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Abstract 

Initiatives to reduce the cost of ship maintenance have not yet realized the 

normal cost-reduction learning curve improvements. One explanation is the lack of 

recommended technologies. Damen, a Dutch shipbuilding and service firm, has 

incorporated similar technologies and is developing others to improve its operations. 

The research team collected data on Dutch ship maintenance operations and used 

them to build three types of computer simulation models of ship maintenance and 

technology adoption. The results were analyzed and compared with previously 

developed modeling results of U.S. Navy ship maintenance and technology 

adoption. Adopting 3D PDF alone improves ROI significantly more than adopting a 

logistics package alone and adding both technologies improves ROI more than 

adding either technology alone. Adoption of the technologies would provide cost 

benefits far in excess of not using the technologies and there were marginal benefits 

in sequentially implementing the technologies over immediately implementing them. 

There are a number of issues in comparing the results with previous research but 

the potential benefits of using the technologies are very high in both cases. 

Implications for acquisition practice include the need for careful analysis and 

selection from among a variety of available information technologies and the 

recommendation for a phased development and implementation approach to 

manage uncertainty.  

Keywords: Technology adoption, ship maintenance, Laser scanning 

technology, Collaborative product lifecycle management 
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Executive Summary 

There have been a series of initiatives designed to reduce the cost of ship 

maintenance. SHIPMAIN, and its derivatives, was one of the initiatives designed to 

improve ship maintenance performance within the Navy by standardizing processes 

in order to take advantage of learning-curve cost savings.  However, these process 

improvement initiatives have not yet realized the normal cost-reduction learning 

curve improvements for common maintenance items for a series of common 

platform ships. One explanation is that the initial instantiation of SHIPMAIN did not 

include two recommended technologies, 3-dimensional laser scanning technology 

(3D LST) and collaborative product lifecycle management (CPLM), that were 

deemed necessary by the creator of SHIPMAIN for ensuring the success of the new 

standardized approach (i.e., normal learning curve cost savings). 

Damen, a large Dutch shipbuilding and service firm has incorporated similar 

technologies and is developing others to improve its operations. In addition, the 

Royal Dutch Navy performs all of its own ship maintenance in a single yard and 

operation, and, we extrapolated and compared the potential benefits of similar 

technologies with similar projections for the U.S. Navy ship maintenance processes. 

These organizations provide a source of relatively reliable data on operations that 

are comparable to those performed by the U.S. Navy. One variation on the 3D LST 

technology was the use of 3D PDF by the Damen company. The 3D PDF technology 

was roughly comparable to the potential use of 3D LST and provided a baseline 

approximation for the use of 3D LST in projecting the future value of the technology. 

This study compared the Dutch experience with projections for the use of the 

two technologies in the U.S. Navy. Because the technologies have not been fully 

implemented in the Dutch shipbuilding and ship maintenance venue, we 

extrapolated from the partial implementation of CPLM and 3D PDF in order to 

compare potential projections of possible improvements in both the Dutch and U.S. 

cases.  
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The current work addresses the following questions:  

How are the Dutch using and preparing to adopt advanced technologies, such as 3D 
LST and CPLM, in shipbuilding and maintenance?  

What are the potential changes in ROIs provided by the adoption of these advanced 
technologies?   

How do those potential returns compare with projected estimates of returns on 
technology adoption of 3D LST and CPLM in the U.S. Navy?   

The research team collected data on Dutch ship maintenance operations and 

used them to build three types of computer simulation models of ship maintenance 

and technology adoption. The approach included use of the knowledge value added 

(KVA) models of return on technology investments in those operations, system 

dynamics models (based on the KVA preliminary ROI results) of ship maintenance 

operations, and integrated risk management (IRM) models of implementation plans 

for the technology adoption. The results were then analyzed and compared with 

previously developed modeling results of U.S. Navy ship maintenance and 

technology adoption.  

The linear ROI projections from adopting various iterations of the partial 

CPLM tool (i.e., only the logistics package) and the 3D PDF tool in the Dutch context 

demonstrated the advantages of adopting both technologies over either technology 

alone, compared to a baseline without either technology. Adopting 3D PDF alone 

improves ROI significantly more than adopting a logistics package alone (100% 

improvement > 46% improvement) and adding both technologies improves ROI 

more than adding either technology alone (239% improvement > 42% improvement 

or 100% improvement), suggesting that there may be synergy between the 

technologies. This is also supported by the 139% improvement gained by adding 

logistics if 3D PDF is already in place. These results were then used to forecast the 

benefits of various adoption options for the tools using the IRM methodology. 

The results of the IRM analysis provided forecasts of the benefits of various 

options for implementing the technologies separately or in combination.  The results 
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(shown in the following figure) indicated that adoption of the technologies would 

provide cost benefits far in excess of not using the technologies. In addition, the 

results indicated that there were marginal benefits in sequentially implementing the 

technologies over immediately implementing them. Given the long cycle for 

organizations to benefit from technology adoption, it might be better to adopt the 

technologies immediately.  

Comparing these results with U.S. Navy results offers some partially confirming 

evidence for the prior research that projected the benefits of adopting CPLM and 3D 

LST technologies for ship maintenance. There are a number of issues in making 

these comparisons that must be noted given the differences in the size of the two 

countries’ ship maintenance operations and in the extent of implementation of the 

two types of technologies. However, the comparisons have validity when these 

issues are accounted for, and the potential benefits of using the technologies are 

very high in both cases. 

The scenarios have some similarities. All overall returns on investment are 

positive and large. This supports the adoption of advanced technologies such as 3D 

LST, 3D PDF models, and CPLM to improve the efficiency of resource use. The 

scenarios also have potentially significant differences. The preparation for 

maintenance phases of the U.S. scenario has a much larger technology-adopted 

return on investment than the maintenance implementation phases of the U.S. 

scenario or the Dutch scenario (2,019% >> 201% or 274%). Several factors could 

explain this difference. A real options approach was applied to investigate the 
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impacts of technology selection and implementation strategies on project value. The 

adoption of 3D PDF models and a logistics management package within a CPLM 

environment was found to provide the greatest value.  

Implications for acquisition practice include the need for careful analysis and 

selection from among a variety of available information technologies and the 

recommendation for a phased development and implementation approach to 

manage uncertainty.  
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I. Introduction 

The current cost-constrained environment within the federal government and 

DoD requires a defensible approach to cost reductions without compromising the 

capability of core defense processes and platforms. Due to this environment, defense 

leaders today must maintain and modernize the U.S. armed forces to retain 

technological superiority while simultaneously balancing defense budget cost 

constraints and extensive military operational commitments. At the same time, defense 

leaders must navigate a complex information technology (IT) acquisition process. 

Maintenance programs play a critical role in meeting these DoD objectives. One such 

core process that is central to U.S. naval operations is the ship maintenance process. 

This process alone accounts for billions of dollars in the U.S. Navy’s annual budget. 

There have been a series of initiatives designed to reduce the cost of this core process, 

including ship maintenance. SHIPMAIN, and its derivatives, was one of the initiatives 

designed to improve ship maintenance performance within the Navy by standardizing 

processes in order to take advantage of learning curve cost savings. Figure 1 provides 

a notional picture of this phenomenon.   

  

Figure 1. Ship Maintenance Learning Curve 
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However, these process improvement initiatives have not yet realized the normal 

cost-reduction learning curve improvements for common maintenance items for a series 

of common platform ships. One explanation is that the initial instantiation of SHIPMAIN 

did not include two recommended technologies, 3-dimensional laser scanning 

technology (3D LST) and collaborative product lifecycle management (CPLM), that were 

deemed necessary by the creator of SHIPMAIN for ensuring the success of the new 

standardized approach (i.e., normal learning curve cost savings). Previous research 

(Ford, Housel, & Mun, 2011) indicates that adding these technologies may help 

SHIPMAIN, or its derivatives, to capture the potential saving. But the technologies have 

not been implemented to date in the ship maintenance processes.  

However, Damen, a large shipbuilding and service firm has incorporated similar 

technologies and is developing others to improve its operations. In addition, the Royal 

Dutch Navy performs all of its own ship maintenance in a single yard and operation. In 

the current study the potential benefits of similar technologies are extrapolated and 

compared with similar projections for U.S. Navy ship maintenance processes. These 

organizations provide a source of relatively reliable data on operations that are 

comparable to those performed by the U.S. Navy.  

A. Problem Description 

Previous research on the potential use of 3D LST and CPLM technology in U.S. 

Navy ship maintenance (e.g., Komoroski, 2005; Ford, Housel, & Mun, 2011) estimated 

the impacts on processes due to technology adoption. Changes such as reengineering 

ship maintenance processes, the sizes of reductions in cycle times, and workforce 

requirements are examples of model portions that required modelers to make 

assumptions about the potential impacts of these technologies in modeling projected 

results. While the previous work has provided defensible estimates of potential 

improvements (in returns on investment, ROI) and cost savings, the validity and 

usefulness of these models has been limited by the lack of comparative data on ship 

maintenance processes and technology investments, and of their potential impacts on 

performance. Therefore, the acquisition of data on Dutch naval fleet maintenance 
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processes and comparison of those data with previous U.S. Navy results was a critical 

next step in improving U.S. naval technology acquisition decision-making, in particular 

with regard to ship maintenance.  

To be valuable, the data source or sources for this work had to have several 

critical similarities with U.S. naval ship maintenance processes. The data source had to 

consider technological innovation and the adoption of advanced technologies to be an 

important part of its naval maintenance acquisition strategy. The data source or sources 

had to be large enough to support continuous ship maintenance operations because the 

intermittent stopping and restarting of operations would not be consistent with important 

assumptions of the modeling approach. Finally, the data source had to be accessible, 

willing to share the data, and willing to allow us to obtain the new data required for our 

modeling approach. These and other criteria limited the potential pool of sources to 

nations or large industrial ship maintenance organizations that were on good terms with 

the United States, advanced enough in their operations to compare with those of the 

U.S. Navy, progressive enough in their strategies to include continuous technology 

adoption, and willing to share data and information that is often considered essential for 

national security or competitive advantage. Damen Industries and the Royal Dutch Navy 

(RDN) met most of these criteria and were willing to meet our requirements for data 

acquisition and sharing.  

The current work addresses the following questions:  

 How are the Dutch using and preparing to adopt advanced 
technologies, such as 3D LST and CPLM, in shipbuilding and 
maintenance?  

 What are the potential changes in ROIs provided by the adoption of 
these advanced technologies?   

 How do those potential returns compare with projected estimates of 
returns on technology adoption of 3D LST and CPLM in the U.S. 
Navy? 
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B. Research Methodology and Background 

The traditional ROI equation is typically expressed as (Revenue – Investment) / 

Investment, which represents the productivity ratio of output (i.e., Revenue in ROI ÷ 

Input or Investment Cost in ROI). Accomplishing this analysis in a nonprofit environment 

presents challenges because there is no actual revenue generated. Cost savings from 

reductions in manpower requirements (i.e., time allocated to employee workload for 

various tasks) is available to provide the impact on the denominator of the ship 

maintenance efforts. However, the knowledge value added (KVA) methodology also 

allows for generation of a quantifiable surrogate for revenue in the form of common 

units of output described in terms of units of learning time.1 Specifically, the KVA 

methodology allowed the study team to quantify the knowledge embedded in the new 

processes to use in generating common units of output estimates. 

The KVA analysis provided the basic ROI estimates critical in forecasting the 

future value of various automation options within an optimized portfolio over time using 

the integrated risk management (IRM) framework and supporting toolset.  

The research team collected data on Dutch ship operations as described in the 

Data Collection section and used it to build three types of computer simulation models 

of ship maintenance and technology adoption: knowledge value added (KVA) models of 

return on technology investments in those operations, system dynamics models (based 

on the KVA preliminary ROI results) of ship maintenance operations, and integrated risk 

management models of implementation plans for technology adoption. The results were 

then analyzed and compared with previously developed modeling results of U.S. Navy 

ship maintenance and technology adoption. In what follows, we review the three 

approaches to projecting the potential cost benefits of adopting the technologies, 

beginning with a general review of the KVA, SD, and IRM approaches. This is followed 

by the projected results from applying these approaches to assess the impacts of the 
                                            

1 KVA can provide other means for describing outputs in common units, such as lines of code (controlling 
for complexity per line of code) and process instructions (controlling for complexity per instruction), as well 
as other means. 
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two technologies. A comparison of the Dutch and U.S. naval maintenance results is 

provided followed by the results of the IRM forecasts.  

Knowledge value added (KVA) measures the value provided by human capital 

and IT assets by an organization, process, or function at the subprocess level (Figure 

2). It monetizes the outputs of all assets, including intangible knowledge assets. 

Capturing the value embedded in an organization’s core processes, employees, and IT 

enables the actual cost and revenue of a product or service to be calculated.  

 

Figure 2. Measuring Output 
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assets. A higher ROK signifies better utilization of knowledge assets. If IT investments 

do not improve the ROK value of a given process, steps must be taken to improve that 

process’s function and performance.   

Table 1. KVA Metrics 

Metric Description Type Calculation 

Return on Knowledge 
(ROK) 

Basic productivity, cash-
flow ratio 

Subcorporate, process-level 
performance ratio 

(Outputs-Benefits in Common Units) 

Cost to Produce Output 

Return on Investment 
(ROI) 

Same as ROI at the sub-
corporate, process level 

Traditional investment 
finance ratio 

(Revenue-Investment Cost) 

Investment cost 

 
The goal is to determine which core processes provide the highest ROIs and 

ROKs, and to make suggested process improvements based on the results. In the 

current work, KVA is used to measure the benefits of technology adoption in Dutch ship 

maintenance. This analysis provides a means to check the reliability of prior studies’ 

estimates of the potential ROI core process improvements from using CPLM, 3D and 

LST in ship maintenance core processes in the U.S. Navy yards.  

C. System Dynamics  

The system dynamics methodology applies a control theory perspective to the 

design and management of complex human systems. System dynamics combines 

servo-mechanism thinking with computer simulation to create insights about the 

development and operation of these systems. It is one of several established and 

successful approaches to systems analysis and design (Flood & Jackson, 1991; Lane & 

Jackson, 1995; Jackson, 2003). Forrester (1961) develops the methodology’s 

philosophy, and Sterman (2000) specifies the modeling process with examples and 

describes numerous applications. System dynamics is used to build causal-based (vs. 

correlation-based) models that reflect the components and interactions that drive 

behavior and performance. The methodology has been used extensively to explain, 

design, manage, and, thereby, improve the performance of many types of systems, 

including development projects. The system dynamics perspective focuses on how the 

internal structure of a system impacts system and managerial behavior and, thereby, 

performance over time. The approach is unique in its integrated use of stocks and flows, 
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causal feedback, and time delays to model and explain processes, resources, 

information, and management policies. Stocks represent accumulations or backlogs of 

work, people, information, or other portions of the system that change over time. Flows 

represent the movement of those commodities into, between, and out of stocks. The 

methodology’s ability to model many diverse system components (e.g., work, people, 

money, value), processes (e.g., design, technology development, production, 

operations, quality assurance), and managerial decision-making and actions (e.g., 

forecasting, resource allocation) makes system dynamics useful for modeling and 

investigating military operations, the design of materiel, and acquisition.  

When applied to acquisition programs, system dynamics has focused on how 

performance evolves in response to interactions among development strategy (e.g., 

evolutionary development versus traditional), managerial decision-making (e.g., scope 

developed in specific blocks), and development processes (e.g., concurrence). System 

dynamics is appropriate for modeling acquisition because of its ability to explicitly model 

critical aspects of development projects. System dynamics models of development 

projects are purposefully simple relative to actual practice to expose the relationships 

between causal structures and the behavior and performance that they create. 

Therefore, although many processes and features inherent in system design and used 

by participants interact to determine performance, only those that describe features 

related to the topic of study are included in system dynamics models.   

System dynamics has been successfully applied to a variety of development and 

project management issues, including rework (Cooper, 1993a, 1993b,1993c; Cooper & 

Mullen, 1993), the prediction and discovery of failures in project fast-track 

implementation (Ford & Sterman, 2003b), poor schedule performance (Abdel-Hamid, 

1988), tipping point structures in projects (Taylor & Ford, 2008, 2006), contingency 

management (Ford, 2002), resource allocation (Joglekar & Ford, 2005; Lee, Ford, & 

Joglekar, 2007), and the impacts of changes (Rodriguez & Williams, 1998; Cooper, 

1980) and concealing rework requirements (Ford & Sterman, 2003a) on project 

performance. See Lyneis and Ford (2007) for a review of the application of system 

dynamics to projects and project management.  
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System dynamics has also been applied to military systems, including planning 

and strategy (Melhuish, Pioch, & Seidel, 2009; Bakken & Vamraak, 2003; Duczynski, 

2000; McLucas, Lyell, & Rose, 2006), workforce management (Bell & Liphard, 1978), 

technology (Bakken, 2004), command and control (Bakken & Gilljam, 2003; Bakken, 

Gilljam, & Haerem, 2004), operations (Bakken, Ruud, & Johannessen, 2004; Coyle & 

Gardiner, 1991), logistics (Watts & Wolstenholme, 1990 ), acquisition (Ford, Housel, & 

Dillard, 2010; Ford, Housel, & Mun, 2011; Ford & Dillard 2009a, 2009b, 2008; 

Bartolomei, 2001; Homer & Somers, 1988) and large system programs (Cooper, 1994; 

Lyneis, Cooper, & Els, 2001). Coyle (1996) provides a survey of applications of system 

dynamics to military issues. In the current work, system dynamics is used to model ship 

maintenance operations to generate realistic forecasts of performance. The recent 

works by Ford, Housel, and Mun (2011) and Ford, Housel, and Dillard (2010) are 

particularly relevant to the current research because they successfully demonstrated the 

ability of system dynamics to be integrated with knowledge value added analysis for 

DoD acquisition. 
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II. IRM Approach 

A. Integrated Risk Management  

Integrated risk management (IRM) is an eight-step, quantitative software-based 

modeling approach for the objective quantification of risk (cost, schedule, technical), 

flexibility, strategy, and decision analysis. The method can be applied to program 

management, resource portfolio allocation, return on investment to the military 

(maximizing expected military value and objective value quantification of nonrevenue 

government projects), analysis of alternatives or strategic flexibility options, capability 

analysis, prediction modeling, and general decision analytics. The method and toolset 

provide the ability to consider hundreds of alternatives with budget and schedule 

uncertainty, and provide ways to help the decision-maker maximize capability and 

readiness at the lowest cost. This methodology is particularly amenable to resource 

reallocation and has been taught and applied by the authors for the past 10 years at 

over 100 multinational corporations and over 30 projects at the U.S. Department of 

Defense (DoD). 

IRM provides a structured approach that will yield a rapid, credible, repeatable, 

scalable, and defensible analysis of cost savings and total cost of ownership while 

ensuring that vital capabilities are not lost in the process. The IRM + KVA methods do 

this by estimating the value of a system or process in a common and objective way 

across various alternatives and providing the return on investment (ROI) of each in 

ways that are both comparable and rigorous. These ROI estimates across the portfolio 

of alternatives provide the inputs necessary to predict the value of various options. IRM 

incorporates risks, uncertainties, budget constraints, implementation, life-cycle costs, 

reallocation options, and total ownership costs in providing a defensible analysis 

describing management options for the path forward. This approach identifies risky 

projects and programs, while projecting immediate and future cost savings, total life-

cycle costs, flexible alternatives, critical success factors, strategic options for optimal 

implementation paths/decisions, and portfolio optimization. Its employment presents 
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ways for identifying the potential for cost overruns and schedule delays and enables 

proactive measures to mitigate those risks. IRM provides an optimized portfolio of 

capability or implementation options while maintaining the value of strategic flexibility. 

In the extant case, IRM provides a way to differentiate among various 

alternatives for implementation of 3D PDF and Logistics Team Center with respect to 

ship maintenance processes, and to postulate where the greatest benefit could be 

achieved for the available investment from within the portfolio of alternatives. As a 

strategy is formed and a plan developed for its implementation, the toolset provides for 

inclusion of important risk factors, such as schedule and technical uncertainty, and 

allows for continuous updating and evaluation by the program manager to understand 

where these risks come into play and make informed decisions accordingly. 

B. Data Collection  

1. Data Collection Methods 

Data on the practices of Dutch industry and naval ship maintenance proved very 

difficult and time consuming to obtain. Initial contact with Dutch industry participants and 

ship maintenance technology providers developed slowly over several months into 

relationships that eventually led to data collection opportunities. Several sources of data 

were utilized, including a Dutch shipbuilder (Damen) and the Royal Dutch Navy (RDN). 

Data on the use of technology in Dutch fleet maintenance was collected by two primary 

methods: (1) in-person interviews and meetings with managers of the leading 

corporation in the Dutch shipbuilding industry (Damen) and officers and civilian 

employees of the Royal Dutch Navy, and (2) tours of three Dutch shipbuilding and 

maintenance facilities.  

In-person interviews and meetings with managers of Damen, the leading 

corporation in the Dutch shipbuilding industry, and officers and a civilian employee of 

the Royal Dutch Navy occurred during a data collection trip by one of the research team 

members (Ford) to the Netherlands in June 2012, as did the tours of Dutch ship building 

and maintenance facilities. Meetings, semi-structured interviews, and extended 
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discussions were held with six managers of Damen Industries and the Royal Dutch 

Navy in three locations over three days. See Appendix A for a list of informants and site 

visit locations. At these meetings, Damen managers made presentations on Damen’s 

operations, uses of technologies, investigations of specific technologies for potential 

development and adoption (including 3D LST and CPLM software), Integrated Logistics 

System, and information technology products under development for use in ship 

maintenance2. Separately, a meeting and semi-structured interview was conducted with 

the two Royal Dutch Navy officers responsible for ship maintenance at the RDN 

shipyard at Nieuwe Haven in Den Helder. Tours of the Royal Dutch Naval fleet 

maintenance facility in Nieuwe Haven and two Damen shipyards were provided during 

the data collection trip.  

2. Data Collection Results—Damen’s Use of Technology  

The Damen Shipyards Group (www.damen.nl/) is a large Dutch shipbuilding firm 

with worldwide operations (11 shipyards with five outside The Netherlands). The firm 

was started in 1922 by Jan and Rien Damen. The firm grew substantially after Kommer 

Damen (the current owner) bought it in 1969 and introduced modular and standardized 

shipbuilding to the industry. The firm now employs over 6,000 persons and builds an 

average of 150 vessels per year. The firm obtained Damen Schelde, which focuses 

exclusively on naval ship design, building, and maintenance relatively recently (in 2000). 

Damen Schelde manufactures an average of one to two ships per year, employs about 

550 people, and performs about €210 million per year. Damen Schelde acts as the 

prime contractor and integrator on its shipbuilding projects, utilizing many 

subcontractors. Although Damen Schelde provides ship maintenance services to its 

international (i.e., not Dutch) customers, it does not provide any ship maintenance 

services for the Royal Dutch Navy.  

                                            

2 Copies of presentations were requested, but not provided. Data collection results are based on notes 
taken by the investigator during the meetings, interviews, and tours of facilities.  
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Damen Schelde has used an Integrated Logistics System (ILS) since 2002 to 

manage the shipbuilding process from project initiation through the development of a 

logistics plan for customers. The ILS is the plan for the development of a ship and 

includes ship design, production, QAQC (quality assurance, quality control), training of 

ship operators, and coordination with customers. The ILS does not include service 

contracts or life-cycle costs due to the difficulty of forecasting those costs. The focus of 

the ILS is to provide maximum ship operational availability, reliability, and 

maintainability. It does this partially by using a single point of contact within Damen 

throughout the project who manages an interdisciplinary team (e.g., engineering, work 

preparation, procurement, service). Damen Schelde currently uses a variety of 

information technologies to facilitate their ILS approach to shipbuilding and is constantly 

investigating new technologies that may improve their design and manufacturing. Of 

particular relevance to the current work, Damen Schelde uses four separate software 

products to manage their shipbuilding: an advanced 3-dimensional CADD program for 

design, a CPLM product as a database for ship components3, an Enterprise Resource 

Planning (ERP) system, and a software tool for scheduling. The latter three of these 

systems are connected to users with a project information portal developed by Damen 

Schelde. The informant reported that Damen developed the portal because the CPLM 

product did not include adequate user interfaces.   

Damen Schelde has investigated and is currently investigating other technologies 

for potential adoption. Four technologies were described and discussed:  

1. 3D Laser Scanning Technology (3D LST): This technology was 
investigated, but was assessed to currently be too immature for adoption 
by Damen Schelde. The investigation included a discussion of the current 
use of the technology in the automobile industry, as well as its potential 
use to scan engine rooms and for floor flattening. The use of 360 degree 
photography (often used in conjunction with 3D LST) was considered by 
Damen Schelde as a potential tool for training. See Komoroski (2005) for 
more details on 3D LST.  

                                            

3 Damen Schelde did not purchase the integrated logistic package available from Siemens.  
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2. 3D PDF files: 3-dimensional animated “movies” of shipbuilding can be 
created in a PDF format (by Adobe Acrobat®) and sent to shipyards for 
use in the field by craftsmen who view the file on an electronic reader 
(e.g., iPad®). The files would replace flat drawings for use in construction. 
The file visually communicates the sequence of building (or maintenance) 
operations and components and operations can have notes attached to 
them that provide additional information (e.g., part numbers, warnings of 
special issues). The ability to animate these files allows engineers to 
visually show craftsmen sequences of operations, routes of access and 
egress for Line Replaceable Units (LRU4), and other information that is 
difficult or impossible to show with traditional static 2-dimensional 
drawings. The use of this technology shifts the understanding of the 
design intention from the designers (in the Netherlands) to the shipbuilding 
yard (typically in other countries around the world). The use of visual 
information (the animation of steps) is expected to greatly improve 
communication across languages, since many of the craftsmen in 
Damen’s shipyards do not read English well. Damen considers 
improvements in information content communicated to be the primary 
benefit of this system (versus cost savings). Damen Schelde is very 
optimistic about the potential for this technology to improve its operations 
and is actively working on developing it (e.g., selecting software, 
addressing the importing of the 3D design drawings). Generating the 
animated files and adding the building steps to the design files is expected 
to be relatively easy once the system has been developed.   

3. SIGMA Shipbuilding Strategy: This is a standardized process for creating 
a ship that spans from design through materials procurement, production, 
and testing of a ship. The key feature of the strategy is the use of modular 
ship sizes and systems that can be easily adapted to specific customer 
needs. For example, Damen Schelde has disaggregated an entire ship 
into five standardized modules (e.g., fore, midship, aft) with major systems 
located in specific sections. Each module is considered a subproject. As 
an example of an advantage provided by the strategy, the modules and 
their interfaces are designed such that the ship can be made longer by 
adding an additional midsection.5  

4. Radio Frequency Identification (RFID):  This established technology is 
being considered for use to improve Damen’s supply chain management. 
Primary benefits are believed to be improved value of information and a 
reduction in durations for getting information into Damen databases (e.g., 

                                            

4 Line Replaceable Unit is a commonly used term in manufactured devices for any modular component 
that is designed to be interchangeable. 
5 This portion of the SIGMA strategy applies the Boeing strategy for the design and production of the 737 
that has different lengths to shipbuilding.  
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warehouse contents, components on specific ships). Both passive and 
active tags are being considered.  

Damen Services also develops advanced technologies for use by Damen 

Enterprises. Damen Services focuses on providing ongoing maintenance parts and 

services to Damen customers after a ship has been designed, built, and delivered, but 

also provides other services such as civil works (e.g., wharves and storage facilities).  

The Maintenance and Spares department maintains information on ship 

configuration (using an ERP system), parts inventories, and spare parts packages, 

maintenance management systems. It also provides information technology support for 

Damen. Damen Services has grown rapidly, from 50 employees in 2008 to 250 

employees in 2012. Their primary objective for customers is to reduce costs and 

increase operational availability. They are developing a web portal for clients that will 

allow clients access to Damen-held data on each of the customer’s ships down to the 

individual component level. This will partially be accomplished with a work breakdown 

system (WBS) that disaggregates a ship or system into product parts (e.g., engine, bilge 

pump) and a functional breakdown system that disaggregates the ship into functions 

(e.g., port propulsion) that are met with a product part (in the WBS) and have an 

associated maintenance schedule, which includes monitoring measurements and 

frequency, parts documentation, and so forth. The WBS has three levels: Subsystems 

(e.g., propulsion, hoisting) with a typical ship having 20–70 subsystems, Level 2 Parts 

(e.g., pump, shaft) with about 1,000 per ship, and Level 3 Parts (e.g., bolt, flange) with 

70,000–80,000 per ship.  

This system will be linked with an online parts ordering portal so that customers 

can order parts from Damen (similar to Amazon’s online selling of books, etc.). Damen 

Services plans to use the information captured through this system (e.g., frequency of 

ordering of specific components) to develop maintenance optimization information. 

Damen Services envisions three types of maintenance: corrective maintenance (after 

the component needs work), preventative maintenance (based on forecasts of 

maintenance needs), and condition-based maintenance (based on actual conditions of 

components). Condition-based maintenance is an optimized version of preventative-
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based maintenance that is currently under development. It requires sensors to collect 

data on component conditions that will be used to generate condition assessments.  

3. Data Collection Results—Royal Dutch Navy (RDN) Fleet Maintenance  

Data collection directly from the RDN was particularly valuable for at least two 

reasons. First, as the navy of a sovereign country with objectives that are similar to 

those of the United States, the objectives and issues of the RDN are more likely to 

match those of the U.S. Navy than those of some other nations. Data collection 

supported this assumption. For example, technology leadership, interoperability, and 

reliability in meeting operational needs are paramount to the RDN, and the RDN has 

recently experienced, and expects to continue to experience, reductions in budgets just 

as is the case with the U.S. Navy. The Dutch navy continues to face budget cuts and 

increasing technology needs, is currently in reorganization to reduce total workforce 

(internal to the navy and civilian naval workforce) by 20%, and is transferring from their 

legacy information systems to an integrated ERP system for maintenance operations. 

Second, the RDN performs all of the maintenance on its fleet, thereby making it the 

primary data source concerning RDN fleet maintenance process performance.  

The interviews with the two RDN officers in the Naval Maintenance and Service 

Agency provided a general introduction to the issues faced by the Dutch navy in 

building and maintaining its fleet. The RDN addresses its challenges by means similar 

to those used by the U.S. Navy, such as waiting for technology to mature (technology 

readiness level [TRL] ≥ 7 before adoption) and incremental capability increases based 

on budgets. Noticeably different, both the RDN and Damen described the critical role 

and standard Dutch practice of adjusting requirements to meet budgets in shipbuilding. 

The RDN is facing increasing pressure to control life-cycle costs in its fleet, which are 

largely driven by personnel and fuel. This has led them to approve significantly stricter 

operations manning requirements for ship design (i.e., lower maximum shipboard 

personnel), which has driven Damen to increase the use of automation in their ship 

designs.  
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The primary informant on RDN fleet maintenance operations provided a diagram 

of those operations (Figure 4) and a written description of each of the steps identified in 

the diagram.  

 

Figure 4. Diagram of Royal Dutch Navy Fleet Maintenance Processes  
(Kense, 2012) 

The process steps shown in Figure 4 were described in writing by the informant 

with the following list.6 In the list, the abbreviation “LRU” stands for “Line Replaceable 

Unit,” a commonly used term in the area of manufactured devices for any modular 

component that is designed to be interchangeable. MIL-PRF-49506, Notice 1 of 18 
                                            

6 Process step descriptions have been transcribed exactly as provided in English by the RDN, including 
uncommon English grammar and spelling.  
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(USAMC Logistics Support Activity, 1996), “Performance Specification for Logistics 

Management Information,” provides the following definition:  

An LRU is an essential support item which is removed and replaced at the field 
level to restore the end item to an operational ready condition. Conversely, a 
non-LRU is a part, component, or assembly used in the repair of an LRU, when 
the LRU has failed and has been removed from the end item for repair. 

C. Logistic Process Royal Netherlands Navy 

In case LRU fails the on-board personnel will replace this LRU by a spare (on-board; 
OLM qualification required). 

The defect LRU will be send to the warehouse, and a “new” LRU will be send to the 
ship. 

The defect LRU will be send to the Naval Maintenance Establishment (NME) for repair. 
After the LRU is repaired it will be send to the warehouse again “as good as new” (DLM 
qualification required). 

If the NME needs parts to repair an LRU, the parts will be extracted from the industry, 
when the NME is not able to repair this LRU, it can be send to the manufacturer. Also, 
manpower can be hired to fix problems. 

If spare is not available, sometimes it will be cannibalized from another ship. 

If the on-board personnel is not able to fix the problem by themselves (due to the 
complexity of the failure) assistance from the NME is needed (ILM qualification 
required). 

If the problem is too complex for the NME also, the industry can be hired to solve this 
problem. 

The following seven process steps were elaborated on by the informant:  

Step 1: Performed onboard, for example to provide operational 
maintenance of weapons systems 

Step 2: Purely a transit operation that requires only a truck driver (if ship is 
in port) 

Step 4: Requires DLM level of training 

Step 5: Requires OLM level of training 
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Step 6: Requires ILM level of training (= LTS + MTS + 10–25 days of 
training) 

Step 7: Requires DLM level of training  

The abbreviations DLM, OLM, and ILM refer to Dutch terms for training levels. 

Fleet maintenance for the RDN requires a minimum of completion of education at a 

Lower Technical School (LTS) and a Middle/Intermediate Technical School (MTS). The 

Lower Technical School is typically attended between ages 12–16 and the Middle 

Technical School is typically attended between ages 16–21. After the completion of LTS 

and MTS, future RDN ship fleet maintenance personnel must complete at least one of 

three other forms of training:  

 OLM—5–10 days of training 

 ILM—10–25 days of training 

 DLM—15–35 days of training 

Manufacturer training can take either of two alternative training paths:  

 LTS then MTS then either OLM or ILM or DLM  

 LTS then MTS then OLM then ILM then DLM 

The information presented here was augmented by a tour of the Naval 

Maintenance Establishment (NME) maintenance and repair facilities. The NME provides 

essentially all maintenance and repair for the RDN fleet and the NME facilities can, and 

do, perform the required work on RDN ship components. This requires a 

comprehensive set of equipment and skilled personnel that cover the wide range of 

materials and components. Examples of testing, maintenance, and repair capabilities 

seen on the tour include, but are not limited to, the repair of a wide variety of weapons 

systems, radar systems testing and repair, design and manufacturing of printed circuit 

boards, and the manufacturing of optical lens for submarine periscopes. NME holds 

220,000 total items in the warehouse valued at about €500 million. An average Dutch 

naval ship contains about 60,000 components.  
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D. System Dynamics Model Structure 

The system dynamics model simulates the movement of LRU among the various 

locations where they are used, stored, or repaired. These accumulations are referred to 

as stocks (Sterman, 2000). Each flow of LRUs between two stocks represents the 

processing rate of one of the process steps in a knowledge value added model. A 

simplified diagram of the stocks and flows of the model are shown in Figure 5. Boxes 

represent stocks, or accumulations of LRU. Each stock in Figure 5 represents a location 

in Figure 4, plus on-board LRU storage as a separate LRU accumulation. Arrows with 

valve symbols in Figure 5 represent the movement of LRUs between stocks. Numbers 

in parenthesis in the titles of flows represent the process steps shown in Figure 4 (ovals 

with arrows) and the KVA model process steps (described later).    

 

Figure 5. Royal Dutch Navy Ship Maintenance: Stocks and Flows  
of the System Dynamics Model 

The sizes of the flows in the system dynamics model describe the rate of 

movement of LRUs among the stocks. Therefore, the simulated flows in the system 
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dynamics model become direct inputs to the “times processed per year” portion of the 

KVA models. Flow rates were modeled to reflect the sequence of processes in 

operations. For example, in normal operations, the replacement of a broken LRU in an 

operating ship with one from the ship’s on-board storage (“Replace broken LRU from 

storage [1]” on left of Figure 5) would be followed by the broken LRU in storage being 

replaced by an operational LRU from the warehouse (“Replace broken LRU from 

warehouse on onboard storage [8]” at top in Figure 5). This replacement would be 

followed by the broken LRU being sent to the NME where it would be repaired and 

returned to the warehouse (“NME repairs broken LRU in warehouse [3]” on right in 

Figure 5). These precedencies are modeled by having the downstream process equal to 

its preceding process step with a delay that reflects the transit and subsequent 

processing time. Some flows (e.g., NME repairs broken LRU from warehouse [3]) are 

aggregations of multiple upstream flows. Core flows are based on the mean time 

between failure of LRUs and the fraction of failures addressed with each process.   

The system dynamics model was calibrated to reflect RDN ship maintenance. 

Quantitative information on the volume of process steps performed in the maintenance 

of the RDN fleet was requested but was not available, primarily due to the extreme 

diversity of components and maintenance requirements. One RDN informant described 

the frequency of the maintenance operations (i.e., Steps 1–7 presented previously) as 

“continuous” and said that frequency estimates were very difficult because of the 

extreme range of frequencies across component types. As an example, the informant 

said that work on some components happens daily while work on other types of 

components happens only once every few years. The informant provided the example 

that when a warship was at sea for 30 days only process Step 1 (on-board repairs) 

would occur, but if the ship were at port other process steps might be used. Therefore, 

the modeler based calibration for a portion of the system dynamics model on publicly 

available data, data collected (e.g., numbers of LRU in NME and onboard a typical 

ship), and estimated conditions of peacetime operations near Dutch ports. Publically 

available data included the types and numbers of ships in the Dutch navy (”List of 

Ships,” 2012; Table 2). 
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Table 2. Royal Dutch Navy Ship Types and Number 

 

Calibration estimates were made using this information as follows. Data not 

documented in Table 2 are modeler estimates.   

Total LRU in use on all ships = 60k LRU/ship * 76 ships = 4,560k LRU on 
ships 

Assuming one ship of each of the 14 ship types is considered “sacrificial” and 

used for cannibalization, then   

Total LRU in use on the 62 (= 76–14) “operating” ships = 62 ships * 60k 
LRU/ship = 3,720k LRU  

Total LRU in use on the 14 “sacrificial” ships = 4,560k – 3,720k = 840k 
LRU 

In addition, each ship keeps 25% of its LRU in on-board ship storage:   

62 ships * (25%)(60k LRU/ship) = 930k LRU in storage on operating ships 

14 ships * (25%)(60k LRU/ship) = 210k LRU in storage on sacrificial ships 

Total LRU on sacrificial ships = 840k + 210k = 1050k LRU on sacrificial 
ships  

Ship Type Number
Frigate 12
Landing Platform 2
Replenishment 2
Submarine 4
Mine detection 6
Dive support 4
Hydrographical survey 2
Training 2
Tugs - large 5
Tugs - harbor 7
Landing craft 17
Patrol boat - off shore 4
Patrol boat - in shore 6
Cutter 3
TOTAL 76
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The warehouse initially holds one complete set for each vessel type:   

60k LRU/ship * 14 ship types = 840k LRU 

The number of LRU at NME is only the LRU that are currently being repaired by 

NME (i.e., all LRU storage occurs at the warehouse and none at NME [consistent with 

researcher observations]).  

The following fractions of broken LRUs are addressed with each solution:  

25% of broken LRU are replaced with on-board replacements7 

10% of broken LRU are cannibalized from other ships8 

35% of broken LRU are replaced with LRU in warehouse9  

25% of broken LRU are repaired by NME directly without passing through 
warehouse 

5% of broken LRU are repaired directly by industry 

100% TOTAL 

The estimates assume that 15% of LRU repaired directly by NME need 

assistance from industry.  

E. KVA Models to the Royal Dutch Navy Ship Maintenance 

Four knowledge value added models were built based on the Royal Dutch Navy 

Ship Maintenance processes:  

1. Baseline RDN ship maintenance processes  

2. Baseline RDN ship maintenance processes changed to reflect the 
adoption and use of a logistics package from an integrated CPLM system 
such as was investigated by Damen 

                                            

7 These LRU are then sent to the warehouse and replaced with an operational LRU from the warehouse.  
8 These LRU are then sent to the warehouse and replaced with an operational LRU from the warehouse. 
9 These LRU are then sent to the NME for repair and returned to the warehouse. 
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3. Baseline RDN ship maintenance processes changed to reflect the 
adoption  and use of 3D PDF modeling managed with a CPLM system as 
planned by Damen 

4. Baseline RDN ship maintenance processes changed to reflect the 
adoption and use of a logistics package and 3D PDF modeling managed 
by an integrated CPLM system 

Inputs to these models were generated as follows: 

Process Descriptions—The seven basic process steps used by the RDN to 

maintain the fleet were taken from data collected from the RDN (Figure 4) and 

descriptions provided by the manager of the NME. Two additional process steps (8 and 

9) were added based on the logic that broken LRU in onboard storage or cannibalized 

ships would be replaced with operating LRU from the warehouse.  

Title of Head Process Executer—The KVA modeler matched the levels and 

types of training received in the different levels of training as described by the 

informants to the process steps based on process step requirements.  

Number of Employees—The KVA modeler’s estimate based on manpower 

requirements to perform each process step in the maintenance of pumps scenario. 

Corresponding Pay Grades—The KVA modeler’s estimate of relative hourly 

pay rates for skill levels described by training requirements. Estimated values include 

labor burden and overhead.  

Rank Order of Difficulty—The KVA modeler’s estimate based on understanding 

of processes from informants. 

Actual Average Training Period—Based on data provided by informants (see 

previous data description). 

Percentage Automation—The KVA modeler’s estimate in the base case based 

on understanding of processes from informants. Modeler’s estimate of changes due to 

technology adoptions based on previous KVA models of ship maintenance processes.  
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Times performed in a Year—Output from the system dynamics model.  

Average Time to Complete—The KVA modeler’s estimate for the base case 

based on understanding of processes from informants. The modeler’s estimate of 

changes due to technology adoptions for other KVA models. 

Automation Tools—The KVA modeler’s estimate for the base case based on 

understanding of processes from informants. The modeler’s estimate of changes due to 

technology adoptions for other KVA models. 

F. Model Simulations and Results 

The system dynamics model was simulated to represent the four technology 

adoption scenarios described in the previous section. The output of each system 

dynamics model simulation was used as input to a KVA model. Those KVA models 

were then used to estimate the return on investment (ROI) of each process in each of 

the four scenarios and the cumulative ROI for each scenario. The results based on the 

models and their calibrations described previously are shown in Table 3. 
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Table 3. Knowledge Value Added Model Results 

Process 
Description

Baseline
Add 

Logistics
Add 3D 

PDF

Add 
Logistics 
& 3D PDF

1
Replace LRU with on-board 
spare 90% 261% 501% 464%

2
Replace operating LRU with 
warehouse spare 90% 151% 621% 1027%

3
NME repairs warehouse LRU 
and returns it to warehouse 8% 65% 95% 236%

4
Manufacturer repairs LRU for 
NME & it returns to warehouse 31% 88% 168% 168%

5

Replace on-board LRU with 
LRU cannibalized from another 
ship 90% 151% 621% 1027%

6
NME repairs on-board LRU and 
returns it to ship 265% 10% 99% 192%

7
Industry repairs on-board LRU 
and returns it to ship 34% 178% 135% 318%

8

Replace on-board storage LRU 
with warehouse spare (transit 
only) 301% 759% 759% 759%

9

Replace cannabalized LRU with 
warehouse spare (transit only) 140% 329% 862% 1102%

TOTAL ALL PROCESSES 35% 77% 135% 274%

Return On Investment (ROI)

 

Although increased throughput due to reduced processing durations (which 

increase the ROI numerator) can partially explain differences in the ROI in Table 3, cost 

reduction (which decreases the ROI denominator) is the primary driver of increases in 

ROI. For example, processes 8 and 9 are benefitted by reductions in rework (e.g., 

errors in transporting LRU) due to the adoption of a logistics package. This reduces the 

number of transport trips required (the function of these processes), thereby significantly 

reducing costs and increasing the ROI. In contrast, processes 3, 4, and 6 are highly 

skilled processes that are difficult to replace with technology and, therefore, benefit less 

from technology adoption than other processes. This results in a smaller increase in 

ROI for these processes.  



 

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 30 - 

===========================k^s^i=mlpqdo^ar^qb=p`elli^ 

G. Analysis of Simulation Model Results 

A variance analysis was performed on the KVA model results (Table 3) to 

evaluate the relative impacts of the adoption of different technologies (Table 4). Returns 

on investment for each of the three technology adoption alternatives were compared 

with the baseline returns on investment to estimate improvement due to technologies 

(left three columns of results, Table 4). In addition, the improvement from adopting both 

technologies over adopting only the 3D PDF technology was estimated (right column, 

Table 4)  

Table 4. Variance Analysis of KVA Model Results 

 

Referring to Table 4, adding either or both of the technologies improves overall 

ship maintenance ROI, as indicated by the positive numbers in the last row of Table 4. 

Adopting 3D PDF alone improves ROI significantly more than adopting a logistics 

package alone (100% improvement > 46% improvement) and adding both technologies 

Process 
Description

Add Logistics -
Improvement 
over Baseline

Add 3Dpdf - 
Improvement 
over Baseline

Add Logistics 
& 3Dpdf - 

Improvement 
over Baseline

Add Logistics & 
3Dpdf - 

Improvement 
over adding only 

3Dpdf 

1
Replace LRU with on-board 
spare 171% 411% 374% -38%

2
Replace operating LRU with 
warehouse spare 61% 532% 937% 406%

3
NME repairs warehouse LRU 
and returns it to warehouse 57% 87% 227% 140%

4
Manufacturer repairs LRU for 
NME & it returns to warehouse 57% 138% 138% 0%

5

Replace on-board LRU with 
LRU cannibalized from another 
ship 61% 532% 937% 406%

6
NME repairs on-board LRU and 
returns it to ship -256% -166% -73% 93%

7
Industry repairs on-board LRU 
and returns it to ship 145% 101% 284% 183%

8

Replace on-board storage LRU 
with warehouse spare (transit 
only) 458% 458% 458% 0%

9

Replace cannabalized LRU with 
warehouse spare (transit only) 189% 721% 962% 240%

TOTAL ALL PROCESSES 42% 100% 239% 139%

Return On Investment (ROI)
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improves ROI more than adding either technology alone (239% improvement > 42% 

improvement or 100% improvement), suggesting that there may be synergy between 

the technologies. This is also supported by the 139% improvement by adding logistics if 

3D PDF is already in place (lower right result in Table 4).  

Adopting the technologies does not impact the ROI of individual processes 

equally. Among the seven core processes(1–7)10 adding only a logistics package (left 

column of results in Table 4) increases the “Replace LRU with on-board spare” (process 

1) most, by 171%, and decreases the return of process 6, “NME repairs on-board LRU 

and returns it to ship” by 256%.  Among the seven core processes, adding only 3D PDF 

increases processes 2 and 5, “Replace operating LRU with warehouse spare” and 

“Replace on-board LRU with LRU cannibalized from another shop” most, by 532%, and 

decreases the return of process 6, “NME repairs on-board LRU and returns it to ship” by 

166%.  Among the seven core processes, adding both technologies increases 

processes 2 and 5, “Replace operating LRU with warehouse spare” and “Replace on-

board LRU with LRU cannibalized from another shop” most, by 937%, and decreases 

the return of process 6, “NME repairs on-board LRU and returns it to ship,” by 73%.     

H. Comparison of Royal Dutch Navy and U.S. Navy Scenarios  

Previous research using the KVA approach developed estimates of returns on 

technology investment of a scenario in which the U.S. Navy adopts 3D laser scanning 

technology (3D LST) and collaborative product lifecycle management (CPLM) tools into 

the SHIPMAIN program. Komoroski (2005) investigated the early phases of SHIPMAIN.  

The relevant results are shown in Table 5. 

                                            

10 Process 8, “Replace on-board storage LRU with warehouse spare (transit only)” supports process 1, 
“Replace LRU with on-board spare.” Therefore process 1 is the core process. Similarly, process 9, 
“Replace cannibalized LRU with warehouse spare (transit only)” supports process 5, “Replace on-board 
LRU with LRU cannibalized from another ship.” Therefore process 5 is the core process. 
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Table 5. Preparation for Maintenance Processes—As-Is and Radical ROI Differences 

 

Note. This table is based on Komoroski (2005). 

Referring to Table 5, adding the 3D LST and CPLM technologies improves 

overall preparation for maintenance process ROI, as indicated by the positive number in 

the lower right corner of Table 5. Adding these technologies generally improves 

individual processes as well, as indicated by the non-negative (and positive with one 

exception) numbers in the right column of Table 5. The range of improvements across 

individual processes is large, varying from 0% (Issue Tasking) to 3031% (Generate 

Drawings). Cost reduction explains these differences. For example, the adoption of 

technology in Core Processes 4 (Conduct Shipcheck) and 7 (Generate Drawings) 

significantly reduce the number of people required to survey ship conditions (4) or draft 

3D drawings from the survey data (9), resulting in large ROI if the technology is 

adopted.  

Seaman, Housel, and Mun (2007) used KVA to model the later phases of 

SHIPMAIN. The relevant results are shown in Table 6.  

Core 
Process Process Title

"AS_IS" 
ROI

"RADICAL" 
ROI

"RADICAL" 
improvement 
over "AS-IS"

1 ISSUE TASKING -59% -59% 0%

2 INTERPRET ORDERS -73% 746% 819%

3 PLAN FOR SHIPCHECK -99% -95% 4%

4 CONDUCT SHIPCHECK -74% 1653% 1727%

5 REPORT ASSEMBLY -39% 1032% 1071%

6 REVISE SCHEDULE 12% 882% 870%

7 GENERATE DRAWINGS -54% 2977% 3031%

TOTALS -27% 2019% 2045%
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Table 6. Maintenance Implementation Processes—As-Is and To-Be  
ROI Comparison  

(Seaman, Housel, & Mun, 2007) 

 

Referring to Table 6, adding the technologies also improves overall maintenance 

implementation process ROI, as indicated by the positive difference between the overall 

To-Be ROI (201%) and the overall As-Is ROI (35%) numbers in the lower right corner of 

Table 6. Adding these technologies also improves each of the individual processes, as 

indicated by the increases in the To-Be ROI values over the As-IS ROI values in Table 

5. The range of improvements across individual processes is large, varying from 6% to 

466% (Final Install, Closeout SC), although not as wide as in the preparation for 

maintenance processes.  

Although the same KVA modeling process was applied to ship maintenance in 

both the U.S. and the Royal Dutch navies, the KVA models have important differences 

that complicate the comparison of their results. For example, the process steps are 

different and the amount of field data available to calibrate the models differ 

significantly. Therefore, any comparisons can only be preliminary at this point. However, 

comparison can reveal some apparent similarities and differences between the 

scenarios that are of interest. Table 7 shows the overall baseline (existing processes) 

and technology-improved ROI for the two U.S. Navy scenarios and the Royal Dutch 

Navy scenario.  
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Table 7. Return on Investment: Baseline and Technology  
Adoption Scenarios 

 

The three scenarios have some similarities. For all three, overall returns on 

investment after technology adoption are positive and large. This supports the adoption 

of advanced technologies, such as 3D laser scanning technology, 3D PDF models, and 

collaborative product lifecycle management, to improve the efficiency of resource use. 

The scenarios also have potentially significant differences. The technology-adoption 

scenario for the preparation for maintenance phases of the U.S. scenario has a much 

higher overall ROI than the ROIs for the maintenance implementation phases of the 

U.S. or the Dutch scenario (2,019% >> 201% or 274%). Several factors could explain 

these differences.  

 The preparation for maintenance phases of the U.S. scenario have 
significantly lower ROI in the As-Is (without technology) condition (-27% > 
35%). This suggests that inefficiencies in the preparation for maintenance 
processes provided more and larger opportunities for improvement.  

 The individual preparation for maintenance processes that increased the 
most (see Table 5) such as Generate Drawings and Conduct Shipcheck 
are very labor intensive and, therefore, costly, providing large 
opportunities for cost reduction through technology adoption.  

 Several of the individual maintenance implementation processes (Table 6) 
are labor intensive, but less impacted by technology (e.g., Install 
Shipcheck), thereby making those changes in ROI less dramatic.  

Baseline 
Overall ROI

Technology-
adopted 

Overall ROI

US Navy - SHIPMAIN 
(preparation for 
maintenance phases)

-27% 2019%

US Navy - SHIPMAIN 
(implementation phases)

35% 201%

Royal Dutch Navy 
(Damen experience 
extrapolation)

35% 274%
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 The preparation for maintenance phases of the U.S. scenario could be 
more optimistic in their projections than the other scenarios.  

 The estimates of process changes may use different assumptions.  

 Technologies adopted in the preparation for maintenance phases of the 
U.S, scenario may make much larger improvements in processes than 
those in the maintenance implementation phases of the U.S. or the Dutch 
scenario. 

 The Dutch case does not use all of the capabilities of the CPLM, thereby 
making it more incremental than the U.S, scenarios, where all the 
capabilities of the CPLM were projected to be used. Also, 3D PDF has 
more limited capabilities for integration with the CPLM logistics package 
when compared to the integration of 3D LST capabilities for broader 
usage in requirements analysis, planning for maintenance, and tracking of 
parts in the supply chain and across suppliers and contractors. This can 
partially explain the lower ROI for the Dutch technology-adopted scenario 
than the U.S. preparation for maintenance scenario.  

 The projections of the impacts on the maintenance implementation phases 
of the U.S, scenario and the Dutch scenario may be rather conservative 
based on research into the actual successful implementation of other 
modern technologies, such as RFID in inventory management. In a study 
of the actual use of passive RFID in two military warehouses in the Korean 
Air Force and Army, the actual ROIs from use of the RFID technology 
were more than triple the projected impact of the use of the technology in 
a separate study of the U.S. Navy (Courtney, 1997). The Korean ROIs 
after actual implementation of the RFID technology ranged from 610% to 
576%, compared to the projected returns anticipated from the 
implementation of the same technology in the U.S. Navy, which ranged up 
to 133%. The implication is that actual successful implementation of 
information technology in a military may exceed projections of the 
potential impacts of the technology. It follows that the current research on 
the impacts of CPLM and 3D LST or 3D PDF may be more conservative 
than the reality once these technologies are actually implemented on a 
wide-scale basis. 

I. Integrated Risk Management Modeling and Results 

Through the use of Monte Carlo simulation, the resulting stochastic KVA ROK 

model yielded a distribution of values rather than a point solution. Thus, simulation 

models analyze and quantify the various risks and uncertainties of each program. The 

result is a distribution of the ROKs and a representation of the project’s volatility.  
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In real options, the analyst assumes that the underlying variable is the future 

benefit minus the cost of the project. An implied volatility can be calculated through the 

results of a Monte Carlo simulation. The results for the IRM analysis will be built on the 

quantitative estimates provided by the KVA analysis. The IRM will provide defensible 

quantitative risk analytics and portfolio optimization suggesting the best way to allocate 

limited resources to ensure the highest possible value over time.  

The first step in real options is to generate a strategic map through the process of 

framing the problem. Based on the overall problem identification occurring during the 

initial qualitative management screening process, certain strategic options would 

become apparent for each particular project. The strategic options could include, among 

other things, the option to wait, expand, contract, abandon, switch, stage-gate, and 

choose.  

Risk analysis and real options analysis assume that the future is uncertain and 

that decision-makers have the ability to make midcourse corrections when these 

uncertainties become resolved or risk distributions become known. The analysis is 

usually done ahead of time and, thus, ahead of such uncertainty and risks. Therefore, 

when these risks become known, the analysis should be revisited to incorporate the 

information in decision-making or to revise any input assumptions. Sometimes, for long-

horizon projects, several iterations of the real options analysis should be performed, 

where future iterations are updated with the latest data and assumptions. 

Understanding the steps required to undertake an integrated risk analysis is important 

because it provides insight not only into the methodology itself but also into how it 

evolves from traditional analyses, showing where the traditional approach ends and 

where the new analytics start. 

The risk simulation step required in the IRM provides us with the probability 

distributions and confidence intervals of the KVA methodology’s resulting ROI and ROK 

results. Further, one of the outputs from this risk simulation is volatility, a measure of 

risk and uncertainty, which is a required input into the real options valuation 



 

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 37 - 

===========================k^s^i=mlpqdo^ar^qb=p`elli^ 

computations. In order to assign input probabilistic parameters and distributions into the 

simulation models, we relied on the U.S. Air Force’s Cost Analysis Agency (AFCAA) 

handbook as seen in Figure 4.11 In the handbook, the three main distributions 

recommended are the triangular, normal, and uniform distributions. We choose the 

triangular distribution because the limits (minimum and maximum) are known, and the 

shape of the triangular resembles the normal distribution, with the most likely values 

having the highest probability of occurrence and the extreme ends (minimum and 

maximum values) having considerably lower probabilities of occurrence. Also, the 

triangular distribution was chosen instead of the normal distribution because the latter’s 

tail ends extend toward positive and negative infinities, making it less applicable in the 

model we are developing. Finally, the AFCAA also provides options for left skew, right 

skew, and symmetrical distributions. In our analysis, we do not have sufficient historical 

or comparable data to make the proper assessment of skew and, hence, revert to the 

default of a symmetrical triangular distribution. Using these AFCAA guidelines, which 

are presented as 15%, Mean, and 85% values (Figure 6), we imputed the 

corresponding minimum (min), most likely (likely), and maximum (max) values required 

in setting up the Triangular distributions (Figure 7).12  

                                            

11 Available at http://www.afhra.af.mil/factsheets/factsheet.asp?id=14009  
12 Using the Triangular distribution’s probability density function (PDF), we simply compute the cumulative 
distribution function (CDF). In mathematics and Monte Carlo simulation, a PDF represents a continuous 
probability distribution in terms of integrals. If a probability distribution has a density of f(x), then intuitively 
the infinitesimal interval of [x, x + dx] has a probability of f(x) dx. The PDF, therefore, can be seen as a 
smoothed version of a probability histogram; that is, by providing an empirically large sample of a 
continuous random variable repeatedly, the histogram, using very narrow ranges, will resemble the 
random variable’s PDF. The probability of the interval between [a, b] is given by , which means 
that the total integral of the function f must be 1.0. The CDF is denoted as F(x) = P(X ≤ x), indicating the 
probability of X taking on a less than or equal value to x. Every CDF is monotonically increasing, is 
continuous from the right, and at the limits, and has the following properties: → 0 and 

→ 1. Further, the CDF is related to the PDF by , where the 
PDF function f is the derivative of the CDF function F. Using these relationships, we can impute the min, 
likely, and max values from the mean, and the 15th and 85th percentiles that were provided by the 
AFCAA. 
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Figure 6. U.S. Air Force Cost Analysis Agency (US. AFCAA) Handbook’s Probability  
Risk Distribution Spreads  

(available at http://www.afhra.af.mil/factsheets/factsheet.asp?id=14009) 

 

Figure 7. U.S. AFCAA Handbook’s Probability Risk Distribution Spreads 

It is important to understand why it is necessary to apply uncertainty to the 

model. Because the KVA process provided a point value for each quantity, even though 

there is some uncertainty in the estimates provided by the SMEs, application of the 

appropriate statistical distributions of input is used to restore the real world’s uncertainty 

to the model. Having inputs from only three experts, as opposed to hundreds of 

estimates, and rather than using these three discrete inputs, we applied the lessons 
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learned in cost estimating as reflected in the Air Force handbook as a good starting 

point for representing the uncertainty and reflecting it in the simulations. 

Next, using the developed KVA model, risk simulation probabilistic distributional 

input parameters are inserted into the three main variables: Percentage Automation, 

Time Process Is Executed, and Average Time to Complete (Figure 8).13 A risk 

simulation of 10,000–1,000,000 simulation trials was run to obtain the results.14  

Two sets of results important in the simulation analysis are volatility and 

probability confidence intervals. The simulation statistics obtained after running a 

simulation can be seen in Figure 9, where the main variable of interest is the coefficient 

of variation, which in this case is used as a proxy for volatility.15 The average volatilities 

are between 54% and 87%. To put this into perspective, the annualized volatility of blue 

chip stocks (e.g., IBM or Microsoft) is typically between 15% and 30%, whereas higher 

risk companies (stocks with low market-to-book ratios, low price-to-earnings ratios, or 

startups) have their stocks’ volatilities above 50%, and highly speculative derivatives 

may have volatilities upwards of 100%.  

The probability confidence intervals will be used and discussed in a later section 

within the realm of real options valuation.  

At this point in the analysis, a proxy for revenues and volatility has been 

identified, as well as the numerators and denominators for the ship maintenance 

                                            

13 The Monte Carlo Risk Simulation was performed using Risk Simulator (version 2012) software by Real 
Options Valuation, Inc. (www.realoptionsvaluation.com), and screenshots provided are with permission 
from the software developers. 
14 Different numbers of trials were run to calibrate the precision of the model and to check for model 
convergence. 
15 The coefficient of variation is simply defined as the ratio of standard deviation to the mean, where risks 
are common size. As standard deviation is the measure of the spread or dispersion of the data around its 
mean, it is oftentimes used as a measure of uncertainty and, when divided by the average of the 
distribution, it becomes a relative measure of risk, without any units. This measure of risk or dispersion is 
applicable when the variables’ estimates, measures, magnitudes, or units differ, and can be used as a 
proxy for volatility of the project.  
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program. The next step is to define or frame the alternatives and approaches to 

implementing 3D PDF and Logistics Team Centers, namely, strategic real options. The 

questions that can be answered include the following: What are the options involved?; 

How should these new processes be best implemented?: Which decision pathway is 

optimal?; and How much is the program worth to the DoD?  
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Figure 8. Risk Simulation Probability Distribution Parameters 
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Figure 9. Risk Simulated Volatility 

J. IRM: Why Strategic Real Options? 

As described previously, an important step in performing IRM is the application of 

Monte Carlo risk simulation. By applying Monte Carlo risk simulation to simultaneously 

change all critical inputs in a correlated manner within a model, researchers can 

identify, quantify, and analyze risk. The question then is, what next? Simply quantifying 

risk is useless unless it can be managed, reduced, controlled, hedged, or mitigated. 
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This is where strategic real options analysis comes in. Think of real options as a 

strategic road map for making decisions.  

The real options approach incorporates a learning model, such that the decision-

maker makes better and more informed strategic decisions when some levels of 

uncertainty are resolved through the passage of time, actions, and events. The 

combination of the KVA methodology, to monitor the performance of given options, and 

the adjustments to real options as leaders learn more from the execution of given 

options, provides an integrated methodology to help military leaders hedge their bets 

while taking advantage of new opportunities over time. Traditional analysis assumes a 

static investment decision, and assumes that strategic decisions are made initially with 

no recourse to choose other pathways or options in the future. Real options analysis 

can be used to frame strategies to mitigate risk, to value and find the optimal strategy 

pathway to pursue, and to generate options to enhance the value of the project while 

managing risks. Imagine real options as a guide for navigating through unfamiliar 

territory, providing road signs at every turn to direct drivers in making the best and most 

informed driving decisions. This is the essence of real options. From the options that are 

framed, Monte Carlo simulation and stochastic forecasting, coupled with traditional 

techniques, are applied. Then, real options analytics are applied to solve and value 

each strategic pathway and an informed decision can be made.16 See the Appendix B 

for more details on IRM and real options analysis. 

K. IRM: Framing the Real Options 

As part of the first round of preliminary analysis, Figure 10 illustrates some of the 

potential implementation paths for 3D PDF/Logistics TC. Clearly some of the pathways 

and flexibility strategies may be refined and updated through the passage of time, 

                                            

16 The pathways can be valued using partial differential closed-form equations, lattices, and simulation. 
The Real Options SLS software, version 2012 (B), by Real Options Valuation, Inc. 
(www.realoptionsvaluation.com), is used to value these options with great ease. Monte Carlo risk 
simulations were performed using the Risk Simulator software, version 2012 (B), created by the same 
organization. 
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actions, and events. With the evolution of the implementation, valuable information is 

obtained to help in further fine-tuning the implementation and decision paths.  

For the preliminary analysis, the following options were identified, subject to 

modification: 

Option A: As-Is Base Case. The ROI for this strategic path is computed using the 
baseline KVA and this represents the current Royal Dutch Navy ship 
maintenance process (i.e., no newly added technologies). 

Option B: Execute and implement 3D PDF and Logistics package immediately 
across all Royal Dutch Navy ship maintenance processes. That is, take the risk 
and execute on a larger scale, where you would spend the initial investments and 
continuing maintenance expenses required and take on the risks of any potential 
failure, but reap the rewards of the new processes’ savings quickly and 
immediately. The analysis is represented as the current RDN process altered to 
reflect what we estimate to be the impacts of adopting both a Logistics package 
and 3D PDF models.  

Option C: This represents the current RDN process altered to reflect what we 
estimate to be the impacts of adopting 3D PDF models and managing them in a 
Team Center or similar product. This technology was chosen largely because 
Damen is developing and pursuing the use of this technology. 

Option D: This implementation pathway represents the current RDN process 
altered to reflect what we estimate to be the impacts of managing using a 
Logistics module in a Team Center or similar product. This technology was 
chosen partially because it was a technology that Damen considered, but chose 
not to purchase.    

Option E: Proof of Concept approach, that is, to execute large-scale 
implementation of 3D PDF and Logistics Module in TC only after an initial Proof 
of Concept (POC) shows promising results. If POC turns out to be a failure, we 
walk away and exit the program, and losses are minimized and limited to the 
initial POC expenses. Proceed to full implementation in POC programs first and 
then expand in sequential fashion to other programs, based on where best ROI 
estimates are shown. 

Option F: Proof of Concept on 3D PDF only. Assuming the POC works and 3D 
PDF is executed within a few programs successfully, the learning and experience 
obtained becomes valuable and allows the shipyard to expand its use into many 
other programs or perhaps across the Royal Dutch Navy.  
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Option G: Proof of Concept on Logistics Module in TC only. Assuming the POC 
works and Logistics Module is executed within a few programs successfully, the 
learning and experience obtained becomes valuable and allows the shipyard to 
expand its use into many other programs or perhaps across the Royal Dutch 
Navy.  

Figure 11 shows the preliminary input assumptions and Figure 12 shows the 

computed return on investment results and strategic real options results. For instance, 

the following inputs were assumed: 

PV Asset. This is the net total benefits or proxy revenues (numerator) obtained 
from the KVA analysis under each of the various options as outlined previously.   

Implementation Cost. This is the total cost to implement each of the options (e.g., 
3D PDF only, 3D PDF with Logistics Module TC, or Logistics Module TC only).   

Maturity. This is the time to perform the proof of concept stage, denoted in years.   

Risk-Free Rate. This is the annualized U.S. Treasury rate used as a proxy of a 
risk-free asset. This rate is used to discount the future cash flows in the risk-
neutral options model. We use a risk-free rate as the risk has already been 
accounted for in the risk simulation and volatility estimates. Figure 13 illustrates 
the U.S. Treasury security interest rates used as a proxy for the risk-free rate 
used in the analysis.  

Volatility. This is the annualized volatility estimate obtained from Monte Carlo risk 
simulation in the previous step by using the AFCAA risk spreads as a proxy. 

Dividend Rate. This variable is typically not used but is available should the need 
arise. Briefly, it measures the annualized percentage rate of the opportunity cost 
of investing at a future time instead of immediately. 



 

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 46 - 

===========================k^s^i=mlpqdo^ar^qb=p`elli 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK



 

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 47 - 

===========================k^s^i=mlpqdo^ar^qb=p`elli 

III. IRM: Strategic Flexibility Real Options 
Results 

Figure 12 shows the results of the strategic real options flexibility values and 

compares them against the KVA ROI values. Options B ($154.1 million at 278% ROI) 

and E ($156.5 million at 282% ROI) of implementing both 3D PDF and Logistics Module 

TC return the highest ROI and total strategic value, and both provide a significant value-

add above and beyond Option A’s As-Is condition ($31.9 million at 35% ROI). As 

Options B and E are the most significant, stage-gating the implementation over several 

phases yields a slightly higher value (Option E exceeds Option B by about $2.4 million).  

In addition, Figure 13 shows the Monte Carlo risk simulation results on the real 

options values. For instance, in comparing Options E and F, there is a 94% probability 

that Option E, which has a sequentially phased implementation of both 3D PDF and 

Logistics Module TC, provides a better return than Option F. In comparing Option E with 

Option B, there is a 95% confidence that, even with all the uncertainties in the collected 

data and risks of implementation success, including uncertainties of whether the 

estimated returns will materialize and so forth, there is at least a $1.27 million net 

advantage in going with Option E. Therefore, it is better to sequentially phase and 

stage-gate the implementation over several years, allow the ability to exit and abandon 

further stages if events unfold and uncertainties become resolved, so that further 

investment in the technology no longer makes sense.  

As additional information, with KVA baseline of Option A, we see that without 

doing any implementations, there is still a 4.7% probability that staying As-Is returns 

negative ROIs, and even in the best case analysis there is less than a 5% probability 

that ROI for the base case will ever exceed 93%.  

The final two charts in Figure 14 show that the risk simulated real options value 

has an expected value (mean) of $195 million with a corresponding average ROI of 
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363%. Finally, Figure 15 shows the comprehensive simulated risk statistics of the 

various option scenarios. 

 

Figure 10. Strategic Real Options Implementation Pathways and Options   

 

Figure 11. Sample Real Options Input Assumptions 



 

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 49 - 

===========================k^s^i=mlpqdo^ar^qb=p`elli^ 

 

Figure 12. Sample Real Options Values   

 

Figure 13. Risk-Free Rate 
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Figure 14. Risk Simulation Confidence and Percentiles 
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Figure 15. Risk Simulation Statistics and Percentiles 

A. Summary Results of the IRM Analysis 

Integrated risk management and strategic real options methodologies were 

applied to the KVA-SD results and the results indicate that Option B had a value of 

$154.1 million (278% ROI) and Option E had a value of $156.5 million (282% ROI) 

where both options indicate that implementing 3D PDF and Logistics Module TC return 

the highest ROI and total strategic value, and both provide a significant value-add 

above and beyond Option A’s As-Is condition with a value of $31.9 million (35% ROI). 

As Options B and E are most significant, we know that implementation of 3D PDF and 

Logistics Module TC return the highest value, and when implemented over time in a 

stage-gate process over several phases, would yield a slightly higher value (Option E 

exceeds Option B by about $2.4 million). Therefore, we conclude that 3D PDF and 

Logistics Module TC implemented in a phased stage-gate environment would yield the 

best results. In comparing Option E with Option B, there is a 95% probability, even with 

all the uncertainties in the collected data and risks of implementation success, as well 

as uncertainties of whether the estimated returns will materialize, there is a $1.27 million 
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net advantage in going with Option E to sequentially phase and stage-gate the 

implementation over several years, and allow the ability to exit and abandon further 

stages if events unfold and uncertainties become resolved, so that further investment in 

the technology no longer makes sense. 
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IV. Conclusions 

We collected new data on ship maintenance processes and the use and adoption 

of technologies in ship maintenance by the Royal Dutch Navy and Damen Shipbuilding. 

The data were used to build and calibrate a system dynamics model of Royal Dutch 

Naval ship maintenance. Model simulations of four technology adoption scenarios, 

reflecting the use of two available or developing technologies, generated estimates of 

maintenance operations behavior that were imported into knowledge value added 

models. The four technology adoption scenarios were then modeled in the KVA models. 

The KVA models estimated the returns on investment for individual processes and ship 

maintenance as a whole for each scenario. Results were analyzed to reveal the relative 

improvement provided by individual, and combinations of, technologies.    

The results of this study, in combination with prior studies, make it evident that 

the technologies under review will make large contributions to cost reductions in ship 

maintenance processes. These conclusions are supported by the comparative analysis 

of the Dutch experience with similar supporting technologies. There appears to be no 

empirical evidence that would serve as an impediment to adopting the technologies in 

the near term rather than the longer term. We recommend an immediate adoption of the 

3D LST and CPLM technologies to support ship maintenance processes. 

A. Implications for Acquisition Practice 

The current research has significant implications for acquisition practice. First, 

the conclusions support multiple previous investigations that recommend the adoption 

of available information technologies to reduce the costs of U.S. Navy ship 

maintenance. Second, multiple significantly different technologies (e.g., 3D LST, 3D 

PDF, logistics support) can improve ship maintenance operations. Third, among those 

studied, the expensive information technologies were found to benefit high-cost 

processes the most: for example, where labor can be replaced with technology. Doing 

so reduces costs and increases production rates by reducing cycle times. This implies 
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that, if technology adoption efforts are to be prioritized, those with labor-intensive 

processes that can be replaced with technology should be given higher priority. The real 

options analysis of implementation strategies demonstrated that some technologies (3D 

PDF in this case) can dominate the value space and that phased implementation adds 

value compared to one-step implementation. The results of the current work 

recommend a careful investigation of available technologies and how they improve 

operations, followed by a phased development and implementation of the adoption of 

the chosen technologies.  

B. Implications for Research 

The results of the three KVA-based studies varied significantly. A likely cause is 

the difficulty in accurately forecasting, in quantitative terms, the impacts of new 

technologies on specific processes. The use of data and information from organizations 

that are actively developing and adopting information technologies (Damen) and 

performing operations similar to those performed by the U.S. Navy (Royal Dutch Navy) 

proved to be very valuable in improving the models (e.g., by adding the 3D PDF 

technology). Therefore, further refinement of the models should include actual 

application data, such as a study of actual technology adoptions by the U.S. Navy.  
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Appendix A: Informants (Alphabetical Order) and Site 
Visit Locations 

Informants 

Sander Alles, Manager Maintenance & Spares, Damen Services, Gorinchem, 

The Netherlands.  

Hein van Ameijden, Managing Director, Damen Schelde Naval Shipbuilding, 

Vlissingen, The Netherlands.  

Nico de Vries, KTZT ir. Head of Corporate Planning and Strategy, Dutch Naval 

Maintenance and Service Agency, The Netherlands.   

Bert Geisler, Business Development Director Shipbuilding, Siemens PLM 

Software, Hamburg, Germany.  

Paul J. Kense, Advisor ILS, Naval Maintenance Establishment, Defense Materiel 

Organization, Royal Dutch Navy, Den Helder, The Netherlands.  

Desmond Kramer, Manager, Integrated Logistic Support, Engineering 

Department, Damen Schelde Naval Shipbuilding, Vlissingen, The Netherlands. 

Randy Langmead, Director, Marine/Federal Business Development, Siemens 

PLM Software, Washington, D.C.  

Niek Marse, Integrated Logistic System, Engineering Department, Damen 

Schelde Naval Shipbuilding, Vlissingen, The Netherlands.  

Michael Schwind, Vice President, Federal Sector, Siemens–UGS PLM Software, 

Philadelphia, PA.  

Ronald van Noppen, KTZE ir. Head of Material and Logistics, Naval Maintenance 

and Service Agency, The Netherlands.  

Frank Verhelst, Manager, Project Department, Damen Schelde Naval 

Shipbuilding, Vlissingen, The Netherlands.  
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Thijs Verwoerd, Project Manager, Damen Services, Gorinchem, The 

Netherlands.  

Site Visit Locations 

Damen Schelde Naval Shipbuiding (DSNS) 
Glacisstraat 165 
4381 SE Vlissingen, The Netherlands 

Dutch Naval Maintenance Facilities 
Nieuwe Haven 
1780 CA Den Helder, The Netherlands 
 
Damen Services 
Industrieterrein Avelingen West 20 
4202 MS Gorinchem, The Netherlands 
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Appendix B. Primer on Risk Simulation, Return on 
Investment, Strategic Real Options, and 
Portfolio Optimization—Integrated Risk 
Management17 

Since the beginning of recorded history, games of chance have been a popular 

pastime. Even in Biblical accounts, Roman soldiers cast lots for Christ’s robes. In earlier 

times, chance was something that occurred in nature, and humans were simply 

subjected to it as a ship is to the capricious tosses of the waves in an ocean. Even up to 

the time of the Renaissance, the future was thought to be simply a chance occurrence 

of completely random events and beyond the control of humans. However, with the 

advent of games of chance, human greed has propelled the study of risk and chance to 

ever more closely mirror real-life events. Although these games were initially played 

with great enthusiasm, no one actually sat down and figured out the odds. Of course, 

the individual who understood and mastered the concept of chance was bound to be in 

a better position to profit from such games of chance. It was not until the mid-1600s that 

the concept of chance was properly studied, and the first such serious endeavor can be 

credited to Blaise Pascal, one of the fathers of the study of choice, chance, and 

probability. Fortunately for us, after many centuries of mathematical and statistical 

innovations from pioneers such as Pascal, Bernoulli, Bayes, Gauss, LaPlace, and 

Fermat, and with the advent of blazing-fast computing technology, our modern world of 

uncertainty can be explained with much more elegance through methodological, 

rigorous hands-on applications of risk and uncertainty. Even as recent as two and a half 

decades ago, computing technology was only in its infancy and running complex and 

advanced analytical models would have seemed a fantasy; however, today, with the 

assistance of more powerful and enabling software packages, we have the ability to 

practically apply such techniques with great ease. For this reason, we have chosen to 

                                            

17 This primer is written by Dr. Johnathan Mun and is based on his two latest books, Modeling Risk, 
Second Edition (Wiley, 2010) and Real Options Analysis, Second Edition (Wiley, 2006). 
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learn from human history that with innovation comes the requisite change in human 

behavior to apply these new methodologies as the new norm for rigorous risk-benefit 

analysis.  

To the people who lived centuries ago, risk was simply the inevitability of chance 

occurrence beyond the realm of human control. Albeit many phony soothsayers profited 

from their ability to convincingly profess their clairvoyance by simply stating the obvious 

or reading the victims’ body language and telling them what they wanted to hear. We 

modern-day humans, ignoring for the moment the occasional seers among us, with our 

fancy technological achievements, are still susceptible to risk and uncertainty. We may 

be able to predict the orbital paths of planets in our solar system with astounding 

accuracy or the escape velocity required to shoot a man from the Earth to the Moon, or 

drop a smart bomb within a few feet of its target thousands of miles away, but when it 

comes to, say, predicting a firm’s revenues the following year, we are at a loss. Humans 

have been struggling with risk our entire existence, but through trial and error, and 

through the evolution of human knowledge and thought, have devised ways to describe, 

quantify, hedge, and take advantage of risk.  

In the U.S. military context, risk analysis, real options analysis, and portfolio 

optimization techniques are enablers of a new way of approaching the problems of 

estimating return on investment (ROI) and the risk-value of various strategic real 

options. There are many new Department of Defense (DoD) requirements for using 

more advanced analytical techniques. For instance, the Clinger-Cohen Act of 1996 

mandates the use of portfolio management for all federal agencies. The Government 

Accounting Office’s (1997) “Assessing Risks and Returns: A Guide for Evaluating 

Federal Agencies’ IT Investment Decision-Making” requires that IT investments apply 

ROI measures. DoD Directive 8115.01 (DoD, 2005) issued October 2005 mandates the 

use of performance metrics based on outputs, with ROI analysis required for all current 

and planned IT investments. DoD Directive 8115.bb (2006) implements policy and 

assigns responsibilities for the management of DoD IT investments as portfolios within 

the DoD enterprise where they define a portfolio to include outcome performance 
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measures and an expected return on investment. The DoD Risk Management Guidance 

Defense Acquisition guidebook requires that alternatives to the traditional cost 

estimation need to be considered because legacy cost models tend not to adequately 

address costs associated with information systems or the risks associated with them.  

In this quick primer, advanced quantitative risk-based concepts will be 

introduced, namely, the hands-on applications of Monte Carlo simulation, real options 

analysis, stochastic forecasting, portfolio optimization, and knowledge value added. 

These methodologies rely on common metrics and existing techniques (e.g., return on 

investment, discounted cash flow, cost-based analysis, and so forth), and complement 

these traditional techniques by pushing the envelope of analytics, but do not replace 

them outright. It is not a complete change of paradigm, and we are not asking the 

reader to throw out what has been tried and true, but to shift one’s paradigm, to move 

with the times, and to improve upon what has been tried and true. These new 

methodologies are used in helping make the best possible decisions, allocate budgets, 

predict outcomes, create portfolios with the highest strategic value and returns on 

investment, and so forth, where the conditions surrounding these decisions are risky or 

uncertain. They can be used to identify, analyze, quantify, value, predict, hedge, 

mitigate, optimize, allocate, diversify, and manage risk for military options.  

Why Is Risk Important in Making Decisions? 

Before we embark on the journey to review these advanced techniques, let us 

first consider why risk is critical when making decisions, and how traditional analyses 

are inadequate in considering risk in an objective way. Risk is an important part of the 

decision-making process. For instance, suppose projects are chosen based simply on 

an evaluation of returns alone or cost alone; clearly the higher return or lower cost 

project will be chosen over lower return or higher cost projects.  

As mentioned, projects with higher returns will in most cases bear higher risks. 

And those projects with immediately lower returns would be abandoned. In those cases, 

where return estimates are wholly derived from cost data (with some form of cost in the 
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numerator and denominator of ROI), the best thing to do is reduce all the costs, that is, 

never invest in new projects. The result of this primary focus on cost reduction is a 

stifling of innovation and new ways of doing things. The goal is not simply cost 

reduction. In this case, the simplest approach is to fire everyone and sell off all the 

assets. The real question that must be answered is how cost compares to desired 

outputs, that is, “cost compared to what”? 

To encourage a focus on improving processes and innovative technologies, a 

new way of calculating return on investment that includes a unique numerator is 

required. ROI is a basic productivity ratio that requires unique estimates of the 

numerator (i.e., value, revenue in common units of measurement) and the denominator 

(i.e., costs, investments in dollars). ROI estimates must be placed within the context of a 

longer term view that includes estimates of risk and the ability of management to adapt 

as they observe the performance of their investments over time. Therefore, instead of 

relying purely on immediate ROIs or costs, a project, strategy, process innovation, or 

new technology should be evaluated based on its total strategic value, including returns, 

costs, and  strategic options, as well as its risks. Figures A.1 and A.2 illustrate the errors 

in judgment when risks are ignored. Figure A.1 lists three mutually exclusive projects 

with their respective costs to implement, expected net returns (net of the costs to 

implement), and risk levels (all in present values).18 Clearly, for the budget-constrained 

decision-maker, the cheaper the project, the better, resulting in the selection of Project 

X. The returns-driven decision-maker will choose Project Y with the highest returns, 

assuming that budget is not an issue. Project Z will be chosen by the risk-averse 

decision-maker, as it provides the least amount of risk while providing a positive net 

return. The upshot is that, with three different projects and three different decision-

makers, three different decisions will be made. Who is correct and why? 

                                            

18 Risks can be computed many ways, including volatility, standard deviation of lognormal returns, value 
at risk, and so forth. See Modeling Risk, by Johnathan Mun (Wiley, 2010) for more technical details. 
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Figure A.1. Why Is Risk Important? 

Figure A.2 shows that Project Z should be chosen. For illustration purposes, 

suppose all three projects are independent and mutually exclusive, and that an 

unlimited number of projects from each category can be chosen, but the budget is 

constrained at $1,000. Therefore, with this $1,000 budget, 20 project Xs can be chosen, 

yielding $1,000 in net returns and $500 in risks, and so forth. It is clear from Figure A.2 

that Project Z is the best project because for the same level of net returns ($1,000), the 

least amount of risk is undertaken ($100). Another way of viewing this selection is that 

for each $1 of returns obtained, only $0.1 of risk is involved on average, or that for each 

$1 of risk, $10 in returns are obtained on average. This example illustrates the concept 

of bang for the buck or getting the best value (benefits and costs both considered) with 

the least amount of risk. An even more blatant example is if there are several different 

projects with identical single-point average net benefits or costs of $10 million each. 

Without risk analysis, a decision-maker should in theory be indifferent in choosing any 

of the projects. However, with risk analysis, a better decision can be made. For 

instance, suppose the first project has a 10% chance of exceeding $10 million, the 

second a 15% chance, and the third a 55% chance. Additional critical information is 

obtained on the riskiness of the project or strategy and a better decision can be made.  
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Figure A.2.  Adding an Element of Risk 

From Dealing With Risk the Traditional Way to Monte Carlo Simulation 

Military and business leaders have been dealing with risk since the beginning of 

the history of war and commerce. In most cases, decision-makers have looked at the 

risks of a particular project, acknowledged their existence, and moved on. Little 

quantification was performed in the past. In fact, most decision-makers look only to 

single-point estimates of a project’s benefit or profitability. Figure A.3 shows an example 

of a single-point estimate.19 The estimated net revenue of $30 is simply that, a single 

point whose probability of occurrence is close to zero.20 Even in the simple model shown 

in Figure A.3, the effects of interdependencies are ignored, and in traditional modeling 

jargon, we have the problem of garbage-in, garbage-out (GIGO). As an example of 

interdependencies, the units sold are probably negatively correlated to the price of the 

product, and positively correlated to the average variable cost; ignoring these effects in 

a single-point estimate will yield grossly incorrect results. There are numerous 
                                            

19 We will demonstrate how KVA, combined with the traditional Market Comparables valuation method, 
allows for the monetization of benefits (i.e., revenue). 

20 On a continuous basis, the probability of occurrence is the area under a curve (e.g., there is a 90% 
probability revenues will be between $10 million and $11 million. However, the area under a straight line 
approaches zero. Therefore, the probability of hitting exactly $10.0000 is close to 0.00000001%. 
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interdependencies in military options as well, for example, the many issues in logistics 

and troop movements beginning with the manufacturer all the way to the warrior in the 

field.  

In the commercial example below (Figure A.3), if the unit sales variable becomes 

11 instead of 10, the resulting revenue may not simply be $35. The net revenue may 

actually decrease due to an increase in variable cost per unit while the sale price may 

actually be slightly lower to accommodate this increase in unit sales. Ignoring these 

interdependencies will reduce the accuracy of the model.  

 

Figure A.3.  Single-Point Estimates 

One traditional approach used to deal with risk and uncertainty is the application 

of scenario analysis. For example, scenario analysis is a central part of the capabilities-

based planning approach in widespread use for developing DoD strategies. In the 

commercial example above (Figure A.3), suppose three scenarios were generated: the 

worst-case, nominal-case, and best-case scenarios. When different values are applied 

to the unit sales, the resulting three scenarios’ net revenues are obtained. As earlier, the 

problems of interdependencies are not addressed with these common approaches. The 

net revenues obtained are simply too variable. Not much can be determined from such 

an analysis.  
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In the military planning case, the problems are exacerbated by the lack of 

objective ways to estimate benefits in common units. Without the common-unit benefits 

analysis, it becomes difficult, if not impossible, to compare the net benefits of various 

scenarios. In addition, interdependencies must be interpreted in a largely subjective 

manner, making it impossible to apply powerful mathematical and statistical tools that 

enable more objective portfolio analysis. The problem arises for the top leaders in the 

DoD to make judgment calls, selection among alternatives (often referred to as “trades”) 

about the potential benefits and risks of numerous projects and technologies 

investments 

A related approach is to perform what-if or sensitivity analysis. Each variable is 

perturbed a pre-specified amount (e.g., unit sales is changed ±10%, sales price is 

changed ±5%, and so forth) and the resulting change in net benefits is captured. This 

approach is useful for understanding which variables drive or impact the result the most. 

Performing such analyses by hand or with simple Excel spreadsheets is tedious and 

provides marginal benefits at best. A related approach that has the same goals but 

employs a more powerful analytic framework is the use of computer-modeled Monte 

Carlo simulation and tornado sensitivity analysis, where all perturbations, scenarios, 

and sensitivities are run hundreds of thousands of times automatically.  

Therefore, computer-based Monte Carlo simulation, one of the advanced 

concepts introduced in this paper, can be viewed as simply an extension of the 

traditional approaches of sensitivity and scenario testing. The critical success drivers or 

the variables that affect the bottom-line variables the most, which at the same time are 

uncertain, are simulated. In simulation, the interdependencies are accounted for by 

using correlation analysis. The uncertain variables are then simulated tens of thousands 

of times automatically to emulate all potential permutations and combinations of 

outcomes. The resulting net revenues-benefits from these simulated potential outcomes 

are tabulated and analyzed. In essence, in its most basic form, simulation is simply an 

enhanced version of traditional approaches such as sensitivity and scenario analysis, 

but automatically performed thousands of times while accounting for all the dynamic 

interactions between the simulated variables. The resulting net revenues from 
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simulation, as seen in Figure A.4, show that there is a 90% probability that the net 

revenues will fall between $19.44 and $41.25, with a 5% worst-case scenario of net 

revenues falling below $19.44. Rather than having only three scenarios, the simulation 

created 5,000 scenarios, or trials, where multiple variables are simulated and changing 

simultaneously (unit sales, sale price, and variable cost per unit), while their respective 

relationships or correlations are maintained.  

 

Figure A.4. Simulation Results 

Monte Carlo simulation, named for the famous gambling capital of Monaco, is a 

very potent methodology. For the practitioner, simulation opens the door for solving 

difficult and complex but practical problems with great ease. Perhaps the most famous 

early use of Monte Carlo simulation was by the Nobel physicist Enrico Fermi 

(sometimes referred to as the father of the atomic bomb) in 1930, when he used a 

random method to calculate the properties of the newly discovered neutron. Monte 

Carlo methods were central to the simulations required for the Manhattan Project, 

where in the 1950s Monte Carlo simulation was used at Los Alamos for early work 

relating to the development of the hydrogen bomb and became popularized in the fields 

of physics and operations research. The Rand Corporation and the U.S. Air Force were 

two of the major organizations responsible for funding and disseminating information on 
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Monte Carlo methods during this time, and today there is a wide application of Monte 

Carlo simulation in many different fields including engineering, physics, research and 

development, business, and finance. 

Simplistically, Monte Carlo simulation creates artificial futures by generating 

thousands and even hundreds of thousands of sample paths of outcomes and by 

analyzing their prevalent characteristics. In practice, Monte Carlo simulation methods 

are used for risk analysis, risk quantification, sensitivity analysis, and prediction. An 

alternative to simulation is the use of highly complex stochastic closed-form 

mathematical models. For a high-level decision-maker, taking graduate-level advanced 

math and statistics courses is just not logical or practical. A well-informed analyst would 

use all available tools at his or her disposal to obtain the same answer the easiest and 

most practical way possible. And in all cases, when modeled correctly, Monte Carlo 

simulation provides similar answers to the more mathematically elegant methods. In 

addition, there are many real-life applications where closed-form models do not exist 

and the only recourse is to apply simulation methods. So, what exactly is Monte Carlo 

simulation and how does it work? 

Monte Carlo simulation in its simplest form is a random number generator that is 

useful for forecasting, estimation, and risk analysis. A simulation calculates numerous 

scenarios of a model by repeatedly picking values from a user-predefined probability 

distribution for the uncertain variables and using those values for the model. As all those 

scenarios produce associated results in a model, each scenario can have a forecast. 

Forecasts are events (usually with formulas or functions) that you define as important 

outputs of the model.  

Think of the Monte Carlo simulation approach as picking golf balls out of a large 

basket repeatedly with replacement. The size and shape of the basket depend on the 

distributional input assumption (e.g., a normal distribution with a mean of 100 and a 

standard deviation of 10, versus a uniform distribution or a triangular distribution) where 

some baskets are deeper or more symmetrical than others, allowing certain balls to be 
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pulled out more frequently than others. The number of balls pulled repeatedly depends 

on the number of trials simulated. Each ball is indicative of an event, scenario, or 

condition that can occur. For a large model with multiple related assumptions, imagine 

the large model as a very large basket, wherein many baby baskets reside. Each baby 

basket has its own set of colored golf balls that are bouncing around. Sometimes these 

baby baskets are linked with each other (if there is a correlation between the variables), 

forcing the golf balls to bounce in tandem whereas in other uncorrelated cases, the balls 

are bouncing independently of one another. The balls that are picked each time from 

these interactions within the model (the large basket) are tabulated and recorded, 

providing a forecast output result of the simulation. 

Knowledge Value Added Analysis 

As the U.S. military is not in the business of making money, referring to revenues 

throughout this paper may appear to be a misnomer. For nonprofit organizations, 

especially in the military, we require a Knowledge Value Added (KVA) model, which will 

provide the required “benefits” or “revenue” proxy estimates to run an ROI analysis. ROI 

is a basic productivity ratio with revenue in the numerator and cost to generate the 

revenue in the denominator (actually ROI is revenue-cost/cost). KVA generates ROI 

estimates by developing a market comparable price per common unit of output, 

multiplied by the number of outputs, to achieve a total revenue estimate.  

KVA is a methodology whose primary purpose is to describe all organizational 

outputs in common units. It provides a means to compare the outputs of all assets 

(human, machine, information technology) regardless of the aggregated outputs 

produced. For example, the purpose of a military process may be to gather signal 

intelligence or plan for a ship alteration. KVA would describe the outputs of both 

processes in common units, thus making their performance comparable.  

KVA measures the value provided by human capital and IT assets by analyzing 

an organization, process, or function at the process level. It provides insights into each 

dollar of IT investment by monetizing the outputs of all assets, including intangible 
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assets (e.g., such as that produced by IT and humans). By capturing the value of 

knowledge embedded in an organization’s core processes (i.e., employees and IT), 

KVA identifies the actual cost and revenue of a process, product, or service. Because 

KVA identifies every process required to produce an aggregated output in terms of the 

historical prices and costs per common unit of output of those processes, unit costs and 

unit prices can be calculated. The methodology has been applied in 45 areas within the 

DoD, from flight scheduling applications to ship maintenance and modernization 

processes. 

As a performance tool, the KVA methodology  

 Compares all processes in terms of relative productivity, 

 Allocates revenues and costs to common units of output, 

 Measures value added by IT by the outputs it produces, and 

 Relates outputs to the cost of producing those outputs in common units. 

Based on the tenets of complexity theory, KVA assumes that humans and 

technology in organizations add value by taking inputs and changing them (measured in 

units of complexity) into outputs through core processes. The amount of change an 

asset within a process produces can be a measure of value or benefit. The additional 

assumptions in KVA include the following: 

 Describing all process outputs in common units (e.g., using a knowledge 
metaphor for the descriptive language in terms of the time it takes an average 
employee to learn how to produce the outputs) allows historical revenue and cost 
data to be assigned to those processes historically. 

 All outputs can be described in terms of the time required to learn how to 
produce them.  

 Learning Time, a surrogate for procedural knowledge required to produce 
process outputs, is measured in common units of time. Consequently, Units of 
Learning Time = Common Units of Output (K).  
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 Common unit of output makes it possible to compare all outputs in terms of cost 
per unit as well as price per unit, because revenue can now be assigned at the 
suborganizational level. 

 Once cost and revenue streams have been assigned to suborganizational 
outputs, normal accounting and financial performance and profitability metrics 
can be applied (Rodgers & Housel, 2006; Pavlou, Housel, Rodgers, & Jansen, 
2005; Housel & Kanevsky, 1995a). 

Describing processes in common units also permits market comparable data to 

be generated, which is particularly important for nonprofits like the U.S. military. Using a 

market comparables approach, data from the commercial sector can be used to 

estimate price per common unit, allowing for revenue estimates of process outputs for 

nonprofits. This approach also provides a common units basis to define benefit streams 

regardless of the process analyzed.  

KVA differs from other nonprofit ROI models because it allows for revenue 

estimates, enabling the use of traditional accounting, financial performance, and 

profitability measures at the suborganizational level. KVA can rank processes by the 

degree to which they add value to the organization or its outputs. This ranking assists 

decision-makers in identifying how much value processes add. Value is quantified in 

two key metrics: Return on Knowledge (ROK: revenue/cost) and ROI (revenue-

investment cost/investment cost). The outputs from a KVA analysis become the input 

into the ROI models and real options analysis. By tracking the historical volatility of price 

and cost per unit as well as ROI, it is possible to establish risk (as compared to 

uncertainty) distributions, which is important for accurately estimating the value of real 

options. 

The KVA method has been applied to numerous military core processes across 

the Services. KVA research has more recently provided a means for simplifying real 

options analysis for DoD processes. Current KVA research will provide a library of 

market-comparable price and cost-per-unit of output estimates. This research will 

enable a more stable basis for comparisons of performance across core processes. 

These data also provide a means to establish risk distribution profiles for Integrated 
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Risk Management approaches such as real options, and KVA currently is being linked 

directly to the Real Options Super Lattice Solver and Risk Simulator software for rapid 

adjustments to real options valuation projections. 

Strategic Real Options Analysis  

Suppose you are driving from point A to point B, and you only have or know one 

way to get there, a straight route. Further suppose that there is a lot of uncertainty as to 

what traffic conditions are like further down the road, and you risk being stuck in traffic, 

and there’s a 50% chance that will occur. Simulation will provide you the 50% figure. 

But so what? Knowing that half the time you will get stuck in traffic is valuable 

information, but the question now is, so what? Especially if you have to get to point B no 

matter what. However, if you had several alternate routes to get to point B, you could 

still drive the straight route, but if you hit traffic, you could make a left, right, or U-turn, to 

get around congestion, mitigating the risk, and getting you to point B faster and safer; 

that is, you have options. So, how much is such a strategic road map or global 

positioning satellite map worth to you? In military situations with high risk, real options 

can help you create strategies to mitigate these risks. In fact, businesses and the 

military have been doing real options for hundreds of years without realizing it. For 

instance, in the military, we call it courses of action or analysis of alternatives––do we 

take Hill A so that it provides us the option and ability to take Hill B and Valley C, or how 

should we take Valley C, or do we avoid taking Valley C altogether, and so forth. A 

piece that is missing is the more formal structure and subsequent analytics that real 

options analysis provides. Using real options analysis, we can quantify and value each 

strategic pathway, and frame strategies that will hedge or mitigate, and sometimes take 

advantage of, risk.  

In the past, corporate investment decisions were cut-and-dried. Buy a new 

machine that is more efficient, make more products costing a certain amount, and if the 

benefits outweigh the costs, execute the investment. Hire a larger pool of sales 

associates, expand the current geographical area, and if the marginal increase in 
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forecast sales revenues exceeds the additional salary and implementation costs, start 

hiring. Need a new manufacturing plant? Show that the construction costs can be 

recouped quickly and easily by the increase in revenues it will generate through new 

and more improved products, and the initiative is approved. However, real-life 

conditions are a lot more complicated. Your firm decides to go with a more automated 

3D PDF software and Logistics Team Center environment, but multiple strategic paths 

exist. Which path do you choose? What are the options that you have? If you choose 

the wrong path, how do you get back on the right track? How do you value and prioritize 

the paths that exist? You are a venture capitalist firm with multiple business plans to 

consider. How do you value a start-up firm with no proven track record? How do you 

structure a mutually beneficial investment deal? What is the optimal timing to a second 

or third round of financing?   

Real options are useful not only in valuing a firm, asset, or investment decision 

through its strategic business options but also as a strategic business tool in capital 

investment acquisition decisions. For instance, should the military invest millions in a 

new open architecture initiative, and, if so, what are the values of the various strategies 

such an investment would enable, and how do we proceed? How does the military 

choose among several seemingly cashless, costly, and unprofitable information-

technology infrastructure projects? Should it indulge its billions in a risky research and 

development initiative? The consequences of a wrong decision can be disastrous and 

lives could be at stake. In a traditional analysis, these questions cannot be answered 

with any certainty. In fact, some of the answers generated through the use of the 

traditional analysis are flawed because the model assumes a static, one-time decision-

making process, while the real options approach takes into consideration the strategic 

options certain projects create under uncertainty and a decision-maker’s flexibility in 

exercising or abandoning these options at different points in time, when the level of 

uncertainty has decreased or has become known over time.  

Real options analysis can be used to frame strategies to mitigate risk, to value 

and find the optimal strategic pathway to pursue, and to generate options to enhance 
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the value of the project while managing risks. Sample options include the option to 

expand, contract, abandon, or sequentially compound options (phased stage-gate 

options, options to wait and defer investments, proof of concept stages, milestone 

development, and research and development initiatives). Some sample applications in 

the military include applications of real options to acquisitions, Spiral Development, and 

various organizational configurations, as well as the importance of how Integrated and 

Open Architectures become real options multipliers. Under OMB Circular A-76 (Office of 

Budget Management [OMB], 2003), comparisons using real options analysis could be 

applied to enhance outsourcing comparisons between the Government’s Most Efficient 

Organization (MEO) and private sector alternatives. Real options can be used 

throughout JCIDS requirements generation and the Defense Acquisition System, for 

example, DOTMLPF versus New Program/Service solution, Joint Integration, Analysis 

of Material Alternatives (AMA), Analysis of Alternatives (AoA), and Spiral Development. 

Many other applications exist in military decision analysis and portfolios.  

Real Options: A Quick Peek Behind the Scenes 

Real options analysis will be performed to determine the prospective value of the 

basic options over a multiyear period using KVA data as a platform. The strategic real 

options analysis is solved employing various methodologies, including the use of 

binomial lattices with a market-replicating portfolios approach, and backed up using a 

modified closed-form sequential compound option model. The value of a compound 

option is based on the value of another option. That is, the underlying variable for the 

compound option is another option, and the compound option can be either sequential 

in nature or simultaneous. Solving such a model requires programming capabilities. 

This subsection is meant as a quick peek into the math underlying a very basic closed-
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form compound option.21 This section is only a preview of the detailed modeling 

techniques used in the current analysis and should not be assumed to be the final word. 

For instance, we first start by solving for the critical value of I, an iterative 

component in the model using 
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We then solve recursively for the value I and input it into the model: 
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The model is then applied to a sequential problem where future phase options 

depend on previous phase options (e.g., Phase II depends on Phase I’s successful 

implementation). 

                                            

21 We recommend reviewing Real Options Analysis: Tools and Techniques, Second Edition, by 
Johnathan Mun (2006) for more hands-on details and modeling techniques used in the analysis.  
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Definitions of Variables 

      S   present value of future cash flows ($) 

      r   risk-free rate (%) 

         volatility (%) 

         cumulative standard-normal  

     q   continuous dividend payout (%)  

I   critical value solved recursively 

   cumulative bivariate-normal  

X1   strike for the underlying ($) 

X2   strike for the option on the option ($) 

t1   expiration date for the option on the option  

T2   expiration date for the underlying option  

The preceding closed-form differential equation models are then verified using 

the risk-neutral market-replicating portfolio approach, assuming a sequential compound 

option. In solving the market-replicating approach, we use the following functional forms 

(Mun, 2006): 

Hedge ratio (h):  

downup

downup
i SS

CC
h
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Debt load (D):  
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Risk-adjusted probability (q):  
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Portfolio Optimization  

In most decisions, there are variables over which leadership has control, such as 

how much to establish supply lines, modernize a ship, use network centricity to gather 

intelligence, and so on. Similarly, business leaders have options in what they charge for 

a product or how much to invest in a project or which projects they should choose in a 

portfolio when they are constrained by budgets or resources. These decisions could 

also include allocating financial resources, building or expanding facilities, managing 

inventories, and determining product-mix strategies. Such decisions might involve 

thousands or millions of potential alternatives. Considering and evaluating each of them 

would be impractical or even impossible. These controlled variables are called decision 

variables. Finding the optimal values for decision variables can make the difference 

between reaching an important goal and missing that goal. An optimization model can 

provide valuable assistance in incorporating relevant variables when analyzing 

decisions, and finding the best solutions for making decisions. Optimization models 

often provide insights that intuition alone cannot. An optimization model has three major 

elements: decision variables, constraints, and an objective. In short, the optimization 

methodology finds the best combination or permutation of decision variables (e.g., best 

way to deploy troops, build ships, which projects to execute) in every conceivable way 

such that the objective is maximized (e.g., strategic value, enemy assets destroyed, 

return on investment) or minimized (e.g., risk and costs) while still satisfying the 

constraints (e.g., time, budget, and resources).  
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Obtaining optimal values generally requires that you search in an iterative or ad 

hoc fashion. This search involves running one iteration for an initial set of values, 

analyzing the results, changing one or more values, rerunning the model, and repeating 

the process until you find a satisfactory solution. This process can be very tedious and 

time consuming even for small models, and often it is not clear how to adjust the values 

from one iteration to the next. A more rigorous method systematically enumerates all 

possible alternatives. This approach guarantees optimal solutions if the model is 

correctly specified. Suppose that an optimization model depends on only two decision 

variables. If each variable has 10 possible values, trying each combination requires 100 

iterations (102 alternatives). If each iteration is very short (e.g., 2 seconds), then the 

entire process could be done in approximately three minutes of computer time. 

However, instead of two decision variables, consider six, then consider that trying all 

combinations requires 1,000,000 iterations (106 alternatives). It is easily possible for 

complete enumeration to take many years to carry out. Therefore, optimization has 

always been a fantasy until now; with the advent of sophisticated software and 

computing power, coupled with smart heuristics and algorithms, such analyses can be 

done within minutes.  
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Figure A.5. Example of Real Options Framing 

Figures A.6, A.7, and A.8 illustrate a sample portfolio analysis where in the first 

case, there are 20 total projects to choose from (if all projects were executed, it would 

cost $10.2 billion) and where each project has its own returns on investment or benefits 

measure, cost, strategic ranking, comprehensive, and tactical and total military scores 

(these were obtained from field commanders through the Delphi method to elicit their 

thoughts about how strategic a particular project or initiative will be, and so forth). The 

constraints are full-time equivalence resources, budget, and strategic score. In other 

words, there are 20 projects or initiatives to choose from, where we want to select the 
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top 10, subject to having enough money to pay for them and the people to do the work, 

and yet be the most strategic portfolio possible.22 All the while, Monte Carlo simulation, 

real options, and forecasting methodologies are applied in the optimization model (e.g., 

each project’s values shown in Figure A.6 are linked from its own large model with 

simulation and forecasting methodologies applied, and the best strategy for each project 

is chosen using real options analysis, or perhaps the projects shown are nested within 

one another; for instance, you cannot exercise Project 2 unless you execute Project 1, 

but you can exercise Project 1 without having to do Project 2, and so forth). The results 

are shown in Figure A.6. 

Figure A.7 shows the optimization process done in series, while relaxing some of 

the constraints. For instance, what would be the best portfolio and the strategic outcome 

if a budget of $3.8 billion was imposed? What if it was increased to $4.8 billion, $5.8 

billion, and so forth? The efficient frontiers depicted in Figure A.7 illustrate the best 

combination and permutation of projects in the optimal portfolio. Each point on the 

frontier is a portfolio of various combinations of projects that provides the best allocation 

possible given the requirements and constraints. Finally, Figure A.8 shows the top 10 

projects that were chosen and how the total budget is best and most optimally allocated 

to provide the best and most well-balanced portfolio.  

                                            

22 There are 2 x 1018 possible permutations for this problem, and if tested by hand, the calculation would 
take years to complete. Using Risk Simulator, the problem is solved in about 5 seconds, or several 
minutes if Monte Carlo simulation and real options are incorporated in the analysis.  
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Figure A.6. Portfolio Optimization and Allocation 
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Figure A.7. Efficient Frontiers of Portfolios 

 

Figure A.8. Portfolio Optimization (Continuous Allocation of Funds)
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Integrated Risk Management Framework 

We are now able to put all the pieces together into an integrated risk 

management framework and see how these different techniques are related in a risk 

analysis and risk management context. This framework comprises eight distinct phases 

of a successful and comprehensive risk analysis implementation, going from a 

qualitative management screening process to creating clear and concise reports for 

management. The process was developed by the author (Mun) based on previous 

successful implementations of risk analysis, forecasting, real options, KVA cash-flow 

estimates, valuation, and optimization projects both in the consulting arena and for 

industry-specific problems. These phases can be performed either in isolation or 

together in sequence for a more robust integrated analysis.  

Figure A.9 shows the integrated risk management process up close. We can 

segregate the process into the following eight simple steps: 

1) Qualitative management screening 

2) Time-series and regression forecasting 

3) Base case KVA and net present value analysis 

4) Monte Carlo simulation 

5) Real options problem framing 

6) Real options modeling and analysis 

7) Portfolio and resource optimization 

8) Reporting and update analysis 

1.  Qualitative Management Screening 

Qualitative management screening is the first step in any integrated risk 

management process. Decision-makers have to decide which projects, assets, 

initiatives, or strategies are viable for further analysis, in accordance with the 

organization’s mission, vision, goal, or overall business strategy. The organization’s 
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mission, vision, goal, or overall business strategy may include strategies and tactics, 

and competitive advantage, technical, acquisition, growth, synergistic, or global threat 

issues. That is, the initial list of projects should be qualified in terms of meeting the 

leadership’s agenda. Often the most valuable insight is created as leaders frame the 

complete problem to be resolved. This is where the various risks to the organization are 

identified and fleshed out. 

2.  Time-Series and Regression Forecasting  

The future is then forecasted using time-series analysis, stochastic forecasting, 

or multivariate regression analysis if historical or comparable data exist. Otherwise, 

other qualitative forecasting methods may be used (subjective guesses, growth rate 

assumptions, expert opinions, Delphi method, and so forth).23  

3.  Base Case KVA and Net Present Value Analysis  

For each project that passes the initial qualitative screens, a KVA-based 

discounted cash flow model is created. This model serves as the base case analysis 

where a net present value and ROI are calculated for each project, using the forecasted 

values in the previous step. This step also applies if only a single project is under 

evaluation. This net present value is calculated with the traditional approach of using the 

forecast revenues and costs, and discounting the net of these revenues and costs at an 

appropriate risk-adjusted rate. The ROI and other financial metrics are generated here.  

4.  Monte Carlo Simulation24 

Because the static discounted cash flow produces only a single-point estimate 

result, there is oftentimes little confidence in its accuracy given that future events that 

                                            

23 See Chapters 8 and 9 of Modeling Risk (Wiley, 2006) by Dr. Johnathan Mun for details on forecasting 
and using the author’s Risk Simulator software to run time-series analysis, extrapolation, stochastic 
process, ARIMA, and regression forecasts. 
24 See Chapters 4 and 5 of Modeling Risk (Wiley, 2006) by Dr. Johnathan Mun for details on running 
Monte Carlo simulation using the author’s Risk Simulator software. 
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affect forecast cash flows are highly uncertain. To better estimate the actual value of a 

particular project, Monte Carlo simulation should be employed next. Usually, a 

sensitivity analysis is first performed on the discounted cash flow model; that is, setting 

the net present value or ROI as the resulting variable, we can change each of its 

precedent variables and note the change in the resulting variable. Precedent variables 

include revenues, costs, tax rates, discount rates, capital expenditures, depreciation, 

and so forth, which ultimately flow through the model to affect the net present value or 

ROI figure. By tracing back all these precedent variables, we can change each one by a 

preset amount and see the effect on the resulting net present value. A graphical 

representation can then be created in Risk Simulator, which is often called a tornado 

chart because of its shape, where the most sensitive precedent variables are listed first, 

in descending order of magnitude. Armed with this information, the analyst can then 

decide which key variables are highly uncertain in the future and which are 

deterministic. The uncertain key variables that drive the net present value and, hence, 

the decision are called critical success drivers. These critical success drivers are prime 

candidates for Monte Carlo simulation. Because some of these critical success drivers 

may be correlated, a correlated and multidimensional Monte Carlo simulation may be 

required. Typically, these correlations can be obtained through historical data. Running 

correlated simulations provides a much closer approximation to the variables’ real-life 

behaviors. 

5.  Real Options Problem Framing25 

The question now is that after quantifying risks in the previous step, what next? 

The risk information obtained somehow needs to be converted into actionable 

intelligence. Just because risk has been quantified to be such and such using Monte 

Carlo simulation, so what and what do we do about it? The answer is to use real options 

analysis to hedge these risks, to value these risks, and to position yourself to take 

                                            

25 See Real Options Analysis: Tools and Techniques, Second Edition (Wiley, 2005) by Dr. Johnathan Mun 
for more technical details on framing and solving real options problems.  
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advantage of the risks. The first step in real options is to generate a strategic map 

through the process of framing the problem. Based on the overall problem identification 

occurring during the initial qualitative management screening process, certain strategic 

optionalities would have become apparent for each particular project. The strategic 

optionalities may include, among other things, the option to expand, contract, abandon, 

switch, choose, and so forth. Based on the identification of strategic optionalities that 

exist for each project or at each stage of the project, the analyst can then choose from a 

list of options to analyze in more detail. Real options are added to the projects to hedge 

downside risks and to take advantage of upside swings.  

6.  Real Options Modeling and Analysis 

Through the use of Monte Carlo simulation, the resulting stochastic discounted 

cash flow model will have a distribution of values. Thus, simulation models, analyzes, 

and quantifies the various risks and uncertainties of each project. The result is a 

distribution of the NPVs and the project’s volatility. In real options, we assume that the 

underlying variable is the future profitability of the project, which is the future cash flow 

series. An implied volatility of the future free cash flow or underlying variable can be 

calculated through the results of a Monte Carlo simulation previously performed. 

Usually, the volatility is measured as the standard deviation of the logarithmic returns on 

the free cash flow stream. In addition, the present value of future cash flows for the 

base case discounted cash flow model is used as the initial underlying asset value in 

real options modeling. Using these inputs, real options analysis is performed to obtain 

the projects’ strategic option values. 

7.  Portfolio and Resource Optimization26 

Portfolio optimization is an optional step in the analysis. If the analysis is done on 

multiple projects, decision-makers should view the results as a portfolio of rolled-up 

                                            

26 See Chapters 10 and 11 of Modeling Risk (Wiley, 2006) by Dr. Johnathan Mun for details on using Risk 
Simulator to perform portfolio optimization. 
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projects because the projects are, in most cases, correlated with one another, and 

viewing them individually will not present the true picture. As organizations do not have 

only single projects, portfolio optimization is crucial. Given that certain projects are 

related to others, there are opportunities for hedging and diversifying risks through a 

portfolio. Because firms have limited budgets and time and resource constraints, while 

at the same time having requirements for certain overall levels of returns, risk 

tolerances, and so forth, portfolio optimization takes into account all these to create an 

optimal portfolio mix. The optimization analysis will provide the optimal allocation of 

investments across multiple projects.  

 8.  Reporting and Update Analysis  

The analysis is not complete until reports can be generated. Not only are results 

presented, but the process should also be shown. Clear, concise, and precise 

explanations transform a difficult black-box set of analytics into transparent steps. 

Decision-makers will never accept results coming from black boxes if they do not 

understand where the assumptions or data originate and what types of mathematical or 

analytical massaging takes place. Risk analysis assumes that the future is uncertain 

and that decision-makers have the right to make midcourse corrections when these 

uncertainties become resolved or risks become known; the analysis is usually done 

ahead of time and, thus, ahead of such uncertainty and risks. Therefore, when these 

risks become known over the passage of time, actions, and events, the analysis should 

be revisited to incorporate the decisions made or to revise any input assumptions. 

Sometimes, for long-horizon projects, several iterations of the real options analysis 

should be performed, where future iterations are updated with the latest data and 

assumptions. Understanding the steps required to undertake an integrated risk 

management analysis is important because it provides insight not only into the 

methodology itself but also into how it evolves from traditional analyses, showing where 

the traditional approach ends and where the new analytics start. 



 

 

 

Figure A.9.  Integrated Risk Management Process 
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Conclusion 

Hopefully it has now become evident that DoD leadership can take advantage 

of more advanced analytical procedures for making strategic investment decisions 

and when managing portfolios of projects. In the past, due to the lack of 

technological maturity, this would have been extremely difficult, and, hence, 

businesses and the government had to resort to experience and managing by gut 

feel. Nowadays, with the assistance of technology and more mature methodologies, 

there is every reason to take the analysis a step further. Corporations such as 3M, 

Airbus, AT&T, Boeing, BP, Chevron, Johnson & Johnson, Motorola, and many 

others have already been successfully using these techniques for years, and the 

military can follow suit. The relevant software applications, books, case studies, and 

public seminars have been created, and case studies have already been developed 

for the U.S. Navy.27 The only barrier to implementation, simply put, is the lack of 

exposure to the potential benefits of the methods. Many in the military have not seen 

or even heard of these new concepts. This primer, if it is successful, serves to reveal 

the potential benefits of these analytical techniques and tools that can complement 

what leadership is currently doing. In order to be ready for the challenges of the 21st 

century, and to create a highly effective and flexible military force, strategic real 

options, KVA, and risk analysis are available to aid leadership with critical decision-

making. Real options and KVA are tools that will help ensure maximum strategic 

flexibility and analysis of alternatives where risks must be considered. 

                                            

27 See www.realoptionsvaluation.com (Download site) for more details on the software applications 
Risk Simulator and Real Options SLS, as well as sample case studies, videos, sample models, and 
training seminars (e.g., the 4-day Certified Risk Analyst public seminars cover all the methodologies 
outlined in this primer and more).  
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2003 - 2012 Sponsored Research Topics 

Acquisition Management 

 Acquiring Combat Capability via Public-Private Partnerships (PPPs) 

 BCA: Contractor vs. Organic Growth 

 Defense Industry Consolidation 

 EU-US Defense Industrial Relationships 

 Knowledge Value Added (KVA) + Real Options (RO) Applied to 
Shipyard Planning Processes  

 Managing the Services Supply Chain 

 MOSA Contracting Implications 

 Portfolio Optimization via KVA + RO 

 Private Military Sector 

 Software Requirements for OA 

 Spiral Development 

 Strategy for Defense Acquisition Research 

 The Software, Hardware Asset Reuse Enterprise (SHARE) repository 

Contract Management 

 Commodity Sourcing Strategies 

 Contracting Government Procurement Functions 

 Contractors in 21st-century Combat Zone 

 Joint Contingency Contracting 

 Model for Optimizing Contingency Contracting, Planning and Execution 

 Navy Contract Writing Guide 

 Past Performance in Source Selection 

 Strategic Contingency Contracting 

 Transforming DoD Contract Closeout 

 USAF Energy Savings Performance Contracts 

 USAF IT Commodity Council 

 USMC Contingency Contracting 
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Financial Management 

 Acquisitions via Leasing: MPS case 

 Budget Scoring 

 Budgeting for Capabilities-based Planning 

 Capital Budgeting for the DoD 

 Energy Saving Contracts/DoD Mobile Assets 

 Financing DoD Budget via PPPs 

 Lessons from Private Sector Capital Budgeting for DoD Acquisition 
Budgeting Reform 

 PPPs and Government Financing 

 ROI of Information Warfare Systems 

 Special Termination Liability in MDAPs 

 Strategic Sourcing 

 Transaction Cost Economics (TCE) to Improve Cost Estimates 

Human Resources 

 Indefinite Reenlistment 

 Individual Augmentation 

 Learning Management Systems 

 Moral Conduct Waivers and First-term Attrition 

 Retention 

 The Navy’s Selective Reenlistment Bonus (SRB) Management System 

 Tuition Assistance 

Logistics Management 

 Analysis of LAV Depot Maintenance 

 Army LOG MOD 

 ASDS Product Support Analysis 

 Cold-chain Logistics 

 Contractors Supporting Military Operations 

 Diffusion/Variability on Vendor Performance Evaluation 

 Evolutionary Acquisition 

 Lean Six Sigma to Reduce Costs and Improve Readiness 
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 Naval Aviation Maintenance and Process Improvement (2) 

 Optimizing CIWS Lifecycle Support (LCS) 

 Outsourcing the Pearl Harbor MK-48 Intermediate Maintenance 
Activity  

 Pallet Management System 

 PBL (4) 

 Privatization-NOSL/NAWCI 

 RFID (6) 

 Risk Analysis for Performance-based Logistics 

 R-TOC AEGIS Microwave Power Tubes 

 Sense-and-Respond Logistics Network 

 Strategic Sourcing 

Program Management 

 Building Collaborative Capacity 

 Business Process Reengineering (BPR) for LCS Mission Module 
Acquisition 

 Collaborative IT Tools Leveraging Competence 

 Contractor vs. Organic Support 

 Knowledge, Responsibilities and Decision Rights in MDAPs 

 KVA Applied to AEGIS and SSDS 

 Managing the Service Supply Chain 

 Measuring Uncertainty in Earned Value 

 Organizational Modeling and Simulation 

 Public-Private Partnership 

 Terminating Your Own Program 

 Utilizing Collaborative and Three-dimensional Imaging Technology 

 

A complete listing and electronic copies of published research are available on our 
website: www.acquisitionresearch.net    
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