of	OSS	licensing	issues	that	constrain	the	extent	of	openness	that	may	be	
realized	in	a	configured	OA.	

	
Figure 1. An Enterprise Software System Architecture

Note. This figure depicts components (grey boxes), connectors (ellipses), interfaces (small boxes on
components), and data/control links.

Understanding Open Software Licenses
A	particularly	knotty	challenge	is	the	problem	of	licenses	in	OSS	and	OA.	There	are	a	
number	of	different	OSS	licenses,	and	their	number	continues	to	grow.	Each	license	
stipulates	different	constraints	attached	to	software	components	that	bear	it.	External	
references	are	available	which	describe	and	explain	many	different	licenses	that	are	
now	in	use	with	OSS	(Fontana	et	al.,	2008;	OSI,	2011;	Rosen,	2005;	St.	Laurent,	2004).	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 54 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Software	licenses	may	be	grouped	into	four	general	categories,	listed	in	Table	1.	OSS	
licenses	are	classified	as	permissive,	reciprocal,	and	propagating;	all	propagating	
licenses	of	which	we	are	aware	are	also	reciprocal,	but	most	reciprocal	licenses	are	not	
propagating.	End‐user	license	agreements	(EULAs)	and	terms	of	service	(TOSs)	for	
commercial	software	are	typically	proprietary	and	do	not	grant	the	OSS	rights	of	
copying,	source	code	availability,	modification,	and	distribution.	
	

Table 2. Types of Software Licenses

License	
Type	

Also	
known	as	

Examples	 Characterized	by	

Permissive	 Academic	 Apache,	BSD,	MIT	 Many	rights;	few	
obligations	

Reciprocal	 Copyleft	 MPL,	LGPL	 Many	rights;	
obligations	on	
derivative	works	

Propagating	 Strong	
Copyleft	

GPL,	AGPL	 Many	rights;	
obligations	on	
“nearby”	works	

									Proprietary	 CTL,	EULAs,	TOSs	 Few	rights	
	
Typical	rights	and	obligations	include	the	following:	
	
A	right	to	perform	an	action:	“...	each	Contributor	hereby	grants	to	You	a	...	copyright	
license	to	reproduce	...	the	Work	...	in	Source	...	form”	(source:	Apache	License	2.0).	
	
A	right	to	not	perform	an	action:	“In	no	event	shall	the	authors	or	copyright	holders	be	
liable	for	any	claim,	damages	or	other	liability”	(source:	MIT	License).	
	
An	obligation	to	perform	an	action:	“You	must	cause	any	work	that	you	distribute	or	
publish,	that	in	whole	or	in	part	contains	or	is	derived	from	the	Program	or	any	part	
thereof,	to	be	licensed	as	a	whole	at	no	charge	to	all	third	parties	under	the	terms	of	this	
License”	(source:	GPLv2	License).	
	
An	obligation	to	not	perform	an	action:	“Neither	the	name	of	the	<organization>	nor	the	
names	of	its	contributors	may	be	used	to	endorse	or	promote	products	derived	from	
this	software	without	specific	prior	written	permission”	(source:	BSD	3‐Clause	License).	
	
OSS	licenses	typically	grant	the	right	to	copy,	modify,	and	distribute	source	and	binary	
code,	while	proprietary	licenses	typically	grant	only	the	right	to	possess	one,	or	a	
limited	number	of,	binary	copies,	or	analogous	rights	to	connect	to	a	service,	and	often	
explicitly	disallow	modification	or	distribution.	OSS	licenses	typically	impose	an	
obligation	to	retain	copyright	and	license	notices	unmodified.	Reciprocal	licenses	
typically	impose	an	obligation	to	publish	source	code	of	modified	versions	under	the	
same	license	(the	reciprocal	obligation);	propagating	licenses	are	characterized	by	
obligations	to	publish	“nearby”	software,	under	varying	definitions	of	“nearby”	that	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 55 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

range	over	software	statically	linked,	dynamically	linked,	or	other	means	of	combining.	
Virtually	all	software	licenses	include	disclaimers	of	liability	and	warranty,	and	newer	
licenses	often	include	various	provisions	for	patent	rights.	
	
More	and	more	software	systems	are	designed,	built,	released,	and	distributed	as	OAs	
composed	of	components	from	different	sources,	some	proprietary	and	others	not.	
Systems	include	components	that	are	statically	bound	or	interconnected	at	build	time,	
while	other	components	may	only	be	dynamically	linked	for	execution	at	run	time,	and	
thus	might	not	be	included	as	part	of	a	software	release	or	distribution.	Software	
components	in	such	systems	evolve	not	only	by	ongoing	maintenance,	but	also	by	
architectural	refactoring,	alternative	component	interconnections,	and	component	
replacement	(via	maintenance	patches,	installation	of	new	versions,	or	migration	to	
new	technologies).	Software	components	in	such	systems	may	be	subject	to	different	
software	licenses,	and	later	versions	of	a	component	may	be	subject	to	different	
licenses	(e.g.,	from	CDDL	[Sun’s	Common	Development	and	Distribution	License]	to	
GPL,	or	from	GPLv2	to	GPLv3).		
	
Software	systems	with	open	architectures	are	subject	to	different	software	licenses	
than	may	be	common	with	traditional	proprietary,	closed	source	systems	from	a	single	
vendor.	Software	architects/developers	must	increasingly	attend	to	how	they	design,	
develop,	and	deploy	software	systems	that	may	be	subject	to	multiple,	possibly	
conflicting	software	licenses.	We	see	architects,	developers,	software	acquisition	
managers,	and	others	concerned	with	OAs	as	falling	into	three	groups.	The	first	group	
pays	little	or	no	heed	to	license	conflicts	and	obligations;	they	simply	focus	on	the	other	
goals	of	the	system.	Those	in	the	second	group	have	assets	and	resources,	and	to	
protect	these	they	may	have	an	army	of	lawyers	to	advise	them	on	license	issues	and	
other	potential	vulnerabilities;	or	they	may	constrain	the	design	of	their	systems	so	that	
only	a	small	number	of	software	licenses	(possibly	just	one)	are	involved,	excluding	
components	with	other	licenses	independent	of	whether	such	components	represent	a	
more	effective	or	more	efficient	solution.	The	third	group	falls	between	these	two	
extremes;	members	of	this	group	want	to	design,	develop,	and	distribute	the	best	
systems	possible,	while	respecting	the	constraints	associated	with	different	software	
component	licenses.	Their	goal	is	a	configured	OA	system	that	meets	all	its	goals,	and	
for	which	all	the	license	obligations	for	the	needed	copyright	rights	are	satisfied.	It	is	
this	third	group	that	needs	the	guidance	the	present	work	seeks	to	provide.	
	
There	has	been	an	explosion	in	the	number,	type,	and	variants	of	software	licenses,	
especially	with	open	source	software	(cf.	OSI,	2011).	Software	components	are	now	
available	subject	to	licenses	such	as	the	General	Public	License	(GPL),	Affero	General	
Public	License	(AGPL),	Mozilla	Public	License	(MPL),	Apache	Public	License,	(APL),	
permissive	licenses	(e.g.,	BSD,	MIT),	Creative	Commons,	and	Artistic.	Furthermore,	
licenses	such	as	these	can	evolve,	resulting	in	new	license	versions	over	time.	But	no	
matter	their	diversity,	software	licenses	represent	a	legally	enforceable	contract	that	is	
recognized	by	government	agencies,	corporate	enterprises,	individuals,	and	judicial	
courts,	and	thus	they	cannot	be	taken	trivially.	As	a	consequence,	software	licenses	
constrain	open	architectures,	and	thus	architectural	design	decisions.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 56 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

So	how	might	we	support	the	diverse	needs	of	different	software	developers,	with	
respect	to	their	need	to	design,	develop,	and	deploy	configured	software	systems	with	
different,	possibly	conflicting	licenses	for	the	software	components	they	employ?	Is	it	
possible	to	provide	automated	means	for	helping	software	developers	determine	what	
constraints	will	result	at	design	time,	build	time,	or	run	time	when	their	configured	
system	architectures	employ	diverse	licensed	components?	These	are	the	kind	of	
questions	we	address	in	this	chapter.	

Software Licenses: Rights and Obligations

Copyright,	the	common	basis	for	software	licenses,	gives	the	original	author	of	a	work	
certain	exclusive	rights,	which	for	software	include	the	right	to	use,	copy,	modify,	
merge,	publish,	distribute,	sub‐license,	and	sell	copies.	These	rights	may	be	licensed	to	
others;	the	rights	may	be	licensed	individually	or	in	groups,	and	either	exclusively	so	
that	no	one	else	can	exercise	them	or	(more	commonly)	non‐exclusively.	After	a	period	
of	years,	the	rights	enter	the	public	domain,	but	until	then,	the	only	way	for	anyone	
other	than	the	author	to	have	any	of	the	copyright	rights	is	to	license	them.	
Licenses	may	impose	obligations	that	must	be	met	in	order	for	the	licensee	to	realize	
the	assigned	rights.	Commonly	cited	obligations	include	the	obligation	to	buy	a	legal	
copy	to	use	and	not	distribute	copies	(proprietary	licenses);	the	obligation	to	preserve	
copyright	and	license	notices	(permissive	licenses);	the	reciprocal	obligation	to	publish	
source	code	you	modify	under	the	same	license	(MPL);	or	the	propagating	obligation	to	
publish	under	GPL	all	source	code	for	a	work	“based	on	the	Program”	where	the	
“Program”	is	GPL’d	software	(GPL).		
	
Licenses	may	provide	for	the	creation	of	derivative	works	(e.g.,	a	transformation	or	
adaptation	of	existing	software)	or	collective	works	(e.g.,	a	Linux	distribution	that	
combines	software	from	many	independent	sources)	from	the	original	work,	by	
granting	those	rights	possibly	with	corresponding	obligations.	
	
In	addition,	the	author	of	an	original	work	can	make	it	available	under	more	than	one	
license,	enabling	the	work’s	distribution	to	different	audiences	with	different	needs.	For	
example,	one	licensee	might	be	happy	to	pay	a	license	fee	in	order	to	be	able	to	
distribute	the	work	as	part	of	a	proprietary	product	whose	source	code	is	not	
published,	while	another	might	need	to	license	the	work	under	MPL	rather	than	GPL	in	
order	to	have	consistent	licensing	across	a	system.	Thus	we	now	see	software	
distributed	under	any	one	of	several	licenses,	with	the	licensee	choosing	from	two	
(“dual	license”)	or	three	(Mozilla’s	“tri‐license”)	licenses.	
	
The	basic	relationship	between	software	license	rights	and	obligations	can	be	
summarized	as	follows:	If	you	meet	the	specified	obligations,	then	you	get	the	specified	
rights.	So,	informally,	for	the	permissive	licenses,	if	you	retain	the	copyright	notice,	list	
of	license	conditions,	and	disclaimer,	then	you	can	use,	modify,	merge,	sub‐license,	and	
so	forth.	For	MPL,	if	you	publish	modified	source	code	and	sub‐licensed	derived	works	
under	MPL,	then	you	get	all	the	MPL	rights.	And	so	forth	for	other	licenses.	However,	
one	thing	we	have	learned	from	our	efforts	to	carefully	analyze	and	lay	out	the	
obligations	and	rights	pertaining	to	each	license	is	that	license	details	are	difficult	to	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 57 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

comprehend	and	track—it	is	easy	to	get	confused	or	make	mistakes.	Some	of	the	OSS	
licenses	were	written	by	developers,	and	often	these	turn	out	to	be	incomplete	and	
legally	ambiguous;	others,	usually	more	recent,	were	written	by	lawyers,	and	are	more	
exact	and	complete	but	can	be	difficult	for	non‐lawyers	to	grasp.	The	challenge	is	
multiplied	when	dealing	with	configured	system	architectures	that	compose	multiple	
components	with	heterogeneous	licenses,	so	that	the	need	for	legal	advice	begins	to	
seem	inevitable	(cf.	Fontana	et	al.,	2008;	Rosen,	2005).	Therefore,	one	of	our	goals	is	to	
make	it	possible	to	architect	software	systems	of	heterogeneously	licensed	components	
without	necessarily	consulting	legal	counsel.	Similarly,	such	a	goal	is	best	realized	with	
automated	design‐time	support	that	can	help	architects	understand	design	choices	
across	components	with	different	licenses,	and	that	can	provide	support	for	testing	
build‐time	releases	and	run‐time	distributions	to	make	sure	they	achieve	the	specified	
rights	by	satisfying	the	corresponding	obligations.	

Expressing Software Licenses

Historically,	most	software	systems,	including	OSS	systems,	were	entirely	under	a	single	
software	license.	However,	we	now	see	more	and	more	software	systems	being	
proposed,	built,	or	distributed	with	components	that	are	under	various	licenses.	Such	
systems	may	no	longer	be	covered	by	a	single	license,	unless	such	a	licensing	constraint	
is	stipulated	at	design	time,	and	enforced	at	build	time	and	run	time.	But	when	
components	with	different	licenses	are	to	be	included	at	build	time,	their	respective	
licenses	might	either	be	consistent	or	conflict.	Further,	if	designed	systems	include	
components	with	conflicting	licenses,	then	one	or	more	of	the	conflicting	components	
must	be	excluded	in	the	build‐time	release	or	must	be	abstracted	behind	an	open	API	or	
middleware,	with	users	required	to	download	and	install	to	enable	the	intended	
operation.	(This	is	common	in	Linux	distributions	subject	to	GPL,	where,	for	example,	
users	may	choose	to	acquire	and	install	proprietary	run‐time	components,	like	
proprietary	media	players.)	So	a	component	license	conflict	need	not	be	a	show‐stopper	
if	identified	at	design	time.	However,	developers	have	to	be	able	to	determine	which	
components’	licenses	conflict	and	to	take	appropriate	steps	at	design	time,	build	time,	
and	run	time,	consistent	with	the	different	concerns	and	requirements	that	apply	at	
each	phase	(cf.	Scacchi	&	Alspaugh,	2008).	
	
In	order	to	fulfill	our	goals,	we	need	a	scheme	for	expressing	software	licenses	that	is	
more	formal	and	less	ambiguous	than	natural	language,	and	that	allows	us	to	identify	
conflicts	arising	from	the	various	rights	and	obligations	pertaining	to	two	or	more	
component’s	licenses.	We	considered	relatively	complex	structures	(such	as	Hohfeld’s	
eight	fundamental	jural	relations	[Hohfeld,	1913])	but,	applying	Occam’s	razor,	selected	
a	simpler	structure.	We	start	with	a	tuple	<actor,	operation,	action,	objects>	for	
expressing	a	right	or	obligation.	The	actor	is	the	“licensee”	or	“licensor”	for	all	the	
licenses	we	have	examined.	The	operation	is	one	of	the	following:	“may,”	“must,”	“must	
not,”	or	“need	not,”	with	“may”	and	“need	not”	expressing	rights	and	“must”	and	“must	
not”	expressing	obligations;	following	Hohfeld,	the	lack	of	a	right	(which	would	be	“may	
not”)	correlates	with	a	duty	to	not	exercise	the	right	(“must	not”),	and	whenever	lack	of	
a	right	seemed	significant	in	a	license,	we	expressed	it	as	a	negative	obligation	with	
“must	not.”	The	action	is	a	verb	or	verb	phrase	describing	what	may,	must,	or	must	not	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 58 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

be	done,	with	the	objects	completing	the	description.	We	specify	objects	separately	from	
the	action	in	order	to	minimize	the	set	of	actions	and	to	simplify	the	formalization	of	
relations	among	rights	and	obligations.	Objects	are	specified	by	parameters	ranging	
over	specified	types,	represented	here	by	names	in	{}.	An	obligation’s	objects	may	also	
be	specified	by	parameters,	in	[],	bound	to	objects	of	the	appropriate	type	for	the	
corresponding	right.	Finally,	some	licenses	are	parameterized,	represented	by	names	in	
{{}}.	See	our	previous	work	for	more	specifics	(Alspaugh	et	al.,	2009;	Alspaugh	et	al.,	
2010;	Alspaugh,	Asuncion,	&	Scacchi,	2011).	A	license	then	may	be	expressed	as	a	set	of	
rights,	with	each	right	associated	(in	that	license)	with	zero	or	more	obligations	that	
must	be	fulfilled	in	order	to	enjoy	that	right.	Figure	2	displays	the	tuples	and	
associations	for	two	of	the	rights	and	their	associated	obligations	for	the	permissive	
BSD	software	license.	Note	that	the	first	right	is	granted	without	corresponding	
obligations.	

	
Figure 2. A Portion of the BSD License Tuples

The	process	of	expressing	licenses	with	tuples	is	manual,	with	the	majority	of	the	effort	
spent	identifying	each	action	and	placing	it	in	an	ontology	of	actions	from	all	the	
licenses	of	interest.	The	ontology	is	needed	for	reasoning	about	the	actions;	from	it	the	
subsumption	relationship	between	any	two	actions	can	be	automatically	determined.	
Some	actions,	such	as	those	for	the	exclusive	copyright	rights,	are	widely	shared	among	
licenses;	others,	often	those	for	obligations,	appear	only	in	a	single	license.	Our	
approach	defines	actions,	where	possible,	in	terms	of	rights	and	obligations	defined	in	
U.S.	law	and	the	Berne	Convention,	making	ontology	building	more	scalable	for	large	
numbers	of	licenses.	The	set	of	tuples	chosen	for	a	license	and	the	subsumption	
relationships	between	its	actions	and	those	of	other	licenses	are	determined	by	the	
legal	interpretation	of	the	license;	the	remainder	of	the	interpretation,	in	our	view,	
consists	of	each	action’s	definition	in	the	world.	
	
The	appendix	presents	one	interpretation	of	the	well‐known	BSD	license	as	tuples,	
using	about	a	dozen	distinct	actions	and	representing	about	a	day’s	work	by	one	
analyst.	We	find	that	a	license	can	typically	be	expressed	with	a	few	tens	of	rights	
tuples,	with	each	right	associated	with	roughly	one	to	five	obligation	tuples.	The	
examples	of	typical	rights	and	obligations	listed	in	the	section	titled	Understanding	
Open	Software	Licenses	can	be	interpreted	as	the	following	tuples;	of	course,	other	
interpretations	are	also	possible,	and	indeed	the	third	provision	(from	GPLv2)	has	
several	prominent	ones:	
	

Licensee	:	may	:	reproduce	<AnySource>	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 59 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

“...	each	Contributor	hereby	grants	to	You	a	...	copyright	license	to	reproduce	...	the	
Work	...	in	Source	...	form.”	
	
Licensor	:	need‐not	:	remedy	liability	with	respect	to	<Any>	
“In	no	event	shall	the	authors	or	copyright	holders	be	liable	for	any	claim,	damages	
or	other	liability.”	
	
Licensee	:	must	:	publish	[DerivativeWork]	under	GPLv2	
“You	must	cause	any	work	that	you	distribute	or	publish,	that	in	whole	or	in	part	
contains	or	is	derived	from	the	Program	or	any	part	thereof,	to	be	licensed	as	a	
whole	at	no	charge	to	all	third	parties	under	the	terms	of	this	License.”	
Licensee	:	must‐not	:	claim	endorsement	of	[DerivativeWork]	by	
{{ORGANIZATION}}	or	contributors	to	[Original]	
	
“Neither	the	name	of	the	<ORGANIZATION>	nor	the	names	of	its	contributors	may	
be	used	to	endorse	or	promote	products	derived	from	this	software	without	
specific	prior	written	permission.”	
	

With	this	approach,	nearly	all	license	provisions	can	be	expressed,	specifically,	all	the	
enactable,	testable	rights	and	obligations.	Examples	are	shown	at	the	beginning	of	the	
section	Understanding	Open	Software	Licenses	and	in	Figure	2.	However,	there	are	
certain	license	provisions	that	are	neither	enactable	nor	testable	and	thus	cannot	be	
expressed	in	terms	of	an	action.	The	following	are	some	examples:	
	
An	exhortation:	“The	licenses	for	most	software	are	designed	to	take	away	your	freedom	
to	share	and	change	it.	By	contrast,	the	GNU	General	Public	License	is	intended	to	
guarantee	your	freedom	to	share	and	change	free	software—to	make	sure	the	software	
is	free	for	all	its	users.”	(source:	GPLv2	License)	
	
Non‐binding	advice:	“If	you	wish	to	incorporate	parts	of	the	Library	into	other	free	
programs	whose	distribution	conditions	are	incompatible	with	these,	write	to	the	
author	to	ask	for	permission.”	(source:		LGPLv2.1	License)	
	
An	explanation:	“For	example,	a	Contributor	might	include	the	Program	in	a	commercial	
product	offering,	Product	X.”	(source:	Common	Public	License	1.0)	
	
A	non‐binding	request:	“It	is	requested,	but	not	required,	that	you	contact	the	authors	of	
the	Document	well	before	redistributing	any	large	number	of	copies,	to	give	them	a	
chance	to	provide	you	with	an	updated	version	of	the	Document.”	(source:	GNU	Free	
Documentation	License	1.3)	
	
We	argue	that	non‐enactable,	non‐testable	provisions	are	not	relevant	to	the	problem	
we	address,	namely,	to	identify	license	conflicts	and	guide	architectural	design	to	
enable	specific	licensing	results.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 60 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

We	now	turn	to	examine	how	OA	software	systems	that	include	components	with	
different	licenses	can	be	designed	and	analyzed	while	effectively	tracking	their	rights	
and	obligations.	
	
When	designing	an	OA	software	system,	there	are	heuristics	that	can	be	employed	to	
enable	architectural	design	choices	that	might	otherwise	be	excluded	due	to	license	
conflicts.	First,	it	is	possible	to	employ	a	“license	firewall”	which	serves	to	limit	the	
scope	of	reciprocal	obligations.	Rather	than	simply	interconnecting	conflicting	
components	through	static	linking	of	components	at	build	time,	such	components	can	
be	logically	connected	via	dynamic	links,	client–server	protocols,	license	shims	(e.g.,	via	
LGPL	connectors),	or	run‐time	plug‐ins.	Second,	the	source	code	of	statically	linked	OSS	
components	must	be	made	public.	Third,	it	is	necessary	to	include	appropriate	notices	
and	publish	required	sources	when	permissive	licenses	are	employed.	However,	even	
using	design	heuristics	such	as	these	(and	there	are	many),	keeping	track	of	license	
rights	and	obligations	across	components	that	are	interconnected	in	complex	OAs	
quickly	becomes	too	cumbersome.	Thus,	automated	support	needs	to	be	provided	to	
help	overcome	and	manage	the	multi‐component,	multi‐license	complexity.	

Automating Analysis of Software License Rights and
Obligation
We	find	that	if	we	start	from	a	formal	specification	of	a	software	system’s	architecture,	
then	we	can	associate	software	license	attributes	with	the	system’s	components,	
connectors,	and	sub‐system	architectures	and	calculate	the	copyright	rights	and	
obligations	for	the	system.	Accordingly,	we	employ	an	architectural	description	
language	specified	in	xADL	(Dashofy,	Hoek,	&	Taylor,	2005)	to	describe	OAs	that	can	be	
designed	and	analyzed	with	a	software	architecture	design	environment	(Medvidovic	et	
al.,1999),	such	as	ArchStudio4	(Dashofy	et	al.,	2007).	We	have	taken	this	environment	
and	extended	it	with	a	Software	Architecture	License	Traceability	Analysis	module	(cf.	
Asuncion	&	Taylor,	2012).	This	allows	for	the	specification	of	licenses	as	a	list	of	
attributes	(license	tuples)	using	a	form‐based	user	interface,	similar	to	those	already	
used	and	known	for	ArchStudio4	and	xADL	(Dashofy	et	al.,	2007;	Medvidovic	et	al.,	
1999).	
	
Figure	3	shows	a	screenshot	of	an	ArchStudio4	session	in	which	we	have	modeled	the	
OA	seen	in	Figure	1.	OA	software	components	are	indicated	by	darker	shaded	boxes.	
Light	shaded	boxes	indicate	connectors.	Architectural	connectors	may	or	may	not	have	
associated	license	information;	those	with	licenses	(such	as	architectural	connectors	
that	represent	functional	code)	are	treated	as	components	during	license	traceability	
analysis.	A	directed	line	segment	indicates	a	link.	Links	connect	interfaces	between	the	
components	and	connectors.		

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 61 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

	
Figure 3. An ArchStudio 4 Model of the Open Software Architecture

of Figure 1

Furthermore,	the	Mozilla	component	as	shown	here	contains	a	hypothetical	sub‐
architecture	for	modeling	the	role	of	intra‐application	scripting,	as	might	be	useful	in	
specifying	license	constraints	for	Rich	Internet	Applications.	This	sub‐architecture	is	
specified	in	the	same	manner	as	the	overall	system	architecture,	and	is	visible	in	Figure	
5.	The	automated	environment	allows	for	tracing	and	analysis	of	license	attributes	and	
conflicts.	
	
Figure	4	shows	a	view	of	the	internal	XML	representation	of	a	software	license.	Analysis	
and	calculations	of	rights,	obligations,	and	conflicts	for	the	OA	are	done	in	this	form.	
This	schematic	representation	is	similar	in	spirit	to	that	used	for	specifying	and	
analyzing	privacy	and	security	regulations	associated	with	certain	software	systems	
(Breaux	&	Antón,	2008).	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 62 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

	
Figure 4. A View of the Internal Schematic Representation of the

Mozilla Public License

With	this	basis	to	build	on,	it	is	now	possible	to	analyze	the	alignment	of	rights	and	
obligations	for	the	overall	system,	in	terms	of	the	propagation	of	reciprocal	obligations,	
licensing	conflicts	and	incompatibilities,	and	rights	and	obligation	calculations.	

● Propagation	of	reciprocal	obligations	

Reciprocal	obligations	are	imposed	by	the	license	of	a	GPL’d	component	on	any	other	
component	that	is	part	of	the	same	“work	based	on	the	Program”	(i.e.,	on	the	first	
component),	as	defined	in	GPL.	We	follow	one	widely	accepted	interpretation,	namely	
that	build‐time	static	linkage	propagates	the	reciprocal	obligations,	but	that	“license	
firewalls”	such	as	dynamic	links	or	client–server	connections	do	not.	Analysis	begins,	
therefore,	by	propagating	these	obligations	along	all	connectors	that	are	not	license	
firewalls.	

● Licensing	conflicts	and	incompatibilities	

An	obligation	can	conflict	with	another	obligation	contrary	to	it,	or	with	the	set	of	
available	rights,	by	requiring	a	copyright	right	that	has	not	been	granted.	For	instance,	
the	Corel	proprietary	license	for	the	WordPerfect	component,	CTL	(Corel	Transactional	
License),	may	be	taken	to	entail	that	a	licensee	must	not	redistribute	source	code,	as	a	
specific	obligation.	However,	an	OSS	license,	GPL,	may	state	that	a	licensee	must	
redistribute	source	code.	Thus,	the	conflict	appears	in	the	modality	of	the	two	
otherwise	identical	obligations,	“must	not”	in	CTL	and	“must”	in	GPL.	A	conflict	on	the	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 63 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

same	point	could	occur	also	between	GPL	and	a	component	whose	license	fails	to	grant	
the	right	to	distribute	its	source	code.	Similar	conflicts	may	arise	between	obligations	
and	desired	rights.	We	discuss	this	further	in	the	following	section.	
This	phase	of	the	analysis	is	affected	by	the	overall	set	of	rights	that	are	required.	If	
conflicts	arise	involving	the	union	of	all	obligations	in	all	components’	licenses,	it	may	
be	possible	to	eliminate	some	conflicts	by	selecting	a	smaller	set	of	rights,	in	which	case	
only	the	obligations	for	those	rights	need	be	considered.	
	
Figure	5	shows	a	screenshot	in	which	the	License	Traceability	Analysis	module	has	
identified	obligation	conflicts	between	the	licenses	of	two	pairs	of	components	
(“WordPerfect”	and	“Linux	OS,”	and	“GUIDisplayManager”	and	“GUIScriptInterpreter”).	
	

	
Figure 5. License Conflicts Have Been Identified Between Two Pairs

of Components

● Rights	and	obligations	calculations	

The	calculation	begins	from	each	right	desired	for	the	system	as	a	whole.	The	right	is	
examined	for	each	component	of	the	system:	the	right	is	either	freely	available	(i.e.,	not	
an	exclusive	right	defined	in	copyright	or	other	law),	subsumed	by	some	right	granted	
by	the	component’s	license,	or	unavailable.	The	license	tuples	for	the	component	are	
examined	for	one	that	subsumes	the	desired	right.	If	there	is	no	such	tuple,	then	the	
desired	right	is	unavailable	for	the	component	and	thus	for	the	system	containing	it.	But	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 64 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

if	there	is	such	a	tuple,	it	is	instantiated	for	the	component,	and	the	associated	
obligations	are	instantiated	in	parallel.	Each	instantiated	obligation	is	added	to	the	set	
of	obligations	for	the	system.	In	addition,	the	correlative	right	(Hohfeld,	1913)	to	
perform	each	obligation	must	be	obtained;	the	calculation	recurses	with	each	
correlative	right	as	the	desired	right.	The	calculation	terminates	when	all	chains	of	
rights	and	obligations	have	terminated	in	either	a	freely	available	right	or	an	
unobtainable	right.	The	result	is	a	set	of	available	instantiated	rights,	each	associated	
with	zero	or	more	instantiated	obligations	and	their	correlative	rights,	and	a	set	
(hopefully	empty)	of	unobtainable	rights	(Alspaugh	et	al.,	2011).	
	
Several	kinds	of	problems	may	be	identified:	(1)	Desired	or	correlative	rights	may	be	
unobtainable;	(2)	the	desired	rights	may	entail	obligations	that	conflict	and	cannot	both	
be	satisfied;	(3)	desired	or	correlative	rights	may	be	obtainable,	but	cannot	be	exercised	
because	they	conflict	with	an	obligation;	and	(4)	all	desired	rights	may	be	available,	but	
the	entailed	obligations	may	be	more	than	the	system’s	developers	or	eventual	users	
are	willing	to	undertake.	Examples	of	specific	obligations	are	as	follows:	
	
 OSS: “Licensee must retain copyright notices in the binary form of module.c”

 Reciprocal OSS: “Licensee must publish the source code of

component.java version 1.2.3”

 Proprietary EULA: “Licensee must obtain a proprietary license for a copy of

component.exe”

 Proprietary ToS: “Licensee must obtain a proprietary license for use of service

http://service.com.”

Figure	6	shows	a	report	of	the	calculations	for	the	hypothetical	sub‐architecture	of	
the	Mozilla	component	in	our	archetypal	architecture,	exhibiting	an	obligation	
conflict	and	the	single	copyright	right	(to	run	the	system)	that	the	prototype	tool	
shows	would	be	available	for	the	sub‐architecture	as	a	whole	if	the	conflict	is	
resolved;	a	production	tool	would	also	list	the	rights	(none)	currently	available.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 65 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

	
Figure 6. A Report Identifying the Obligations, Conflicts, and Rights

for the Architectural Model

If	a	conflict	is	found	involving	the	obligations	and	rights	of	linked	components,	it	is	
possible	for	the	system	architect	to	consider	an	alternative	linking	scheme,	employing	
one	or	more	connectors	along	the	paths	between	the	components	that	act	as	a	license	
firewall,	thereby	mitigating	or	neutralizing	the	component–component	license	conflict.	
This	means	that	the	architecture	and	the	environment	together	can	determine	what	OA	
design	best	meets	the	problem	at	hand	with	available	software	components.	
Components	with	conflicting	licenses	do	not	need	to	be	arbitrarily	excluded,	but	instead	
may	expand	the	range	of	possible	architectural	alternatives	if	the	architect	seeks	such	
flexibility	and	choice.	
	
At	build	time	(and	later	at	run	time),	many	of	the	obligations	can	be	tested	and	verified,	
for	example,	that	the	binaries	contain	the	appropriate	notices	for	their	licenses,	and	that	
the	source	files	are	present	in	the	correct	version	on	the	Web.	These	tests	can	be	
generated	from	the	internal	list	of	obligations	and	run	automatically.	If	the	system’s	
interface	were	extended	to	add	a	control	for	it,	the	tests	could	be	run	by	a	deployed	
system.	
	
The	prototype	License	Traceability	Analysis	module	provides	a	proof‐of‐concept	for	
this	approach.	We	encoded	the	core	provisions	of	four	licenses	in	XML	for	the	tool—
GPL,	MPL,	CTL,	and	AFL	(Academic	Free	License)—to	examine	the	effectiveness	of	the	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 66 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

license	tuple	encoding	and	the	calculations	based	upon	it.	While	it	is	clear	that	we	could	
use	a	more	complex	and	expressive	structure	for	encoding	licenses,	in	encoding	the	
license	provisions	to	date	we	found	that	the	tuple	representation	was	more	expressive	
than	needed;	for	example,	the	actor	was	always	“licensee”	or	“licensor”	and	seems	likely	
to	remain	so,	and	we	found	use	for	only	four	operations	or	modalities.	At	this	writing,	
the	module	shows	proof	of	concept	for	calculating	with	reciprocal	obligations	by	
propagating	them	to	adjacent	statically	linked	modules;	the	extension	to	all	paths	not	
blocked	by	license	firewalls	is	straightforward	and	is	independent	of	the	scheme	and	
calculations	described	here.	Reciprocal	obligations	are	identified	in	the	tool	by	lookup	
in	a	table,	and	the	meaning	and	scope	of	reciprocality	is	hard‐coded;	this	is	not	ideal,	
but	we	considered	it	acceptable	since	the	legal	definition	in	terms	of	the	reciprocal	
licenses	will	not	change	frequently.	We	also	focused	on	the	design‐time	analysis	and	
calculation	rather	than	build	time	or	run	time	as	it	involves	the	widest	range	of	issues,	
including	representations,	rights	and	obligations	calculations,	and	design	guidance	
derived	from	them.	
	
We	do	not	claim	our	approach	is	a	substitute	for	advice	from	legal	counsel;	it	is	not	(and	
if	we	claimed	it	were,	such	a	claim	would	be	illegal	in	many	jurisdictions).	The	encoding	
of	the	BSD	license	in	the	appendix	is	merely	an	example;	we	have	not	developed	“the”	
interpretation,	but	rather	an	approach	through	which	many	alternative	interpretations	
can	be	expressed	and	then	worked.	Our	key	contribution	is	an	approach	through	which	
inferences	can	be	drawn	about	licensing	issues	for	a	particular	design	architecture	or	
build‐	or	run‐time	configuration,	based	on	a	particular	set	of	license	interpretations.	
During	our	research,	we	have	discussed	our	approach	with	a	number	of	people	in	the	
legal	field,	including	a	law	professor,	a	law	student	working	in	intellectual	property	law,	
an	international	law	researcher,	and	several	lawyers.	Our	approach	implements	an	
inference	system	based	on	Hohfeld’s	(1913)	jural	relations,	which	are	viewed	as	
foundational	in	U.S.	legal	scholarship;	follows	an	inference	process	accepted	by	persons	
with	legal	training;	and	uncovers	the	same	kinds	of	concerns	a	knowledgeable	and	
thorough	analyst	would.	Our	approach	provides	a	way	for	organizations	to	express	
their	own	interpretations	of	software	licenses,	and	use	those	interpretations	to	rapidly	
and	consistently	identify	license	conflicts,	unavailable	rights,	and	unacceptable	
obligations	resulting	from	a	particular	architectural	configuration.	We	believe	this	
empowers	organizations	to	steer	clear	of	known	problems	and	highlight	issues	for	
analysis	by	legal	counsel.	
	
Based	on	our	analysis	approach,	it	appears	that	the	questions	of	which	license	covers	a	
specific	configured	system,	and	what	rights	are	available	for	the	overall	system	(and	
what	obligations	are	needed	for	them)	are	difficult	to	answer	without	automated	
license‐architecture	analysis.	This	is	especially	true	if	the	system	or	sub‐system	is	
already	in	operational	run‐time	form	(cf.	Kazman	&	Carrière,	1999).	It	might	make	
distribution	of	a	composite	OA	system	somewhat	problematic	if	people	cannot	
understand	what	rights	or	obligations	are	associated	with	it.	We	offer	the	following	
considerations	to	help	make	this	clear.	For	example,	a	Mozilla/Firefox	Web	browser	
covered	by	the	MPL	(or	GPL	or	LGPL,	in	accordance	with	the	Mozilla	Tri‐License)	may	
download	and	run	intra‐application	script	code	that	is	covered	by	a	different	license.	If	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 67 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

this	script	code	is	only	invoked	via	dynamic	run‐time	linkage,	or	via	a	client–server	
transaction	protocol,	then	there	is	no	propagation	of	license	rights	or	obligations.	
However,	if	the	script	code	is	integrated	into	the	source	code	of	the	Web	browser	as	a	
persistent	part	of	an	application	(e.g.,	as	a	plug‐in),	then	it	could	be	viewed	as	a	
configured	sub‐system	that	may	need	to	be	accessed	for	license	transfer	or	conflict	
implications.	A	different	kind	of	example	can	be	anticipated	with	application	programs	
(like	Web	browsers,	email	clients,	and	word	processors)	that	employ	Rich	Internet	
Applications	or	mashups	entailing	the	use	of	content	(e.g.,	textual	character	fonts	or	
geographic	maps)	that	is	subject	to	copyright	protection,	if	the	content	is	embedded	in	
and	bundled	with	the	scripted	application	sub‐system.	In	such	a	case,	the	licenses	
involved	may	not	be	limited	to	OSS	or	proprietary	software	licenses.	
	
In	the	end,	it	becomes	clear	that	it	is	possible	to	automatically	determine	what	rights	or	
obligations	are	associated	with	a	given	system	architecture	at	design	time,	and	whether	
it	contains	any	license	conflicts	that	might	prevent	proper	access	or	use	at	build	time	or	
run	time,	given	an	approach	such	as	ours.	

Solutions and Recommendations
Software	system	configurations	in	OAs	are	intended	to	be	adapted	to	incorporate	new	
innovative	software	technologies	that	are	not	yet	available.	These	system	
configurations	will	evolve	and	be	refactored	over	time	at	ever	increasing	rates	(Scacchi,	
2007),	components	will	be	patched	and	upgraded	(perhaps	with	new	license	
constraints),	and	inter‐component	connections	will	be	rewired	or	remediated	with	new	
connector	types.	An	approach	for	addressing	licensing	issues	at	design	time	such	as	the	
one	we	present	here	will	be	increasingly	important.	As	such,	sustaining	the	openness	of	
a	configured	software	system	will	become	part	of	ongoing	system	support,	analysis,	and	
validation.	This	in	turn	may	require	ADLs	to	include	OSS	licensing	properties	on	
components,	connectors,	and	overall	system	configuration,	as	well	as	in	appropriate	
analysis	tools	(cf.	Bass	et	al.,	2003;	Medvidovic	et	al.,	1999).	
	
Constructing	licensing	descriptions	is	an	incremental	addition	to	the	development	of	
the	architectural	design,	or	alternative	architectural	designs.	But	it	is	still	time‐
consuming,	and	may	present	a	somewhat	daunting	challenge	for	large	pre‐existing	
systems	that	were	not	originally	modeled	in	our	environment.	
	
We	note	that	expressing	a	software	license	in	our	tuples	necessarily	implies	selecting	an	
interpretation	of	the	provisions	of	the	license.	Individuals	and	small	organizations	may	
simply	choose	a	representative	or	commonly	accepted	interpretation,	but	enterprises	
will	of	necessity	seek	legal	counsel	and	construct	their	own	interpretations	aligned	with	
their	advice.	An	enterprise	must	also	consider	the	scope	of	our	approach,	which	focuses	
on	exclusive	rights	to	“do”	that	are	constant	over	a	defined	time	span,	as	the	copyright	
rights	are.	Patent	rights,	for	example,	are	fundamentally	different,	being	exclusive	rights	
to	“prevent	from	doing”	rather	than	to	“do.”	For	example,	the	owner	of	a	copyright	has	
the	right	to	copy	the	work,	and	may	license	that	right	to	others	who	may	then	make	
copies.	In	contrast,	the	owner	of	a	patent	has	the	right	to	prevent	others	from	using	the	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 68 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

algorithm,	process,	or	invention,	and	may	only	grant	a	license	by	which	the	owner	will	
forbear	from	preventing	the	licensee	from	using	the	patented	matter	rather	than	a	
straightforward	right	to	use	it;	this	license	has	no	effect	if	some	other	overlapping	
patent	exists	or	is	granted	in	the	future,	and	the	other	patent	owner	can	still	prevent	the	
licensee	of	the	first	patent	from	using	it.	A	number	of	the	prominent	OSS	licenses,	such	
as	GPLv3,	have	provisions	for	indemnifying	licensees	against	patent	infringement	
involving	the	licensed	material,	and	our	approach	supports	considering	these	
provisions	at	system	design	time.	
	
Advances	in	the	identification	and	extraction	of	configured	software	elements	at	build	
time,	and	their	restructuring	into	architectural	descriptions	is	becoming	an	endeavor	
that	can	be	automated	(cf.	Choi	&	Scacchi,	1990;	Kazman	&	Carrière,	1999;	Jansen,	
Bosch,	&	Avgeriou,	2008).	Further	advances	in	such	efforts	have	the	potential	to	
automatically	produce	architectural	descriptions	that	can	either	be	manually	or	semi‐
automatically	annotated	with	their	license	constraints,	and	thus	enable	automated	
construction	and	assessment	of	build‐time	software	system	architectures.	
The	list	of	recognized	OSS	licenses	is	long	and	ever‐growing,	and	as	existing	licenses	are	
tested	in	the	courts,	we	can	expect	their	interpretations	to	be	clarified	and	perhaps	
altered;	the	GPL	definition	of	“work	based	on	the	Program,”	for	example,	may	
eventually	be	clarified	in	this	way,	possibly	refining	the	scope	of	reciprocal	obligations.	
Our	expressions	of	license	rights	and	obligations	are	for	the	most	part	compared	for	
identical	actors,	actions,	and	objects,	then	by	looking	for	“must”	or	“must	not”	in	one	
and	“may”	or	“need	not”	in	the	other,	so	that	new	licenses	may	be	added	by	keeping	
equivalent	rights	or	obligations	expressed	equivalently.	Reciprocal	obligations,	
however,	are	handled	specially	by	hard‐coded	algorithms	to	traverse	the	scope	of	that	
obligation,	so	that	addition	of	obligations	with	different	scope,	or	the	revision	of	the	
understanding	of	the	scope	of	an	existing	obligation,	requires	development	work.	
Possibly	these	issues	will	be	clarified	as	we	add	more	licenses	to	the	tool	and	
experiment	with	their	application	in	OA	contexts.	
	
Lastly,	our	scheme	for	specifying	software	licenses	offers	the	potential	for	the	creation	
of	shared	repositories	where	these	licenses	can	be	accessed,	studied,	compared,	
modified,	and	redistributed.	

Conclusion
The	relationship	between	enterprise	software	systems	that	employ	an	open	
architecture,	open	source	software,	and	multiple	software	licenses	has	been	and	
continues	to	be	poorly	understood.	OSS	is	often	viewed	as	primarily	a	source	for	low‐
cost/free	software	systems	or	software	components.	Thus,	given	the	goal	of	realizing	an	
enterprise	strategy	for	OA	systems,	together	with	the	use	of	OSS	components	and	open	
APIs,	it	has	been	unclear	how	to	best	align	software	architecture,	OSS,	and	software	
license	regimes	to	achieve	this	goal.	
	
The	central	problem	we	examined	in	this	chapter	was	to	identify	principles	of	software	
architecture	and	software	copyright	licenses	that	facilitate	or	inhibit	how	best	to	ensure	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 69 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

the	success	of	an	OA	strategy	when	OSS	and	open	APIs	are	required	or	otherwise	
employed.	In	turn,	we	presented	an	analysis	scheme	and	operational	environment	that	
demonstrates	that	an	automated	solution	to	this	problem	exists.	Furthermore,	in	
related	work,	we	have	gone	on	to	formally	model	and	analyze	the	alignment,	matching,	
subsuming,	and	conflicting	relationships	among	interconnected	enterprise	software	
components	that	are	subject	to	different	licenses	(Alspaugh	et	al.,	2009;	Alspaugh	et	al.,	
2010).	
	
We	have	developed	and	demonstrated	an	operational	environment	that	can	
automatically	determine	the	overall	license	rights,	obligations,	and	constraints	
associated	with	a	configured	system	architecture	whose	components	may	have	
different	software	licenses.	Such	an	environment	requires	the	annotation	of	the	
participating	software	elements	with	their	corresponding	licenses,	which	in	our	
approach	is	done	using	an	architectural	description	language.	These	annotated	software	
architectural	descriptions	can	be	prescriptively	analyzed	at	design	time	as	we	have	
shown,	or	descriptively	analyzed	at	build	time	or	run	time.	Such	a	solution	offers	the	
potential	for	practical	support	in	design‐time,	build‐time,	and	run‐time	license	
conformance	checking	and	the	ever‐more	complex	problem	of	developing	large	
software	systems	from	configurations	of	software	elements	that	can	evolve	over	time.	

References
Alspaugh,	T.	A.,	&	Antón,	A.	I.	(2007).	Scenario	support	for	effective	requirements.	

Information	and	Software	Technology,	50(3),	198–220.	
Alspaugh,	T.	A.,	Asuncion,	H.	A.,	&	Scacchi,	W.	(2009).	Intellectual	property	rights	for	

heterogeneously	licensed	systems.	In	Proceedings	of	the	17th	International	
Requirements	Engineering	Conference	(RE	’09)	(pp.	24–33).	Los	Alamitos,	CA:	
IEEE.	

Alspaugh,	T.	A.,	Asuncion,	H.	A.,	&	Scacchi,	W.	(2011).	Presenting	software	license	
conflicts	through	argumentation.	In	Proceedings	of	the	23rd	International	
Conference	on	Software	Engineering	and	Knowledge	Engineering	(SEKE	’11).	
Knowledge	Systems	Institute,	Skokie,	IL.	

Alspaugh,	T.	A.,	Scacchi,	W.,	&	Asuncion,	H.	A.	(2010,	November).	Software	licenses	in	
context:	The	challenge	of	heterogeneously	licensed	systems.	Journal	of	the	
Association	for	Information	Systems,	11(11),	730–755.	

Asuncion,	H.	(2008).	Towards	practical	software	traceability.	In	Proceedings	of	the	
30th	International	Conference	on	Software	Engineering	(ICSE	’08),	Companion	
Volume	(pp.	1023–1026).	New	York,	NY:	ACM.	

Asuncion,	H.	U.,	&	Taylor,	R.	N.	(2012).	Automated	techniques	for	capturing	custom	
traceability	links	across	heterogeneous	artifacts.	Software	and	Systems	
Traceability,	Part	2,	129–146.	London,	UK:	Springer‐Verlag.	

Bass,	L.,	Clements,	P.,	&	Kazman,	R.	(2003).	Software	architecture	in	practice	(2nd	
ed.).	New	York,	NY:	Addison‐Wesley	Professional.	

Breaux,	T.	D.,	&	Antón,	A.	I.	(2008).	Analyzing	regulatory	rules	for	privacy	and	
security	requirements.	IEEE	Transactions	on	Software	Engineering,	34(1),	5–
20.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 70 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Choi,	S.,	&	Scacchi,	W.	(1990).	Extracting	and	restructuring	the	design	of	large	
systems.	IEEE	Software,	7(1),	66–71.	

Dashofy,	E.,	Asuncion,	H.,	Hendrickson,	S.	A.,	Suryanarayana,	G.,	Georgas,	J.	C.,	&	
Taylor,	R.	N.	(2007,	May	20–26).	ArchStudio	4:	An	architecture‐based	meta‐
modeling	environment.	In	Proceedings	of	the	28th	International	Conference	on	
Software	Engineering	(ICSE	’07),	Companion	Volume	(pp.	67–68).	New	York,	
NY:	ACM.	

Dashofy,	E.	M.,	Hoek,	A.	v.	d.,	&	Taylor,	R.	N.	(2005).	A	comprehensive	approach	for	
the	development	of	modular	software	architecture	description	languages.	
ACM	Transactions	on	Software	Engineering	and	Methodology,	14(2),	199–245.	

Feldt,	K.	(2007).	Programming	Firefox:	Building	rich	internet	applications	with	XUL.	
Sebastopol,	CA:	O’Reilly	Press.	

Fielding,	R.,	&	Taylor,	R.	N.	(2002).	Principled	design	of	the	modern	web	architecture.	
ACM	Transactions	Internet	Technology,	2(2),	115–150.	

Fontana,	R.,	Kuhn,	B.	M.,	Moglen,	E.,	Norwood,	M.,	Ravicher,	D.	B.,	Sandler,	K.,	…	
Williamson,	A.	(2008).	A	legal	issues	primer	for	open	source	and	free	software	
projects,	version	1.5.1.	Retrieved	from	
http://www.softwarefreedom.org/resources/2008/foss‐primer.pdf	

Hohfeld,	W.	N.	(1913).	Some	fundamental	legal	conceptions	as	applied	in	judicial	
reasoning.	Yale	Law	Journal,	23(1),	16–59.	

Jansen,	A.,	Bosch,	J.,	&	Avgeriou,	P.	(2008).	Documenting	after	the	fact:	Recovering	
architectural	design	decisions.	Journal	of	Systems	and	Software,	81(4),	536–
557.	

Kazman,	R.,	&	Carrière,	J.	(1999).	Playing	detective:	Reconstructing	software	
architecture	from	available	evidence.	Journal	of	Automated	Software	
Engineering,	6(2),	107–138.	

Kuhl,	F.,	Weatherly,	R.,	&	Dahmann,	J.	(2000).	Creating	computer	simulation	systems:	
An	introduction	to	the	high	level	architecture.	Upper	Saddle	River,	NJ:	
Prentice‐Hall	PTR.	

Medvidovic,	N.,	Rosenblum,	D.	S.,	&	Taylor,	R.	N.	(1999).	A	language	and	environment	
for	architecture‐based	software	development	and	evolution.	In	Proceedings	of	
the	21st	International	Conference	Software	Engineering	(ICSE	’99)	(pp.	44–53).	
New	York,	NY:	ACM.	

Meyers,	B.	C.,	&	Oberndorf,	P.	(2001).	Managing	software	acquisition:	Open	systems	
and	COTS	products.	New	York,	NY:	Addison‐Wesley.	

Nelson,	L.,	&	Churchill,	E.	F.	(2006).	Repurposing:	Techniques	for	reuse	and	
integration	of	interactive	services.	In	Proceedings	of	the	2006	IEEE	
International	Conference	on	Information	Reuse	and	Integration.,	IEEE	
Computer	Society,	Los	Alamitos,	CA.	

Open	Source	Initiative	(OSI).	(2011).	The	Open	Source	Initiative.	Retrieved	from	
http://www.opensource.org/	

Rosen,	L.	(2005).	Open	source	licensing:	Software	freedom	and	intellectual	property	
law.	Upper	Saddle	River,	NJ:	Prentice‐Hall	PTR.	Retrieved	from	
http://www.rosenlaw.com/oslbook.htm	

Scacchi,	W.	(2002,	February).	Understanding	the	requirements	for	developing	open	
source	software	systems.	IEE	Proceedings—Software,	149(1),	24–39.		

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 71 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Scacchi,	W.	(2007).	Free/open	source	software	development:	Recent	research	
results	and	emerging	opportunities.	In	Proceedings	of	the	European	Software	
Engineering	Conference	and	ACM	SIGSOFT	Symposium	on	the	Foundations	of	
Software	Engineering	(pp.	459–468).	ACM,	New	York.	

Scacchi,	W.	(2009).	Understanding	requirements	for	open	source	software.	In	K.	
Lyytinen,	P.	Loucopoulos,	J.	Mylopoulos,	&	W.	Robinson	(Eds.),	Design	
requirements	engineering:	A	ten‐year	perspective	(LNBIP	14;	467–494).	
Springer‐Verlag.,	New	York.	

Scacchi,	W.,	&	Alspaugh,	T.	A.	(2008).	Emerging	issues	in	the	acquisition	of	open	
source	software	within	the	U.S.	Department	of	Defense.	In	Proceedings	of	the	
Fifth	Annual	Acquisition	Research	Symposium	(NPS‐AM‐08‐036;	Vol.	1,	pp.	
230–244).	Retrieved	from	http://www.acquisitionresearch.net	

St.	Laurent,	A.	M.	(2004).	Understanding	open	source	and	free	software	licensing.	
Sebastopol,	CA:	O’Reilly	Press.	

Ven,	K.,	&	Mannaert,	H.	(2008).	Challenges	and	strategies	in	the	use	of	open	source	
software	by	independent	software	vendors.	Information	and	Software	
Technology,	50,	991–1002.	

Acknowledgments
The	research	described	in	this	report	has	been	supported	by	grant	#0808783	from	the	
U.S.	National	Science	Foundation,	and	grants	N00244‐10‐1‐0077	and	N00244‐12‐1‐
0004	from	the	Acquisition	Research	Program	at	the	Naval	Postgraduate	School.	No	
endorsement	implied.	

Key Terms & Definitions
Keywords:	Open	source	software,	software	licenses,	open	architectures,	closed	source	
software,	automated	software	license	analysis,	software	traceability,	interactive	
development	environment.		
	
Open	source	software:	software	whose	source	code	is	available	for	external	access,	
study,	modification,	and	redistribution	by	end‐users,	accompanied	by	a	software	
copyright	agreement	(software	license)	that	ensures	these	rights	are	available	to	
anyone	who	satisfies	the	explicitly	declared	obligations	included	in	the	licenses.	See	the	
Open	Source	Initiative	(OSI,	2011)	for	other	definitions	of	open	source	software.	In	
contract,	closed	source	software	generally	denotes	proprietary	whose	source	code	is	
not	available	for	external	access,	study,	modification,	or	redistribution	by	end‐users,	
and	therefore	may	also	be	available	as	restricted	use,	executable	components.	
	
Software	licenses:	a	contractual	agreement	conveyed	from	software	developers,	owners,	
or	producers	to	external	users	of	the	software,	most	typically	through	explicit	copyright	
declarations	or	an	end‐user	license	agreement	(EULA).	
	
Open	architecture	(OA):	a	software	system	architecture	that	explicitly	specifies,	models,	
or	visually	renders	the	software	components	of	a	system,	the	connectors	that	
interconnect	data	or	control	flow	between	components	via	each	component’s	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 72 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

interfaces,	that	collectively	denote	the	overall	architectural	configuration	of	a	system	in	
a	form	that	can	be	accessed,	studied,	modified,	or	redistributed.	
	
Architectural	description	language	(ADL):	a	formal	language	or	notational	scheme	for	
explicitly	specifying	the	elements	of	a	software	system	architecture,	including	the	
system’s	components,	component	interfaces,	and	connectors	that	collectively	denote	
the	overall	architectural	configuration	of	the	system.	ADLs	are	a	convenient	way	to	
specify	an	OA	software	system.	
	
Automated	software	license	analysis:	a	technique	for	automatically	analyzing	the	
propagation	of	software	copy	rights	and	obligations	across	interconnected	software	
components	that	are	part	of	an	explicit,	open	architecture	software	system.	
	
Software	traceability:	a	technique	for	navigating	or	tracing	relationships	between	
elements	of	a	software	system,	and/or	documentation	of	its	software	engineering.	
	
Architecture	development	environment	:	an	integrated	ensemble	of	software	tools	whose	
collective	purpose	is	to	facilitate	the	interactive	development	of	software	system	
architecture	models	using	an	ADL,	ideally	in	a	form	that	can	be	also	used	to	
subsequently	develop	or	consistently	derive	the	build‐time	and	run‐time	versions	of	the	
specified	software	system	architecture.	

Appendix: An Interpretation of the BSD 3-Clause License
General obligations for the license as a whole

O1.	Licensee	:	must‐not	:	seek	remedy	based	on	warranty	or	liability	with	respect	to	
[Any].	

Rights and corresponding obligations

R1.	Licensee	:	may	:	reproduce	{AnyOriginalSource}	
	
R2.		Licensee	:	may	:	reproduce	{AnyOriginalBinary}	
o2.1.		Licensee	:	must	:	distribute	the	BSD	notice	with	[Any]	
	
R3.		Licensee	:	may	:	prepare	derivative	work	{AnyDerivativeWork}	of	
{AnyOriginalSource}	
o3.1.		Licensee	:	must	:	retain	BSD	notices	from	[Original]	in	[DerivativeWork]	
o3.2.		Licensee	:	must‐not	:	claim	endorsement	for	[DerivativeWork]	by	
{{ORGANIZATION}}	
o3.3.		Licensee	:	must‐not	:	claim	endorsement	for	[DerivativeWork]	by	contributors	to	
[Original]	
	
R4.		Licensee	:	may	:	prepare	derivative	work	{AnyDerivativeWork}	of	
{AnyOriginalBinary}	
o4.1.		Licensee	:	must	:	distribute	the	BSD	notice	with	[Any]	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 73 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

o4.2.		Licensee	:	must‐not	:	claim	endorsements	for	[DerivativeWork]	from	
{{ORGANIZATION}}	
o4.3.		Licensee	:	must‐not	:	claim	endorsements	for	[DerivativeWork]	from	contributors	
to	[Original]	
	
R5.		Licensee	:	may	:	distribute	copies	of	{AnyOriginalSource}	
o5.1.		Licensee	:	must	:	retain	the	BSD	notice	in	[Any]	
	
R6.		Licensee	:	may	:	distribute	copies	of	{AnyOriginalBinary}	
o6.1.		Licensee	:	must	:	distribute	the	BSD	notice	with	[Any]	

Notes

The	BSD	license	is	a	template	license	parameterized	by	the	name	of	the	organization	
that	is	the	licensor;	<ORGANIZATION>	in	the	license	text,	represented	by	parameter	
{{ORGANIZATION}}	in	the	tuple	syntax.	
	
BSD	grants	its	own	distinct	set	of	rights:	redistribution	(not	distribution,	though	it	is	
implied)	and	use,	with	the	right	of	modification	implied	but	not	explicitly	granted.	This	
interpretation	expresses	them	in	terms	of	the	standard	U.S.	copyright	rights	of	
reproduction,	preparation	of	derivative	works,	and	distribution	of	copies,	similar	to	the	
Berne	Convention	rights.	
	
BSD	grants	some	rights	and	imposes	some	obligations	that	seem	superfluous	or	
problematic,	and	this	interpretation	provides	one	rationalization	of	them.	For	example,	
for	R1,	BSD	imposes	the	obligation	to	retain	the	BSD	notice,	but	this	right	is	for	the	
unmodified	source,	so	the	obligation	has	no	effect	(of	course	the	notice	is	retained,	
because	the	source	is	unmodified).	Another	example	is	the	right	to	use,	which	is	freely	
available	unless	the	program	in	question	infringes	a	patent;	but	BSD	contains	no	
provisions	for	granting	a	license	to	infringe	any	of	the	licensor’s	patents	and	the	
licensor	cannot	grant	one	for	other	patents,	so	the	grants	of	the	right	to	use	seem	
superfluous	and	were	ignored	in	this	interpretation.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 74 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

THIS	PAGE	INTENTIONALLY	LEFT	BLANK	
	
	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 75 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

The Challenge of Heterogeneously Licensed
Systems in Open Architecture Software

Ecosystems

Thomas	A.	Alspaugh,	Hazeline	U.	Asuncion,	&	Walt	Scacchi	

Abstract
The	role	of	software	ecosystems	in	the	development	and	evolution	of	open	architecture	
systems	has	received	insufficient	consideration.	Such	systems	are	composed	of	
heterogeneously	licensed	components,	open	source	or	proprietary	or	both,	in	an	
architecture	in	which	evolution	can	occur	by	evolving	existing	components	or	by	
replacing	them.	But	this	may	result	in	possible	license	conflicts	and	organizational	
liability	for	failure	to	fulfill	license	obligations.	We	have	developed	an	approach	for	
understanding	and	modeling	software	licenses,	as	well	as	for	analyzing	conflicts	among	
groups	of	licenses	in	realistic	system	contexts	and	for	guiding	the	acquisition,	
integration,	or	development	of	systems	with	open	source	components	in	such	an	
environment.	This	work	is	based	on	empirical	analysis	of	representative	software	
licenses	and	heterogeneously	licensed	systems,	and	collaboration	with	researchers	in	
the	legal	world.	Our	approach	provides	guidance	for	achieving	a	“best‐of‐breed”	
component	strategy	while	obtaining	desired	license	rights	in	exchange	for	acceptable	
obligations.	

Introduction
A	substantial	number	of	development	organizations	are	adopting	a	strategy	in	which	a	
software‐intensive	system	is	developed	with	an	open	architecture	(OA;	Oreizy,	2000),	
whose	components	may	be	open	source	software	(OSS)	or	proprietary	with	open	
application	programming	interfaces	(APIs).	Such	systems	evolve	not	only	through	the	
evolution	of	their	individual	components,	but	also	through	replacement	of	one	
component	by	another,	possibly	from	a	different	producer	or	under	a	different	license.	
With	this	approach,	the	organization	becomes	an	integrator	of	components	largely	
produced	elsewhere	that	are	interconnected	through	open	APIs	as	necessary	to	achieve	
the	desired	result.	An	OA	development	process	results	in	an	ecosystem	in	which	the	
integrator	is	influenced	from	one	direction	by	the	goals,	interfaces,	license	choices,	and	
release	cycles	of	the	component	producers,	and	in	another	direction	by	the	needs	of	its	
consumers.	As	a	result,	the	software	components	are	reused	more	widely,	and	the	
resulting	OA	systems	can	achieve	reuse	benefits	such	as	reduced	costs,	increased	
reliability,	and	potentially	increased	agility	in	evolving	to	meet	changing	needs.	An	
emerging	challenge	is	to	realize	the	benefits	of	this	approach	when	the	individual	
components	are	heterogeneously	licensed,	each	potentially	with	a	different	license,	
rather	than	a	single	OSS	license,	as	in	uniformly	licensed	OSS	projects,	or	a	single	
proprietary	license	when	acquired	from	a	vendor	employing	a	proprietary	development	
scheme.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 76 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

This	challenge	is	inevitably	entwined	with	the	software	ecosystems	that	arise	for	OA	
systems.	We	find	that	an	OA	software	ecosystem	involves	organizations	and	individuals	
producing	and	consuming	components,	and	supply	paths	from	producer	to	consumer;	
but	also	the:	

● OA	of	the	system(s)	in	question,	

● open	interfaces	met	by	the	components,	

● degree	of	coupling	in	the	evolution	of	related	components,	and	

● rights	and	obligations	resulting	from	the	software	licenses	under	which	
various	components	are	released,	that	propagate	from	producers	to	
consumers.	

An	example	software	ecosystem	is	portrayed	in	Figure	1.	
	

	
Figure 1. An Example of a Software Supply Network Within a Software

Ecosystem in Which OA Systems Are Developed

In	order	to	most	effectively	use	an	OA	approach	in	developing	and	evolving	a	system,	it	
is	essential	to	consider	this	OA	ecosystem.	An	OA	system	draws	on	components	from	
proprietary	vendors	and	open	source	projects.	Its	architecture	is	made	possible	by	the	
existing	general	ecosystem	of	producers,	from	which	the	initial	components	are	chosen.	
The	choice	of	a	specific	OA	begins	a	specialized	software	ecosystem	involving	
components	that	meet	(or	can	be	shimmed	to	meet)	the	open	interfaces	used	in	the	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 77 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

architecture.	We	do	not	claim	this	is	the	best	or	the	only	way	to	reuse	components	or	
produce	systems,	but	it	is	an	ever	more	widespread	way.	In	this	chapter,	we	build	on	
previous	work	on	heterogeneously	licensed	systems	(Alspaugh,	Asuncion,	&	Scacchi,	
2009a;	German	&	Hassan,	2009;	Scacchi	&	Alspaugh,	2008)	by	examining	how	OA	
development	affects	and	is	affected	by	software	ecosystems,	and	the	role	of	component	
licenses	in	OA	software	ecosystems.	
	
A	motivating	example	of	this	approach	is	the	Unity	game	development	tool,	produced	
by	Unity	Technologies	(2008).	Its	license	agreement,	from	which	we	quote	in	this	
section,	lists	eleven	distinct	licenses	and	indicates	the	tool	is	produced,	apparently	
using	an	OA	approach,	using	at	least	18	externally	produced	components	or	groups	of	
components,	as	follows:	
	

1. The	Mono	Class	Library,	Copyright	©	2005–2008	Novell,	Inc.	

2. The	Mono	Runtime	Libraries,	Copyright	©	2005–2008	Novell,	Inc.	

3. Boo,	Copyright	©	2003–2008	Rodrigo	B.	Oliveira	

4. UnityScript,	Copyright	©	2005–2008	Rodrigo	B.	Oliveira	

5. OpenAL	cross	platform	audio	library,	Copyright	©	1999–2006	by	authors	

6. PhysX	physics	library,	Copyright	©	2003–2008	by	Ageia	Technologies,	Inc.	

7. Libvorbis,	Copyright	©	2002–2007	Xiph.org	Foundation	

8. libtheora,	Copyright	©	2002–2007	Xiph.org	Foundation	

9. zlib	general	purpose	compression	library,	Copyright	©	1995–2005	Jean‐loup	
Gailly	and	Mark	Adler	

10. libpng	PNG	reference	library	

11. jpeglib	JPEG	library,	Copyright	©	1991–1998,	Thomas	G.	Lane	

12. Twilight	Prophecy	SDK,	a	multi‐platform	development	system	for	virtual	
reality	and	multimedia,	Copyright	©	1997–2003	Twilight	3D	Finland	Oy	Ltd	

13. dynamic_bitset,	Copyright	©	Chuck	Allison	and	Jeremy	Siek	2001–2002.	

14. The	Mono	C#	Compiler	and	Tools,	Copyright	©	2005–2008	Novell,	Inc.	

15. libcurl,	Copyright	©	1996–2008	Daniel	Stenberg	<daniel@haxx.se>	

16. PostgreSQL	Database	Management	System	

17. FreeType,	Copyright	©	2007	The	FreeType	Project	(www.freetype.org)	

18. NVIDIA	Cg,	Copyright	©	2002–2008	NVIDIA	Corp.	

It	is	clear	that	an	analysis	of	the	virtual	license	resulting	from	the	interaction	of	these	18	
components	and	their	licenses	is	unlikely	to	be	straightforward.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 78 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

An	OA	system	can	evolve	by	a	number	of	distinct	mechanisms,	as	follows,	some	of	
which	are	common	to	all	systems	but	others	of	which	are	a	result	of	heterogeneous	
component	licenses	in	a	single	system:	
	
Component	evolution—One	or	more	components	can	evolve,	altering	the	overall	
system’s	characteristics	(for	example,	upgrading	and	replacing	the	Firefox	Web	
browser	from	version	3.5	to	3.6).	
	
Component	replacement—One	or	more	components	may	be	replaced	by	others	with	
different	behaviors	but	the	same	interface,	or	with	a	different	interface	and	the	addition	
of	shim	code	to	make	it	match	(for	example,	replacing	the	AbiWord	word	processor	
with	either	Open	Office	or	MS	Word).	
	
Architecture	evolution—The	OA	can	evolve,	using	the	same	components	but	in	a	
different	configuration,	altering	the	system’s	characteristics.	For	example,	changing	the	
configuration	in	which	a	component	is	connected	can	change	how	its	license	affects	the	
rights	and	obligations	for	the	overall	system.	This	could	arise	when	replacing	email	and	
word	processing	applications	with	Web	services	like	Google	Mail	and	Google	Docs.	
	
Component	license	evolution—The	license	under	which	a	component	is	available	may	
change,	as,	for	example,	when	the	license	for	the	Mozilla	core	components	was	changed	
from	the	Mozilla	Public	License	(MPL)	to	the	current	Mozilla	Disjunctive	Tri‐License;	or	
the	component	may	be	made	available	under	a	new	version	of	the	same	license,	as,	for	
example,	when	the	GNU	General	Public	License	(GPL)	version	3	was	released.	
	
Changes	to	the	desired	rights	or	acceptable	obligations—The	OA	system’s	integrator	
or	consumers	may	desire	additional	license	rights	(for	example,	the	right	to	sublicense	
in	addition	to	the	right	to	distribute),	or	no	longer	desire	specific	rights;	or	the	set	of	
license	obligations	they	find	acceptable	may	change.	In	either	case,	the	OA	system	
evolves,	whether	by	changing	components,	evolving	the	architecture,	or	other	means,	to	
provide	the	desired	rights	within	the	scope	of	the	acceptable	obligations.	For	example,	
they	may	no	longer	be	willing	or	able	to	provide	the	source	code	for	components	within	
the	reciprocal	scope	of	a	GPL‐licensed	module.	
	
The	interdependence	of	integrators	and	producers	results	in	a	co‐evolution	of	software	
within	an	OA	ecosystem.	Closely	coupled	components	from	different	producers	must	
evolve	in	parallel	in	order	for	each	to	provide	its	services,	as	evolution	in	one	will	
typically	require	a	matching	evolution	in	the	other.	Producers	may	manage	their	
evolution	with	a	loose	coordination	among	releases,	for	example,	as	between	the	
Gnome	and	Mozilla	organizations.	Each	release	of	a	producer	component	creates	a	
tension	through	the	ecosystem	relationships	with	consumers	and	their	releases	of	OA	
systems	using	those	components,	as	integrators	accommodate	the	choices	of	available,	
supported	components	with	their	own	goals	and	needs.	As	discussed	in	our	previous	
work	(Alspaugh	et	al.,	2009a),	license	rights	and	obligations	are	manifested	at	each	
component’s	interface,	then	mediated	through	the	system’s	OA	to	entail	the	rights	and	
corresponding	obligations	for	the	system	as	a	whole.	As	a	result,	integrators	must	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 79 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

frequently	re‐evaluate	an	OA	system’s	rights	and	obligations.	In	contrast	to	
homogeneously	licensed	systems,	license	change	across	versions	is	a	characteristic	of	
OA	ecosystems,	and	architects	of	OA	systems	require	tool	support	for	managing	the	
ongoing	licensing	changes.	
We	propose	that	such	support	must	have	several	characteristics,	as	follows:	

● It	must	rest	on	a	license	structure	of	rights	and	obligations,	focusing	on	
obligations	that	are	enactable	and	testable.	For	example,	many	OSS	licenses	
include	an	obligation	to	make	a	component’s	modified	code	public,	and	
whether	a	specific	version	of	the	code	is	public	at	a	specified	Web	address	is	
both	enactable	(it	can	be	put	into	practice)	and	testable.	In	contrast,	the	GPL	
v.3	provision	“No	covered	work	shall	be	deemed	part	of	an	effective	
technological	measure	under	any	applicable	law	fulfilling	obligations	under	
article	11	of	the	WIPO	copyright	treaty”	is	not	enactable	in	any	obvious	way,	
nor	is	it	testable—how	can	one	verify	what	others	deem?	

● It	must	take	account	of	the	distinctions	between	the	design‐time,	build‐time,	
and	distribution‐time	architectures	and	the	rights	and	obligations	that	come	
into	play	for	each	of	them.	

● It	must	distinguish	the	architectural	constructs	significant	for	software	
licenses,	and	embody	their	effects	on	rights	and	obligations.	

● It	must	define	license	architectures.	

● It	must	provide	an	automated	environment	for	creating	and	managing	
license	architectures.	We	have	developed	a	prototype	that	manages	a	license	
architecture	as	a	view	of	its	system	architecture	(Alspaugh,	Asuncion,	&	
Scacchi,	2009b,	2011;	Alspaugh,	Scacchi,	&	Asuncion,	2010).	

● Finally,	it	must	automate	calculations	on	system	rights	and	obligations	so	
that	they	may	be	done	easily	and	frequently,	whenever	any	of	the	factors	
affecting	rights	and	obligations	may	have	changed.	

In	the	remainder	of	this	chapter,	we	survey	some	related	work,	provide	an	overview	of	
OSS	licenses	and	projects,	define	and	examine	characteristics	of	open	architectures,	
introduce	a	structure	for	licenses	and	outline	license	architectures,	and	sketch	our	
approach	for	license	analysis.	We	then	close	with	our	conclusions.	

Related Work
It	has	been	typical	until	recently	that	each	software	or	information	system	is	designed,	
built,	and	distributed	under	the	terms	of	a	single	proprietary	or	OSS	license,	with	all	its	
components	homogeneously	covered	by	that	same	license.	The	system	is	distributed,	
with	sources	or	executables	bearing	copyright	and	license	notices,	and	the	license	gives	
specific	rights	while	imposing	corresponding	obligations	that	system	consumers	
(whether	external	developers	or	users)	must	honor,	subject	to	the	provisions	of	
contract	and	commercial	law.	Consequently,	there	has	been	some	very	interesting	study	
of	the	choice	of	OSS	license	for	use	in	an	OSS	development	project,	and	its	consequences	
in	determining	the	likely	success	of	such	a	project.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 80 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Brown	and	Booch	(2002)	discussed	issues	that	arise	in	the	reuse	of	OSS	components,	
such	as	that	interdependence	(via	component	interconnection	at	design	time,	or	linkage	
at	build	time	or	run	time)	causes	functional	changes	to	propagate,	and	versions	of	the	
components	evolve	asynchronously,	giving	rise	to	co‐evolution	of	interrelated	code	in	
the	OSS‐based	systems.	If	the	components	evolve,	the	OA	system	itself	is	evolving.	The	
evolution	can	also	include	changes	to	the	licenses,	and	the	licenses	can	change	from	
component	version	to	version.	
	
Legal	scholars	have	examined	OSS	licenses	and	how	they	interact	in	the	legal	domain,	
but	not	in	the	context	of	HLSs	(Fontana	et	al.,	2008;	Rosen,	2005;	St.	Laurent,	2004).	For	
example,	Rosen	(2005)	surveyed	eight	OSS	licenses	and	created	two	new	ones	written	
to	professional	legal	standards.	He	examined	interactions	primarily	in	terms	of	the	
general	categories	of	reciprocal	and	non‐reciprocal	licenses,	rather	than	in	terms	of	
specific	licenses.	However,	common	to	this	legal	scholarship	is	an	approach	that	
analyzes	the	interaction	among	licenses	on	a	pairwise	or	interlinked	components	basis.	
This	analysis	scheme	means	that	if	system	A	has	an	OSS	license	of	type	X,	system	B	has	a	
license	of	type	Y,	and	system	C	has	a	license	of	type	Z,	then	license	interaction	
(matching,	subsumption,	or	conflicting	constraints)	is	determined	by	how	A	interacts	
with	B,	B	with	C,	and	A	with	C.	This	follows	from	related	legal	scholarship	(e.g.,	Burk,	
1998)	that	brought	attention	to	problems	of	whether	or	not	intellectual	property	rights	
apply	depending	on	how	the	systems	(or	components)	are	interlinked	(cf.	German	&	
Hassan,	2009).	We	similarly	adopt	this	approach	in	our	analysis	efforts.	
	
Stewart,	Ammeter,	and	Maruping	(2006)	conducted	an	empirical	study	to	examine	
whether	license	choice	is	related	to	OSS	project	success,	finding	a	positive	association	
following	from	the	selection	of	business‐friendly	licenses.	Sen,	Subramaniam,	and	
Nelson	in	a	series	of	studies	(Sen,	2007;	Sen,	Subramaniam,	&	Nelson,	2009;	
Subramaniam,	Sen,	&	Nelson,	2009)	similarly	found	positive	relationships	between	the	
choice	of	an	OSS	license	and	the	likelihood	of	both	successful	OSS	development	and	
adoption	of	corresponding	OSS	systems	within	enterprises.	These	studies	direct	
attention	to	OSS	projects	that	adopt	and	identify	their	development	efforts	through	use	
of	a	single	OSS	license.	However,	there	has	been	little	explicit	guidance	on	how	best	to	
develop,	deploy,	and	sustain	complex	software	systems	when	heterogeneously	licensed	
components	are	involved,	and	thus	multiple	OSS	and	proprietary	licenses	may	be	
involved.	Ven	and	Mannaert	(2008);	Tuunanen,	Koskinen,	and	Kärkkäinen	(2009);	and	
German	and	Hassan	(2009)	are	recent	exceptions.	
	
Jansen	and	colleagues	(Jansen,	Brinkkemper,	&	Finkelstein,	2009;	Jansen,	Finkelstein,	&	
Brinkkemper,	2009)	drew	attention	to	their	observation	that	software	ecosystems	(a)	
embed	software	supply	networks	that	span	multiple	organizations,	and	(b)	are	
embedded	within	a	network	of	intersecting	or	overlapping	software	ecosystems	that	
span	the	world	of	software	engineering	practice.	Scacchi	(2007)	for	example,	identified	
that	the	world	of	open	source	software	(OSS)	development	is	a	software	ecosystem	
different	from	those	of	commercial	software	producers,	and	its	supply	networks	are	
articulated	within	a	network	of	FOSS	development	projects.	Networks	of	OSS	
ecosystems	have	also	begun	to	appear	around	very	large	OSS	projects	for	Web	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 81 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

browsers,	Web	servers,	word	processors,	and	others,	as	well	as	related	application	
development	environments	like	NetBeans	and	Eclipse,	and	these	networks	have	
become	part	of	global	information	infrastructures	(Jensen	&	Scacchi,	2005).	
	
OSS	ecosystems	also	exhibit	strong	relationships	between	the	ongoing	evolution	of	OSS	
systems	and	their	developer/user	communities,	such	that	the	success	of	one	co‐
depends	on	the	success	of	the	other	(Scacchi,	2007).	Ven	and	Mannaert	(2008)	
discussed	the	challenges	independent	software	vendors	face	in	combining	OSS	and	
proprietary	components,	with	emphasis	on	how	OSS	components	evolve	and	are	
maintained	in	this	context.	
	
Boucharas,	Jansen,	and	Brinkkemper	(2009)	then	drew	attention	to	the	need	to	more	
systematically	and	formally	model	the	contours	of	software	supply	networks,	
ecosystems,	and	networks	of	ecosystems.	Such	a	formal	modeling	base	may	then	help	in	
systematically	reasoning	about	what	kinds	of	relationships	or	strategies	may	arise	
within	a	software	ecosystem.	For	example,	Kuehnel	(2008)	examined	how	Microsoft’s	
software	ecosystem	that	emerged	for	its	operating	systems	(MS	Windows)	and	key	
applications	(e.g.,	MS	Office)	may	be	transforming	from	“predator”	to	“prey”	in	its	effort	
to	control	the	expansion	of	its	markets	to	accommodate	OSS	(as	the	extant	prey)	that	
eschew	closed	source	software	with	proprietary	software	licenses.	
	
Other	previous	work	examined	how	best	to	align	acquisition,	system	requirements,	
architectures,	and	OSS	components	across	different	software	license	regimes	to	achieve	
the	goal	of	combining	OSS	with	proprietary	software	that	provide	open	APIs	when	
developing	a	composite	“system	of	systems”	(Scacchi	&	Alspaugh,	2008).	This	is	
particularly	an	issue	for	the	U.S.	federal	government	in	its	acquisition	of	complex	
software	systems	subject	to	Federal	Acquisition	Regulations	(FARs)	and	military	
Service‐specific	regulations.	HLSs	give	rise	to	new	functional	and	non‐functional	
requirements	that	further	constrain	what	kinds	of	systems	can	be	built	and	deployed,	as	
well	as	recognizing	that	acquisition	policies	can	effectively	exclude	certain	OA	
configurations,	while	accommodating	others,	based	on	how	different	licensed	
components	may	be	interconnected.	

Open Source Software
Traditional	proprietary	licenses	allow	a	company	to	retain	control	of	software	it	
produces,	and	restrict	the	access	and	rights	that	outsiders	can	have.	OSS	licenses,	on	the	
other	hand,	are	designed	to	encourage	sharing	and	reuse	of	software,	and	grant	access	
and	as	many	rights	as	possible.	OSS	licenses	are	classified	as	permissive	or	reciprocal.	
Permissive	OSS	licenses	such	as	the	Berkeley	Software	Distribution	(BSD)	license,	the	
Massachusetts	Institute	of	Technology	license,	the	Apache	Software	License,	and	the	
Artistic	License,	grant	nearly	all	rights	to	components	and	their	source	code,	and	
impose	few	obligations.	Anyone	can	use	the	software,	create	derivative	works	from	it,	
or	include	it	in	proprietary	projects.	Typical	permissive	obligations	are	simply	to	not	
remove	the	copyright	and	license	notices.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 82 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Reciprocal	OSS	licenses	take	a	more	active	stance	towards	sharing	and	reusing	software,	
imposing	obligations	with	respect	to	the	original	software	in	exchange	for	rights,	and	
also	reciprocally	on	any	future	derivative	versions	of	it	in	exchange	for	the	right	to	
create	and	distribute	the	derivative	versions.	The	most	demanding	reciprocal	licenses	
such	as	GPL	impose	the	obligation	that	reciprocally	licensed	software	not	be	combined	
(for	various	definitions	of	combined)	with	any	software	that	is	not	in	turn	also	released	
under	the	reciprocal	license.	The	goals	are	to	increase	the	domain	of	OSS	by	
encouraging	developers	to	bring	more	components	under	its	aegis,	and	to	prevent	
improvements	to	OSS	components	from	vanishing	behind	proprietary	licenses.	Example	
reciprocal	licenses	are	GPL,	the	Mozilla	Public	License	(MPL),	and	the	Common	Public	
License.	
	
Both	proprietary	and	OSS	licenses	typically	disclaim	liability,	assert	no	warranty	is	
implied,	and	obligate	licensees	to	not	use	the	licensor’s	name	or	trademarks.	Newer	
licenses	often	cover	patent	issues	as	well,	either	giving	a	restricted	patent	license	or	
explicitly	excluding	patent	rights.	
	
The	Mozilla	Disjunctive	Tri‐License	licenses	the	core	Mozilla	components	under	any	one	
of	three	licenses	(MPL,	GPL,	or	the	GNU	Lesser	General	Public	License	[LGPL]);	OSS	
developers	can	choose	the	one	that	best	suits	their	needs	for	a	particular	project	and	
component.	
	
The	Open	Source	Initiative	(OSI)	maintains	a	widely	respected	definition	of	open	source	
and	gives	its	approval	to	licenses	that	meet	it	(OSI,	2008).	OSI	maintains	and	publishes	a	
repository	of	approximately	70	approved	OSS	licenses.	
	
Common	practice	has	been	for	an	OSS	project	to	choose	a	single	license	under	which	all	
its	products	are	released,	and	to	require	developers	to	contribute	their	work	only	under	
conditions	compatible	with	that	license.	For	example,	the	Apache	Contributor	License	
Agreement	grants	enough	of	each	author’s	rights	to	the	Apache	Software	Foundation	for	
the	foundation	to	license	the	resulting	systems	under	the	Apache	Software	License.	This	
sort	of	rights	regime,	in	which	the	rights	to	a	system’s	components	are	homogeneously	
granted	and	the	system	has	a	single	well‐defined	OSS	license,	was	the	norm	in	the	early	
days	of	OSS	and	continues	to	be	practiced.	
	
More	recently	it	has	become	increasingly	common	for	OSS	(and	mixed)	systems	to	be	
composed	of	components	from	several	different	organizations	governed	by	different	
licenses.	An	example	of	such	a	heterogeneously	licensed	system,	this	one	composed	
entirely	of	OSS	components,	is	shown	in	Figure	2.	
	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 83 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

	
Figure 2. A Heterogeneously Licensed Composite System

Open Architecture
Open	architecture	(OA)	software	is	a	customization	technique	introduced	by	Oreizy	
(2000)	that	enables	third	parties	to	modify	a	software	system	through	its	exposed	
architecture,	evolving	the	system	by	replacing	its	components.	Increasingly	more	
software‐intensive	systems	are	developed	using	an	OA	strategy,	not	only	with	OSS	
components	but	also	proprietary	components	with	open	APIs	(e.g.,	see	Unity	
Technologies,	2008).	Using	this	approach	can	lower	development	costs	and	increase	
reliability	and	function	(Scacchi	&	Alspaugh,	2008).	Composing	a	system	with	
heterogeneously	licensed	components,	however,	increases	the	likelihood	of	conflicts,	
liabilities,	and	no‐rights	stemming	from	incompatible	licenses.	Thus,	in	our	work	we	
define	an	OA	system	as	a	software	system	consisting	of	components	that	are	either	
open	source	or	proprietary	with	open	API,	whose	overall	system	rights	at	a	minimum	
allow	its	use	and	redistribution,	in	full	or	in	part.	
	
It	may	appear	that	using	a	system	architecture	that	incorporates	OSS	components	and	
uses	open	APIs	will	result	in	an	OA	system.	But	not	all	such	architectures	will	produce	
an	OA,	since	the	(possibly	empty)	set	of	available	license	rights	for	an	OA	system	
depends	on	(a)	how	and	why	OSS	and	open	APIs	are	located	within	the	system	
architecture;	(b)	how	OSS	and	open	APIs	are	implemented,	embedded,	or	
interconnected;	and	(c)	the	degree	to	which	the	licenses	of	different	OSS	components	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 84 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

encumber	all	or	part	of	a	software	system’s	architecture	into	which	they	are	integrated	
(Alspaugh	&	Antón,	2008;	Scacchi	&	Alspaugh,	2008).	
	
The	following	kinds	of	software	elements	appearing	in	common	software	architectures	
can	affect	whether	the	resulting	systems	are	open	or	closed	(Bass,	Clements,	&	Kazman,	
2003).	
	
Software	source	code	components—These	can	be	either	(a)	standalone	programs;	
(b)	libraries,	frameworks,	or	middleware;	(c)	inter‐application	script	code	such	as	C	
shell	scripts;	or	(d)	intra‐application	script	code,	as	for	creating	Rich	Internet	
Applications	using	domain‐specific	languages	such	as	XUL	for	the	Firefox	Web	browser	
(Feldt,	2007)	or	“mashups”	(Nelson	&	Churchill,	2006).	Their	source	code	is	available	
and	they	can	be	rebuilt.	Each	may	have	its	own	distinct	license.	
	
Executable	components—These	components	are	in	binary	form,	and	the	source	code	
may	not	be	open	for	access,	review,	modification,	or	possible	redistribution	(Rosen,	
2005).	If	proprietary,	they	often	cannot	be	redistributed,	and	so	such	components	will	
be	present	in	the	design‐	and	run‐time	architectures	but	not	in	the	distribution‐time	
architecture.	
	
Software	services—An	appropriate	software	service	can	replace	a	source	code	or	
executable	component.	
	
Application	programming	interfaces/APIs—Availability	of	externally	visible	and	
accessible	APIs	is	the	minimum	requirement	for	an	“open	system”	(Meyers	&	
Oberndorf,	2001).	Open	APIs	are	not	and	cannot	be	licensed,	and	can	limit	the	
propagation	of	license	obligations.	
	
Software	connectors—Software	whose	intended	purpose	is	to	provide	a	standard	or	
reusable	way	of	communication	through	common	interfaces,	for	example,	High	Level	
Architecture	(Kuhl,	Weatherly,	&	Dahmann,	1999),	CORBA,	MS	.NET,	Enterprise	Java	
Beans,	and	GNU	Lesser	General	Public	License	(LGPL)	libraries.	Connectors	can	also	
limit	the	propagation	of	license	obligations.	
	
Methods	of	connection—These	include	linking	as	part	of	a	configured	subsystem,	
dynamic	linking,	and	client–server	connections.	Methods	of	connection	affect	license	
obligation	propagation,	with	different	methods	affecting	different	licenses.	
	
Configured	system	or	subsystem	architectures—These	are	software	systems	that	
are	used	as	atomic	components	of	a	larger	system,	and	whose	internal	architecture	may	
comprise	components	with	different	licenses,	affecting	the	overall	system	license.	To	
minimize	license	interaction,	a	configured	system	or	sub‐architecture	may	be	
surrounded	by	what	we	term	a	license	firewall,	namely	a	layer	of	dynamic	links,	client–
server	connections,	license	shims,	or	other	connectors	that	block	the	propagation	of	
reciprocal	obligations.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 85 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Figure	3	shows	a	high‐level	view	of	a	reference	architecture	that	includes	all	the	kinds	
of	software	elements	listed	in	this	section.	This	reference	architecture	has	been	
instantiated	in	a	number	of	configured	systems	that	combine	OSS	and	closed	source	
components.	The	configured	systems	consist	of	software	components	such	as	a	Mozilla	
Firefox	Web	browser,	Gnome	Evolution	email	client,	and	AbiWord	word	processor	
(similar	to	MS	Word),	all	running	on	a	RedHat	Fedora	Linux	operating	system	accessing	
file,	print,	and	other	remote	networked	servers	such	as	an	Apache	Web	server.	Figure	4	
shows	a	build‐time	architecture	instantiated	with	those	choices.	Figure	5	is	a	
screenshot	of	the	instantiated	architecture	in	our	extension	of	ArchStudio	(Institute	for	
Software	Research,	2006),	where	it	is	one	view	of	the	architecture	data	structure	whose	
automated	analysis	is	discussed	and	shown	in	later	sections.	Components	are	
interconnected	through	a	set	of	software	connectors	that	bridge	the	interfaces	of	
components	and	combine	the	provided	functionality	into	the	system’s	services.	

	
Figure 3. The Design-Time Architecture of the System of Figure 2

	
Figure 4. A Build-Time Architecture Describing the Version Running

in Figure 2
Note. Components/connectors not visible in Figure 2 are shown in gray.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 86 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

	
Figure 5. Instantiated Build-Time Architecture (Figure 2) Within

ArchStudio

The	topology	of	the	build‐time	architecture	also	determines	the	OA	software	ecosystem	
of	the	system,	with	its	dependencies	on	suppliers	and	(implicitly)	the	evolution	paths	
that	ecosystem	can	take,	in	the	context	of	design	and	instantiation	choices	that	involve	
different	suppliers	of	components	of	the	same	sort,	or	more	extensive	changes	that	
involve	suppliers	of	components	of	a	different	sort.	Figure	6	shows	the	reference	
architecture	of	Figure	3,	annotated	with	the	supplier	organizations	implied	by	the	
instantiations	of	the	build‐time	architecture	of	Figure	4.	The	choices	are	a	result	of	
desired	functional	abilities	and	nonfunctional	qualities,	and	should	also	be	influenced	
by	desired	supply‐chain	characteristics,	licensing	regimes,	and	future	software	
ecosystem	evolution	paths.	All	these	choices,	however,	are	limited	by	software	license	
constraints	and	interactions,	as	described	in	the	next	two	sections.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 87 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

	
Figure 6. Reference Architecture Components Supplied by an

Organization, Indicating the Integrator’s Dependencies on Suppliers, Mediated
by Interfaces and Licenses

Software Licenses
Copyright	law	is	the	common	basis	for	software	licenses,	and	gives	the	original	author	
of	a	work	certain	exclusive	rights:	the	rights	to	use,	copy,	modify,	merge,	publish,	
distribute,	sub‐license,	and	sell	copies.	The	author	may	license	these	rights,	individually	
or	in	groups,	to	others;	the	license	may	give	a	right	either	exclusively	or	non‐
exclusively.	After	a	period	of	years,	copyright	rights	enter	the	public	domain.	Until	then,	
copyright	may	only	be	obtained	through	licensing.	
	
Licenses	typically	impose	obligations	that	must	be	met	in	order	for	the	licensee	to	
realize	the	assigned	rights.	Common	obligations	include	the	obligation	to	publish	at	no	
cost	any	source	code	you	modify	(MPL)	or	the	reciprocal	obligation	to	publish	all	source	
code	included	at	build	time	or	statically	linked	(GPL).	The	obligations	may	conflict,	as	
when	a	GPL’d	component’s	reciprocal	obligation	to	publish	source	code	of	other	
components	is	combined	with	a	proprietary	component’s	license	prohibition	of	
publishing	its	source	code.	In	this	case,	no	rights	may	be	available	for	the	system	as	a	
whole,	not	even	the	right	of	use,	because	the	two	obligations	cannot	simultaneously	be	
met	and	thus	neither	component	can	be	used	as	part	of	the	system.	
	
The	basic	relationship	between	software	license	rights	and	obligations	can	be	
summarized	as	follows:	if	the	specified	obligations	are	met,	then	the	corresponding	
rights	are	granted.	For	example,	if	you	publish	your	modified	source	code	and	sub‐
licensed	derived	works	under	MPL,	then	you	get	all	the	MPL	rights	for	both	the	original	
and	the	modified	code.	However,	license	details	are	complex,	subtle,	and	difficult	to	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 88 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

comprehend	and	track—it	is	easy	to	become	confused	or	make	mistakes.	The	challenge	
is	multiplied	when	dealing	with	configured	system	architectures	that	compose	a	large	
number	of	components	with	heterogeneous	licenses,	so	that	the	need	for	legal	counsel	
begins	to	seem	inevitable	(Fontana	et	al.,	2008;	Rosen,	2005).	
	
We	have	developed	an	approach	for	expressing	software	licenses	that	is	more	formal	
and	less	ambiguous	than	natural	language,	and	that	allows	us	to	calculate	and	identify	
conflicts	arising	from	the	rights	and	obligations	of	two	or	more	component’s	licenses.	
Our	approach	is	based	on	Hohfeld’s	(1913)	classic	group	of	eight	fundamental	jural	
relations,	of	which	we	use	right,	duty,	no‐right,	and	privilege.	We	start	with	a	tuple	
<actor, operation, action, object>	for	expressing	a	right	or	obligation.	The	
actor	is	the	“licensee”	for	all	the	licenses	we	have	examined.	The	operation	is	one	of	the	
following:	“may,”	“must,”	“must	not,”	or	“need	not,”	with	“may”	and	“need	not”	
expressing	rights	and	“must”	and	“must	not”	expressing	obligations.	Because	copyright	
rights	are	only	available	to	entities	who	have	been	granted	a	sublicense,	only	the	listed	
rights	are	available,	and	the	absence	of	a	right	means	that	it	is	not	available.	The	action	
is	a	verb	or	verb	phrase	describing	what	may,	must,	must	not,	or	need	not	be	done,	with	
the	object	completing	the	description.	A	license	may	be	expressed	as	a	set	of	rights,	with	
each	right	associated	with	zero	or	more	obligations	that	must	be	fulfilled	in	order	to	
enjoy	that	right.	Figure	7	shows	the	meta‐model	with	which	we	express	licenses,	
discussed	at	greater	length	in	our	previous	work	(Alspaugh	et	al.,	2009b,	2011;	
Alspaugh	et	al.,	2010).	
	

	
Figure 7. License Meta-Model

Our	license	model	forms	a	basis	for	effective	reasoning	about	licenses	in	the	context	of	
actual	systems,	and	calculating	the	resulting	rights	and	obligations.	In	order	to	do	so,	we	
need	a	certain	amount	of	information	about	the	system’s	configuration	at	design,	build,	
distribution,	and	run	time.	The	needed	information	comprises	the	license	architecture,	
an	abstraction	of	the	system	architecture	that	includes	the:	

1. set	of	components	of	the	system;	

2. relation	mapping	each	component	to	its	license	(Figure	8);	

3. relation	mapping	each	component	to	its	set	of	sources;	and	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 89 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

4. relation	from	each	component	to	the	set	of	components	in	the	same	license	
scope,	for	each	license	for	which	“scope”	is	defined	(e.g.,	GPL),	and	from	each	
source	to	the	set	of	sources	of	components	in	the	scope	of	its	component.	

With	this	information	and	definitions	of	the	licenses	involved,	we	can	calculate	rights	
and	obligations	for	individual	components	or	for	the	entire	system,	and	guide	
heterogeneously	licensed	system	design.	
	
Heterogeneously	licensed	system	designers	have	developed	a	number	heuristics	to	
guide	architectural	design	while	avoiding	some	license	conflicts.	First,	it	is	possible	to	
use	a	reciprocally	licensed	component	through	a	license	firewall	that	limits	the	scope	of	
reciprocal	obligations.	Rather	than	connecting	conflicting	components	directly	through	
static	or	other	build‐time	links,	the	connection	is	made	through	a	dynamic	link,	client–
server	protocol,	license	shim	(such	as	a	Limited	General	Public	License	connector),	or	
run‐time	plug‐ins.	A	second	approach	used	by	a	number	of	large	organizations	is	simply	
to	avoid	using	any	reciprocally	licensed	components.	A	third	approach	is	to	meet	the	
license	obligations	(if	that	is	possible)	by,	for	example,	retaining	copyright	and	license	
notices	in	the	source	and	publishing	the	source	code.	However,	even	using	design	
heuristics	such	as	these	(and	there	are	many),	keeping	track	of	license	rights	and	
obligations	across	components	that	are	interconnected	in	complex	OAs	quickly	
becomes	too	cumbersome.	Automated	support	is	needed	to	manage	the	multi‐
component,	multi‐license	complexity.	

	
Figure 8. License Annotation of Gnome Evolution Component Seen in

Figure 5, as Implemented in our Extension of ArchStudio4
(Alspaugh et al., 2009b, 2011; Alspaugh et al., 2010; Asuncion, 2009)

License Analysis
Given	a	specification	of	a	software	system’s	architecture,	we	can	associate	software	
license	attributes	with	the	system’s	components,	connectors,	and	sub‐system	
architectures,	resulting	in	a	license	architecture	for	the	system,	and	calculate	the	
copyright	rights	and	obligations	for	the	system’s	configuration.	Due	to	the	complexity	of	
license	architecture	analysis,	and	the	need	to	re‐analyze	every	time	a	component	
evolves,	a	component’s	license	changes,	a	component	is	substituted,	or	the	system	
architecture	changes,	OA	integrators	really	need	an	automated	license	architecture	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 90 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

analysis	environment.	We	have	developed	a	prototype	of	such	an	environment	
(Alspaugh	et	al.,	2009b,	2011;	Alspaugh	et	al.,	2010).	
	
We	use	an	architectural	description	language	specified	in	xADL	(Institute	for	Software	
Research,	2009)	to	describe	OAs	that	can	be	designed	and	analyzed	with	a	software	
architecture	design	environment	(Medvidovic,	Rosenblum,	&	Taylor,	1999),	such	as	
ArchStudio4	(Institute	for	Software	Research,	2006).	We	have	built	the	Software	
Architecture	License	Analysis	module	on	top	of	ArchStudio’s	Traceability	View	
(Asuncion	&	Taylor,	2009).	This	allows	for	the	specification	of	licenses	as	a	list	of	
attributes	(license	tuples)	using	a	form‐based	user	interface	in	ArchStudio4,	shown	in	
Figure	8	(Institute	for	Software	Research,	2006;	Medvidovic	et	al.,	1999).	
We	analyze	rights	and	obligations,	as	described	in	the	following	section	(Alspaugh	et	al.,	
2009b,	2011;	Alspaugh	et	al.,	2010),	as	implemented	in	our	extension	of	ArchStudio4	
(Alspaugh	et	al.,	2009b;	Asuncion,	2009).	For	example,	in	Figure	9,	we	show	the	results	
of	a	license	analysis	for	the	architecture	shown	in	Figure	5,	showing	no	conflicts.	If	we	
replace	AbiWord	with	Corel	WordPerfect,	the	license	analysis	then	shows	what	rights	
are	missing,	as	seen	in	Figures	9	and	10.	The	analysis	that	determines	how	this	works	is	
described	in	the	remaining	subsections.	

	
Figure 9. Results of a License Analysis for the Architecture Shown in

Figure 5
(Alspaugh et al., 2009b, 2011; Alspaugh et al., 2010; Asuncion, 2009)

Note. On the left is displayed the result of the automated analysis of the architecture in Figure 5. After
replacing the AbiWord word processor with the WordPerfect word processor, and redoing the
analysis, the tool shows this alternative design results in license conflicts.

Propagation of Reciprocal Obligations

We	follow	the	widely	accepted	interpretation	that	build‐time	static	linkage	propagates	
the	reciprocal	obligations,	but	appropriate	license	firewalls	do	not.	Analysis	begins,	
therefore,	by	propagating	these	obligations	along	all	connectors	that	are	not	license	
firewalls.	

Obligation Conflicts

An	obligation	can	conflict	with	another	obligation,	or	with	the	set	of	available	rights,	by	
requiring	a	copyright	right	that	has	not	been	granted.	For	instance,	a	proprietary	license	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 91 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

may	require	that	a	licensee	must	not	redistribute	source	code,	but	GPL	states	that	a	
licensee	must	redistribute	source	code.	Thus,	the	conflict	appears	in	the	modality	of	the	
two	otherwise	identical	obligations,	“must	not”	in	the	proprietary	license	and	“must”	in	
GPL.	

	
Figure 10. Prototype Explanation Results for a CTL-GPL2.0 Conflict

Implemented in our Extension of ArchStudio4
(Alspaugh et al., 2009b, 2011; Alspaugh et al., 2010; Asuncion, 2009)

Note. At the top are the unavailable rights (partially collapsed), and in the middle are two conflicting
obligations.

Rights and Obligations Calculations

In	order	to	obtain	a	particular	desired	right	r	for	a	specific	module	or	other	entity	e,	in	
other	words	a	desired	concrete	right,	one	of	the	following	two	cases	must	hold:	

1. r	is	not	subsumed	by	any	of	the	five	copyright	rights,	and	does	not	conflict	
with	any	general	obligation	of	r’s	license	L.	In	this	case	r	is	freely	available.	

2. r	is	subsumed	by	an	abstract	right	R	of	the	license,	with	e	likewise	subsumed	
by	R’s	object.	In	this	case	all	R’s	obligations	O1,	O2,	…,	On	must	be	fulfilled,	with	
their	objects	replaced	by	whatever	function	of	e	they	signify,	in	order	for	r	to	
be	granted.	These	could	be	e	itself,	all	sources	of	e,	the	original	version	of	e,	
and	so	forth.	n	may	be	zero,	in	which	case	L	immediately	grants	r.	

Figure	11	illustrates	one	step	of	the	application	of	a	license	to	obtain	a	desired	concrete	
right	r.	In	the	license	of	r’s	object	e,	we	search	for	an	abstract	right	R	subsuming	r.	The	
figure	shows	two	obligations	O1	and	O2	of	R,	which	we	apply	to	r’s	object	e	in	order	to	
obtain	r’s	concrete	obligations	o1	and	o2.	Depending	on	what	kind	of	object	O1	has,	o1	
could	apply	to	e	itself,	in	which	case	e	=	e1′,	or	to	an	entity	related	to	e,	or	(if	L	is	a	
propagating	license)	to	another	module	linked	or	otherwise	connected	to	e.	Finally,	in	
order	to	fulfill	o1	we	must	have	o1’s	correlative	right	r1’.	The	same	considerations	apply	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 92 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

for	O2,	of	course.	The	heavy	arrow	shows	the	flow	of	inference	from	desired	concrete	
right	through	to	required	concrete	obligations	and	correlative	rights.	
	
Our	previous	work	goes	into	the	calculations	in	more	detail	(Alspaugh	et	al.,	2011).	

	
Figure 11. A Step in a Rights/Obligations Inference

Conclusion
This	chapter	discusses	the	role	of	software	ecosystems	with	heterogeneously	licensed	
components	in	the	development	and	evolution	of	OA	systems.	License	rights	and	
obligations	play	a	key	role	in	how	and	why	an	OA	system	evolves	in	its	ecosystem.	We	
note	that	license	changes	across	versions	of	components	is	a	characteristic	of	OA	
systems	and	software	ecosystems	with	heterogeneously	licensed	components.	A	
structure	for	modeling	software	licenses	and	the	license	architecture	of	a	system	and	
automated	support	for	calculating	its	rights	and	obligations	are	needed	in	order	to	
manage	a	system’s	evolution	in	the	context	of	its	ecosystem.	We	have	outlined	an	
approach	for	achieving	these	and	sketched	how	they	further	the	goal	of	reusing	
components	in	developing	software‐intensive	systems.	Much	more	work	remains	to	be	
done,	but	we	believe	this	approach	turns	a	vexing	problem	into	one	for	which	workable	
solutions	can	be	obtained.	

References
[1]	Alspaugh,	T.	A.,	&	Antón,	A.	I.	(2008,	February).	Scenario	support	for	effective	

requirements.	Information	and	Software	Technology,	50(3),	198–220.	
[2]	Alspaugh,	T.	A.,	Asuncion,	H.	U.,	&	Scacchi,	W.	(2009a,	May).	Analyzing	software	

licenses	in	open	architecture	software	systems.	In	Proceedings	of	the	Second	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 93 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

International	Workshop	on	Emerging	Trends	in	FLOSS	Research	and	
Development	(FLOSS),		IEEE	Computer	Society,	Los	Alamitos,	CA.	

[3]	Alspaugh,	T.	A.,	Asuncion,	H.	U.,	&	Scacchi,	W.	(2009b,	August	31–September	4).	
Intellectual	property	rights	requirements	for	heterogeneously‐licensed	
systems.	In	Proceedings	of	the	17th	IEEE	International	Requirements	
Engineering	Conference	(RE’09)	(pp.	24–33).	Los	Alamitos,	CA:	IEEE.	

[4]	Alspaugh,	T.	A.,	Asuncion,	H.	U.,	&	Scacchi,	W.	(2011,	July).	Presenting	software	
license	conflicts	through	argumentation.	In	Proceedings	of	the	23rd	
International	Conference	on	Software	Engineering	and	Knowledge	Engineering	
(SEKE	2011)	(pp.	509–514).		Knowledge	Systems	Institute,	Skokie,	IL.	

[5]	Alspaugh,	T.	A.,	Scacchi,	W.,	&	Asuncion,	H.	U.	(2010,	November).	Software	
licenses	in	context:	The	challenge	of	heterogeneously‐licensed	systems.	
Journal	of	the	Association	for	Information	Systems,	11(11),	730–755.	

[7]	Asuncion,	H.	U.	(2009).	Architecture‐centric	traceability	for	stakeholders	(ACTS)	
(doctoral	dissertation).	Irvine,	CA:	University	of	California,	Irvine.	

[6]	Asuncion,	H.	U.,	&	Taylor,	R.	N.	(2009,	May).	Capturing	custom	link	semantics	
among	heterogeneous	artifacts	and	tools.	In	Proceedings	of	the	Fifth	
International	Workshop	on	Traceability	in	Emerging	Forms	of	Software	
Engineering	(TEFSE)	(pp.	1–5).	Washington,	DC:	IEEE	Computer	Society.	

	[8]	Bass,	L.,	Clements,	P.,	&	Kazman,	R.	(2003).	Software	architecture	in	practice.	
Boston,	MA:	Addison‐Wesley	Longman.	

[9]	Boucharas,	V.,	Jansen,	S.,	&	Brinkkemper,	S.	(2009).	Formalizing	software	
ecosystem	modeling.	In	Proceedings	of	the	First	International	Workshop	on	
Open	Component	Ecosystems	(IWOCE	’09)	(pp.	41–50).	New	York,	NY:	ACM.	

[10]	Brown,	A.	W.,	&	Booch,	G.	(2002,	April).	Reusing	open‐source	software	and	
practices:	The	impact	of	open‐source	on	commercial	vendors.	In	Proceedings	
of	the	Seventh	International	Conference	on	Software	Reuse:	Methods,	
Techniques,	and	Tools	(ICSR‐7).	Springer‐Verlag	London.	

	[11]	Burk,	D.	L.	(1998).	Proprietary	rights	in	hypertext	linkages.	Journal	of	
Information,	Law	and	Technology,	1998(2).	

[12]	Feldt,	K.	(2007).	Programming	Firefox:	Building	rich	internet	applications	with	
XUL.	Sebastopol,	CA:	O’Reilly	Media.	

[13]	Fontana,	R.,	Kuhn,	B.	M.,	Moglen,	E.,	Norwood,	M.,	Ravicher,	D.	B.,	Sandler,	K.,	…	
Williamson,	A.	(2008).	A	legal	issues	primer	for	open	source	and	free	software	
projects,	version	1.5.1.	Retrieved	from	
http://www.softwarefreedom.org/resources/2008/foss‐primer.pdf	

[14]	German,	D.	M.,	&	Hassan,	A.	E.	(2009,	May).	License	integration	patterns:	Dealing	
with	licenses	mismatches	in	component‐based	development.	In	Proceedings	
of	the	31stInternational	Conference	on	Software	Engineering	(ICSE	’09)	(pp.	
188–198).	Washington,	DC:	IEEE	Computer	Society.	

[15]	Hohfeld,	W.	N.	(1913,	November).	Some	fundamental	legal	conceptions	as	
applied	in	judicial	reasoning.	Yale	Law	Journal,	23(1),	16–59.	

[16]	Institute	for	Software	Research.	(2006).	ArchStudio	4	Web	Site.	Retrieved	from	
http://www.isr.uci.edu/projects/archstudio/		

[17]	Institute	for	Software	Research.	(2009).	xADL	2.0	(Technical	report).	Retrieved	
from	http://www.isr.uci.edu/projects/xarchuci/		

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 94 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

[18]	Jansen,	S.,	Brinkkemper,	S.,	&	Finkelstein,	A.	(2009).	Business	network	
management	as	a	survival	strategy:	A	tale	of	two	software	ecosystems.	In	
Proceedings	of	the	First	Workshop	on	Software	Ecosystems	(pp.	34–48).	
Retrieved	from	
http://www0.cs.ucl.ac.uk/staff/a.finkelstein/papers/twotale.pdf	

	[19]	Jansen,	S.,	Finkelstein,	S.,	&	Brinkkemper,	A.	(2009,	May).	A	sense	of	
community:	A	research	agenda	for	software	ecosystems.	In	Proceedings	of	the	
31st	International	Conference	on	Software	Engineering	(ICSE	’09),	Companion	
Volume	(pp.	187,	190).	New	York,	NY:	ACM.	

[20]	Jensen,	C.,	&	Scacchi,	W.	(2005,	July/September).	Process	modeling	across	the	
web	information	infrastructure.	Software	Process:	Improvement	and	Practice,	
10(3),	255–272.	

[21]	Kuehnel,	A.‐K.	(2008,	June).	Microsoft,	open	source	and	the	software	ecosystem:	
Of	predators	and	prey—The	leopard	can	change	its	spots.	Information	&	
Communication	Technology	Law,	17(2),	107–124.	

[22]	Kuhl,	F.,	Weatherly,	R.,	&	Dahmann,	J.	(1999).	Creating	computer	simulation	
systems:	An	introduction	to	the	high	level	architecture.	Upper	Saddle	River,	NJ:	
Prentice	Hall.	

[23]	Medvidovic,	N.,	Rosenblum,	D.	S.,	&	Taylor,	R.	N.	(1999).	A	language	and	
environment	for	architecture‐based	software	development	and	evolution.	In	
Proceedings	of	the	21st	International	Conference	on	Software	Engineering	
(ICSE	’99)	(pp.	44–53).	New	York,	NY:	ACM.	

[24]	Meyers,	B.	C.,	&	Oberndorf,	P.	(2001).	Managing	software	acquisition:	Open	
systems	and	COTS	products.	New	York,	NY:	Addison‐Wesley	Professional.	

[25]	Nelson,	L.,	&	Churchill,	E.	F.	(2006).	Repurposing:	Techniques	for	reuse	and	
integration	of	interactive	systems.	In	Proceedings	of	the	International	
Conference	on	Information	Reuse	and	Integration	(IRI‐08)	(p.	490).	

[26]	Open	Source	Initiative.	(2008).	The	open	source	definition.	Retrieved	from		
http://opensource.org/docs/osd	/	

[27]	Oreizy,	P.	(2000).	Open	architecture	software:	A	flexible	approach	to	
decentralized	software	evolution	(doctoral	dissertation).	Irvine,	CA:	University	
of	California,	Irvine.	

[28]	Rosen,	L.	(2005).	Open	source	licensing:	Software	freedom	and	intellectual	
property	law.	Upper	Saddle	River,	NJ:	Prentice	Hall.	

[29]	Scacchi,	W.	(2007,	September).	Free/open	source	software	development.	In	
Proceedings	of	the	Sixth	Joint	European	Software	Engineering	Conference	and	
ACM	SIGSOFT	Symposium	on	the	Foundations	of	Software	Engineering	
(ESEC/FSE	2007)	(pp.	459–468).	ACM,	New	York.		

[30]	Scacchi,	W.,	&	Alspaugh,	T.	A.	(2008,	May).	Emerging	issues	in	the	acquisition	of	
open	source	software	within	the	U.S.	Department	of	Defense.	In	Proceedings	of	
the	Fifth	Annual	Acquisition	Research	Symposium	(Vol.	1,	pp.	230–244).	
Retrieved	from	http://www.acquisitionresearch.net	

	[31]	Sen,	R.	(2007).	A	strategic	analysis	of	competition	between	open	source	and	
proprietary	software.	Journal	of	Management	Information	Systems,	24(1),	
233–257.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 95 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

[32]	Sen,	R.,	Subramaniam,	C.,	&	Nelson,	M.	L.	(2009).	Determinants	of	the	choice	of	
open	source	software	license.	Journal	of	Management	Information	Systems,	
25(3),	207–240.	

[33]	St.	Laurent,	A.	M.	(2004).	Understanding	open	source	and	free	software	licensing.	
Sebastopol,	CA:	O’Reilly	Media.	

[34]	Stewart,	K.	J.,	Ammeter,	A.	P.,	&	Maruping,	L.	M.	(2006).	Impacts	of	license	choice	
and	organizational	sponsorship	on	user	interest	and	development	activity	in	
open	source	software	projects.	Information	Systems	Research,	17(2),	126–144.	

[35]	Subramaniam,	C.,	Sen,	R.,	&	Nelson,	M.	L.	(2009).	Determinants	of	open	source	
software	project	success:	A	longitudinal	study.	Decision	Support	Systems,	
46(2),	576–585.	

[36]	Tuunanen,	T.,	Koskinen,	J.,	&	Kärkkäinen,	T.	(2009).	Automated	software	license	
analysis.	Automated	Software	Engineering,	16(3–4),	455–490.	

[37]	Unity	Technologies.	(2008,	December).	End	user	license	agreement.	Retrieved	
from		
http://unity3d.com/unity/unity‐end‐user‐license‐2.x.html	

[38]	Ven,	K.,	&	Mannaert,	H.	(2008).	Challenges	and	strategies	in	the	use	of	open	
source	software	by	independent	software	vendors.	Information	and	Software	
Technology,	50(9–10),	991–1002.	

Acknowledgments
This	research	is	supported	by	grants	#N00244‐10‐1‐0077	and	#N00244‐12‐1‐0004	
from	the	Acquisition	Research	Program	at	the	Naval	Postgraduate	School,	and	by	grant	
#0808783	from	the	U.S.	National	Science	Foundation.	No	review,	approval,	or	
endorsement	implied.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 96 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

THIS	PAGE	INTENTIONALLY	LEFT	BLANK	
	
	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 97 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Software Licenses, Coverage, and Subsumption

Walt	Scacchi,	Thomas	Alspaugh,	&	Rihoko	(Inoue)	Kawai	

Abstract
Software	licensing	issues	for	a	system	design,	instantiation,	or	configuration	are	often	
complex	and	difficult	to	evaluate,	and	mistakes	can	be	costly.	Automated	assistance	
requires	a	formal	representation	of	the	significant	features	of	the	software	licenses	
involved.	We	present	results	from	an	analysis	directed	toward	a	formal	representation	
capable	of	covering	an	entire	license.	The	key	to	such	a	representation	is	to	identify	the	
license’s	actions,	and	relate	them	to	the	actions	for	exclusive	rights	defined	in	law	and	
to	the	actions	defined	in	other	licenses.	Parameterizing	each	action	by	the	object(s)	
acted	on,	the	instrumental	entities	through	which	the	action	is	performed,	and	similar	
contextual	variables	enables	a	subsumption	relation	among	the	actions.	The	resulting	
formalism	is	lightweight,	flexible	enough	to	support	the	scope	of	legal	interpretations,	
and	extensible	to	a	wide	range	of	software	licenses.	We	discuss	the	application	of	our	
approach	to	the	Lesser	General	Public	License	(LGPL)	version	2.1.	

Introduction
Heterogeneously	licensed	systems	are	increasingly	prevalent	as	organizations	seek	
lower	development	costs,	increased	reliability	and	quality,	and	faster	development	
cycles	(Alspaugh,	Asuncion,	&	Scacchi,	2009a;	Alspaugh,	Scacchi,	&	Asuncion,	2010;	
German	&	Hassan,	2009).	Such	systems	present	challenges	in	ensuring	all	pertinent	
obligations	from	the	various	possibly	conflicting	licenses	are	met,	which	can	easily	
involve	evaluating	dozens	of	distinct	licenses	applied	on	a	component‐by‐component	
basis	(Alspaugh,	Asuncion,	&	Scacchi,	2009b;	Gobeille,	2008).	The	challenges	arise	
independently	during	design,	development,	integration,	distribution,	configuration,	and	
execution,	and	may	present	different	concerns	involving	different	fundamental	
copyright	and	patent	rights	at	each	of	these	stages.	The	goal	of	our	research	is	to	
provide	licensing	guidance	to	designers,	developers,	system	integrators,	and	those	
responsible	for	software	acquisition.	
	
In	our	previous	work	we	presented	an	approach	and	proof	of	concept	of	automated	
licensing	analysis	integrated	into	system	design	at	the	level	of	software	architecture	
(Alspaugh	et	al.,	2009a,	2011;	Alspaugh	et	al.,	2010).	The	work	was	based	on	a	sequence	
of	grounded‐theory	analyses	on	(eventually)	46	software	licenses,	focusing	on	
propagation	of	obligations	through	the	architectural	configuration	(the	most	
challenging	area	for	manual	analysis).	Rights	and	obligations	were	the	fundamental	
units	of	the	meta‐model	we	obtained	for	licenses,	with	actions	as	components	of	rights	
and	obligations	and	implicitly	parameterized	in	a	fixed	pattern	accommodating	the	
license	provisions	that	were	the	focus	of	the	work.	The	textual	analyses	aimed	for	
coverage	of	key	provisions	across	a	wide	range	of	licenses.	
	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 98 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

The	present	work,	in	contrast,	focuses	on	complete	coverage	of	all	license	provisions,	
especially	those	that	might	not	fit	the	earlier	meta‐model.	License	provisions	are	
represented	using	a	more	flexibly	extensible	approach	in	which	the	fundamental	unit	is	
an	action.	Actions	are	parameterized	as	needed,	recognizing	that	the	subsumption	
relationship	that	can	be	inferred	among	actions	is	determined	by	the	form	in	which	the	
actions	are	parameterized.	Rights	and	obligations	then	express	relationships	among	
desired,	required,	and	forbidden	actions.	During	our	analysis	we	identified	
subsumption	relationships	among	actions,	linking	each	action	involved	in	a	license	right	
back	to	the	exclusive	right	subsuming	it	defined	in	copyright	and	other	intellectual	
property	law,	specifically	the	U.S.	Copyright	Act	(1976)	and	the	Berne	convention	
(Berne	Convention,	1979).	Where	possible,	we	also	identified	subsumptions	of	the	
actions	of	license	obligations	by	the	actions	of	rights.	Figure	1	shows	the	subsumption	
relationships	identified	for	a	single	license’s	actions.	
	
In	this	paper	we	focus	on	the	Lesser	General	Public	License	(LGPL),	version	2.1	(Free	
Software	Foundation,	1999).	LGPLv2.1	is	the	seventh	most	widely	used	open‐source	
software	(OSS)	license,	accounting	for	about	6.5%	of	open	source	projects	(Black	Duck	
Software,	n.d.).	At	4,341	words,	it	is	substantial	(almost	double	the	mean	length	of	
licenses	we	have	analyzed),	yet	small	enough	to	be	discussed	manageably.	It	addresses	
the	most	challenging	license	interaction	issue,	propagation	of	obligations	to	
components	under	other	licenses,	in	a	relatively	straightforward	way	compared	to	
other	licenses	that	do	so.	It	has	provisions	in	many	of	the	categories	that	are	challenging	
for	analysis,	including	the	following:	
	

● accumulation	of	copyright	notices,	

● alternative	obligations,	

● clauses	with	null	effect,	

● definitional	clauses,	

● the	distinction	between	collective	and	derivative	work,	

● distribution	under	alternative	licenses,	

● distinct	rights	and	obligations	for	build	scripts,	interfaces,	header	files,	
source,	object,	and	executable	forms,	+	license	acceptance	and	termination,	

● license	exceptions,	

● license	notices	of	several	types,	

● output	from	licensed	software,	and	

● relicensing	under	other	licenses.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 99 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

	
Figure 1. Subsumption Among the LGPLv2.1 Actions for Rights and

Obligations and the Exclusive Copyright Actions

Note. Eighteen rights actions are explicit in the text, and three others are implied. The actions of the
implied rights are italicized in the figure. Four obligations actions have no effect under the conditions
in which they are obligated (because the original source must itself satisfy LGPLv2.1); they are shown
with a gray background.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 100 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Figure	2	shows	an	excerpt	of	the	open‐coded	LGPLv2.1	text	annotated	with	some	of	the	
93	categories	that	were	identified	here	or	in	other	licenses.	The	entire	license	text	was	
chunked	and	open‐coded,	reiterating	until	the	boundaries	of	chunks	of	text	and	the	
conceptual	code	characterizing	each	chunk	of	text	stabilized.	The	list	of	codes	(or	
categories)	was	initialized	with	the	codes	obtained	from	our	previous	analyses	of	many	
licenses,	and	extended	to	include	the	kinds	of	features	uncovered	by	a	focused	analysis	
of	the	LGPLv2.1	text.	Portions	of	the	chunking	and	open‐coding	were	verified	by	one	of	
the	other	authors	at	several	points	in	the	process.	Axial	coding	was	then	used	to	identify	
themes	and	relationships	in	the	license	text,	resulting,	for	example,	in	the	categories	of	
definitions,	rights,	obligations,	modifiers,	and	null	effect	discussed	in	the	Textual	
Analysis	section,	and	the	characterization	of	a	parameterized	action	as	the	basic	unit	of	
software	licenses	discussed	in	a	later	section.	

	
Figure 2. A Portion of LGPLv2.1, Divided Into Chunks and Annotated

With Categories of Interest (Alspaugh 2011).

Note. The categories appearing here are, briefly: CW: collective work; d: distribution; DW: derivative
work; fire: license firewall; O: apparent obligation; por: for a portion of the licensed entity; ppgn:
propagation of obligations to other entities; s: sublicensing, whether explicit or in effect; and ∅: null
effect.

LGPLv2.1,	like	most	licenses,	is	only	partially	organized	into	numbered	sections,	
hampering	reference	to	specific	parts	of	the	text.	Citations	of	specific	license	sections,	
paragraphs,	and	sentences	refer	to	an	online	copy	of	LGPLv2.1	consistently	numbered	
throughout	by	a	program	(Alspaugh,	1999).	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 101 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

	
The	remainder	of	this	paper	is	organized	as	follows.	In	the	next	section,	we	present	
related	work.	After	that,	we	list	questions	of	interest	that	guide	this	work.	Next	is	the	
textual	analysis	on	which	the	work	is	based.	In	the	sections	that	come	after,	we	discuss	
actions,	sketch	how	actions	are	parameterized,	and	outline	subsumption	among	
parameterized	actions.	The	final	sections	include	a	discussion	of	some	issues	arising	
from	the	work,	followed	by	the	conclusion	of	the	paper.	

Related Work
Hohfeld	sought	a	theory	by	which	to	resolve	the	imprecise	terminology	and	ambiguous	
classifications	he	found	in	use	for	legal	relationships.	In	a	seminal	article	published	in	
1913	and	cited	to	the	present	day,	he	set	forth	a	system	of	eight	jural	relations	intended	
to	express	and	classify	all	legal	relationships	between	people.	The	first	four	regulate	
ordinary	actions	and	are	right	(“may”),	no‐right	(“cannot”),	duty	(“must”),	and	privilege	
(“need	not”).	
	
There	has	been	much	work	on	analysis	of	laws	in	Artificial	Intelligence	(AI)	over	the	
past	few	decades.	A	widely	cited	example	is	Sergot	et	al.’s	(1986)	re‐expression	of	the	
British	Nationality	Act	as	a	Prolog	program;	the	resulting	program	was	able	to	apply	the	
Act	to	a	particular	person’s	situation	and	characteristics	to	determine	nationality.	
Sergot	asserted	that	the	primary	value	of	their	approach	was	the	insight	that	the	
process	of	expressing	a	statute	gave	into	what	the	statute	says	and	means,	rather	than	
any	use	of	the	Prolog	program.	
	
Otto	and	Antón	(2007)	surveyed	the	literature	on	modeling	legal	texts	and	reached	
similar	conclusions.	They	highlighted	the	possibilities	of	conflicts	among	regulations,	
the	evolution	of	case	law	and	passage	of	new	regulations,	and	the	frequent	cross‐
references	within	a	single	text	or	from	one	text	to	other	texts.	They	surveyed	a	number	
of	modeling	approaches,	including	symbolic	logic,	knowledge	representation	(including	
Sergot	et	al.	[1986]),	deontic	logic,	defeasible	logic,	temporal	logic,	and	so	forth.	
	
None	of	these	approaches	appear	well	suited	to	the	challenges	of	licenses.	The	problem	
of	references	among	documents,	prominent	in	the	modeling	of	statutes	and	regulations,	
is	not	significant	for	the	licenses	we	have	examined,	which	make	few	references	to	
other	documents	and	exhibit	comparatively	straightforward	references	within	the	
license.	While	the	modeling	approaches	offer	a	certain	degree	of	automatic	calculation,	
the	calculations	they	support	well	do	not	appear	particularly	useful	for	OSS	licenses.	
The	key	issue	we	have	found	for	OSS	licenses,	namely	how	license	provisions	refer	to	
specific	entities	in	the	licensed	system	and	how	obligations	resulting	from	rights	for	one	
entity	are	propagated	to	other	entities	based	on	the	architectural	structure	connecting	
them,	is	unlike	anything	addressed	by	these	approaches.	While	they	may	possibly	offer	
an	efficient	run‐time	implementation	for	the	calculations	needed	for	licenses,	it	is	not	
clear	that	they	are	particularly	appropriate	for	modeling	licenses.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 102 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Questions of Interest
Our	work	is	in	the	context	of	software	development	and	the	issues	and	concerns	that	
arise	there.	The	primary	goal	in	that	context	is	to	produce	a	software	system	for	which	
the	desired	rights	are	available	in	exchange	for	acceptable	obligations.	Since	the	work	
originated	in	the	context	of	the	OSS	community,	we	assume	goodwill	on	the	part	of	the	
actors	involved,	and	do	not	concern	our	work	with	approaches	for	subverting	license	
provisions.	We	list	the	following	questions	of	interest	that	guide	our	research:	

1. What	rights	are	potentially	available	for	a	single	component	under	a	given	
license,	or	for	a	given	architectural	configuration	of	components	and	
connectors	under	their	licenses?	

2. What	obligations	must	be	fulfilled	in	order	for	specific	rights	to	be	granted	for	
a	given	single	component	under	its	license,	or	for	a	given	architectural	
configuration	of	components	and	connectors	under	their	licenses?	

3. What	license	conflicts	(if	any)	arise	for	a	given	architectural	configuration	of	
components	and	connectors	under	their	licenses?	

We	find	that	in	addressing	these	questions,	we	need	not	consider	any	license	provision	
that	is	neither	enactable	nor	testable.	A	surprising	number	of	license	provisions	fall	into	
these	categories,	including	text	that	we	characterize	as	exhortations,	examples	or	
informal	explanations	of	other	clauses,	and	hopes	on	the	part	of	the	licensor	that	have	
no	legal	force.	Our	focus	on	testable	provisions	also	leads	in	the	intriguing	direction	of	
automated	verification	of	whether	a	testable	license	obligation	has	been	fulfilled.	

Textual Analysis
We	find	that	everything	in	the	text	of	LGPLv2.1	(Free	Software	Foundation,	1999)	may	
be	classified	as	either:	

● the	definition	of	a	term,	

● a	right,	

● an	obligation,	

● a	modifier	to	a	definition,	right,	or	obligation,	or	

● text	without	legal	effect.	

These	five	categories	cover	the	entire	text	and	partition	everything	in	it.	Examples	of	
each	from	LGPLv2.1	(Free	Software	Foundation,	1999)	are	given	below	for	readers	
unfamiliar	with	OSS	licenses.	

Definitions of Terms

The	first	example	is	an	explicit	definition	of	a	named	term,	“work	that	uses	the	Library.”	
	

A	program	that	contains	no	derivative	of	any	portion	of	the	Library,	but	is	
designed	to	work	with	the	Library	by	being	compiled	or	linked	with	it,	is	called	a	
“work	that	uses	the	Library.”	(Free	Software	Foundation,	1999,	§	II.0¶2)	
	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 103 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

The	second	example	is	an	implicit	definition	of	an	anonymous	category	of	executables	
that	might	be	termed	“work	using	the	Library	and	linked	with	it.”	Executables	in	this	
category	have	rights	and	obligations	different	from	those	for	other	executables.	
LGPLv2.1	gives	this	category	no	name.	
	

…	you	may	also	combine	or	link	a	work	that	uses	the	Library	with	the	Library	to	
produce	a	work	containing	portions	of	the	Library	…	(§	II.6¶1s1)	

Rights

The	first	example,	as	is	common	for	statements	of	rights	in	OSS	licenses,	grants	several	
rights	at	once	(the	right	to	copy	and	the	right	to	distribute).	The	actions	in	this	right	
might	be	summarized	as	“reproduce	complete	original”	and	“distribute	complete	
original.”	We	use	such	summaries	here	as	tokens	representing	the	full	definitions.	
	

You	may	copy	and	distribute	verbatim	copies	of	the	Library’s	complete	source	
code	as	you	receive	it,	in	any	medium	…	(§	II.1¶1s1)	
	

The	second	example	grants	an	interesting	right	to	license	a	specific	copy	of	a	work	
received	under	LGPLv2.1	under	another	license.	In	both	these	examples,	the	word	
“may”	signals	that	a	right	is	probably	being	defined.	The	action	might	be	summarized	as	
“license	a	given	copy	under	GPL.”	
	

You	may	opt	to	apply	the	terms	of	the	ordinary	GNU	General	Public	License	
instead	of	this	License	to	a	given	copy	of	the	Library.	(§	II.3¶1s1)	

Obligations

The	first	example	is	signaled	by	the	word	“provided,”	unlike	most	LGPLv2.1	obligations	
which	are	signaled	by	“must”	(Free	Software	Foundation	1999).	This	obligation	is	
notable	because	it	would	seem	to	require	no	action	unless	the	original	source	code,	in	
violation	of	LGPLv2.1,	failed	to	include	such	a	notice	and	disclaimer	of	warranty.	The	
actions	might	be	summarized	as	“ensure	appropriate	copyright	notice”	and	“ensure	
disclaimer	of	warranty.”	
	

…	provided	that	you	conspicuously	and	appropriately	publish	on	each	copy	(of	
the	complete	original	source	code)	an	appropriate	copyright	notice	and	
disclaimer	of	warranty	…	(§	II.1¶1s1)	
	

The	second	example	contains	no	such	identifying	words,	but	is	the	first	of	a	list	of	
alternatives	preceded	by	“…	you	must	do	one	of	these	things.”	Its	action	might	be	
summarized	as	“accompany	with	corresponding	source.”	Many	OSS	licenses	contain	
similar	obligations.	
	

Accompany	the	work	with	the	complete	corresponding	machine‐readable	source	
code	for	the	Library	including	whatever	changes	were	used	in	the	work	…	(§	
II.6¶2.as1)	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 104 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Modifiers

This	first	example	contains	the	signal	word	“provided”	that	often	indicates	an	
obligation,	but	it	does	not	function	as	such.	Instead	its	effect	is	to	restrict	what	“terms	of	
your	choice”	refers	to.	
	

…	you	may	also	combine	or	link	a	work	that	uses	the	Library	with	the	Library	to	
produce	a	work	containing	portions	of	the	Library,	and	distribute	that	work	
under	terms	of	your	choice,	provided	that	the	terms	permit	modification	of	the	
work	for	the	customer’s	own	use	and	reverse	engineering	for	debugging	such	
modifications.	(§	II.6¶1s1)	
	

The	second	example	limits	the	scope	of	the	anonymous	category	of	“works	that	use	the	
Library”	that	are	also	“works	based	on	the	Library”	because	they	incorporate	material	
from	header	files.	
	

If	such	an	object	file	uses	only	numerical	parameters,	data	structure	layouts	and	
accessors,	and	small	macros	and	small	inline	functions	(ten	lines	or	less	in	
length),	then	the	use	of	the	object	file	is	unrestricted	…	(§	II.5¶4s1)	

Text Without Legal Effect

The	first	example	that	follows	is	an	explanation	and	statement	of	the	intent	of	the	
license’s	authors;	we	are	told	that	if	the	explanation	differs	from	what	it	purports	to	
explain,	their	stated	intent	would	be	trumped	by	what	the	license	actually	says.	
	

Thus,	it	is	not	the	intent	of	this	section	to	claim	rights	or	contest	your	rights	to	
work	written	entirely	by	you	…	(§	II.2¶4)	
	

The	second	example	is	more	problematic.	It	is	phrased	as	an	obligation,	but	the	action	
involved	(“make	a	good	faith	effort”)	is	in	our	view	not	testable;	compare	for	example	
the	undoubtedly	testable	action	“conspicuously	and	appropriately	publish	on	each	copy	
an	appropriate	copyright	notice”	(§	II.1¶1s1).	Of	course,	a	specific	legal	interpretation	
of	LGPLv2.1	might	give	this	text	a	testable	interpretation,	for	example,	by	
operationalizing	“good	faith	effort”	in	some	way.	
	

If	a	facility	in	the	modified	Library	refers	to	a	function	or	a	table	of	data	to	be	
supplied	by	an	application	program	that	uses	the	facility,	other	than	as	an	
argument	passed	when	the	facility	is	invoked,	then	you	must	make	a	good	faith	
effort	to	ensure	that,	in	the	event	an	application	does	not	supply	such	function	or	
table,	the	facility	still	operates,	and	performs	whatever	part	of	its	purpose	
remains	meaningful.	(§	II.2¶1.d)	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 105 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Other Features
In	addition	to	the	five	categories	of	definitions,	rights,	obligations,	modifiers,	and	null	
effect	that	jointly	partition	and	cover	the	entire	LGPLv2.1	(Free	Software	Foundation,	
1999)	text,	we	identified	or	confirmed	several	other	significant	license	features.	
	

1. Right/obligation	structure:	All	rights	and	obligations	shared	the	conceptual	
structure	of	an	actor,	a	Hohfeld	jural	relation,	and	an	action.	The	actor	was	
the	licensee	for	each	of	LGPLv2.1’s	18	rights	and	20	obligations.	The	jural	
relation	was	that	of	a	Hohfeld	right	(“may”)	or	privilege	(“need‐not”)	for	each	
right,	and	of	a	duty	(“must”)	or	no‐right	(“cannot”)	for	each	obligation.	
Actions	are	discussed	in	the	section	that	follows.	

2. Time	and	state:	Time	and	state	are	barely	present	in	LGPLv2.1,	figuring	only	
in	license	acceptance	(§	II.9)	and	termination	(§	II.8).	There	is	no	provision	
for	reinstatement	after	termination.	

3. Obligation	propagation:	Propagation	of	obligations	to	other	entities	is	
mediated	structurally	by	the	architecture	in	which	LGPLv2.1‐licensed	entities	
are	combined	

a) to	other	elements	incorporated	into	the	same	library	(§	II.2¶1.c);	

b) to	programs	designed	to	use	an	LGPLv2.1‐licensed	library,	when	
linked	to	the	library	(§	II.5¶2),	except	if	certain	obligations	are	met	(§	
II.6¶1);	and	

c) to	the	object	code	for	modules	that	include	more	than	a	stated	amount	
from	an	LGPLv2.1‐licensed	header	file	(§	II.5¶3).	

4. Enactability	and	testability:	The	constructs	that	appear	intended	as	LGPLv2.1	
rights	or	obligations	all	involve	actions	that	are	clearly	testable,	with	the	
single	exception	of	the	“good	faith	effort”	obligation	discussed	previously.	
Every	action	(even	the	questionable	one)	is,	unsurprisingly,	enactable.	

Actions, the Central Construct
Actions	are	the	most	common	constructs	in	LGPLv2.1	(Free	Software	Foundation,	
1999),	and	are	essential	in	how	the	license	is	applied	in	the	world.	Focusing	on	actions	
as	the	key	element	of	licenses	brings	several	advantages,	as	follows:	
	

● Actions	are	more	manageable	than	rights	and	obligations.	Each	action	is	a	
concept	representing	an	unbounded	set	of	instances	of	the	action;	for	
example,	“distribute	the	Library	…	in	object	code	…	form”	(§	II.4¶1)	is	
instantiated	by	“distribute	MONOSPACE	glibc	to	John	Doe	on	2012	June	
18”	along	with	any	number	of	similar	instances.	Therefore,	set	operations	
may	be	used	on	actions.	The	operations	on	rights	and	obligations,	in	
contrast,	are	quite	limited.	For	example,	the	common	idiom	of	first	stating	an	
obligation	to	do	action	X,	then	reducing	it	by	granting	the	right	to	not	do	W	
where	W	overlaps	with	or	is	part	of	X,	is	easily	expressed	as	set	subtraction	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 106 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

on	the	actions	ITALIC(X‐W)	but	has	no	simple	expression	in	terms	of	the	
obligation	and	right	themselves.	

● A	single	action,	or	two	actions	related	by	subsumption,	often	appear	in	both	
a	right	and	an	obligation.	In	LGPLv2.1,	examples	are	numerous,	for	example,	
the	obligation	“You	must	cause	the	files	modified	to	carry	prominent	notices	
stating	that	you	changed	the	files	and	the	date	of	any	change”	(§	II.2¶1.b)	
whose	action	is	subsumed	by	that	of	the	right	“You	may	modify	your	copy	or	
copies	of	the	Library”	(§	II.2¶1).	This	phenomenon	is	essential	to	the	
propagation	of	obligations	from	one	license	to	entities	under	another	
license,	which	doesn’t	work	unless	the	other	license	permits	the	actions	
required	by	the	propagated	obligations.	

● Distinguishing	an	actual	right	or	obligation	from	a	modifier	in	the	form	of	a	
right	or	obligation	can	be	problematic,	as	observed	in	Section	IV,	but	in	our	
analysis	we	found	identifying	actions	to	be	uniformly	straightforward.	

● If	rights	and	obligations	are	the	primary	constructs,	then	their	similarities	
(both	comprise	an	actor,	a	Hohfeld	jural	relation,	and	an	action)	and	
unwieldy	difference	(though	each	contains	a	Hohfeld	relation,	it	can’t	be	the	
same	one)	are	prominent	and	difficult	to	justify.	But	if	actions	are	the	
primary	construct,	then	rights	and	obligations	become	emergent	
phenomena	arising	from	the	relationships	among	a	license’s	desired,	
required,	and	forbidden	actions,	and	the	description	of	the	license	meta‐
model	becomes	simpler	and	more	uniform.	

Action Parameterization
In	our	previous	work,	we	proposed	that	actions	be	parameterized	with	the	entity	on	
which	they	acted,	if	any,	and	the	license	used	in	the	action,	if	any.	However,	a	more	
careful	examination	of	license	rights	and	obligations	showed	that	this	simple	pattern,	
while	sufficient	for	the	majority	of	current	rights	and	obligations,	is	neither	universally	
sufficient	nor	conceptually	necessary.	Our	current	work	has	shown	that	no	fixed	pattern	
or	patterns	is	necessary	for	formalization	and	automated	inference,	and	that	a	small	but	
stubborn	set	of	actions	cannot	be	accommodated	in	that	way.	LGPLv2.1	(Free	Software	
Foundation,	1999)	offers	two	examples,	of	which	the	following	(from	a	right)	is	the	
clearest.	
	
In	the	action	“distribute	that	work	under	terms	of	your	choice”	(§	II.6¶1),	the	work	in	
question	is	a	“work	that	uses	the	Library”	combined	or	linked	with	the	Library,	and	the	
terms	in	question	must	meet	two	conditions	(licensee	may	modify	the	work,	and	may	
reverse‐engineer	the	work).	This	action	thus	involves	two	entities	
	

1. “that	work,”	upon	which	the	action	is	taken,	and	

2. the	“terms	of	your	choice”	through	which	the	distribution	is	licensed.	

Each	of	these	should	be	a	separate	parameter	of	the	action,	because	they	vary	from	
instance	to	instance	of	the	action	and	may	vary	independently	of	each	other.	If	the	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 107 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

action	is	parameterized	in	this	way,	then	it	becomes	a	special	case	of	the	general	action	
“distribute	an	entity	under	a	license”	and	its	parameters	place	it	properly	in	the	
subsumption	hierarchy,	as	discussed	in	the	following	section	on	Parameterized	
Subsumption.	
	
(We	note	in	passing	that	the	approach	in	our	previous	work	for	parameterizing	the	
actions	of	obligations	through	functions	or	quantifiers	operating	on	the	parameter(s)	of	
the	corresponding	right	continues	to	suffice,	based	on	the	results	reported	here;	we	
refer	interested	readers	to	that	work	[Alspaugh	et	al.,	2009a,	2011;	Alspaugh	et	al.,	
2010].)	

Parameterized Subsumption
In	addressing	subsumption	among	parameterized	actions,	we	follow	the	approach	of	
Abadi	and	Cardelli	(1996)	in	the	area	of	object‐oriented	type	systems	.	Figure	3	
illustrates	subsumption	between	pairs	of	simple	actions	and	pairs	of	parameterized	
actions.	

	
Figure 3. Subsumption of Simple Entities and Parameterized Entities

In	the	figure,	every	instance	of	action	B	is	also	an	instance	of	action	A;	we	say	A	
subsumes	B.	
	
On	the	right	is	a	more	complex	situation.	Actions	C(P)	and	D(P)	are	parameterized	with	
arguments	R	and	S,	respectively.	As	is	normally	the	case	for	parameterized	actions	in	
licenses,	the	parameter	is	covariant:	the	sense	of	the	subsumption	of	the	arguments	
matches	their	effect	on	the	subsumption	of	the	actions	they	parameterize.	Every	
instance	of	D(S)	is	an	instance	of	C(R)	if	every	instance	of	S	is	an	instance	of	R;	argument	
S	is	subsumed	by	argument	R,	so	therefore,	D(S)	is	subsumed	by	C(R).	
	
An	example	from	LGPLv2.1	(Free	Software	Foundation,	1999)	is	the	right	“You	may	
modify	your	copy	or	copies	of	the	Library”	(§	II.2¶1)	and	the	obligation	“You	must	cause	
the	files	modified	to	carry	prominent	notices	stating	that	you	changed	the	files	and	the	
date	of	any	change”	(§	II.2¶1.b).	In	other	licenses,	we	have	seen	actions	to	modify	
licensed	entities	other	than	libraries,	and	to	insert	various	kinds	of	notices	appropriate	
for	the	license	in	question,	so	we	propose	generalizing	these	actions	to	covariantly	
parameterized	actions	informally	defined	as	
	

M(F,	L)	=	“modify	source	file	F	licensed	under	L”	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 108 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

N(F,	L)	=	“add	change	notices	appropriate	for	license	L	to	source	file	F	
licensed	under	L”	

	
Let	us	assert	that	M	subsumes	N	covariantly	
	

, ⊆ , 	if	 	 ⊆ 	and	 ⊆ 	
and	also	assert	that	
	

“modify	your	copy	or	copies	of	the	Library”	(Free	Software	Foundation,	1999,	§	
II.2¶1)	
	

is	equivalent	to	the	union	of	M(F,	LGPLv2.1)	for	each	Library	file	F	you	modify,	and	
that	

“cause	the	files	modified	to	carry	prominent	notices	stating	that	you	changedthe	
files	and	the	date	of	any	change”	(§	II.2¶1.b)	
	

is	equivalent	to	the	union	of	N(F,	LGPLv2.1)	for	each	Library	file	F	you	modified.	Then	
we	have	taken	several	steps	towards	being	able	to	automatically	determine	that	
modifying	libfile.c	under	LGPLv2.1	subsumes	adding	LGPLv2.1	changes	notices	to	
libfile.c.	Our	assertions	have	expressed	part	of	the	interpretation	of	the	two	
actions,	and	constituted	a	step	in	the	formalization	of	an	interpretation	of	LGPLv2.1	as	a	
whole.	
	
We	have	made	such	formalizations	of	portions	of	licenses	in	our	previous	work,	and	
believe	the	present	work	provides	a	foundation	for	doing	the	same	for	entire	licenses.	

Discussion
In	this	section,	we	discuss	some	of	the	issues	arising	from	this	approach.	

What Is and Is Not Formalized?

The	following	are	formalized:	
● the	subsumption	relation	among	actions,	including	the	effect	of	the	

actions’	argument;	

● the	entity	types	over	which	each	parameter	ranges,	and	the	subsumption	
relation	among	the	types;	and	

● the	entailment	relation	from	obligations	to	the	rights	granted	in	exchange	
from	them.	

This	is	not	formalized:	
● the	interpretation	of	each	action.	

This	formalization	is	sufficient	to	support	automated	licensing	calculations	to	support	
designers,	developers,	integrators,	and	acquisition	analysts.	
The	task	of	creating	the	formalization	is	not	small,	but	the	resulting	automation	saves	
substantial	work	with	every	licensing	analysis.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 109 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Testable Leaves

We	hypothesize	that	software	oracles	can	be	constructed	for	most	actions	in	license	
obligations.	Examples	are	

● an	oracle	to	check	for	specific	warranty	disclaimers	in	source	code	and	

● an	oracle	to	check	whether	a	specific	source	file	is	available	at	a	specific	
URL.	

And	so	forth.	In	most	cases,	it	will	be	impractical	or	impossible	to	automatically	check	
for	any	condition	that	would	fulfill	the	obligation	(say,	for	any	copyright	notice	that	
would	serve	for	LGPLv2.1),	but	it	will	be	practical	to	check	for	a	specific	condition	
known	to	fulfill	it	(say,	for	one	specific	copyright	notice	that	serves).	

How Subsumption Fits Into License Analysis

In	our	previous	work,	we	explored	license	relationships	among	rights	and	obligations	
using	Hohfeld	jural	relations,	and	described	how	we	automated	licensing	analyses	for	
specific	systems	and	incorporated	the	analyses	into	a	software	architecture	
development	environment	(Alspaugh	et	al.,	2009a,	2011;	Alspaugh	et	al.,	2010).	The	
work	presented	here	provides	a	new	and	more	extensible	foundation	for	those	
analyses.	
	
For	example,	LGPLv2.1	(Free	Software	Foundation,	1999)	states,	
	

You	may	modify	your	copy	…	of	the	Library	…	and	…	distribute	such	
modifications	…	provided	that	you	…	cause	the	files	modified	to	carry	prominent	
notices	stating	that	you	changed	the	files	and	the	date	of	any	change.	(§	II.2¶1)	
	

A	specified	subsumption	relation	among	actions	might	classify	“Richard	Roe	distributed	
glibc	v1.2.3	source	on	2012	July	26”	as	an	instance	of	the	rights	action	“Distribute	
WBOL	source”	(§	II.1¶1)	and	“Jane	Doe	placed	LGPLv2.1	change	notices	in	glibc	v1.2.3	
on	2012	July	25”	as	an	instance	of	the	obligations	action	“Insert	notices	of	changes”(§	
II.1¶1),	which	is	itself	subsumed	by	rights	action	“Create	WBOL	source”(§	II.1¶1;	see	
Figure	1).	It	still	remains	to	relate	the	fulfilled	obligation	of	placing	the	notices	to	the	
desired	right	of	distributing	the	modified	source	(as	well	as	the	other	obligations	
imposed	by	LGPLv2.1),	and	presumably	to	decide	whether	Jane	Doe	and	Richard	Roe	
were	acting	jointly	so	that	her	fulfilled	obligation	supported	his	exercised	right.	

Legal Interpretations

We	believe	the	interpretation	provided	by	the	formalization	provides	sufficient	scope	
for	legal	interpretations,	based	on	informal	conversations	with	lawyers	and	researchers	
in	law,	but	the	choices	provided	by	the	formalization	do	not	appear	to	be	a	natural	
expression	of	the	choices	a	lawyer	would	make.	This	will	require	future	work.	

Questions We Need Not Ask

For	the	goals	we	have	set	for	this	research,	it	is	not	necessary	to	be	able	to	answer	
certain	research	questions.	Examples	we	have	identified	are	as	follows:	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 110 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

● Given	two	software	licenses,	how	are	they	related?	
We	believe	the	answer	for	any	pair	of	existing	licenses	is	that	they	are	not	
equivalent	and	neither	one	subsumes	the	other.	Our	research	indicates	that	
useful	comparisons	are	only	possible	for	individual	rights	or	obligations,	or	
at	most,	for	groups	of	a	few.	

● Can	our	approach	account	for	delegation?		
We	are	not	aware	of	any	licenses	with	provisions	that	explicitly	address	
delegation	of	obligations.	Licensing	is	of	course	a	delegation	of	one	or	more	
rights.	Our	approach	does	not	analyze	this	kind	of	delegation	beyond	a	
surface	level.	

● Would	it	be	advantageous	to	apply	a	temporal,	deontic,	or	other	specific	logic	
to	licensing	analysis?	
Perhaps;	such	logics	might	enable	the	asking	of	different	kinds	of	questions	
that	we	cannot	address	at	present.	Our	combination	of	a	logic	based	on	
Hohfeld	(1913)	and	description	logic	suffices	for	our	stated	goals.	We	
continue	to	look	for	contexts	in	which	additional	kinds	of	reasoning	would	
be	beneficial.	

Future Work

We	hypothesize	that	license‐based	reasoning	about	software	systems	offers	benefits	in	
domains	beyond	that	of	intellectual	property	licenses	such	as	LGPL.	Our	ongoing	
research	program	is	examining	the	use	of	license‐like	structures	for	security,	
envisioning	“security	licenses”	to	fulfill	the	goals	of	security	policies	and	similar	
measures	but	in	a	more	manageable	and	scalable	manner,	with	direct	application	to	
software	engineering	processes	such	as	open‐architecture	OSS	development	of	systems	
integrated	from	components	from	many	sources.	Data	licensing	is	another	promising	
area,	especially	since	data	licenses	already	exist.	

Conclusion
We	present	initial	results	from	an	analysis	of	LGPLv2.1	(Free	Software	Foundation,	
1999)	in	its	entirety,	based	on	earlier	work	that	analyzed	high‐value	areas	of	a	
collection	eventually	numbering	46	licenses.	The	analysis	covers	the	license	textually	in	
several	senses:	

1. as	a	grounded‐theory	analysis	chunking	and	open‐coding	the	entire	text;	

2. as	a	higher‐level	synthesis	by	which	the	license	text	was	partitioned	a	
second	time	(into	definitions,	rights,	obligations,	modifiers,	and	no‐effect);	
and	

3. as	all	LGPLv2.1	actions	and	the	relations	among	them	from	which	arises	
the	structure	of	rights	and	obligations	for	the	license.	

The	analysis	also	identified	actions	as	the	central	concept	around	which	license	
structure	is	organized.	When	actions	are	taken	as	the	fundamental	construct,	the	
characteristics	of	rights	and	obligations	become	emergent	phenomena	arising	from	the	
relationships	among	a	license’s	desired,	required,	and	forbidden	actions.	The	focus	on	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 111 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

actions	also	led	us	to	a	more	flexible	and	generalized	approach	for	parameterizing	
actions	and	deriving	a	subsumption	relation	among	them.	We	extended	the	
subsumption	relation	to	include	the	actions	for	the	relevant	exclusive	copyright	rights	
(Figure	1),	and	to	relate	the	actions	for	rights	and	obligations.	Grounding	the	relation	in	
the	actions	of	the	exclusive	rights	proved	helpful	in	distinguishing	actual	rights	and	
obligations	from	provisions	in	the	textual	guise	of	rights	or	obligations	but	serving	the	
function	of	modifiers	of	definitions,	rights,	and	obligations.	While	no	analysis	or	
interpretation	of	a	license	can	be	considered	final,	the	three	kinds	of	coverage	achieved	
and	cross‐correlated	(of	the	text	at	both	an	open‐coding	and	an	axial	coding	level,	and	of	
the	license’s	actions	supported	by	a	grounding	in	the	copyright	exclusive	actions)	give	
confidence	in	the	results.	

References
[1]	Abadi,	M.,	&	Cardelli,	L.	(1996).	A	theory	of	objects.	New	York,	NY:	Springer‐

Verlag.	

[2]	Alspaugh,	T.	A.	(2011).		Annotated	Copy	of	the	GNU	Lesser	General	Public	
License,	version	2.1.	Retrieved	from	
http://www.thomasalspaugh.org/pub/osl‐sps/lgpl2.1.html		

[3]	Alspaugh,	T.	A,	Asuncion,	H.	U.,	&	Scacchi,	W.	(2009a).	Intellectual	property	rights	
requirements	for	heterogeneously‐licensed	systems.	In	Proceedings	of	the	
17th	IEEE	International	Requirements	Engineering	Conference	(RE	’09)	(pp.	
24–33).	Los	Alamitos,	CA:	IEEE.	

[4]	Alspaugh,	T.	A.,	Asuncion,	H.	U.,	&	Scacchi,	W.	(2009b).	The	role	of	software	
licenses	in	open	architecture	ecosystems.	In	Proceedings	of	the	First	
International	Workshop	on	Software	Ecosystems	(pp.	4–18).	Springer,	Berlin.		

[5]	Alspaugh,	T.	A.,	Asuncion,	H.	U.,	&	Scacchi,	W.	(2011).	Presenting	software	license	
conflicts	through	argumentation.	In	Proceedings	of	the	23rd	International	
Conference	on	Software	Engineering	and	Knowledge	Engineering	(SEKE	2011)	
(pp.	509–514).	Knowledge	Systems	Institute,	Skokie,	IL.		

[6]	Alspaugh,	T.	A.,	Scacchi,	W.,	&	Asuncion,	H.	U.	(2010).	Software	licenses	in	
context:	The	challenge	of	heterogeneously‐licensed	systems.	Journal	of	the	
Association	for	Information	Systems,	11(11),	730–755.	

[7]	Berne	Convention,	Berne	Convention	for	the	Protection	of	Literary	and	Artistic	
Works.	(1979).	Retrieved	from	the	World	Intellectual	Property	Organization	
website:	http://www.wipo.int/treaties/en/ip/berne/		

[8]	Black	Duck	Software.	(n.d.).	Top	20	most	commonly	used	licenses	in	open	source	
projects.	Retrieved	from	http://www.blackducksoftware.com/oss/licenses		

[9]	Corbin,	J.	M.,	&	Strauss,	A.	C.	(2007).	Basics	of	qualitative	research:	Techniques	and	
procedures	for	developing	grounded	theory.	Thousand	Oaks,	CA:	SAGE.	

[10]	Free	Software	Foundation.	(1999).	GNU	Lesser	General	Public	License,	version	
2.1.	Retrieved	from	http://www.gnu.org/licenses/lgpl‐2.1.html		

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 112 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

[11]	German,	D.	M.,	&	Hassan,	A.	E.	(2009).	License	integration	patterns:	Addressing	
license	mismatches	in	component‐based	development.	In	Proceedings	of	the	
28th	International	Conference	on	Software	Engineering	(ICSE	’09)	(pp.	188–
198).	New	York,	NY:	ACM.	

[12]	Gobeille,	R.	(2008).	The	FOSSology	project.	In	Proceedings	of	the	International	
Working	Conference	on	Mining	Software	Repositories	(MSR	’08)	(pp.	47–50).	
New	York,	NY:	ACM.	

[13]	Hohfeld,	W.	N.	(1913).	Some	fundamental	legal	conceptions	as	applied	in	
judicial	reasoning.	Yale	Law	Journal,	23(1),	16–59.	

[14]	Otto,	P.	N.,	&	Antón,	A.	I.	(2007).	Addressing	legal	requirements	in	requirements	
engineering.	In	Proceedings	of	the	15th	IEEE	International	Requirements	
Engineering	Conference	(RE	’07)	(pp.	5–14).	Los	Alamitos,	CA:	IEEE.	

[15]	Sergot,	M.	J.,	Sadri,	F.,	Kowalski,	R.	A.,	Kriwaczek,	F.,	Hammond,	P.,	&	Cory,	H.	T.	
(1986).	The	British	Nationality	Act	as	a	logic	program.	Communications	of	the	
ACM,	29(5),	370–386.	

[16]	U.S.	Copyright	Act,	17	U.S.C.	(1976).	Retrieved	from	
http://www.copyright.gov/title17/	

Acknowledgements
This	research	is	supported	by	grant	#N00244‐12‐1‐0004	from	the	Acquisition	Research	
Program	at	the	Naval	Postgraduate	School,	and	by	grant	#0808783	from	the	U.S.	
National	Science	Foundation.	No	review,	approval,	or	endorsement	implied.	
The	authors	thank	the	anonymous	reviewers	whose	insightful	suggestions	helped	us	
improve	the	paper.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 113 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Licensing Security

Thomas	A.	Alspaugh	&	Walt	Scacchi	

Abstract
There	exist	legal	structures	defining	the	exclusive	rights	of	authors,	and	means	for	
licensing	portions	of	them	to	others	in	exchange	for	appropriate	obligations.	We	
propose	an	analogous	approach	for	security,	in	which	portions	of	exclusive	security	
rights	owned	by	system	stakeholders	may	be	licensed	as	needed	to	others,	in	exchange	
for	appropriate	security	obligations.	Copyright	defines	exclusive	rights	to	reproduce,	
distribute,	and	produce	derivative	works,	among	others.	We	envision	exclusive	security	
rights	that	might	include	the	right	to	access	a	system,	the	right	to	run	specific	programs,	
and	the	right	to	update	specific	programs	or	data,	among	others.	Such	an	approach	uses	
the	existing	legal	structures	of	licenses	and	contracts	to	manage	security,	as	copyright	
licenses	are	used	to	manage	copyrights.	At	present	there	is	no	law	of	“security	right”	as	
there	is	a	law	of	copyright,	but	with	the	increasing	prevalence	and	prominence	of	
security	attacks	and	abuses,	of	which	Stuxnet	and	Flame	are	among	the	best	known	
recent	examples,	such	legislation	is	not	implausible.	We	discuss	kinds	of	security	rights	
and	obligations	that	might	produce	fruitful	results,	and	how	a	license	structure	and	
approach	might	prove	more	effective	than	security	policies.	

Introduction
Security	mechanisms	for	implementing	software	security	requirements	and	policies	are	
often	employed	on	an	ad	hoc	basis	rather	than	in	a	scalable,	organized,	and	effective	
manner.	Convenient,	interactive	approaches	supported	by	automated	evaluation	and	
guidance	are	not	available	because	there	is	no	formal	basis	connecting	security	
requirements	and	policies	with	the	security	mechanisms	that	are	to	fulfill	them.	What	is	
available	is	a	palette	of	disjoint	mechanisms	for	implementing	individual	system	
security	features	(Loscocco	et	al.,	1998;	Spencer	et	al.,	1999)	augmented	by	generalized	
practices	and	process	standards,	such	as	the	following:	

1. mandatory	access	control	lists;	
2. firewalls;	
3. multi‐level	security;	
4. authentication	(certificate	authorities,	passwords);	
5. cryptographic	support	(e.g.,	public	key	certificates);	
6. encapsulation	(including	virtualization	and	hidden	rather	than	public	APIs),	

hardware	confinement	(memory,	storage,	port,	and	external	device	isolation;	
Sun,	Wang,	Zhang,	&	Stavrou,	2012),	and	type	enforcement	capabilities;	

7. data	content	or	control	signal	flow	logging/auditing;	
8. honey‐pots	and	traps;	
9. functionally	equivalent	but	diverse	multi‐variant	software	executables	

(Franz,	2010;	Salamat,	Jackson,	Wagner,	Wimmer,	&	Franz,	2011);	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 114 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

10. security	technical	information	guides	(STIGs)	for	configuring	the	security	
parameters	for	applications	(Defense	Information	Systems	Agency,	2011)	
and	operating	systems	(Sun	et	al.,	2012);	

11. secure	programming	practices	(secure	coding	standards,	data	type	and	value	
range	checkin;	Seacord,	2008);	and	

12. standards	for	development	organization	processes	and	practices	rather	than	
system	security	policies	(International	Standards	Organization/International	
Electrotechnical	Commission,	2005).	

The	reader	will	note	that	these	mechanisms	are	software	implementation	choices	or	
software	process	choices	rather	than	system	architectural	choices	or	security	
requirements/policy	choices.	Between	these	mechanisms	and	a	workable	concept	of	a	
comprehensive	security	policy	for	a	system	or	its	substantial	components,	is	a	gap,	with	
no	obvious	way	to	bridge	it.	Consequently,	we	note	the	following	practical	limitations:	
	

● There	is	no	common	framework	or	conceptual	basis	with	which	to	integrate	
and	evaluate	mechanisms	in	combination.	It	is	unclear	how	the	various	
security	mechanisms	are	related	and	how	one	may	contribute	to	or	interfere	
with	another.	

● Guidance	is	scant	for	analysts,	architects,	and	developers	who	need	to	decide	
which	security	mechanism	to	use	where,	when,	how,	and	why;	and	also	for	
integrators	and	administrators	who	need	to	decide	how	to	update	the	
selection	of	mechanisms	and	their	configuration	within	a	system	as	security	
needs	and	policies	evolve.	

No	satisfactory	framework	exists	in	which	security	requirements	and	policies	can	be	
assembled	in	hierarchical	patterns	that	can	be	designed	and	combined	in	a	system	
architecture	to	meet	specific	high‐level	security	policies	and	requirements.	
	
We	believe	there	is	an	opportunity	to	address	security	requirements	challenges	
throughout	a	system	architecture	using	security	licenses.	
	
In	our	previous	work	(Alspaugh,	Asuncion,	&	Scacchi,	2009,	2011;	Alspaugh	&	Scacchi,	
2009;	Alspaugh,	Scacchi,	&	Asuncion,	2010),	we	showed	how	software	licenses	for	the	
components	of	a	system	can	be	used	to	guide	architectural	choices	and	evaluate	rights	
and	obligations	for	the	system	as	a	whole,	even	when	components	are	governed	by	
different	licenses.	Using	our	approach,	a	system	architect	can	work	both	down	from	the	
top,	propagating	desired	license	rights	for	the	system	down	to	individual	components	
to	see	what	license	obligations	are	required	to	obtain	those	rights,	and	up	from	the	
bottom,	combining	license	rights	and	obligations	for	components	and	then	subsystems	
into	the	total	rights	and	obligations	for	the	system.	In	either	direction,	our	approach	
identifies	any	conflicts	and	mismatches	among	licenses	in	the	architecture.	
	
We	propose	the	same	approach	for	security	licenses.	System	architects	and	analysts	can	
select	desired	security	rights,	assign	an	expected	security	license	to	each	subsystem	or	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 115 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

component,	and	evaluate	interactions	between	these	choices	at	every	level	from	an	
individual	component	up	to	the	entire	system.	Of	course,	assigning	a	security	license	to	
a	component	does	not	guarantee	that	the	component’s	developer	will	make	it	satisfy	its	
security	obligations,	any	more	than	accepting	a	component	under	the	GNU	General	
Public	License	(GPL)	guarantees	that	the	system’s	stakeholders	will	satisfy	the	GPL	
intellectual	property	(IP)	obligations.	But	assigning	a	license	(whether	security	or	IP)	to	
each	component	records	the	assumptions	being	made	about	that	component	and	its	
use,	and	evaluating	those	licenses	in	the	context	of	the	system’s	architecture	identifies	
mismatches	and	conflicts	among	those	assumptions	for	that	architecture’s	design	
choices.	When	the	evaluation	is	automated,	as	it	is	in	our	work	(Alspaugh	et	al.,	2011),	it	
forms	the	foundation	for	design	guidance	with	respect	to	the	issues	raised	by	the	
licenses,	and	a	means	for	combining	the	potentially	dissimilar	licenses	to	evaluate	their	
overall	interaction	and	effect,	and	thus	the	overall	interaction	and	effect	of	the	security	
mechanisms	that	are	expected	to	satisfy	the	obligations	and	of	the	security	
requirements	and	policies	that	the	rights	express.	

Security Licenses
In	general	terms,	a	security	license	is	analogous	to	an	ordinary	software	license	such	as	
GPL	(GNU	General	Public	License;	Free	Software	Foundation,	2007).	Software	licenses	
consist	of	intellectual	property	(IP)	rights	granted	by	the	licensor,	in	exchange	for	
corresponding	license	obligations	imposed	on	the	licensee.	A	license	presents	the	rights	
that	are	offered,	and	for	each	right	enumerates	the	obligations	that	are	required	in	
order	for	that	right	to	be	granted.	Many	of	the	actions	required	for	the	obligations	are	
related	to	the	actions	allowed	by	the	rights.	This	is	particularly	so	for	open‐source	
licenses,	for	which	fulfilling	some	of	the	obligations	requires	parts	of	the	rights	that	are	
granted.	Also,	particularly	for	open‐source	licenses,	the	obligations	and	rights	are	
framed	to	take	effect	in	an	architectural	context,	with	most	obligations	taking	effect	
with	respect	to	either	the	component	for	which	rights	are	granted	or	component(s)	
determined	by	the	connectors	and	architectural	topology	around	that	component.	
Because	software	licenses	are	expressed	in	natural	language,	the	rights	and	obligations	
are	often	presented	in	an	intermingled	organization,	and	much	of	a	license	may	be	
devoted	to	defining	terms,	classes	of	entities	referred	to,	and	conditions	under	which	
the	various	provisions	take	effect.	But	the	conceptual	structure	remains	that	of	a	list	of	
rights	offered,	each	in	exchange	for	specific	obligations.	
	
Our	innovation	is	to	similarly	specify	components’	security	rights	and	obligations,	
which	we	can	then	model,	analyze,	and	support	throughout	the	system’s	development	
and	evolution,	and	use	to	guide	its	design	and	instantiation.	
	
There	is	no	“Securityright	Act”	analogous	to	the	U.S.	Copyright	Act	(1976),	or	Berne	
Convention	(1979),	to	define	the	exclusive	security	rights	of	system	stakeholders.	We	
present	these	possible	security	rights	and	obligations	as	an	indication	of	what	sorts	of	
actions	might	be	regulated	by	security	licenses	for	data	organized	into	security	
compartments	and	code	organized	into	components.	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 116 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Some Possible Security Rights

1. The	right	to	read	data	in	compartment	T	

2. The	right	to	add	data	to	compartment	T	

3. The	right	to	remove	data	from	compartment	T	

4. The	right	to	replace	component	C	with	another	component	D	

5. The	right	to	update	component	C	to	newer	version	C′	

6. The	right	to	revert	component	C	to	older	version	C′	

7. The	right	to	add	component	C	in	a	specified	architectural	configuration	

8. The	right	to	update	component	C	in	a	specified	architectural	configuration	

9. The	right	to	alter	the	architectural	topology	of	subcomponent	B	

10. The	right	to	alter	the	architecture	of	system	S	

11. The	right	to	add	security	mechanism	M	in	a	specified	configuration	

12. The	right	to	update	security	mechanism	M	in	a	specified	configuration	

13. The	right	to	remove	security	mechanism	M	from	a	specified	configuration	

14. The	right	to	delegate	security	right	R	

15. The	right	to	read	the	security	license	of	component	C	

16. The	right	to	replace	the	security	license	L	of	component	C	with	another	

security	license	L′	

17. The	right	to	update	security	license	L	

Some Possible Security Obligations

1. The	obligation	for	user	U	to	verify	his/her	identity,	by	password	or	other	
specified	authentication	process	

2. The	obligation	for	user	U	to	have	been	vetted	by	authority	A	to	exercise	
security	right	R	

3. The	obligation	for	user	U	to	be	delegated	a	one‐time	right	by	authority	A	to	
exercise	security	right	R	

4. The	obligation	for	component	C	to	have	been	vetted	by	authority	A	to	
exercise	security	right	R	

5. The	obligation	for	component	C	to	have	been	vetted	by	authority	A	to	be	the	
object	of	security	right	R	

6. The	obligation	for	each	component	connected	to	component	C	to	allow	it	to	
exercise	security	right	R	

7. The	obligation	for	security	license	L	to	meet	specified	criteria	
8. The	obligation	for	security	license	L	to	be	approved	by	authority	A	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 117 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

Effectiveness, Manageability, Evolvability
Consider	the	case	of	the	development	of	an	open‐architecture	(OA)	system	integrating	
proprietary	and	open‐source	components	from	a	variety	of	producers,	most	of	whom	
do	not	coordinate	their	activities	and	none	of	whom	are	controlled	by	the	organization	
producing	the	OA	system.	From	the	point	of	view	of	ensuring	security,	this	is	arguably	
the	worst	possible	case,	but	it	is	an	increasingly	prevalent	development	model	
(Alspaugh	et	al.,	2010).	The	OA	approach	gives	access	to	a	wide	selection	of	complex	
components	of	high	quality,	and	allows	the	system	to	evolve	as	quickly	as	its	integrators	
can	find	appropriate	new	versions	or	new	components	and	evolve	their	architecture	
and	shim	code	to	accommodate	them.	
	
Since	the	producers	do	not	coordinate,	they	are	unlikely	to	use	the	same	security	
approaches,	and	indeed	may	not	even	publish	what	those	approaches	are.	To	control	
security	in	the	resulting	system,	each	component	is	enclosed	in	a	containment	vessel	
(Scacchi	&	Alspaugh,	2012)	that	isolates	the	component	with	a	hypervisor	(“Xen	
Hypervisor,”	n.d.)	and	mediates	all	communication	with	the	component	
(method/function	calls,	or	data	streams,)	through	shim	code	that	monitors	and	restricts	
it.	
	
A	typical	current‐day	technique	(Luo	&	Du,	2011)	for	managing	security	measures	is	to	
use	capability	lists	to	control	each	component’s	access	to	resources	such	as	function	
calls	and	data	compartments.	Each	access	is	delayed	briefly	while	the	monitor	checks	
the	access	against	the	accessing	component’s	capability	list,	then	blocked	if	the	
component	was	not	granted	the	capability	to	access	that	resource.	In	our	experience,	
each	capability	list	is	a	text	file	listing	allowed	and/or	forbidden	capabilities,	managed	
manually;	new	capabilities	are	typically	added	to	the	end	of	the	file.	As	there	appears	to	
be	no	formal	model	supporting	relationships	among	capabilities,	interactions	between	
capabilities	are	also	identified	and	managed	manually.	The	text	files	are	detailed,	which	
is	a	positive	aspect,	but	therefore	also	long	and	mind‐numbingly	tedious,	so	errors	
inevitably	creep	in	and	are	not	noticed.	Because	a	capability	list	has	no	hierarchy	or	
recursive	structure,	managing	them	is	not	scalable.	
	
A	more	sophisticated	approach	is	possible	using	a	declarative	policy	language	such	as	
Ponder	(Damianou,	Dulay,	Lupu,	&	Sloman,	2001)	or	an	ontology‐based	language	such	
as	KAoS	(Uszok	et	al.,	2004)	that	groups	capabilities	hierarchically,	in	ontologies	(KAoS)	
or	grouped	by	roles	(Ponder).	However,	they	have	no	provision	for	organizing	
capabilities	by	software	components,	combined	hierarchically	into	system	
architectures,	and	no	obvious	connection	to	law.	
	
We	contrast	the	use	of	security	licenses.	In	some	ways,	the	approaches	are	similar,	in	
that	our	candidate	security	rights	are	reminiscent	of	capabilities,	and	security	licenses	
can	also	be	used	to	identify	and	block	disallowed	operations	automatically.	However,	
because	many	of	the	actions	required	for	the	security	obligations	are	related	by	
subsumption	to	those	granted	by	the	security	rights,	and	many	of	the	obligations	are	in	
the	context	of	the	component	for	which	corresponding	rights	are	being	granted,	it	is	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 118 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

possible	to	automatically	calculate	the	interaction	of	rights	and	obligations	throughout	
the	immediate	neighborhood	of	each	component,	the	subsystem	containing	the	
component,	and	so	on,	recursively	on	up	to	the	system	as	a	whole	(Alspaugh	et	al.,	
2009).	Structuring	the	security	policies	as	licenses	gives	a	form	that	is	more	readily	
accessible	to	human	readers,	and	helps	convey	intention	and	rationale	by	relating	each	
obligation	to	the	right	it	contributes	toward.	Where	the	security	licenses	assigned	to	the	
components	in	the	architecture	conflict	or	misalign,	automated	support	can	identify	the	
provisions	in	conflict,	locate	the	conflict	to	the	modules	involved,	and	provide	
explanations	showing	the	architectural	chain	of	effects	that	led	up	to	the	conflict	
(Alspaugh	et	al.,	2011).	Perhaps	most	importantly,	it	supports	automation	of	the	
analysis	of	interactions	between	security	measures	and	of	the	assessment	of	the	
system’s	overall	degree	and	kind	of	security	as	a	function	of	the	measures	taken	for	
each	component,	group	of	components,	subsystem,	and	so	forth,	recursively	up	to	the	
system	as	a	whole.	

Recent Events
Coordinated	international	attacks	on	vulnerable	software‐intensive	systems	of	high	
value	and	controlling	complex	systems	are	becoming	ever	more	apparent.	As	the	
Stuxnet	case	demonstrates,	security	threats	to	software	systems	are	multi‐valent,	multi‐
modal,	and	distributed	across	independently	developed	software	system	components	
(Falliere,	Murchu,	&	Chien,	2011).	Similarly,	it	is	now	clear	that	even	physically	isolated	
systems	are	vulnerable	to	external	security	attacks,	via	portable	storage	devices	like	
USB	drives,	modified	end‐user	devices	like	keyboards	and	mice	(Henning,	2011),	and	
social	engineering	techniques	(Sawers,	2011).	New	security	measures	and	policy	types	
are	required	to	defend	such	systems	through	new	threat	detection	and	parrying	
methods,	as	well	as	appropriate	active	defense	mechanisms.	What	makes	a	system	or	
system	architecture	secure	changes	over	time,	as	new	threats	emerge	and	as	systems	
evolve	to	meet	new	functional	requirements.	Consequently,	there	is	need	for	an	
approach	that	can	continuously	assure	the	security	of	complex,	evolving	systems	in	
ways	that	are	practical	and	scalable,	yet	robust,	tractable,	and	adaptable.	
	
The	Stuxnet	attacks	entered	through	software	system	interfaces	at	either	the	
component,	application	subsystem,	or	base	operating	system	level,	and	their	goal	was	
to	go	outside	or	beneath	their	entry	context.	However,	all	of	the	Stuxnet	attacks	on	the	
targeted	software	system	could	be	blocked	or	prevented	through	security	capabilities	
associated	with	the	open	software	interfaces	that	would	(a)	limit	access	or	evolutionary	
update	rights	lacking	proper	authorization,	as	well	as	(b)	“sandboxing”	(i.e.,	isolating)	
and	holding	up	any	evolutionary	updates	(the	attacks)	prior	to	their	installation	and	
run‐time	deployment.	Furthermore,	as	the	Stuxnet	attack	involved	the	use	of	corrupted	
certificates	of	trust	from	approved	authorities	as	false	credentials	that	allowed	
evolutionary	system	updates	to	go	forward,	it	seems	clear	that	additional	preventions	
are	needed	that	are	external	to,	and	prior	to,	their	installation	and	run‐time	
deployment.	The	development‐,	installation‐,	and	configuration‐time	rights	and	
obligations	previously	addressed	extend	the	ordinary	run‐time	benefits	of	security	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 119 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

licenses	to	defend	against	development‐,	distribution‐,	configuration‐,	and	update‐time	
attacks.	

Exclusive Security Rights
If	there	could	be	legally	defined	and	protected	exclusive	security	rights,	what	would	
they	be?	We	nominate	the	following	candidates	for	discussion:	

1. the	right	of	the	owner	of	a	copy	of	a	system	to	replace,	update,	or	revert	any	
of	its	components;	

2. the	right	of	the	owner	of	a	copy	of	a	system	to	add	or	remove	components	or	
otherwise	alter	its	architectural	topology;	

3. the	right	of	the	owner	of	a	copy	of	a	system	to	replace	or	update	the	security	
license	of	the	system	or	any	of	its	components;	and	

4. the	right	of	the	owner	of	a	copy	of	a	system	to	alter	its	user	Input/Output	
streams	or	ephemeral	data.	(We	envision	that	persistent	data	may	fall	into	a	
different	category	of	protected	entity.)	

As	with	the	exclusive	copyright	rights,	the	owner	of	a	right	may	license	all	or	part	of	it	to	
someone	else	in	exchange	for	obligations,	for	example,	to	allow	a	trusted	system	
provider	to	automatically	install	certain	kinds	of	updates.	

References
[1]	Alspaugh,	T.	A.,	Asuncion,	H.	U.,	&	Scacchi,	W.	(2009).	Intellectual	property	rights	

requirements	for	heterogeneously‐licensed	systems.	In	Proceedings	of	
the17th	IEEE	International	Requirements	Engineering	Conference	(RE	’09)	(pp.	
24–33).	Los	Alamitos,	CA:	IEEE.	

[2]	Alspaugh,	T.	A.,	Asuncion,	H.	U.,	&	Scacchi,	W.	(2011).	Presenting	software	license	
conflicts	through	argumentation.	In	Proceedings	of	the	23rd	International	
Conference	on	Software	Engineering	and	Knowledge	Engineering	(SEKE	2011)	
(pp.	509–514).	Knowledge	Systems	Institute,	Skokie,	IL.	

	[3]	Alspaugh,	T.	A.,	&	Scacchi,	W.	(2009).	Heterogeneously‐licensed	system	
requirements,	acquisition,	and	governance.	In	Proceedings	of	the	Second	
International	Workshop	on	Requirements	Engineering	and	Law	(RELAW	’09)	
(pp.	13–14).	Washington,	DC:	IEEE	Computer	Society.	

[4]		Alspaugh,	T.	A.,	Scacchi,	W.,	&	Asuncion,	H.	U.	(2010).	Software	licenses	in	
context:	The	challenge	of	heterogeneously‐licensed	systems.	Journal	of	the	
Association	for	Information	Systems,	11(11),	730–755.	

[5]	Berne	Convention	for	the	Protection	of	Literary	and	Artistic	Works.	(1979).	
Retrieved	from	http://www.wipo.int/treaties/en/ip/berne/	

[6]	Damianou,	N.,	Dulay,	N.,	Lupu,	E.,	&	Sloman,	M.	(2001).	The	Ponder	policy	
specification	language.	In	Proceedings	of	the	International	Workshop	on	
Policies	for	Distributed	Systems	and	Networks	(pp.	18–39).	Retrieved	from	
http://pdf.aminer.org/000/545/721/the_ponder_policy_specification_langua
ge.pdf	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 120 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

	[7]	Defense	Information	Systems	Agency.	(2011).	Android	2.2	(Dell)	security	
technical	implementation	guide	(STIG).	Retrieved	from	Defense	Information	
Systems	Agency,	
http://iase.disa.mil/stigs/net_perimeter/wireless/smartphone.html		

[8]	Falliere,	N.,	Murchu,	L.	O.,	&	Chien,	E.	(2011).	W32.Stuxnet	dossier	(Technical	
report).	Retrieved	from	
http://www.symantec.com/content/en/us/enterprise/media/security_respo
nse/whitepapers/w32_stuxnet_dossier.pdf	

	[9]	Franz,	M.	(2010).	E	unibus	pluram:	Massive‐scale	software	diversity	as	a	defense	
mechanism.	In	Proceedings	of	the	2010	Workshop	on	New	Security	Paradigms	
(NSPW	’10)	(pp.	7–16).	Retrieved	from	
http://www.ics.uci.edu/~franz/Zurich/MassiveScaleDiversity.pdf	

	[10]	Free	Software	Foundation.	(2007).	GNU	General	Public	License,	version	3.	
Retrieved	from	http://www.gnu.org/licenses/gpl‐3.0.html		

[11]	Henning,	E.	(2011).	Attack	of	the	computer	mouse.	The	H	Security.	Retrieved	
from		
http://www.h‐online.com/security/news/item/Attack‐of‐the‐computer‐
mouse‐1270018.html	

[12]International	Standards	Organization/International	Electrotechnical	Commision	
(ISO/IEC,	2005).	International	standard	27001,	retrienved	from	
http://www.27001‐online.com/		

[13]	Loscocco,	P.	A.,	Smalley,	S.	D.,	Muckelbauer,	P.	A.,	Taylor,	R.	C.,	Turner,	S.	J.,	&	
Farrell,	J.	F.	(1998).	The	inevitability	of	failure:	The	flawed	assumption	of	
security	in	modern	computing	environments.	In	Proceedings	of	the	21st	
National	Information	Systems	Security	Conference	(NISSC	’98)	(pp.	303–314).	
National	Technical	Information	Service,	Silver	Springs,	MD.	

[14]	Luo,	T.,	&	Du,	W.	(2011).	Contego:	Capability‐based	access	control	for	web	
browsers.	In	Proceedings	of	the	Fourth	International	Conference	on	Trust	and	
Trustworthy	Computing	(TRUST	’11)	(pp.	231–238).	Heidelberg,	Germany:	
Springer‐Verlag	Berlin.	

[15]	Salamat,	B.,	Jackson,	T.,	Wagner,	G.,	Wimmer,	C.,	&	Franz,	M.	(2011).	Runtime	
defense	against	code	injection	attacks	using	replicated	execution.	IEEE	
Transactions	on	Dependable	and	Secure	Computing,	8(4),	588–601.	

[16]	Sawers,	P.	(2011).	US	Govt.	plant	USB	sticks	in	security	study,	60%	take	the	bait.	
The	Next	Web	(TNW).	Retrieved	from	
http://thenextweb.com/insider/2011/06/28/us‐govt‐plant‐usb‐sticks‐in‐
security‐study‐60‐of‐subjects‐take‐the‐bait	

	[17]	Scacchi,	W.,	&	Alspaugh,	T.	A.	(2012,	July).	Advances	in	the	acquisition	of	secure	
systems	based	on	open	architectures. Journal	of	Cybersecurity	&	Information	
Systems,	January	2013,	(to	appear).	
	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 121 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

[18]	Seacord,	R.	C.	(2008).	CERT	C	secure	coding	standard.	New	York,	NY:	Addison‐
Wesley.	

[19]	Smalley,	S.	(2012).	The	case	for	security	enhanced	(se)	android.	Presentation	at	
the	2012	Android	Builder’s	Summit,	Redwood	Shores,	CA.	

[20]	Spencer,	R.,	Smalley,	S.,	Loscocco,	P.,	Hibler,	M.,	Andersen,	D.,	&	Lepreau,	J.	
(1999).	The	Flask	Security	Architecture:	System	support	for	diverse	security	
policies.	In	Proceedings	of	the	Eighth	USENIX	Security	Symposium	(SSYM	’99)	
(pp.	123–139).	Retrieved	from	http://www.cs.utah.edu/flux/papers/flask‐
usenixsec99.pdf	

	[21]	Sun,	K.,	Wang,	J.,	Zhang,	F.,	&	Stavrou,	A.	(2012).	SecureSwitch:	BIOS‐assisted	
isolation	and	switch	between	trusted	and	untrusted	commodity	OSes.	In	
Proceedings	of	the	19th	Network	and	Distributed	System	Security	Symposium	
(NDSS	2012).	Retrieved	from	
http://cs.gmu.edu/~astavrou/research/Secure_Switching_ndss2012.pdf	

	[22]	U.S.	Copyright	Act,	17	U.S.C.	(1976).	Retrieved	from	
http://www.copyright.gov/title17/	

[23]	Uszok,	A.,	Bradshaw,	J.	M.,	Johnson,	M.,	Jeffers,	R.,	Tate,	A.,	Dalton,	J.,	&	Aitken,	S.	
(2004).	KAoS	policy	management	for	semantic	web	services.	IEEE	Intelligent	
Systems,	19(4),	32–41.	

[24]	Xen	hypervisor.	(no	date).	Retrieved	from	http://xen.org/products/xenhyp.html	

Acknowledgements
This	research	is	supported	by	grant	#N00244‐12‐1‐0004	from	the	Acquisition	Research	
Program	at	the	Naval	Postgraduate	School,	and	by	grant	#0808783	from	the	U.S.	
National	Science	Foundation.	No	review,	approval,	or	endorsement	implied.	

	 	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 122 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

THIS	PAGE	INTENTIONALLY	LEFT	BLANK	
	
	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 123 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

2003 - 2012 Sponsored Research Topics

Acquisition	Management	

 Acquiring	Combat	Capability	via	Public‐Private	Partnerships	(PPPs)	

 BCA:	Contractor	vs.	Organic	Growth	

 Defense	Industry	Consolidation	

 EU‐US	Defense	Industrial	Relationships	

 Knowledge	Value	Added	(KVA)	+	Real	Options	(RO)	Applied	to	Shipyard	
Planning	Processes		

 Managing	the	Services	Supply	Chain	

 MOSA	Contracting	Implications	

 Portfolio	Optimization	via	KVA	+	RO	

 Private	Military	Sector	

 Software	Requirements	for	OA	

 Spiral	Development	

 Strategy	for	Defense	Acquisition	Research	

 The	Software,	Hardware	Asset	Reuse	Enterprise	(SHARE)	repository	

Contract	Management	

 Commodity	Sourcing	Strategies	

 Contracting	Government	Procurement	Functions	

 Contractors	in	21st‐century	Combat	Zone	

 Joint	Contingency	Contracting	

 Model	for	Optimizing	Contingency	Contracting,	Planning	and	Execution	

 Navy	Contract	Writing	Guide	

 Past	Performance	in	Source	Selection	

 Strategic	Contingency	Contracting	

 Transforming	DoD	Contract	Closeout	

 USAF	Energy	Savings	Performance	Contracts	

 USAF	IT	Commodity	Council	

 USMC	Contingency	Contracting	

Financial	Management	

 Acquisitions	via	Leasing:	MPS	case	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 124 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

 Budget	Scoring	

 Budgeting	for	Capabilities‐based	Planning	

 Capital	Budgeting	for	the	DoD	

 Energy	Saving	Contracts/DoD	Mobile	Assets	

 Financing	DoD	Budget	via	PPPs	

 Lessons	from	Private	Sector	Capital	Budgeting	for	DoD	Acquisition	
Budgeting	Reform	

 PPPs	and	Government	Financing	

 ROI	of	Information	Warfare	Systems	

 Special	Termination	Liability	in	MDAPs	

 Strategic	Sourcing	

 Transaction	Cost	Economics	(TCE)	to	Improve	Cost	Estimates	

Human	Resources	

 Indefinite	Reenlistment	

 Individual	Augmentation	

 Learning	Management	Systems	

 Moral	Conduct	Waivers	and	First‐term	Attrition	

 Retention	

 The	Navy’s	Selective	Reenlistment	Bonus	(SRB)	Management	System	

 Tuition	Assistance	

Logistics	Management	

 Analysis	of	LAV	Depot	Maintenance	

 Army	LOG	MOD	

 ASDS	Product	Support	Analysis	

 Cold‐chain	Logistics	

 Contractors	Supporting	Military	Operations	

 Diffusion/Variability	on	Vendor	Performance	Evaluation	

 Evolutionary	Acquisition	

 Lean	Six	Sigma	to	Reduce	Costs	and	Improve	Readiness	

 Naval	Aviation	Maintenance	and	Process	Improvement	(2)	

 Optimizing	CIWS	Lifecycle	Support	(LCS)	

 Outsourcing	the	Pearl	Harbor	MK‐48	Intermediate	Maintenance	Activity		

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 125 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

 Pallet	Management	System	

 PBL	(4)	

 Privatization‐NOSL/NAWCI	

 RFID	(6)	

 Risk	Analysis	for	Performance‐based	Logistics	

 R‐TOC	AEGIS	Microwave	Power	Tubes	

 Sense‐and‐Respond	Logistics	Network	

 Strategic	Sourcing	

Program	Management	

 Building	Collaborative	Capacity	

 Business	Process	Reengineering	(BPR)	for	LCS	Mission	Module	
Acquisition	

 Collaborative	IT	Tools	Leveraging	Competence	

 Contractor	vs.	Organic	Support	

 Knowledge,	Responsibilities	and	Decision	Rights	in	MDAPs	

 KVA	Applied	to	AEGIS	and	SSDS	

 Managing	the	Service	Supply	Chain	

 Measuring	Uncertainty	in	Earned	Value	

 Organizational	Modeling	and	Simulation	

 Public‐Private	Partnership	

 Terminating	Your	Own	Program	

 Utilizing	Collaborative	and	Three‐dimensional	Imaging	Technology	

	

A	complete	listing	and	electronic	copies	of	published	research	are	available	on	our	
website:	www.acquisitionresearch.net					
	

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 126 -

==============k^s^i=mlpqdo^ar^qb=p`elli=

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

THIS	PAGE	INTENTIONALLY	LEFT	BLANK	
	
	

	

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó=
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=
RRR=avbo=ol^aI=fkdboplii=e^ii=
jlkqbobvI=`^ifclokf^=VPVQP=

www.acquisitionresearch.net	

