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Abstract 

U. S. Navy shipbuilding contractors need to find a way to reduce costs while 

not sacrificing current reliability and quality requirements. 3D Laser Scanning 

Technology (3D LST) and Collaborative Product Lifecycle Management (CPLM) are 

two technologies that are currently being leveraged by international ship construction 

organizations to achieve significant cost savings. 3D LST dramatically reduces the 

time required to scan ship surfaces as opposed to the traditional photogrammetry 

techniques currently used, but accuracy is not up to the Navy’s standards. Once the 

technology progresses to a level of accuracy deemed acceptable by the U.S. Navy, 

dramatic cost savings can be gained by implementing it. CPLM technologies, on the 

other hand, improve the engineering and design process to the point that they may 

reduce detailed engineering times by up to 22%.  

In order to achieve the cost-saving benefits of these new technologies, U.S. 

Navy shipbuilding contractors must restructure their organizations to achieve the 

most productive manufacturing capabilities possible. This report details the answers 

to a series of research questions that result in a framework for these companies to 

use to improve manufacturing capabilities from a structural, human resource, and 

technical perspective. U.S. Navy shipbuilding contractors can use this framework to 

determine how to best implement these new manufacturing technologies. 

Keywords: shipbuilding, ROI, cost savings, CPLM, 3D LST 
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Executive Summary 

Current shipbuilding costs are rising well beyond the rate of inflation and are 

unsustainable in today’s cost-constrained defense acquisition environment.The real 

growth in Navy ship costs means that ships are becoming more expensive and 

outstripping the Navy’s ability to pay for them. “Given current budget constraints, 

the Navy is unlikely to see an increase in its shipbuilding budget” (Arena, Blickstein, 

Younossi, & Grammich, 2006). If the Navy is to maintain its current capabilities, 

then shipbuilders and the DoD must find a way to reduce these escalating costs. 

The challenge of effective cost reduction include the following: 

 Understanding the factors that are leading to cost growth, 

 Identifying which factors can be addressed without sacrificing 
capability while adhering to current military standards, and 

 Modernizing shipyards without drops in productivity or sharp 
increases in costs. 

The first task is relatively straightforward; there have been numerous studies 

addressing the issues of rising ship costs. According to the GAO, labor and 

material increases are responsible for over 70% of cost growth in ships, as seen in 

Figure 1. 
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Figure 1. Components of U.S. Navy Shipbuilding Cost Growth 
(Government Accountability Office [GAO], 2005) 

Deciding on the best ways to reduce these cost increases is more 

problematic, due to the performance and capability requirements U.S. Navy ships 

must meet. For example, 3D laser scanning and tracking technologies could offer 

enormous reductions in labor hours during construction. The Center for Naval 

Shipbuilding Technology (CNST) awarded the 3D laser scanning technology (3D 

LST) project to General Dynamics Electric Boat (GDEB) to evaluate the 3D LST 

capabilities during the measurement, layout, and installation of ship components.  

The current state of 3D laser scanning technology does not meet the accuracy 

requirements, 0.030” accuracy minimum, for naval shipbuilding.  The report 

delivered to the CSNT shows that if the accuracy of 3D LST could meet the 

requirements, the cost savings would be substantial, as shown in Table 1 that was 

based on an extrapolation of the time-cost savings from this GDBE report, which is 

provided in Appendix A. There is a high likelihood that this technology would 

reduce costs and schedule, but, until the accuracy minimums can be met, this 

technology will not be used during new construction in shipbuilding.   
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In addition to 3D LST, other technologies have the potential to reduce 

shipbuilding costs. Appendix A contains the complete final report and findings that 

GDEB provided to CNST. 

Table 1. Maximum Cost Savings per Hull With Implementation of 3D Laser 
Scanning 

Max hrs 
saved 

Cost of 
personnel per 
hour1 

# of parts 
per ship2 

# of ships Total Savings per 
hull 

10 $42.50 1,000 10 $4,250,000 $425,000 

10 $42.50 10,000 433 $182,750,000 $4,250,000 

10 $42.50 100,000 5 $212,500,000 $42,500,000

SUM $470,000,000  

Collaborative Product Life Management (CPLM) technology shows more 

promise than 3D LST alone in reducing construction costs while not sacrificing 

capability or accuracy requirements. Interviews we conducted with shipbuilding 

subject-matter experts revealed that CPLM implementation can reduce engineering 

and design times in the shipbuilding industry by up to 22%. Construction times and 

attendant costs would likely be similarly reduced, but that data are not available yet 

because even the most advanced ship manufacturers are not using the full 

potential of this technology. Their counterparts in the automobile and aerospace 

industry have already demonstrated dramatic cost savings using CPLM technology. 

However, despite these possible benefits, CPLM technologies come with 

their own inherent set of implementation challenges. Interviews with subject-matter 

experts in both the ship construction and CPLM sectors reveal that this kind of 

                                            

1 This is the average salary retrieved from the Payscale website (http://www.payscale.com/) in 2012. 
Salary was then converted to an hourly rate using a conversion calculator (Calcxml, 2012). 
2 The number of parts per ship is estimated because each shipyard would consider total number of 
parts per ship differently. 
3 According to ADM. James A. Lyons (2012), the Navy is currently looking at procuring 43 additional 
Arleigh Burke (DDG-51) platforms. 
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technology adoption requires a redesign of traditional shipyards and ship 

construction processes, and of the enabling organizational design and human 

resource practices.  

The primary focus of the current report is to assess the potential benefits of 

CPLM implementation in U.S. shipyards as well as provide a framework that 

companies can use to determine their technology readiness level for the 

introduction of CPLM. The current research found that CPLM technologies are 

being used in a variety of industries as a way of reducing the costs of engineering 

and manufacturing, and that some shipyards are beginning to use this technology 

in a limited way. However, prior research and interviews of subject-matter experts 

for the current study show that shipyard management needs to have a thorough 

understanding of how to adjust their company’s people, processes, and technical 

capabilities in order to successfully implement CPLM.  

Fundamentally, the manufacturing capability of these new “digital shipyards” 

is dependent on both the technical capability of the shipyard information 

infrastructure to insert CPLM technology and the ability to redesign processes, as 

well as on the amount of collaboration among  company employees and with 

vendors. Figure 2 is a notional representation of the five elements that must be 

taken into account in successfully implementing CPLM within a shipbuilding 

organization. It is a visual representation of the intersection between critical 

functional areas of a shipyard that leverage organizational design and CPLM 

technology to achieve greater manufacturing capability through collaboration.  
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Figure 2. Collaborative Capacity and the Digital Shipyard of the Future 

In Figure 2, the interconnectedness of an organization’s structure, human 

resource practices, and technical capability is demonstrated. Taken together, 

attention to these design factors and their coherence in forming an integrated 

system of systems can contribute to generating collaborative behaviors, work 

processes, and a collaborative culture facilitated by CPLM technology that will 

enable the innovation in manufacturing needed to reduce the costs of U.S. Navy 

ships.
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I. Introduction 

This study found that CPLM showed great promise for reducing shipbuilding 

design costs. The percentage cost savings ranged conservatively from 9–22%. The 

results pointed to the need to first align people, processes, and technical 

capabilities to take advantage of CPLM technology to reduce shipbuilding costs. 

This research offers a way to assess the manufacturing capability and technology 

readiness level of shipbuilding organizations to determine their current state. Dutch 

and U.S. shipbuilding organizations were compared because Dutch shipbuilding 

(i.e., Damen) has been able to take advantage of CPLM technology to reduce cycle 

times and costs. It is held up as one of the most advanced shipbuilding companies 

in the world. Even though there are scale and requirements complexity differences 

between the two comparison entities, Damen’s experiences offer lessons for the 

U.S. Navy’s shipbuilding organizations.  

The current study offers a framework for aligning organizational design, 

human resource practices, core processes, and technology to achieve greater 

shipbuilding efficiency in the current resource-constrained DoD environment. As a 

result of using this framework, U.S. Navy shipbuilding organizations should be able 

to assess their current state and apply lessons learned from best of breed 

manufacturing organizations to take advantage of the CPLM technology and 

achieve greater cost savings.  

A. 3D Laser Scanning Technology4 

The first technology reviewed in this report, as a possible way to reduce 

costs in U.S. Navy shipbuilding, is 3D LST. General Dynamics Electric Boat 

previously reported, to the Center for Naval Shipbuilding (CNST) , the strengths 

                                            

4 This section was abstracted from Kevin Shannon’s thesis, A Comparative Case Study of Dutch 
and U.S. Naval Shipbuilding Approaches: Reducing U.S. Naval Shipbuilding Costs Using PLM and 
3D Imaging (pp. 15–16). 
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and weaknesses of this new technology.5  This report details the data for the x, y, 

and z coordinate data (i.e., three-dimensional point cloud generated by the 3D LST 

technology) received from the scanners and compares the received data against 

that which was taken using the currently accepted standard of photogrammetry, an 

accuracy standard of 0.030 inches (in.). The project shows that the two laser 

system evaluated was unable to meet this known exacting standard.  Because of 

this inability to meet the accuracy standard of 0.030 in., there is no current 

implementation of this technology in U.S. Navy shipbuilding.   

Although the laser scanners currently do not meet the accuracy required by 

the shipbuilding industry, there was evidence of a significant potential reduction in 

hours required to survey each part tested.  This evidence showed a possible 

reduction in time from three to 10 hours per part over the current method.  A part is 

defined by each shipyard differently and varies from platform to platform, 

depending on which shipyard would consider the use of a 3D scanner valuable 

during the time of installation of a specific part.  If 3D scanners were to be 

implemented in the installation of new ship parts, Table 2 illustrates the possible 

cost savings that could be achieved by reducing setup/scan time alone. 

                                            

5 The entire project report presented by GDEB to CNST is attached in Appendix A.   
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Table 2. Average Cost Savings per Hull With Implementation of 3D Laser 
Scanning 

Avg hrs 
saved 

Cost of 
personnel per 
hour6 

# of parts 
per ship7 

# of 
ships 

Total Savings per 
hull 

6.5 $42.50 1,000 10 $1,950,000 $325,000 

6.5 $42.50 10,000 438 $139,750,000 $3,250,000 

6.5 $42.50 100,000 5 $162,500,000 $32,500,000

SUM $304,200,000  

Additionally, if the maximum savings were experienced per part, the result 

would have a significantly more positive effect on the possible cost savings, as 

shown in Table 3. 

 

                                            

6 The average salary was retrieved from the Payscale website (http://www.payscale.com/) in 2012. 
Salary was then converted to an hourly rate using a conversion calculator (Calcxml, 2012). 
7 The number of parts per ship is estimated because each shipyard would consider the total number 
of parts per ship differently. 
8 According to ADM. James A. Lyons (2012), the Navy is currently looking at procuring 43 additional 
Arleigh Burke (DDG-51) platforms.  
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Table 3. Maximum Cost Savings per Hull With Implementation of 3D Laser 
Scanning9 

Max hrs 
saved 

Cost of 
personnel per 
hour 

# of parts 
per ship 

# of 
ships 

Total Savings per 
hull 

10 $42.50 1,000 10 $4,250,000 $425,000 

10 $42.50 10,000 43 $182,750,000 $4,250,000 

10 $42.50 100,000 5 $212,500,000 $42,500,000

SUM $470,000,000  

While 3D laser scanning technology is not currently up to the standards 

specified by the U.S. Navy, it is almost a certainty that with advances in technology, 

it will soon match, or even overtake photogrammetry in terms of accuracy. The U.S. 

Navy stands to reap an enormous cost saving when this technology meets the 

required standards.  

                                            

9 The calculation used for average projected cost savings with the implementation of 3D laser 
scanning uses the average of the possible reduction in personnel hours as a result of the project 
conducted by Electric Boat, the average cost per hour of a marine engineer/naval architect, an 
estimation of the number of parts per ship (this is just an estimation because each shipyard defines 
a part differently: 1,000 parts = small [i.e., patrol craft (PC)], 10,000 parts = medium [i.e., guided 
missile destroyer (DDG)], 100,000 parts = large [i.e., carrier aircraft nuclear (CVN)]), an estimation 
of the number of ships that will be contracted in the future, and the results of the following equation: 

(Avg hours saved) × (Cost per hour) × (# of parts) × (# of ships) = Total.              

The last column in Table 3 represents the total cost savings divided by the number of ships in order 
to represent cost savings per hull. 

The calculation used for maximum projected cost savings with the implementation of 3D LST  uses 
the maximum of the possible reduction in personnel hours as a result of the project conducted by 
Electric Boat, the average cost per hour of a marine engineer/naval architect, an estimation of the 
number of parts per ship, an estimation of the number of ships that will be contracted in the future, 
and the results of the following equation: 

(Max hours saved) × (Cost per hour) × (# of parts) × (# of ships) = Total. 
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B. Product Life-Cycle Management10 

The second technology the current study viewed as a potential method of 

increasing the capabilities of U.S. ship manufacturers, while reducing costs, was 

collaborative product-lifecycle-management (CPLM).  CIMdata, an independent 

global consulting firm that has established itself as a world-leading source of 

information and guidance to both industrial organizations and suppliers of CPLM 

technologies and services (CIMdata, 2011a), defines CPLM as  

a strategic business approach that applies a consistent set of business 
solutions that support the collaborative creation, management, 
dissemination, and use of product definition information, spanning from 
concept to end of life of a product,  integrating people, processes, business 
systems, and information. (CIMdata, 2011b) 

Siemens (2011) defines CPLM as a tool that “allows companies to manage 

the entire life cycle of a product efficiently and cost-effectively, from ideation, 

design and manufacture, through service and disposal.”   

There are valuable lessons learned from other industries about the problems 

associated with the failure to collaborate in core productive processes. For 

example, many shop-level IT implementations are completed without collaboration, 

which, most often, results in the inability to maintain a continuous flow of 

information between different shops along the product life cycle. It also leads to a 

failure to integrate information flow across sub-organizational levels, as well as 

additional rework and attendant costs for a company.  CPLM allows businesses to 

make enhanced decisions throughout the product life cycle, optimizes relationships 

across organizational levels, maximizes the lifetime value of a business’s product 

portfolio, and sets up a single source of record to support diverse data needs 

(Siemens, 2011).  The value added from an enterprise-level CPLM allows for 

continuous flow of information from the idea of the design to the disposal of the 

                                            

10 This information was abstracted from Kevin Shannon’s thesis, A Comparative Case Study of 
Dutch and U.S. Naval Shipbuilding Approaches: Reducing U.S. Naval Shipbuilding Costs Using 
PLM and 3D Imaging (pp. 5–14). 
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product. Some specific benefits of utilizing CPLM technology in other industries 

include the following: 

 an approximate 40% improvement in product change cycle-times, 

 a 15–30% reduction in prototypes, 

 a 40% reduction in lead-time, 

 a 25% productivity increase in design engineering, 

 a 75% reduction in development time for a household product, 

 a reduced time to cost a product from five days to five minutes, and 

 an 83% reduction in the engineering review process. (CIMdata, 2002, 
p. 9) 

These benefits should also accrue to the shipbuilding organizations 

supporting the U.S. Navy. Clearly, other industries have had tremendous cost-

cutting and other benefits from using this technology and the growth in the 

acquisition and use of this technology is a clear indicator of its potential benefits 

across the industrial spectrum. 

CPLM’s exceptional market growth can be seen in Figure 3.  As more 

companies realize the benefits of managing the entire product life cycle from 

design to disposal, this growth is forecast to continue.  The CIMdata research 

predicts that by 2014, the overall CPLM market will be approximately $37 billion, as 

shown in Figure 3. This reveals that the private sector, across a number of 

industries, must be realizing tangible benefits from the implementations of these 

CPLM systems, and indicates that U.S. Navy ship suppliers should be able to do 

the same. 
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Figure 3. Mainstream CPLM Market Growth History and Forecast 
(Malukh, 2011) 

CPLM also has a beneficial impact on internal, supplier-facing, and 

customer-facing operational efficiencies.  This makes it even more attractive to the 

vendors supporting U.S. Navy shipbuilding, leading to a higher likelihood of its 

adoption. These efficiencies are shown in Table 4. 

Table 4.  Internal, Supplier-Facing, and Customer-Facing Operational 
Efficiencies 

(PLM Info., 2011) 

Internal Operational Efficiencies Application
  
Engineering change order (ECO) cycle-time 
reduced by 50%; ECO admin expense reduced 
by 60%  

Personal computers 

Cut box assembly from three hours to two 
hours 15 minutes; ECO cycle-time improved 
40% 

Storage 

Time to market (TTM) improved 40% Farm equipment 
Reduced design errors and rework by 25% Transport temperature control 
TTM reduced by 5%; design errors and 
development costs reduced by 5% 

Semiconductors 

Reduced TTM from 48 months to 18 months 
between 1997 and 2002; engineering 

Automotive 
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productivity increased 10% per year from 1997 
to 2002; 35% reduction in global product 
development budget 
7–14% improvement in engineering non-value-
added time; reduction in ECO cycle-time by 
10% 

Defense programs 

90% faster Federal Drug Administration (FDA) 
document generation cycle-time 

Medical devices 

Design cycle-time reduced by 25% Weapons systems 
Overall engineering administrative activity 
showed an 80% improvement 

Storage 

ECO cycle-time reduced from 33 days to five 
days 

Electronics 

  
Supplier-Facing Operational Efficiencies  
  
Reuse improved from less than 2% to 59%. 
Total savings: $500 million over three years on 
direct materials 

Computers 

Internal supply chain organization found 2% 
savings on direct materials purchase; $640 
million in materials acquisition savings 
potential across all groups 

Industrial products 

10–20% reduction in costs for packaging; 
reduction of 5–10% on direct materials 
spending 

Consumer goods 

Target savings of $3.9 million in 2002; $8.5 
million in 2003 

Seatbelts for auto 

By providing suppliers with access to its 
computer-aided design (CAD) files, lead-time 
in developing tooling was reduced by 80% 

Semiconductor equipment 

Material cost reductions were approximately 2–
3% 

Electronic manufacturing services 

2% reduction in direct materials costs Defense programs 
50% increase in component reuse, resulting in 
5–15% decrease in prices for standard parts 

Aircraft 

  
Customer-Facing Operational Efficiencies  
  
Order to manufacture cycle-time reduced from 
four weeks to one day; errors essentially 
eliminated 

Wireless transmissions 

Significant savings on allowances for warranty 
and returns 

Farm equipment 

Order errors reduced by 50% Elevators 
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Request for quotation (RFQ) response time 
reduction from two weeks to 24 hours 

Electronic manufacturing services 

30% reduction in cycle-time for complex 
custom order taking 

Custom electrical switch gear 

Reduced order lead-time by 50% (from 8–12 
weeks to four weeks) using what-if scenarios 
on screen and direct feedback from distributor 
customers 

Custom aftermarket wheels 

Order volume increased 40% while order errors 
decreased 75% 

Semiconductor 

Eliminated almost 100% of customer order 
errors; cut down purchasing order cycle-time 
by 30 minutes per transaction; completely 
eliminated sending out-of-date product records 
to customers  

Electromechanical machinery 

Reduced order errors by 60–90%, and reduced 
design spec time by 35–90% 

Furniture 

50–70% reduction in project (order to quote) 
cycle-time 

Specialty chemicals  

50% customer RFQ to prototype cycle-time 
reduction 

Bearings and motion control 

Customer RFQ cycle-time reduced by 75% Electronic manufacturing services 

An evolution of the earlier immature version of CPLM was the combination 

of product data management (PDM) and computer-aided design (CAD) 

applications used by Chrysler. CPLM suites now enable complete global 

collaboration and data integration within the company.  The evolution of CPLM is 

illustrated in Figure 4.   



 

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 26 -  
k^s^i=mlpqdo^ar^qb=p`elli=

 

Figure 4. Evolution of PLM Technologies 
(Aman, 2006) 

As CPLM has evolved, the capabilities of the software have increased.  

Table 5 lists the capabilities of each software version as it has evolved.  In the early 

1980s, many organizations started realizing a need for a collaborative system that 

would integrate the various software suites that were being employed. This led to 

the development of a home-grown system called production automated design 

process (PADP). Following PADP was PDM (it had initially evolved in the 

automobile industry). The software that is now available from one of the leading 

makers takes the capabilities of the previous systems and adds additional 

capabilities to allow for product management from design to disposal.  Today this is 

known as CPLM.
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Table 5. Comparison of Product Management Software 

 
PADP PDM 

CPLM 
(Product A) 

CPLM 
(Product B) 

     
Empower cross-
functional design and 
build teams 

    

Use parallel product and 
process development 

    

Integrate all scheduling     
Involve customers and 
suppliers early 

    

Minimize life-cycle costs     
Develop a life-cycle flow 
chart 

    

Develop a risk-
management plan 

    

Use shared databases to 
the maximum 

    

Establish, collect, and 
evaluate metrics 

    

Data vault and document 
management 

    

Workflow and process 
management 

    

Product structure 
management 

    

Classification 
management 

    

Program management     
Communications and 
notification 

    

Data transport and 
translation 

    

Image services 

 


(CAD 

integration 
needed) 


(CAD 

integration 
needed) 

 
(CAD 

solution 
provided) 

Administration     
Application integration     
Innovation management     
Systems engineering and 
requirements 
management 

    
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Portfolio, program, and 
project management 

    

Engineering process 
management 

    

Bill of materials 
management 

    

Compliance management     
Content and document 
management 

    

Formula, package, and 
brand management 

    

Supplier relationship 
management  

    

Mechatronics process 
management 

    

Manufacturing process 
management  

    

Simulation process 
management 

    

Maintenance, repair, and 
overhaul 

    

Reporting and analytics     
Community collaboration     
Life-cycle visualization     
Platform extensibility 
services 

    

Enterprise knowledge 
foundation 

    

Given the relatively slow adoption rate of CPLM technology in U.S. Navy 

shipbuilding, there is additional evidence from auto and aerospace manufacturing 

industries that CPLM suites can improve the engineering and design times in U.S. 

Navy shipbuilding, while at the same time reducing rework.  

In recent years, CPLM has become ubiquitous in the automotive 

manufacturing world. Every major car company uses a CPLM application to manage 

its global supply chain and manufacturing requirements.  Automakers have taken 

advantage of the collaborative effects of CPLM suites.  Because modern 

automakers source parts and manufacture vehicles from all over the world, CPLM 

provides a significant benefit by having a standard format to share project data 
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across all levels of the design and manufacturing process. Whereas more primitive 

versions of CPLM applications relied on a “silo” approach to sharing data (meaning 

that the data was shared seamlessly throughout an individual factory rather than 

across factories), newer applications are extending that collaborative capability 

across multiple facilities (Pope, 2008).  

Another industry that has derived enormous benefit from CPLM tools is the 

aerospace industry. Because of the strict engineering requirements and slim 

margins for error in designing and manufacturing aircraft, the ability to precisely 

model multiple design changes in a software application has yielded excellent 

results for a number of aerospace companies. Figure 5 shows the value of a CPLM 

implementation in the aerospace industry as offered by a subject-matter expert from 

Northrop Grumman. 



 

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 30 -  
k^s^i=mlpqdo^ar^qb=p`elli=

 

Figure 5. Northrup Grumman Engineering Change Order Cycle-Time Reductions 
(R. Langmead, personal communication, 2012) 

It is apparent that CPLM technology also has the ability to produce some of 

the results that the shipbuilding industry desires in terms of reduced cycle-time, 

rework, and increased collaboration. The relevant question that arises when looking 

at the success CPLM has provided other industries is this: How will CPLM 

implementation affect the costs and capabilities of U.S. Navy ships? 
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C. United States Navy Shipbuilding and CPLM11 

To understand the answer to the question of how CPLM will affect the 

shipbuilding industry, it is beneficial to put it into the context of the problems that 

rising ship costs are presenting to the Navy. 

Over the past four decades, the growth of U.S. Navy ship costs has exceeded 
the rate of inflation. This cost escalation concerns many in the Navy and the 
government. The real growth in Navy ship costs means that ships are 
becoming more expensive and outstripping the Navy’s ability to pay for them. 
Given current budget constraints, the Navy is unlikely to see an increase in its 
shipbuilding budget. (Arena et al., 2006) 

In 2006, the Office of the Chief of Naval Operations asked the RAND 

Corporation to investigate the causes of the rise in cost of Navy ships.  The 

investigation focused on two factors that have an effect on naval ship costs: 

economy-driven and customer-driven factors.  The report concluded that the 

cost escalation for naval ships is nearly double the rate of consumer inflation. 
The growth in cost is nearly evenly split between economy-driven and 
customer-driven factors. The factors over which the Navy has the most 
control are those related to the complexity and features it desires in its ships. 
While the nation and the Navy understandably desire technology and 
capability that is continuously ahead of actual and potential competitors, this 
comes at a cost. We do not evaluate whether the cost is too high or low, but 
note only that it exists. Nevertheless, given that the pressures on shipbuilding 
funds will continue in the foreseeable future, the Navy may need to continue 
seeking ways to reduce the costs of its ships—and this will likely need to 
come from, in part, a limiting of the growth in requirements and features of 
ships. The shipbuilders can also help to reduce the cost escalation of ships 
through improvements in efficiency and reductions in indirect costs. (Arena et 
al., 2006) 

The U.S. Government Accountability Office (GAO) released a report in 

February of 2005, investigating the causes for the cost growth of U.S. Navy ships.  

Figure 6 illustrates the components of the cost growth.    

                                            

11 This information was abstracted from Kevin Shannon’s thesis, A Comparative Case Study of Dutch 
and U.S. Naval Shipbuilding Approaches: Reducing U.S. Naval Shipbuilding Costs Using PLM and 
3D Imaging (pp. 29–33). 
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Figure 6. Components of U.S. Navy Shipbuilding Cost Growth  
(GAO, 2005) 

The rise in ship costs and the decrease in allocated funds for the U.S. Navy to 

spend on future ship contracts force the Navy to seek new ways to reduce future 

ship costs.  It is evident that one of the largest factors in the rising costs is the 

increase in labor hours required to complete a naval vessel.  The implementation of 

a CPLM software solution would significantly decrease the number of labor hours 

required to complete a vessel.  There are possible dramatic advantages to the 

reduction in labor hours from the use of this technology.  One of the largest 

contributors to the increase in labor hour growth, as illustrated in Table 6, is design 

changes or issues that lead to rework.  A CPLM solution would allow for 

collaboration to take place during the design changes or upgrades and lead to less 

rework. 
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Table 6. Reasons Given by Shipbuilders for Labor Hours Cost Growth  
(GAO, 2005) 

 

As a concrete example, a real-world notional scenario of rework caused by a 

lack of collaboration and communication is presented here. The absence of a CPLM 

solution in designing compartments aboard a ship lead to a number of problems that 

could have been avoided if a CPLM system had been in place. Two different 

designers were responsible for their respective zones: Zone 1 and Zone 2, as 

depicted in Figures 7 and 8.  The Zone 1 designer knew that he had to get the piping 

that entered the trash compactor room in his zone to cross to the opposite side of 

the room; he designed his space as seen in Figure 7.  The Zone 2 designer had the 

same instructions for the piping system: to get the piping that entered his space from 

one side to the other side of his compartment, so that it exited on the opposite side.  

Unfortunately, the collaborative system that was being employed at the time did not 
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allow the Zone 1 designer to view the area of responsibility of the Zone 2 designer. 

As a result, this situation would have gone unnoticed and the extra piping would 

have incurred unnecessary costs.  

The Zone 2 designer had a more elaborate space to design.  The Zone 2 

designer’s space was the trash compactor room; it included two trash compactors, 

stairs leading up to the compactors, a lighting fixture, and the piping.  The Zone 2 

designer was able meet all the requirements for his space until, during one of the 

design review meetings, someone asked whether the sailor using the trash 

compactor room would have sufficient overhead space to lift a trash can and dump 

its contents into the trash compactor while positioned directly below the designed 

light fixture.  The consensus was that there would not be enough room for the sailor 

to ascend the stairs to dump the contents of a trash receptacle because of the 

position of the light fixture.  As Figure 7 illustrates, the position of the light fixture was 

required because of the routing of the pipe.  Many meetings were held after this 

discovery to try to find a solution to this problem.  After many wasted man hours 

trying to figure out a design solution, the Zone 1 designer happened to attend one of 

the meetings and realized the flaw in the piping design.  Figure 8 shows the solution 

to the trash compactor problem once the Zone 1 designer noticed the piping design 

flaw.  If a CPLM software solution had been implemented, the Zone 1 and 2 

designers would have had access to each other’s areas of responsibilities (zones) 

and would have been able to collaborate and save the wasted piping and man hours 

it took to try to resolve the design problem created in the trash compactor room.  
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Figure 7. Compartment Piping Design Flaw 

 

Figure 8. Compartment Piping Design Solution 

It is clear that the cost of Navy ships is a serious problem in the current cost-

constrained DoD environment, and that CPLM offers some opportunities for 

manufacturers to offset these costs. The challenge for U.S. shipbuilders is how to 
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achieve the benefits that other industries are seeing without a clear framework of 

how to implement the technology as well as the structural changes required by it.  

The purpose of the following discussion is to provide shipbuilders with some 

guidelines for how to assess their capacity for taking advantage of CPLM 

manufacturing capability and their potential for implementing the technology from a 

structural, human resources, and technical perspective. The discussion includes 

examples of real-world scenarios where these technologies were leveraged 

successfully, and where they fell short, to provide further insights for shipbuilders 

from the lessons learned from other industries. 

D. Damen Naval Shipbuilding12 

One case study that can serve as an incentive for CPLM implementation is 

the Damen shipyard group. Damen Schelde Naval Shipbuilding (DSNS) was 

established in 1875 as Royal Schelde and became part of the Damen Shipyards 

Group in 2000.  The Damen Shipyards Group employs over 8,500 employees in 30 

different shipyards around the world.  DSNS provides the Royal Netherland Navy 

with military vessels, including frigates, amphibious vessels, and auxiliary vessels.  

In late 2000, Hein van Ameijden joined the Damen Shipyards Group as the director 

of Naval Export. Prior to the takeover by Damen Shipyards, Royal Schelde had 

never exported any of its naval vessels.  Within three and a half years after his 

appointment, DSNS was exporting 50–80% of its naval vessels.  After experiencing 

so much success under the direction of Hein van Ameijden, DSNS appointed 

Ameijdin to managing director of Damen Schelde Naval Shipbuilding in 2004.   

On February 9, 2011, Ameijden spoke at the American Society for Naval 

Engineers (ASNE) President’s Lunch in Arlington, Virginia.  Ameijden’s speech 

covered history and an introduction of DSNS, and discussed how he believed that 

                                            

12 This section was adapted from Kevin Shannon’s thesis, A Comparative Case Study of Dutch and 
U.S. Naval Shipbuilding Approaches: Reducing U.S. Naval Shipbuilding Costs Using PLM and 3D 
Imaging (pp. 27–28). 
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the U.S. Navy has been paying too much for its ships—nearly three times the 

amount that the Royal Netherlands Navy pays for comparable platforms, as 

illustrated in Figures 9 and 10. 

DDG Arleigh Burke vs LCF

DAMEN SCHELDE NAVAL SHIPBUILDING

DDG Arleigh Burke Class 
Dimensions:
153.8 x 20.3 x 6.7 m

Displacement:
8950 Tons

Yard hours:
4.4 million

Air Defence and Command Frigate (LCF)
Dimensions:
144.2 x 18.8 x 5.2 m

Displacement:
6048 Tons

Yard hours:
1.5 million (incl. CO-makers)

1.5 billion $ 0.55 billion $

 

Figure 9. Cost Comparison of DDG versus LCF  
(Ameijden, 2011) 
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San Antonio vs JSS

San Antonio Class 
Dimensions:
208.4 x 31.9 x 7 m

Displacement:
25,885 Tons (full load)

Joint Support Ship 
Dimensions:
204.7 x 30.4 x 7.8 m

Displacement:
27,000 Tons (full load)

DAMEN SCHELDE NAVAL SHIPBUILDING

2 billion $ 0.5 billion $

 

Figure 10. Cost Comparison of Landing Platform Dock Versus Joint Support Ship  
(Ameijden, 2011) 

DSNS has begun the implementation of one of the industry-leading CPLM 

solutions and is currently still in the implementation phase.  Because of this, hard 

cost-savings data as a result of partial implementation of the CPLM suite of tools 

was unavailable; nevertheless, Ameijden stated, “The cost of material is so high that 

savings through error reduction [assumed as a result of CPLM implementation]  will 

lead to a short payback time and make the investment worthwhile” (Siemens, 2011).  

One particular case study within Damen itself that can be used to illustrate 

just some of the potential benefits of CPLM applications in shipbuilding is the 

reduction in design times on the 2000-ton corvette designed by Damen. According to 

our Damen subject-matter expert, the total engineering process is comprised of 6–9 

months of system engineering, followed by 12–14 months of detail engineering. With 

the current CPLM application in use, detail engineering can be started a month 

earlier, and, ultimately, reduce the time spent on it by 1–3 months. Those estimates 

indicate that the CPLM offers a reduction of between 9% and 22% on the total time 
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of the engineering process. When we consider that Damen is working with a total of 

300–320 engineers in Holland and Romania, the subsequent cost savings are 

considerable.  

Conversations with a high-ranking member of the Engineering Department at 

Damen revealed some hard lessons learned that would be applicable to U.S. 

shipbuilders considering an implementation of a CPLM suite. The first lesson is that 

there is a 12–18 month implementation time for such a complex technology. This 

indicates that it is important that U.S. Navy shipbuilders have a well-thought-out plan 

to customize the software to their unique needs. 

 Damen began installation and training and integration into their existing 

systems of  the CPLM tool  in 2009 and were able to get it implemented in mid-2010. 

They found that the initial partial implementation of the CPLM suite did not fully meet 

their needs. The Damen subject-matter expert explained that more training time was 

needed for engineers working with the software, and that customization of the 

software for their unique needs was required upfront. The subject-matter expert 

suggested that each company will probably have to upgrade some dimensions of the 

CPLM solution for their individual needs. In addition, there is a learning curve and 

required training time for engineers and team members to become competent in use 

of the software, which can result in an initial decrement in productivity in the 

beginning use of the technology. This is the normal learning curve that any 

organization goes through in adopting a new technology as fundamental as the 

CPLM system. The subject-matter expert noted that if Damen could re-do the entire 

implementation process, it would take more time upfront to get its employees up to 

speed.  

Damen’s success can be explained by having a highly educated and 

motivated workforce, being on the forefront of CPLM use in the shipbuilding industry, 

and having an organizational structure that allows the technology and people in the 

company to operate as seamlessly as possible. Clearly, Damen represents a model 

for other ship-construction organizations to follow, and was, in large part, the 
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inspiration for the checklist for assessing manufacturing capability that follows later 

in this report.  

E. Airbus13 

Although the benefits of CPLM are lauded by companies implementing CPLM 

practices, implementing CPLM comes with its own set of challenges  that must be 

faced and understood to ensure success. Like any new, broad software 

implementation, fully utilizing CPLM software requires a learning curve that, if 

ignored, can have negative consequences. One particular case of a failure to 

understand the socio-organizational requirements of implementing CPLM software 

led to a set of costly negative consequences in the design and manufacture of the 

Airbus A380 Superjumbo Jetliner.   

In 2005, Airbus announced that the production of its much-anticipated A380 

Superjumbo would be pushed back by a minimum of two years, a blunder that would 

cost Airbus “up to 6 billion dollars in lost profits” (Duvall & Bartholomew, 2007, p. 

36). The culprit for this enormous setback was a critical error in the cross-

coordination of two CATIA CPLM systems. When initial production of the fuselage of 

the aircraft began at a plant in Toulouse, France, workers noticed that large bundles 

of wiring and connectors were not fitting as they were supposed to in the aircraft. 

The scope of this problem was enormous; each plane required over 300 miles of 

wire and 40,000 connectors (Duvall & Bartholomew, 2007). To fix this problem by 

hand would have been practically impossible.  

The root cause of this calamitous error can be traced to a breakdown in 

collaborative communications between the two plants that were using different 

versions of the CATIA CAD program to manufacture different parts of the A380. The 

newest version of CATIA (Version 5) automated some of the design processes that 

                                            

13 This section was abstracted from Kevin Shannon’s thesis, A Comparative Case Study of Dutch and 
U.S. Naval Shipbuilding Approaches: Reducing U.S. Naval Shipbuilding Costs Using PLM and 3D 
Imaging (p. 14). 
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had to be manually completed with the older Version 4 software (Duvall & 

Bartholomew, 2007). This mistake could, and should, have been rectified before 

manufacturing began, but was overlooked due to the vast scope of the 

manufacturing project. An unforeseen downside of cross-plant collaboration turned 

out to be a multi–billion-dollar delay in delivery.  

The lesson that can be gleaned from this example is that when implementing 

a CPLM solution, companies must make a concerted effort to ensure that their 

organization’s structure can handle the capabilities and, resulting efficiencies, 

offered by this new technology. Time and money spent standardizing software, 

training employees, and evaluating how the company is organized can have 

significant downstream benefits and help avoid catastrophic mistakes.  In the 

Department of Defense (DoD) setting, setbacks like these can mean not only 

substantial cost overruns, but also potentially critical gaps in warfighting capability 

from a failure to produce new platforms on time.  

In order to achieve the benefits of collaborative CPLM technology, as Damen 

has, while avoiding the pitfalls, the current study presents a set of questions that a 

company should answer to determine their manufacturing capability readiness.  This 

readiness should also translate into a readiness to adopt CPLM tools. The following 

sections outline the relationship between an organization’s manufacturing capability 

readiness, its structure, its human resource management, and its general technical 

readiness capability. 
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II. The Organizational Design of Digital 
Shipyards14  

A. Socio-Technical Systems and Organizational Design 

 The research on innovation and manufacturing technologies supports the 

core insight and design principal of the socio-technical15 systems approach to 

organizational design, captured in the concept of “joint optimization.”   Joint 

optimization argues that focusing on the social or organizational side of 

manufacturing without attending to the physical technologies or technical systems16 

results in sub-optimization, as does focusing on technology without attending to the 

organizational side of the organization.  Optimizing organizational processes 

requires simultaneously using two lenses:  one for the social/organizational 

subsystems and one for the technological or technical subsystems (Badham, Clegg, 

& Wall, 2001; Cummings & Srivastva, 1977). The failure of Airbus to successfully 

utilize the two versions of the CPLM suites is one example of what can happen when 

these two critical factors are not taken into account. To avoid the same kind of 

mistakes, U.S. Navy “digital shipyards” must ensure that the  organizational design 

and human resource management as well as technological readiness levels be 

assessed to ensure maximal utilization of the CPLM tools.  

                                            

14 The term “digital shipyard” has come up a number of times from subject-matter experts, but is 
clearly articulated in Siemens CPLM Software (2012). 
15 The socio-technical approach has been developed into a socio-technical systems approach.  The 
importance of people and social relationships is here expanded to include the open systems view of 
organizational structure (e.g., how departments are organized; the degree to which decision-making 
is decentralized; what horizontal processes are employed).  Socio-technical systems are here 
subsumed under a broader framework of organizational design. 
16 “Technical systems” traditionally refers to what most people mean by technology, and includes the 
following: architecture and facilities; equipment and tools; and, communication and information 
systems, including hardware and software. In our paper, technology or technical systems are 
synonymous and are viewed as the platforms, physical technologies, and tools that enable people, 
groups, and organizations to transform inputs into outputs. 
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The recent and continuing advance of information technologies, especially in 

the CPLM arena, have contributed greatly to improvements in ensuring world-class 

manufacturing capabilities.  Collaborative information and communication 

technologies are enhancing the productivity of organizations throughout the larger 

company manufacturing sector.  These new CPLM tools are enabling horizontal 

communication and collaboration among traditional functions and processes that 

was cumbersome or nearly impossible in mature manufacturing organizations.  

CPLM can integrate across the manufacturing domains of initial design, detailed 

design, product development, planning, and testing prior to deployment.  More 

recent efforts are ideas attempting to apply these operational concepts and 

supporting tools to the entire life cycle of ships, integrating information to better 

manage shipbuilding as well as ship maintenance with the goals of reducing life-

cycle costs and enhancing warfighting readiness.   

Our analysis expands the general socio-technical systems perspective to an 

organizational design perspective, viewing joint optimization, enabled by tools such 

as CPLM, as requiring at least three lenses for assessing the diagnosis and 

adoption of CPLM tools in shipbuilding.  These lenses are also critical because they 

encompass policy domains: They are perspectives for aligning shipbuilding policy in 

order to effectively integrate organizations, people, and technology.  In other words, 

joint optimization requires optimizing and aligning (1) the organization from a 

structural perspective; (2) human contributions from a human resources perspective; 

and, (3) technology through a technical systems perspective.  Culture largely 

emerges in response to ongoing work processes that operate in the contexts created 

by design decisions—including policy decisions—resulting from insights provided by 

an understanding of the structural, human resources, and technical perspectives in 

facilitating the rapid adoption of CPLM tools to reduce costs and enhance 

warfighting readiness. 

Underlying the design requirements of the digital shipyard is the increasing 

complexity of the business of modern shipbuilding and of the ships themselves.  This 

complexity carries risks of generating non-linear, chaotic work dynamics and 
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accompanying escalation of costs. Even without losing control over complex, 

potentially chaotic processes, shipyards that fail to innovate and integrate new 

technologies, such as CPLM, risk falling behind their competition in terms of costs, 

efficiencies, quality, and, ultimately, warfighting readiness.   

New technologies, such as CPLM, clearly hold the promise for innovation in 

shipbuilding design, manufacturing, and maintenance, generating major savings 

throughout a ship’s life cycle.  However, consensus among practitioners and 

scholars is that learning and implementing appropriate structural and human 

resource design changes will be necessary to take full advantage of the promises 

technical systems offer.   

B. Innovation in Manufacturing 

Since the industrial revolution, organizing people and their work according to 

the images of the industrial machine has generated productivity cost-saving 

efficiencies and wealth. As in other industries, skilled craftsmen capable of 

performing all or nearly all of the tasks necessary for building ships had to yield to 

the design requirements of standardization and specialization.  Generalists were 

relegated to niche markets as ships advanced exponentially in size, sophistication, 

and complexity.17  Throughout the late 19th and 20th centuries, the machine image of 

bureaucracy, rationality, and scientific management advanced.  This has produced 

efficiencies and productivity advances responsible for much of the wealth in the 

modern world.   

However, as products—and the manufacturing processes that build them—

have increased in scale, sophistication, and complexity, the emphasis on 

specialization and standardization has generated inefficiencies, due in large part to 

failures of coordination, and results in motivational problems among the workforce.  

To overcome these problems and increase competitiveness, alternative engineering 
                                            

17 The design principles of Taylorism, associated with the emergence of Weber’s bureaucracy, are 
generally associated with the design metaphor of organizations as machines. 
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and manufacturing approaches have emerged that have been integrated into a new 

organizational design perspective. The on-going transformations associated with 

globalization, information networks, innovative organizational structures, and high 

involvement of human resource practices have lagged in some industries, but have 

left few untouched.  Given competitive pressures and socio-technical innovations, it 

appears that shipbuilding is positioned to be able to increase quality standards and 

decrease life-cycle costs.   

Collaborative product management (CPM) technologies,18 such as CPLM and 

concurrent engineering (CE), have been emerging for some time.  CPM uses CPLM 

and CE technologies to create a system-of-systems. Some manufacturing 

organizations and industries (e.g., automobiles) have been at it longer and are, thus, 

leaders in development and use of collaborative socio-technical systems designs. 

Other industries, such as shipbuilding, are learning from these experiences, but 

adapting them to the special circumstances of building ships (e.g., low volume and 

fewer opportunities for standardization, relative to automobile manufacturing).  

Lessons in how to assess and develop capabilities are thus emerging as shipyards 

and CPLM vendors collaborate and pursue more customized paths to developing IT 

solutions.   Insights into how to assess and develop collaborative manufacturing 

capabilities are informed by subject-matter experts who understand multiple 

industries in cooperation with those vendors and businesses that focus on 

shipbuilding.  

We now turn to the three design and policy domains of (1) organizational 

structure and processes, (2) human resources, and (3) technical systems to see 

what key questions must be answered (or, as the digital shipyard is emerging, may 

be found to relate) to ensure the effective design of the digital shipyard enabled by 

CPLM.  Lessons regarding human resource policies, practices, and perspectives are 

                                            

18 CPM is a strategy that seeks to leverage technology to increase collaboration. This stated goal is 
very similar to the application of CPLM technologies, so, for simplicity’s sake, we refer to both as 
CPLM. 
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a lagging domain in terms of current knowledge of how best to use CPLM tools in 

shipbuilding. We expect “high involvement” human resource practices to be 

important, but the details of this approach have not been well articulated or 

researched to date. The first section, covering the structural perspective, is a leading 

domain in terms of current knowledge that would be useful in applying best practices 

to the shipbuilding arena.  The structural perspective is the heart of organization 

design.  It is rich with lessons learned from multiple industries, lessons already 

reiterated by subject-matter experts in shipbuilding.  We turn first to the domain of 

“getting organized,” within the structural perspective, to provide insights as to how to 

assess a shipbuilding organization’s readiness to adopt CPLM.  

C. Assessing and Developing Manufacturing Capability From 
a Structural Perspective 

Manufacturing capability is more and more wedded to the criticality of 

knowledge management that is one of the primary functions of a CPLM tool suite.  

As ships, like automobiles, become more complicated, the management of 

knowledge enables greater cost efficiencies as well as stimulating innovative 

practices.   

The structural perspective largely assumes norms of rationality, that the 

design of the organization is undertaken with the aim of maximizing the efficiencies 

and effectiveness of the organization as a whole.  (The human resource perspective 

deals with the realities that individuals and groups may have their own motives, 

interests, inertia, fear of change, and points of view that conflict with optimizing the 

total organizational system through the use of a CPLM system.)  It assumes that 

effective organizational designs are structured so that information does not overload 

actors, flows collaboratively to where it is needed, and fits the realities of the 

workflow and the needs of decision-makers. Failure to consider these impediments 

to full utilization of CPLM tools is likely to result in problems of cognitive overload, 

lack of information and knowledge sharing, functional fixity of thought processes, 

and, as a consequence, wasteful failures to collaborate,  integrate, and execute. 
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CPLM tools facilitate the flow of information across the different functional groups 

within an organization; however, the structural design that can take advantage of 

these new capabilities needs to be considered so that CPLM can operate as 

efficiently as possible. 

Table 7 presents a set of questions related to structural success factors for 

manufacturing capability.  They may be viewed as a high-level, strategic checklist.  

The questions address organizational design considerations critical to the 

implementation of intra- and inter-organizational collaboration via CPLM, and 

concurrent engineering.  The questions are informed not only by the needs for 

improvements in productivity in the shipbuilding industry, but also from the 

experiences of organizations in other industries.  Because some organizations have 

been earlier adopters of CPLM, and CE, they are further along in the maturity curve 

of developing coherent organizational designs.  However, because different 

industries comprise different contexts,19 their designs and supporting cultures may 

eventually differ somewhat from what will eventually emerge in the shipbuilding 

sector. 

From a structural perspective, the emerging digital shipyard is a response to 

increasing market competition, technological innovation, product complexity, and 

globalization.  All of these forces serve to generate complexity and demands for 

speed, quality, and cost effectiveness, demands which can be met by a properly 

implemented CPLM system.  The socio-technical design of the digital shipyard, 

enabled through CPLM, represents a solution to these problems, and especially to 

the problem of managing information complexity.  As environmental and work 

complexity increase, decision- making and coordination via vertical hierarchies risks 

degradation due to information overload. The adaptive response is to decentralize 

decision-making lower in the hierarchy while standardizing and rationalizing 

                                            

19 Different industries operate in different regulatory and economic contexts.  For example, in the 
construction industry, functional disciplines are owned by different sub-contractors; thus, creating 
cross-functional design team is more problematic. 
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horizontal work flows and their supportive horizontal information processes and 

systems.  CPLM is a system with the requisite complexity for standardizing and 

rationalizing information flows to support more efficient work flows.  Table 7’s 

questions, thus, persistently reveal the theme of creating capabilities for 

collaboration via restructuring functional organizations and increasing horizontal 

collaboration to support the hierarchy and deliver products faster, cheaper, and 

better. 

Design is a value-laden activity: nothing can be designed without design 

values, including the organizational structures and processes that support CPLM 

and concurrent engineering.  The design processes must acknowledge the key role 

of leadership and leadership’s design visions and values.  The CPLM-enabled 

shipbuilding processes must balance the design values of efficiency and innovation.  

The demand for efficiency requires standardization and formalization and discipline 

that  CPLM can enable when successfully implemented.  The increasing demand for 

innovation in products and processes requires decentralization and horizontal 

collaboration  and structures as well as flexible, informal, mutual adjustment among 

functional areas.  Managing the dynamic tensions created by these somewhat 

contradictory design pressures requires a leadership team that can fully utilize the 

capabilities offered by CPLM tools.  

The questions in Table 7 address issues of how to re-organize the major 

departmental architecture of the organization so as to create a greater emphasis on 

horizontal work processes that have a clear line of sight to the customer by taking 

advantage of CPLM capabilities.  The second set of questions focus on the vertical 

processes of the organization, including the design factors of decentralization and 

standardization, which may represent unique challenges to be able to fully utilize the 

CPLM tools.  Finally, the micro-structure of job design is discussed because jobs 

must be redesigned to take advantage of the new capabilities offered by CPLM 

tools. 
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Table 7. Questions for Assessing Manufacturing Capability From a Structural 
Perspective to Utilize CPLM  

Departmentation and 
Horizontal 
Integrating 
Processes 

1. Has the organization formalized horizontal product or 
project units, typically through a matrixed organizational 
structure?  

2. Does the organization have cross-discipline (or cross-
functional) integration within product teams? 

3. Are the design and manufacturing functions and 
engineers integrated, taking advantage of concurrent 
engineering?   

4. Are the functional departments or disciplines 
developed, maintained and deployed as centers of 
excellence?  

5. Are functional centers of excellence deployed so their 
knowledge of best practices flows into projects? 

6. Are suppliers integrated into meetings and teams? 

7. Are customers integrated into meetings and teams?  

Vertical Processes 1. How tall is the organizational hierarchy?    
2. Is vertical differentiation creating a context for 

responsibility and empowerment? 
3. Have employees clearly been given appropriate 

decision-making authority to match their tasks and 
responsibilities? 
 In particular, are integrated process teams 

appropriately empowered to make decisions? 

Work and Job Design 
(Generating a Sense 
of Empowerment) 

1. Is the work that individuals do—either in jobs or 
teams—structured so as to enhance intrinsic task 
motivation?   
 More specifically, is the work characterized by 

significance of the work, variety in the skills 
required, task identity, autonomy, and feedback? 
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III. Departmentation and Horizontal Processes 

The departmentation of the organization refers to the grouping of individuals 

into larger units.  It is the template for the organization’s formal vertical and 

horizontal relationships.  Indeed, when people think of organization structure, the 

organization chart comes to mind. Departmentation in the new digital shipyards must 

be undertaken with the specific capabilities of CPLM in mind, so as to optimize the 

efficiency and collaborative benefits of the technology.  Because departmentation in 

emerging digital shipyards formalizes horizontal reporting relationships and units into 

the structure, we discuss it at the same time that we discuss horizontal structures 

and processes.  Our first questions (see Table 7) are about departmentation and 

horizontal processes. 

A. Departmentation: Matrix and Project Structures   

Referring to Table 7, these questions address the horizontal structure of the 

organization: 

1. Has the organization formalized horizontal product or project units, 
typically through a matrixed organizational structure? 

2. Does the organization have cross-discipline (or cross-functional) 
integration within product teams? 

At the highest level of formal organization, state-of-the-art shipbuilding firms 

may use different terms to describe their departmental structure (e.g., product 

divisions, integrated product teams), but they are transforming so that traditional 

functional structures are integrated and coordinated with overlying horizontal 

structures.  It appears that they most generally are and will be matrixed.  Horizontal 

teams and project managers serve as a corrective to the “silos” and “smoke stacks” 

that block information exchanges and transparency in functional structures; CPLM 

serves the purpose of providing the technical system through which data can be 

exchanged freely and transparently across departmental units.  Thus, a subject-

matter expert in the shipbuilding industry currently using a CPLM suite said,  
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We have product groups.  Those product groups are responsible for each 
specific product that we make.  We have a product group in tugs; we have a 
product group in workboats; also in offshore and transport, … and for frigates 
and corvettes.  …They try to get better in that product range.   

The horizontal processes facilitated by CPLM technologies shift the traditional 

upward focus on the functional hierarchy to the work processes, the final product, 

and, ultimately, the customer.  

The horizontal structures are particularly effective because their organization 

is congruent with the value-adding business processes of the organizations.  As we 

will see, CPLM has a great impact on the design process as supplier and customer 

inputs and membership can be integrated into the structure to prioritize design 

criteria with respect to costs, and to identify process inefficiencies and domains of 

improvement.  This would not be possible if design was conducted within the 

structure of organized silos lacking a fully functioning CPLM system.  One of the 

more dramatic cases of a CPLM-enabled horizontal structure leading to immense 

cost and efficiency benefits, discussed in the next section, is the Virginia-class 

submarine. 

1. Virginia-Class Submarine:20 

The Virginia-class submarine program is possibly the clearest example of the 

effectiveness of CPLM and 3D collaboration software on a defense acquisition 

platform. Designed as a replacement of the aging Los Angeles-class submarines, 

the Virginia-class vessels took advantage of open architecture and modular design 

techniques to achieve cost savings while increasing the flexibility and performance 

of the platform (Johnson & Muniz, 2007).  

                                            

20 This section was abstracted from Kevin Shannon’s thesis A Comparative Case Study of Dutch and 
U.S. Naval Shipbuilding Approaches: Reducing U.S. Naval Shipbuilding Costs Using PLM and 3D 
Imaging (pp. 17–20). 
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In the early 1990s, as the Cold War was ending, the Navy went through a 

bottom-up review to set the necessary standards and fleet numbers according to 

what the Clinton administration felt was appropriate for the shifting threats of the 

times (O’Rourke, 2004). The contemporary naval experts agreed that around 50 was 

the appropriate number of submarines needed in order for the Navy to sustain a 

310-ship fleet (Johnson & Muniz, 2007). In addition to the new quota, a decision was 

made to end production of the expensive and large Seawolf-class submarines after 

only three vessels because of the shifting threats facing the U.S. Navy, namely 

operating quietly in littoral combat zones (Federation of American Scientists, 2011).  

Ending the production of the Seawolf submarines left the Navy in a 

predicament, because the Los Angeles-class submarines were slated to be 

decommissioned “at the rate of three per year” (Johnson & Muniz, 2007, para. 2).  

The Seawolf was originally designed to replace the Los Angeles class in its 

traditional deep-sea and arctic roles, but the Navy had different plans for the 

Virginia-class submarines. The missions that the new, smaller submarines were to 

fill included the following: 

 covert strike by launching land-attack missiles from vertical launchers 
and torpedo tubes; 

 anti-submarine warfare with an advanced combat system and a flexible 
payload of torpedoes; 

 anti-ship warfare, again, using the advanced combat system and 
torpedoes; 

 battle group support with advanced electronic sensors and 
communications equipment; 

 covert intelligence, surveillance, and reconnaissance, using sensors to 
collect critical intelligence and locate radar sites, missile batteries, and 
command sites, as well as to monitor communications and track ship 
movements; 

 covert mine-laying against enemy shipping; and 
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 special operations, including search and rescue, reconnaissance, 
sabotage, diversionary attacks, and direction of fire support and 
strikes. (Federation of American Scientists, 2011) 

These requirements necessitated a flexible platform, and the contract for the 

submarines was awarded to General Electric’s Electric Boat and Northrop 

Grumman’s Newport News shipyards. Initially the Navy intended to produce these 

submarines at a rate of one submarine per year, but soon realized that the rate of 

production would need to be doubled in order to meet the Navy’s quota as the Los 

Angeles subs were decommissioned. To meet this demand, however, the Navy 

understood that costs of the submarines would have to be dramatically reduced by 

2012, from $2.5 billion to $2 billion per submarine. This goal was known as Two for 

Four in Twelve (Johnson & Muniz, 2007).  

Electric Boat and Newport News began working on cost-cutting measures 

that would maintain the submarines’ capabilities for their seven aforementioned 

missions while simultaneously reducing the cost of the submarines to $2 billion. The 

tool that was used to design and implement these improvements was a home-grown 

CPLM and 3D CAD system. With this system, Electric Boat was able to quickly and 

efficiently make significant changes to the submarines’ bow design and launch tubes 

that would prove critical in reducing the cost per submarine while having the added 

benefit of increased flexibility and performance.  

The two most important design changes that added flexibility and reduced 

cost were the large-aperture bow (LAB) array and payload integration module (PIM) 

(Johnson & Muniz, 2007). These changes are representative of prioritizing design 

criteria with respect to costs, one of the main benefits of a horizontal organizational 

structure.   

The LAB array achieves its initial cost savings by taking the sonar system out 

of the pressurized hull of the sub (Johnson & Muniz, 2007). 

The LAB Array has 2 primary components: the passive array, which will 
provide improved performance, and a medium-frequency active array. It 
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utilizes transducers from the SSN-21 Seawolf Class that are designed to last 
the life of the hull. This is rather par for the course, as the Virginia Class was 
created in the 1990s to incorporate key elements of the $4 billion Seawolf 
Class submarine technologies into a cheaper boat. (“Virginia Block III,” 2008) 

In addition to $11 million in immediate cost savings, the LAB array also relies 

on cheaper internal components that further reduce costs by being cheaper to 

replace, maintain, and install (Johnson & Muniz, 2007). The savings resulting from 

these changes have not yet been quantified.  

The PIM is another dramatic design change that has had the most noticeable 

impact on achieving cost savings and increasing the flexibility of the system while 

still maintaining the original operational goals of the platform.  

The submarine is equipped with 12 vertical missile launch tubes and four 
533mm torpedo tubes. The vertical launching system has the capacity to 
launch 16 Tomahawk submarine-launched cruise missiles (SLCM) in a single 
salvo. There is capacity for up to 26 mk48 ADCAP mod 6 heavyweight 
torpedoes and sub harpoon anti-ship missiles to be fired from the 21in 
torpedo tubes. Mk60 CAPTOR mines may also be fitted. An integral lock-out / 
lock-in chamber is incorporated into the hull for special operations. The 
chamber can host a mini-submarine, such as Northrop Grumman's Oceanic 
and Naval Systems advanced SEAL delivery system (ASDS), to deliver 
special warfare forces such as Navy sea air land (SEAL) teams or Marine 
reconnaissance units for counter-terrorism or localized conflict operations. 
(“NSSN Virginia,” 2011) 

Currently, the Virginia-class program has achieved the goals specified by Two 

for Four in Twelve, as well as won the prestigious David Packard Excellence in 

Acquisitions Award for “reducing life-cycle costs; making the acquisition system 

more efficient, responsive, and timely; integrating defense with the commercial base 

and practices; and promoting continuous improvement of the acquisition process” 

(“Virginia Class Sub,” 2008). These two drastic design changes and the subsequent 

rewards that resulted from them were brought about using CPLM and CAD 

technology, according to a source within the CPLM technology sector. 

We don’t know how much of the Virginia-class sub program’s success to 

attribute to the structure of the shipyards responsible for building the platforms. 
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However, the horizontal structure and efficient collaboration are in line with the 

benefits of CPLM implementation reported by shipbuilders using the collaborative 

technologies. 

Moving away from the traditional silo approach with CPLM technology does 

not imply that the functional groups disappear; rather, functional groups or 

disciplines are still critical as they are necessary and central to the work of building 

ships, but they now are embedded in a context of horizontal structures and work 

flows.21  The shipbuilding subject-matter expert says, “They [the product group] do 

the proposal work for potential customers, and they do the initial engineering work.  

As soon as it becomes a contract it goes to the engineering department.”  Each 

organization must determine the points at which disciplinary or functional teams are 

appropriately used, but critical design and planning phases are multi-disciplinary.  

On the surface, this move away from functional structures may seem difficult as it 

appears to sacrifice economies of scale, but the efficiencies gained through CPLM 

and concurrent engineering’s processes more than make up for this apparent 

structural inefficiency. As discussed elsewhere in this report, because knowledge is 

being shared by the CPLM systems in the initial designs,  cost savings are 

generated because more and more costly problems are solved on the digital drawing 

boards.  

Figure 11 illustrates the matrix structure. Note that it is quite possible for most 

mutual adjustment and horizontal communication to occur at the middle level, with 

lower level workers, although still organized as teams, following guidance from 

higher levels. The structured dissemination of relevant information through a CPLM 

system facilitates and promotes this horizontal communication.  A subject-matter 

expert’s words relate well to the image in Figure 9:   

                                            

21 In the language of Thompson’s theory of inter-departmental interdependence, reciprocal work 
processes coordinated through mutual adjustment and horizontal processes, are added to traditional 
pooled and sequential interdependence, coordinated respectively through rules and plans.  This 
allows for interdisciplinary knowledge to be deployed to prevent or solve problems earlier and to 
respond to product changes more effectively and efficiently.  
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If you talk about how we keep each other informed, we have, each year, on 
the various levels, various meetings where the product group directs and 
sales people, and management meet each other for a number of days.  We 
exchange information by a more or less structured agenda; and that also 
goes for the procurement department, the engineering department, the 
production department.   

Again, the functions remain critical in the structure, but horizontal 

mechanisms work to prevent them from becoming stovepipes. CPLM technologies, 

in this way, can contribute to building an organizational structure that promotes 

horizontal mechanisms and collaboration. CPLM technology provides the avenue for 

instant knowledge sharing between and among departments.  

 

Figure 11. Matrix Structure of Manufacturing Organizations Using CPLM  
and Matrix Structures 

(Tookey, Bowen, Hardcastle, & Murray, 2005) 
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B. Integration of Design and Manufacturing 

Taken from Table 7, this question addresses the horizontal structure of the 

organization:  

3. Are the design and manufacturing functions, processes, and engineers 
integrated, taking advantage of concurrent engineering?   

The cost benefits of structural horizontal integration in manufacturing have 

nowhere been as thoroughly studied as in the integration of the design and 

manufacturing functions (i.e., in new product design and development).  The matrix 

design in Figure 11 is especially important in CE and CPLM approaches that create 

teams of design and manufacturing engineers.  In the figure, the program or product 

teams are further divided into teams that focus on different subsystems or 

subassemblies.  These low-level teams are organized to include personnel with 

design, engineering, and manufacturing knowledge.  Most critically, they develop 

and require the ability to appreciate the values, assumptions, and perspectives of 

those from other functions or disciplines.  From a human resource perspective, the 

use of CPLM to create a matrix structure can enrich jobs, giving people a sense of 

ownership and identification with tasks. 

The nature of integration depends on the maturity of the organization’s 

development toward concurrent engineering.  More is known about industries that 

have been early adopters and developers of CE and CPLM (e.g., the auto industry).  

It also is clear that the structure of some industries (e.g., the construction industry; 

cf. Tookey, et al., 2005) presents greater barriers to adoption.22  According to an 

expert in the auto industry, cross-functional launch teams have progressed to the 

point that they involve “hourly plant employees who sit alongside manufacturing and 

product engineers, quality experts and plant level managers to resolve 

                                            

22 Shipbuilding, like construction, is a low-volume industry that resists standardization.  A systematic 
study of its structure with respect to barriers and enablers has not yet been written.  However, one of 
the prime barriers for construction, functional subcontractors in the hands of different owners, does 
not characterize the shipbuilding industry.   
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manufacturing and quality issues.” A subject-matter expert notes that low-level 

employees bring pragmatic, “real-world” tests to the teams:   

They look at user friendliness. …  How easy is it to service?  How easy is it to 
maintain? … An engineer … only looks at it maybe from a functional 
perspective, and does not really have the forward vision of anticipating 
maintenance-ability, serviceability, those kind of things. (Haddad, 1996, pp. 
127–128)    

CE platform teams in the auto industry may thus be composed of more than 

700 people.  To the extent decision-making requires consensus, this clearly 

empowers production and trade employees.  It remains unclear to what degree 

participation and empowerment will reach these levels in shipbuilding as a result of 

CPLM and concurrent engineering.  Although our sample was small, given the size 

of the shipbuilding industry, managers at shipbuilding firms and CPLM vendors have 

not seen these changes yet.  However, they fully expect that such positive changes 

will occur in time with proper implementation of CPLM tools.  

C. Functions as Centers of Excellence 

These questions (see Table 7) also address the horizontal structure of the 

organization: 

4. Are the functional departments or disciplines developed, maintained, 
and deployed as centers of excellence?  

5. Are functional centers of excellence deployed so their knowledge of 
best practices flows into projects? 

The emphasis on product or matrix structures needs to be supported by 

functions that maintain standards of excellence for their disciplines.  For example, 

engineering can use CPLM systems to maintain the state of the art knowledge and 

manages knowledge flows:  sharing knowledge learned by people across projects.  

Tookey et al. (2005) give evidence that effectiveness is increased when functional 

departments share expertise and problem-solving experience by working with 

product groups on a “sub-contracting consultancy basis” (p. 45); such teams are 
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“staffed by acknowledged experts in their field who could ‘troubleshoot’ bad practice 

and promote best practice” (p. 46).   

Collaborating functional managers begin to resemble communities of practice, 

or communities of best practices.  Recall the manager who noted the meetings held 

each year by “the procurement department, the engineering department, and the 

production department.”  These meetings are critical to knowledge flows and are 

exemplars of sound knowledge management practice that can be enabled through 

the use of CPLM tools.  This may be an especially critical requirement for the 

Information Technology Departments in charge of overseeing a CPLM 

implementation.  A subject-matter expert said, 

Our respective IT departments in our various companies are talking on a very 
regular basis, and we have a subsidiary company whose IT people have 
meetings with the main office in order to streamline as much as possible the 
procurement of IT or software.  They share experiences, so that there are 
meetings at that level as well as trying to harmonize, as much as possible, the 
software that is being used across the company. 

D. Integration of Suppliers Into the Horizontal Structures 
and Processes 

Question 6 from Table 7 also addresses the horizontal structure of the 

organization: 

6. Are suppliers effectively integrated into meetings and teams? 

Shipyards are following other industries in increasingly including suppliers into 

operations.  As shipbuilding complexity and knowledge requirements increase, it 

becomes necessary to leverage the special knowledge of suppliers.  This can range 

from relatively simple components and parts to complex systems.  This is a form of 

specialization that results in costs savings: The shipyard concentrates on developing 

its own core business processes in collaboration with suppliers who share their 

unique knowledge.  The suppliers need to be included in the design stage when 

attempting to implement CPLM tools.  As one shipbuilding subject-matter expert puts 
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it, “To get information out of the tools (CPLM), you need technical information from a 

vendor.  You have to store the information properly.”  

In addition, if life-cycle management is valued, then suppliers, those providing 

complex, relatively complete systems, need to be involved; their components need 

to be monitored and assessed; and this assessment needs to include how they work 

in terms of the overall system performance.  Suppliers might thus have an incentive 

to become involved in integration of design activities.  Note that suppliers, by sharing 

critical competitive information, become vulnerable, and so trust must be built up 

over time.  

Subject-matter experts refer to the common best practice of building 

relationships with a few core suppliers (Lindquist, Berglund, & Johannesson, 2008).  

Formal pre-source agreements may facilitate this.  The spirit of this commitment is 

captured in the promise made by a manufacturer to its suppliers: “As long as you are 

competitive and as long as you are improving, you will have this business on this 

vehicle”  (Haddad, 1996). Increasing communication and collaboration with suppliers 

through a CPLM system should help solidify these important relationships.  

With trust, it also may be possible to rationally determine outsourcing 

strategies and practices.  Of course, collaborative relationships are longer term 

alternatives to making short-term purchases in the market place.  There is general 

acceptance of the assumption that investing in relationship building can provide 

superior performance and cost benefits over the long term (Krause, Handfield, & 

Tyler, 2006). Subject-matter experts express this when they say that early 

involvement of suppliers using CPLM can facilitate the development of trust and the 

avoidance of costly change orders.  However, getting suppliers to invest in 

resources (e.g., personnel or equipment) specific to a particular customer requires 

long-term involvement.    

The primary threat to successful supplier integration is anything (e.g., 

incentives, culture, resources) that creates pressures for short-term, temporary 
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relationships. Supplier coaching is viewed as a best practice and a high priority for 

reducing costs and quality defects; including suppliers in communities of practice 

and knowledge sharing benefits suppliers and buyers (Mentzer, 2004; Tookey et al., 

2005).  CPLM technologies can allow this inclusion by storing and distributing data 

much more easily than traditional manufacturing systems, thus allowing a more 

effective means of coaching as well as monitoring the performance of suppliers over 

time. 

E. Integration of Customers Into the Horizontal Structures 
and Processes 

The final question from Table 7 that addresses the horizontal structure of the 

organization is as follows: 

7. Are external customers effectively integrated into meetings and teams? 

The importance of customer involvement has by now become an accepted 

design value if customers are defined as the next “downstream” user from 

developing a system or subsystem.  It has become commonplace—although not 

universal—for representatives of external customers and end users to be involved in 

defining performance standards.  This goes a long way toward eliminating ambiguity 

in understanding what the customer wants.  However, some organizations may view 

customer involvement less than enthusiastically, as a necessary evil required for 

reducing dead-ends and clarifying expectations, but at the risk of design creep and 

cost overruns.  The major threat to effective customer involvement may be an 

organization’s lack of customer knowledge about the products and processes.  In 

naval shipbuilding, where the customer has knowledge of product requirements, 

design trade-offs, and construction processes, it is foolish not to collaborate (cf. 

Tookey et al., 2005); this seems well recognized.  However, these phenomena 

indicate that CPLM systems should include performance-monitoring tools that make 

progress, or lack thereof, transparent to all parties involved in the shipbuilding 

enterprise. 
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IV. Vertical Processes 

A. Vertical Differentiation  

Referring to Table 7, these questions address the vertical processes of an 

organization: 

1. How tall or how short is the organizational hierarchy? 

2. Is vertical differentiation creating a context for responsibility and 
empowerment? 

Vertical differentiation refers to the number of layers or levels in the hierarchy; 

it is the same thing as vertical specialization.  Decreasing the number of layers and 

making the organization shorter creates pressures to push responsibility down the 

hierarchy that provides the added benefit of faster decision-making and fewer layers 

of management along with reductions in the overhead costs of an organization.   

Tall structures typically correspond to narrow spans of control.  (Spans of 

control refer to the number of subordinates directly reporting to a supervisor or 

manager.)  Wide spans of control make it more difficult to manage subordinates and, 

thus, can create inefficiencies.   

Excessive vertical structure also appears to be incongruent with the promises 

of increased speed and increased productivity through effective use of CPLM, 

especially as organizational processes and products become increasingly complex.  

This has been observed in practice and is explained by the principle that increased 

complexity eventually will overload the hierarchy, resulting in rework and waste.  

Teams are critical because they are able to effectively process more information 

than individuals, especially if they have appropriate tools such as a well-managed 

CPLM suite.  Individual information-processing capacity is relatively slow, and tall 

hierarchies overtax this limited capacity, slowing down the vertical coordinating 

processes and decision-making of the hierarchy.  This leads to the issue of 

decentralization. 
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B. Decentralization 

The following question and subquestion (see Table 7) also address the 

vertical processes of an organization: 

3. Have employees clearly been given appropriate decision-making 
authority to match their tasks and responsibilities? 

 In particular, are integrated process teams appropriately 
empowered to make decisions? 

Decentralization refers to the degree to which authority is moved down from 

the organization’s strategic apex to its mid-level and lower level employees.  It has 

long been known that size tends to generate more vertical differentiation, greater 

standardization, and limited decentralization.  Put differently, as organizations 

increase in size, they bureaucratize, and bureaucratization is accompanied by 

limited decentralization.  In such bureaucracies, low-level employees must follow 

standard operating procedures, and the hierarchy deals with exceptions. 

Similarly, although there is a necessary decentralization in the matrix 

structure, particularly to team leaders, decentralization to lower levels may be 

limited, depending on the design values of management and the nature of the work.  

While the importance of decentralization in manufacturing is accepted in design and 

concurrent engineering, it is not at all clear that decentralized authority is required for 

lower level craftsmen and craftswomen.  Subject-matter experts indicated that there 

currently is little change in decentralizing authority to construction of the ship in the 

shipyard as a result of CPLM.  However, CPLM, combined with other technologies 

(e.g., 3D PDFs) are improving communication and generating a greater sense of 

certainty for workers about the work they are expected to do. 

The sub-question to question 3 above refers to decentralization to integrated 

process teams.  At the micro-structural level of job design, one alternative is to do 

away with jobs altogether.  The socio-technical design school noted that the focus 

could shift away from individuals doing jobs to teams doing the work.  Such 

“autonomous work groups” are self-managing, but need the support of systems, 
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such as CPLM, that will provide them with the information they need to coordinate 

and collaborate with other self-managing teams.  This has the potential for more 

deeply involving people in the work by tapping into processes of intrinsic task 

motivation (Thomas, 2002), leading to potentially higher levels of job satisfaction and 

the motivation that accompanies it. 

CPLM requires standardization of databases and can make work more 

transparent.  This creates the potential for micro-management, but also for more 

autonomous teams.  Indeed, the context of standardization and formalization 

demanded by CPLM may create a dynamic tension within these structures, requiring 

more managerial talent and leadership skills than are required in the traditional, 

single-line hierarchies of traditional functional organizations.  So far we have not 

been able to find cases where CPLM has been integrated into HRM performance 

appraisal processes. However, it is a relatively simple first step to provide 

employees with the performance feedback data derived from a fully implemented 

CPLM tool suite. This is an additional function that CPLM tools should include in the 

near term.
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V. Work and Job Design: Generating a Sense 
of Empowerment 

Referring to Table 7, this question and subquestion address work and job 

design in an organization: 

1. Is the work that individuals do—either in jobs or teams—structured so 
as to enhance intrinsic task motivation?   

 More specifically, is the work characterized by significance of 
the work, variety in the skills required, task identity, autonomy, 
and feedback? 

Whether the focus is on individuals performing in jobs or on teams doing work 

in processes, the micro level of organizational structuring and design is where the 

structural perspective intersects the human resources perspective.  To the degree 

that CPLM empowers teams so that they are able to complete meaningful units of 

work (versus perform highly specialized, repetitive tasks), set and monitor work 

goals, and receive feedback about work progress, then the resulting intrinsic task 

motivation is likely to be activated (Thomas & Velthouse, 1990, 2002).  Because 

concurrency, cross-functional teams, decentralization, and distributed information 

systems are congruent with the encouragement of intrinsic task motivation, this has 

positive implications for performance and retention of knowledgeable high-

performance workers.   

These issues are discussed in the next section in the human resource 

perspective. The literature on micro-structural work and job design makes clear that 

gains in product quality and employee retention are affected by job enrichment, such 

as the potential that CPLM tools have to empower workers to take greater control of 

their own productivity (Deci & Flaste, 1995; Deci & Ryan, 1987; Hackman & Oldham, 

1980). 
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A. Consequences and Trade-Offs of Design Decisions and 
Structural Policies 

The design decisions and policies in the organizing and structuring of the 

organization generate synergies to the extent that they support and are congruent 

with human resource policies and the CPLM systems discussed in the next section.  

Failures to move in these directions can result in failure to deliver on the 

standardization required by the databases and information-coding requirements of 

the CPLM as well as on enabling the autonomy and intrinsic task motivation that can 

come from decentralization and working with teams.  The structural context can 

contribute to trust and high involvement of personnel, suppliers, and customers.  

Thus, negative answers to questions in the human resource frame discussed next 

may be traced to poor implementation and execution of structural policies.23 

We now turn our attention to the optimization required from a human 

resources perspective and how this perspective is influenced by the implementation 

of a CPLM system.  If the organization’s management of its human resources is 

inadequate, then the organization is at high risk that their structural roles will be 

dysfunctional or inadequately filled. 

                                            

23 Again, there are dynamic tensions that capable leadership must manage in terms of maintaining 
project and disciplinary perspectives in the matrix structure.  The design values of the matrix 
structure—maintaining a focus that is vertical, hierarchical, and disciplinary focused while also 
focusing on horizontal processes, teamwork, and the customer—requires continuous adjustment and 
balance.  This places more demands on people skills than traditional functional structures.  For 
example, matrix organizations sometimes frustrate people by the amount of time spent attending 
meetings versus “doing the work.”  In some cases, ambiguity can result over authority, leading, in 
worst-case scenarios to, “we make decisions and then we see who gets mad.”  And the process of 
moving from functional to more horizontal structures is likely to generate some of these dynamics. 
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VI. Assessing and Developing Manufacturing 
Capability From a Human Resources 
Perspective 

The structural frame focuses on roles, jobs, and work more than people and 

the human side of teams.  Organization charts, for example, focus on roles; they are 

designed with the assumption that people in those roles will effectively inhabit the 

roles specified.  The human resource perspective focuses on the human and 

personal realities—limited rationality, self-interest, and differences in talent and 

ability—of individuals and groups who inhabit those roles and teams.  To perform 

effectively as expected, individuals must have appropriate skills and motivations as 

well as access to ongoing feedback on their performance. CPLM tools can be 

adapted to provide this kind of required performance feedback.   

Although the literatures on concurrent engineering and CPLM have built up a 

rather substantial literature of practice and research focusing on structures and 

processes, the literature on the impact of their movements on the human resource 

policies, practices, and procedures that support these is fairly thin.  The importance 

of HR has been recognized for many years (e.g., Anderson, 1993), but the research 

literature on the impacts of CPLM systems on human resource practices doesn’t 

reflect this.  In shipyards, issues of human resource design and policy choices are 

less frequently and less systematically articulated.24  

This is not to say that top leadership and lower levels of management are not 

well aware of the importance of—as they often put it—“processes, people and 

technology,” but there is much less understanding of the options and constraints 

involving HR policies and practices than for structural design options.  Given the 

                                            

24 One expects that there is considerable knowledge in the auto industry, which is far more developed 
in CE and CPLM, but the systematic presentations and research on HR practices are thin, although 
many authors discuss the emerging culture that arises because of policy changes to HR and 
structure. 
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much better understanding of the structural design issues and the literature on high-

involvement organizations, we would expect that recruitment, selection, placement, 

performance appraisal, incentives, job design or work design, and career paths 

should be considered when planning to implement a CPLM system.  But systemic 

perspectives on HR design choices, in the context of a new enabling CPLM system 

for work,  are virtually absent, and subject-matter experts are less articulate and 

reflective on HR issues than on how to reorganize the organization’s basic structure 

to take advantage of CPLM system capabilities.  The questions in Table 8 focus on 

human resource factors relevant to developing competitive advantage using  human 

resource best practices.  They are based largely on empirical results across a 

variety of organizations and industries that suggest the kind of HR practices that are 

likely to emerge in the digital shipyards of the future when CPLM systems are fully 

implemented.  But much more research is needed on how to adapt these best 

practices to take advantage of CPLM system capabilities. 

From a human resource perspective, the success of the emerging digital 

shipyard will depend on craftsmen becoming knowledge workers or, perhaps more 

practically expressed, it will depend on a competency-based approach. 

Organizational strategy and organization design create the context for defining the 

requisite human resource competencies.  The HR system, to support CPLM, must 

(1) generate competencies through staffing, training and development; and (2) 

reinforce competencies through the reward system (cf. Ulrich & Lake, 1990).25 

                                            

25 See Von Glinow, Driver, Brousseau, and Prince (1983) for a more thorough discussion of the 
components and conceptual issues involved in an integrated human resource system, and Ulrich and 
Lake (1990) for other issues related to the competency-based approach. 
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Table 8. Questions for Assessing Manufacturing Capability From a Human 
Resource Perspective 

Staffing, Training and 
Development 

1. Is the organization recruiting, assessing, and assigning 
personnel to fit positions and the technology? 

2. Is training designed and implemented to develop 
collaborative individual and team skills including 
collaborative mind-sets and attitudes? 

3. Is training designed and implemented to develop 
technical individual and team skills with the CPLM 
system and its larger system of systems? 

4. Do employees have the requisite knowledge to make 
decisions? 

Reward System 1. Are individual and team performance appraisals 
appropriately integrated or appropriately separated 
from CPLM information?  

2. Are individual and team goals set and integrated with 
CPLM information?  

3. Are rewards and incentives appropriately designed to 
reinforce collaboration, information sharing, and 
horizontal processes? 

4. Are rewards and incentives designed to support vertical 
structures and disciplinary/functional knowledge and 
horizontal structures and product/project knowledge?   

5. Are long-term motives and skills being managed 
through career development to maintain skilled 
employees? 
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VII. Staffing, Training, and Development 

A. Staffing the Work 

Referring to Table 8, this question addresses staffing in an organization: 

1. Is the organization recruiting, assessing, and assigning personnel to fit 
positions and the technology? 

In terms of recruitment and placement, an experienced subject-matter expert 

noted that the digital shipyard of the future will tie these collaborative tools and 

information technologies to mobile computing.  This is especially useful where 

workers are separated, as they are in shipbuilding, from inventories, parts, and 

everyday workstations, and where the number of pages workers must access to 

properly do the work is so high.  One subject-matter expert sees a tremendous 

opportunity from the “new generation of workers who have I-everythings” and can be 

expected to welcome and be much less resistant to adopting these new tools.  This, 

of course, will depend on the extent to which interfaces for users are cumbersome 

versus friendly.  Subject-matter experts in the shipbuilding industry have lamented 

the interface designs, even those from sophisticated vendors.  Indeed, some have 

built their own interfaces for these systems. A well-designed CPLM system can have 

interfaces customized to the various needs of each individual shipyard. 

B. Training and Development 

The following questions from Table 8 address training and development in an 

organization: 

2. Is training designed and implemented to develop collaborative 
individual and team skills, including collaborative mind-sets and 
attitudes? 

3. Is training designed and implemented to develop technical individual 
and team skills with the CPLM system and its larger system of 
systems? 
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An HR area where subject-matter experts are articulate and clear is training.  

A manager of engineering at John Deere’s Harvester Works long ago expressed the 

lesson learned: 

 At first, the training focused on the technical area.  But then we realized “soft 
skills” [such as team building and problem solving] were more important.  
Soft-skills training was the corner-stone of making the process work.  
(Anderson, 1993, p. 50) 

And on the technical side, it is apparent that software and other technologies 

afford and enable people to be more effective and efficient only if people are 

competent in using them.  The two questions above focus on training for 

collaborative and technical competencies, which also presumes including CPLM 

tools when assessing training needs.  Note that these competencies are not only 

intra-organizational, between employees and departments, but include working 

with—and perhaps extending training opportunities to—valued suppliers and 

customers. 

Question 4 from Table 8 also addresses training and development in an 

organization: 

4. Do employees—especially functional leaders, project leaders and 
executives—have the requisite knowledge to make decisions? 

The CPLM tools distribute information, enabling decentralization and 

participation in problem solving and decision-making, and facilitating continuous 

quality improvement.  The structural perspective creates demands for competencies 

in working in teams and across boundaries.  Training and education support these 

changes by developing individuals’ professional knowledge base and technical 

expertise.  Thought must be given to the best modes of training for use of CPLM 

tools: classroom, on-the-job, or even self-paced computer-aided instruction from 

vendors.  In addition, various means of knowledge management—conferences, 

communities of practice, expert systems—should be considered in order to develop 

and sustain requisite competencies for use of CPLM tool suites.   
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VIII. Reward Systems 

A. Goal Setting and Performance Appraisal 

Taken from Table 8, these questions address goal setting and performance 

appraisal in an organization: 

1. Are individual and team goals set and integrated with CPLM 
information?  

2. Are individual and team performance appraisals appropriately 
integrated or appropriately separated from CPLM information?  

Subject-matter experts have indicated that it is important to integrate goal 

setting for individuals and teams using CPLM tools.  Goal setting can be important in 

clarifying expectations and confronting conflict, which can be especially challenging 

in the complexity of matrixed organizations.   

Because CPLM tools offer the potential for monitoring and appraising 

performance, one subject-matter expert notes that some initial resistance is to be 

expected when introducing CPLM technologies:  

You are able to better understand how long it took somebody to do 
something. … If I routed a task for you to do, and you haven’t opened it for a 
week, I know it as a manager that you haven’t opened it for a week.  So it 
gives management better visibility and traceability of the work.  I don’t think 
any worker is really happy…feeling like they are being micro managed, and 
they don’t really want management looking over their shoulder.  I think in the 
long term it is a benefit and everybody is ok with it.  In the short term there is 
always a little push back. 

One possible long-term payoff for the employees is greater job security due to 

their increased productivity and knowledge bases.  The subject-matter expert quoted 

here argued that the short-term push back is likely to be overcome because greater 

efficiency and quality of work will allow more ships to be built, resulting in lower 

costs, growth in the business, and a steady supply of work. It also may be less 

frustrating in that workers using CPLM tools will better know what is expected of 
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them and won’t have to do as much difficult and frustrating (and costly) rework.  The 

alternative may be to lose out to global competitors, and to personal unemployment. 

We should note that the use of goal setting in performance appraisals is an 

area needing research. Deming (cf. Elmuti, Kathawala, & Wayland, 1992; Soltani, 

Van der Meer, & Pei-chun, 2006) has famously argued against traditional 

performance appraisals as leading to sub-optimization as one individual or group 

seeks to optimize their local indicators above everything else, including the goals of 

the overall organization.  Indeed, in the next section, a subject-matter expert 

describes problems resulting from tracking and assessing individuals on meeting 

individual goals rather than their collaborative behaviors.  Design options that might 

be considered include redesigning the structure to empower team members and 

partners in other departments to contribute to the individual performance appraisal 

by indicating how frequently they are appropriately notified, which will allow HR to 

track how often individuals notify other departments.   

B. Rewarding Desired Behaviors 

The following questions from Table 8 address the reward systems used in an 

organization: 

3. Are rewards and incentives appropriately designed to reinforce 
collaboration, information sharing, and horizontal processes? 

4. Are rewards and incentives designed to support vertical structures and 
disciplinary/functional knowledge and horizontal structures and 
product/project knowledge?   

The reward system should reward desired behaviors and thus align individual 

and organizational goals (Kerr, 1995; Lawler, 1986).  The structural requirements of 

CPLM systems require collaboration, information sharing, and the ability to manage 

and navigate horizontal processes.  However, reward systems may actually punish 

collaboration and information sharing, because taking time to inform others and work 

with them to solve problems is time taken away from generating personal metrics 
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that the system does attend to.  A subject-matter expert familiar with shipyards 

describes how this can occur even “at the top floor”: 

 Each department has to maintain some key performance indicator matrices.  
They have to make sure that they are within some kind of a cost and budget 
analysis or whatever it is, the timing analysis.  So if you tool around these 
yards, wherever it is, they do everything in their power to get the material 
away from their desk as quickly as they can, to give it to the next guy, and 
then if a change happens, get it off their desk as quick as they can.  But it is 
not that they want to make sure they are educating somebody else, they are 
doing it so that their numbers look good. …  The collaboration has to come 
from that relationship, so that when design sees a change, not only is he able 
to address the change, but the other organizations are notified if the change 
affects them up front so that they can make the necessary adjustment to hold 
off or stop workages before they cause new work or before they order 
unnecessary material or things like that.  So … all of the silos have to be 
removed.  That is such a difficulty, but the technology is there to support it. 

Again, this quote describes people meeting their individual goals to look good, 

but sub-optimizing the overall system.  The reward system is not incentivizing 

collaboration, but reinforcing the hierarchical structure. The CPLM technology may 

be there to support collaboration, but it will not happen if structure and incentives are 

not aligned with technology.  Management might profitably diagnose their reward 

system by asking their people if they would be rewarded, ignored, or punished if they 

took time to share information versus focus on getting work through their work 

station as quickly as possible (Kerr, 1995). 

The vertical processes and hierarchies in organizations also need to be 

supported by the reward system.  Decentralization of authority needs to be 

accompanied by accountability, and reward systems also are accountability 

systems.  Individuals who, despite training and learning opportunities, fail to perform 

to standard may need to be placed in different positions, and sometimes let go.  

Individual stars who fail to collaborate represent a test of the reward system—and of 

the culture—of organizations.  Indeed, the pattern of behaviors that are rewarded 

and approved, versus those that are ignored, versus those that are punished and 

disapproved may well be the primary driver of culture and the incentive to use the 

capabilities of CPLM tools.   
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C. Career Development 

The final question from Table 8 is as follows: 

5. Are long-term motives and skills being managed through career 

development to maintain skilled employees? 

As complexity and technological sophistication increase, the importance of 

knowledge increases, and the value of retaining valued knowledge workers 

becomes higher.  Individuals vary considerably in what rewards they value and in 

what they expect from their careers.  For example, some may want to deepen their 

technical and functional skills and would consider promotion outside of these areas 

of expertise more punishing than rewarding.  Others measure success by 

promotions and level of responsibility, as well as their interpersonal and managerial 

competencies (Schein, 2006). The career is where the individual’s long-term 

interests, motives, values, knowledge, and skills interface with the pattern of work 

experiences, projects, and positions they will have.  Successfully managing careers 

serves the interests of the organizational member (of whatever rank) and the 

organization.  Although there are limited studies of the careers of design engineers 

(Petroni, 1998), considering the needs of the organization and of individuals around 

CPLM and careers (i.e., taking a long-term perspective on motivation, talent, and 

organizational roles) is not addressed in any depth in the literature.  The 

organization has an opportunity to develop trust with employees to the extent that 

relationships with management and HR management are based on development as 

well as assessment. 
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IX. Consequences and Trade-offs of Design 
Decisions and Human Resources Policies 

Human resources policies, practices, and procedures generate synergies to 

the extent that they support and are congruent with organizational structures and 

CPLM systems.  People perform when they have the competencies; when they have 

the motivation; when they have the resources, and when they are clear about 

expectations.  Structure is a major part of the context within which people work.  The 

human resource perspective focuses on the human resource context that selects 

and trains, sets goals and rewards, and offers a relevant career path.   

The need for collaborative mindsets and trust in the digital shipyard points to 

the importance of rewarding collaboration and information sharing, and of recruiting 

and selecting people with talents that include communication skills as well as the 

disciplines required of highly formalized, standardized technologies.  How this is best 

done and will be best done remains a fairly uninvestigated domain.  Again, if the 

organization’s management of its human resources is inadequate, then the 

organization is at high risk that their structural roles will be dysfunctional or 

inadequately filled, and their CPLM tools will not be used to the fullest extent. 

In the previous section, we noted that concurrency, cross-functional teams, 

decentralization, and distributed information systems are congruent with intrinsic 

task motivation, and this has positive implications for intrinsically motivating the 

performance and retention of knowledgeable workers.  Job design is as much an HR 

issue as a structural issue, and a hypothesis that needs investigation is the 

following: Organization design, enabled by CPLM tools, should include multiple 

functions in the organizational processes. 
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X. Assessing and Developing Manufacturing 
Capability from a Technical Perspective 

Shipbuilding firms and their vendors are working—appropriately, often in 

collaboration—to develop better designed software packages with innovative 

features. The list of features in Table 5, shown earlier, illustrates this, and it can be 

reframed as a set of questions for organizations to consider.  As customers 

incorporate various CPLM modules and functionalities, they must consider their 

integration with structure and human resources.  

An initial intention of this part of the report was to develop a sense of how 

organizations mature and develop collaborative capacity with these technologies.  

Previous research already indicated that there is no one path to developing 

collaborative capacities with organizational partners.  The starting point is strategic 

commitment and strategic communication by top leadership.  After this, a systemic 

approach must be taken, but there is no one path or recipe for success.  Perhaps 

one organization will begin by developing metrics while another will focus on training 

and rehearsals. It appears that the description of how one develops capability and 

maturity with CPLM has a parallel lesson:  although there may be a common starting 

point, there are multiple paths toward reaching maturity that are organization 

specific. The starting point focuses on organizing the increasing complexities of 

design and technical publications that traditionally have been “housed in disparate 

and discrete authoring systems and organizational domains” (Siemens PLM 

Software, 2011, p. 3).  Similarly, one subject-matter expert indicated the following, 

when asked about a life stage model: 

It becomes customer specific for us.  We always think of foundationally, let’s 
get our data managed.  Once we have our data configuration controlled and 
managed, then we can start using some of the other capabilities, the 
functionalities, whether we are managing a relationship with our suppliers, or 
understanding KPI’s (key performance indicators) through reporting and 
analytics, or leveraging the collaborative data environment for requirements 
management systems engineering, engineering, digital manufacturing, or 
electronic accumulation of shop floor work.  We primarily think of starting out 
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with that foundation—managing that data, managing the business workflow 
for people to collaborate and communicate.  However, sometimes we do have 
customers that say, but our initial pain right now is really just understanding 
the yard, the production.  So all we really want to do is model our facility and 
understand what is our throughput and capacity.  If that is the case, we start 
there.  We start where we see the most value for our customers.   

Table 9. Questions for Assessing Manufacturing Capability From a Technical or 
Technological Perspective 

(cf. Siemens CPLM Software, 2012; Haddad, 1996) 

Note. One perspective on the digital shipyard (Siemens PLM Software, 2012) that is especially useful 
raises questions on its use as an Engineer to Order System of Systems; of course, CPLM is part of a 
system of systems, and this raises many questions, only a few of which are presented, as illustrative, 
in Table 9.  In addition, the architecture and facilities may also prove to be important enablers of 
collaboration.   

A. The Engineer to Order System of Systems 

The following questions are illustrative of the required integration of the 

system of systems within which CPLM functions (Siemens PLM Software, 2012).  

Siemens’ report argues for the criticality of collaboration and culture for success with 

 CPLM in a 
system of 
systems 

1. Are the CPLM and Enterprise Requirements Planning 
(ERP) systems appropriately integrated? 

 Is the master data created in CPLM effectively 
uploaded into the ERP system?   

 Are orders generated in ERP effectively 
downloaded for execution?   

 When production orders are completed, does 
feedback to CPLM effectively enable revised 
process plans for production orders?  

2. Are the CPLM and Manufacturing Execution System 
(MES) appropriately integrated? 

 Is order data and master data effectively 
downloaded from CPLM to MES for all orders?   

3. Are MES and ERP appropriately integrated? 

 Are completed production orders effectively 
backflushed from MES to the ERP?  

 Facilities 1. Are there specially constructed areas and facilities that 
provide for teams, units, and task forces to temporarily 
or permanently work together? 
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CPLM systems, but they also describe a system of systems within which CPLM 

should be integrated. 

1. Are the CPLM and Enterprise Requirements Planning (ERP) systems 
appropriately integrated? 

 Is the master data created in CPLM effectively uploaded into the 
ERP system?   

 Are orders generated in ERP effectively downloaded for 
execution?   

 When production orders are completed, does feedback to 
CPLM effectively enable revised process plans for production 
orders?  

2. Are the CPLM and Manufacturing Execution System (MES) 
appropriately integrated? 

 Is order data and master data effectively downloaded from 
CPLM to MES for all orders?   

3. Are MES and ERP appropriately integrated? 

 Are completed production orders effectively backflushed from 
MES to the ERP?  

This system of systems results in information that is more easily shared with a 

payoff of visibility and traceability for business processes (Siemens PLM Software, 

2012). Other sections of this report have provided more depth on questions relevant 

to CPLM itself. 

B. Facilities 

4. Are there specially constructed areas and facilities to facilitate for 
teams, units, and task forces to temporarily or permanently work 
together? 

The literature on design (Heragu, 2008; Kunz, Luiten, Fischer, Jin, & Levitt, 

1996; Martin, 2006) indicates that the design of facilities is likely to be an important 

factor affecting human interactions and creativity.  Subject-matter experts proudly 

described new buildings and facilities as being important for facilitating effective 
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communication, creativity and teambuilding. (Some also describe the importance of 

co-locating design teams in the earliest stages of design.) While CPLM tools allow 

virtual communication and information sharing, being able to co-locate, permanently 

or temporarily, members of design teams and other functions may make employees 

more likely to share information, build trust, and understand each other’s strengths 

and weaknesses.  Misunderstandings involving tacit knowledge or communication 

styles and differences in terminology may be cleared up more effectively. Future 

virtual interactions may build on trust and understanding built in face-to-face 

interactions. CPLM tool designers must take into account this important aspect of 

collaboration for teams that are in different geographical locations. This is a potential 

future enhancement to the capabilities of CPLM systems that should be included in 

future version releases of the tool suites available to practitioners in shipbuilding 

organizations.  

C. Collaborative Capacity  

Figure 12 presents an organizational design image of the suggestions for 

CPLM shipbuilding organizational users in the foregoing discussion.  Successful 

design of the digital shipyard requires the systemic integration of a number of design 

factors (e.g., decentralization) within five policy domains (e.g., Vertical Processes).  

Taken together, attention to these design factors and their coherence in forming an 

integrated system of systems can contribute to generating collaborative behaviors, 

work processes, and a collaborative culture.  The five domains comprise Vertical 

Processes, Departmentation and Horizontal Processes, Human Resource Flow, 

Reward Systems, and Technical Systems.  Human Resource Flow is concerned with 

the flow of competencies, embodied in human resources, into the positions and 

processes of the structure. In order for an organization to get the most out of its 

CPLM technology, all of these factors must be addressed.  This is clearly not an 

exhaustive list, but the factors provide a reminder of the factors specified in the 

previous sections (cf. Hocevar, Thomas, & Jansen, 2006; Jansen, Hocevar, Rendon, 

& Thomas, 2008). 
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Figure 12. Collaborative Capacity and the Digital Shipyard of the Future
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XI. Summary 

Research has shown that U.S. Navy ship costs are rising out of control and 

far outstripping inflation. A large majority of the increases in these costs is due to 

labor as well as rework in construction. 

CPLM technology has provided tremendous cost savings to a variety of 

manufacturing industries through reduced engineering times and lower labor costs 

from rework. To date, there have been only some slight inroads in the use of this 

promising technology in the shipbuilding  industry. For example, one large ship 

builder found that, by using this technology, there was up to a 22% reduction in 

design engineering times. Leadership from this shipbuilding company also is 

planning to exploit the potential for using this tool set to enable faster and more 

accurate design engineering processes with its geographically dispersed partners 

around the globe. 

Because CPLM integrates manufacturing processes while also supporting 

data-sharing and collaboration, it has great promise for reducing costs in the U.S. 

Navy shipbuilding processes 

Some technologies, such as 3D LST, also have the potential to offer cost and 

material savings to U.S. Navy shipbuilders, but studies have shown that the 

technology does not currently meet the accuracy requirements set by the U.S. Navy. 

However, it is only a matter of time before these standards are met by the producers 

of this technology. So, it is important that the U.S. Navy continually monitors this 

technology, so that when accuracy is up to standards, the Navy can realize the cost 

savings as early as possible when this technology is implemented in the digital 

shipyard.  

In order to implement this technology and receive the maximum cost-benefit 

ratio from it, shipbuilding companies must attempt to modernize their businesses in 
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their structural, human resource, and technology utilization practices. The CPLM 

technology relies on, and at the same time fosters, an environment of collaboration 

within organizations using it. As such, this research proposed a framework for 

evaluating the readiness of shipbuilding organizations to implement the technology. 

Successful implementation requires an assessment and adjustment of the U.S. Navy 

shipbuilding organizational structure, human resource practices, and technology 

integration policies. Taking these critical factors into account will ensure a higher 

probability of successful implementation of the technology, fostering the cost savings 

it promises. Implementing this technology should be a high priority in U.S. Navy 

shipbuilding organizations to enable them to join other prominent manufacturing 

industries in reaping the rewards of effective collaboration. 
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