

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

Approved for public release, distribution is unlimited.

Prepared for: Naval Postgraduate School, Monterey, California 93943

NPS-TE-12-216

^`nrfpfqflk=obpb^o`e=

pmlkploba=obmloq=pbofbp=
=

Test and Evaluation of Program Slicing Tools

19 December 2012

by

Dr. Valdis A. Berzins, Professor,

Richard Pudadera, and

Amir Z’ghidi

Graduate School of Operational and Information Sciences

Naval Postgraduate School

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

The research presented in this report was supported by the Acquisition Research
Program of the Graduate School of Business & Public Policy at the Naval
Postgraduate School.

To request defense acquisition research, to become a research sponsor, or to print
additional copies of reports, please contact any of the staff listed on the Acquisition
Research Program website (www.acquisitionresearch.net).

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - i -
k^s^i=mlpqdo^ar^qb=p`elli=

Abstract

Software slicing is the analysis of a program based on a slicing criterion to

produce executable code that contains only those lines that are related to the slicing

criterion. This reduces the state space of the program, thus aiding in testing and

debugging. This technical report analyzes the Indus-Kaveri plug-in to assess its

capacity for providing correct software slices that can be used to reduce regression

tests. The tests reveal that the plug-in produces slices as advertised by the

documentation, but, nevertheless, has many limitations that make it impractical for

use in a commercial environment. These limitations include the plug-in’s

incompatibility with programs that require a Java Runtime later than version 1.4, the

lack of highlighting of slices within external classes utilized, and the fact that slicing

is accomplished through the return value of a method.

Keywords: Software slicing, executable code, slicing criterion, Indus-Kaveri

plug-in

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - ii -
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - iii -
k^s^i=mlpqdo^ar^qb=p`elli=

About the Authors

Valdis A. Berzins is a professor of computer science at the Naval

Postgraduate School. His research interests include software engineering, software

architecture, reliability, computer-aided design, and software evolution. His work

includes software testing, reuse, automatic software generation, architecture,

requirements, prototyping, re-engineering, specification languages, and engineering

databases. Berzins received BS, MS, EE, and PhD degrees from MIT and has been

on the faculty at the University of Texas and the University of Minnesota. He has

developed several specification languages, software tools for computer-aided

software design, and fundamental theory of software merging.

Valdis A. Berzins
Graduate School of Operational & Information Sciences
Naval Postgraduate School
Monterey, CA 93943-5000
Tel: 831-656-2610
Fax: (831) 656-3407
E-mail: berzins@nps.edu

=
=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - iv -
k^s^i=mlpqdo^ar^qb=p`elli=

=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - v -
k^s^i=mlpqdo^ar^qb=p`elli=

=

NPS-TE-12-216

^`nrfpfqflk=obpb^o`e=

pmlkploba=obmloq=pbofbp=
=

Test and Evaluation of Program Slicing Tools

19 December 2012

by

Dr. Valdis A. Berzins, Professor,

Richard Pudadera, and

Amir Z’ghidi

Graduate School of Operational and Information Sciences

Naval Postgraduate School

Disclaimer: The views represented in this report are those of the author and do not reflect the official policy position of
the Navy, the Department of Defense, or the Federal Government.

=
=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - vi -
k^s^i=mlpqdo^ar^qb=p`elli=

=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - vii -
k^s^i=mlpqdo^ar^qb=p`elli=

Table of Contents

I. Introduction .. 1

A. Slicing Overview .. 1

B. Problem Statement .. 1

C. Existing Tools .. 2

D. Benefits ... 2

II. Tool Analysis .. 5

A. Installation Procedures .. 5

B. Test Cases .. 8

C. Test Results and Interpretation ... 8

D. Limitations ... 9

E. Tool Alternatives .. 10

III. Conclusion .. 11

Appendix A. Test Results ... 13

A. Test 1 Results: .. 13

B. Test 2 Results: .. 14

C. Test 3 Results: .. 15

D. Test 4 Results: .. 15

E. Test 5 Results: .. 15

F. Test 6 Results: .. 19

List of References ... 21

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - viii -
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 1 -
k^s^i=mlpqdo^ar^qb=p`elli=

I. Introduction

A. Slicing Overview

Slicing was introduced in by Mark Weiser (1984) and refers to reducing a

program to a smaller form that still produces the behavior of the original program

based on a given point of interest called the slicing criterion. Weiser noticed that

programmers were actually performing mental slicing when they were debugging

their programs and tried to provide a formal definition of this process (De Lucia,

2001).

After Weiser’s (1984) introduction of the concept of slicing, much research

has been done and many papers have been published. The original definition by

Weiser related to static slicing, meaning that the computed slice would always

produce the same output as the original program, regardless of the program’s input.

Variations of the original definition have been introduced, such as dynamic slicing,

which identifies the set of statements that affect the variable of interest (slicing

criterion) for a particular execution of the program rather than for all possible

program executions. Other slicing variations include quasi static slicing,

simultaneous dynamic slicing, and conditioned slicing.

A program slice is not unique. In other words, we can find multiple slices that

reproduce the same behavior as the original program based on a given slicing

criterion. An ideal slice of a program would be a slice that contains the smallest

number of statements. However, according to Weiser (1984), finding the minimal

slice is not algorithmically solvable, and practical solutions must be content with

“small” slices that may not be strictly minimal.

B. Problem Statement

Even though slicing was introduced a while ago, and despite the benefits it

can offer, we do not see many tools that use program slicing to help improve the

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 2 -
k^s^i=mlpqdo^ar^qb=p`elli=

software development cycle. In this report, we evaluate a slicing tool and determine

whether the tool is suitable for slicing real-world programs.

The first thing we check is whether the tool can produce a correct slice of a

given program; otherwise, the tool is useless.

The second thing we analyze is how good the slice generated by the tool is

compared to the minimal slice. In fact, the slicing tool would not be as useful as it

should be if it included a lot of statements that were irrelevant to the slice.

C. Existing Tools

A thesis (Lim & Ben Kahia, 2011) was done at the Naval Postgraduate School

(NPS) in which the students tried to find a suitable slicing tool. The slicing tools

mentioned in this work included CodeSurfer, a C/C++ slicing tool by GrammaTech;

Jslice, a static and dynamic slicer for Java programs; and Indus, a static slicing tool

for Java programs. The students had licensing issues with CodeSurfer and

documentation problems with the Jslice tool, so they decided to analyze Indus.

In this paper, we further analyze the Indus-Kaveri tool to determine whether

we can use it with a real-world program. We use test cases to show any limitations

the tool might have.

D. Benefits

Slicing can be very beneficial in code debugging. For example, when a

programmer encounters an error in the output of one module, it is much easier to

look at the program statements that led to that error rather than scanning the entire

code to find the cause of the error. By using a backward slice of the program and

choosing the output of the module as the slicing criterion, a perfect slicing tool would

only show the statements that affected the output of the module, therefore, making

the job of the programmer much easier. Since finding a minimal slice is an

undecidable problem, it is likely that some irrelevant statements would be included in

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 3 -
k^s^i=mlpqdo^ar^qb=p`elli=

the computed slice; however, this does not deny the fact that debugging a slice of

the program requires much less effort than debugging the entire program.

Slicing can also be very useful in software maintenance. Software changes

are very common and are needed to improve the software’s performance, fix

discovered errors, or add new functionality. Making software modifications is very

costly because we need to retest the entire system after making changes. This

process is referred to as regression testing and is used to validate parts of the

software that were modified and, at the same time, ensure that no errors were

introduced in the previously tested code. Slicing a program can show us which parts

of the program are not affected by the new code and, therefore, we would know

which parts can be safely left alone during regression testing. The process of

regression testing is a human-intensive activity that makes it costly and time

consuming. Therefore, using program slicing to reduce the amount of retesting that

needs to be done will help lower the time and cost necessary for software

maintenance.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 4 -
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 5 -
k^s^i=mlpqdo^ar^qb=p`elli=

II. Tool Analysis

A. Installation Procedures

Our study found that installation procedures for Indus-Kaveri were poorly

documented and difficult to carry out. We found the procedures described in this

section to work as of April 9, 2012.

The installation of the Indus-Kaveri plug-in for Eclipse requires the use of

legacy versions of Java and Eclipse, as the later versions are not compatible with

the legacy plug-ins. The environment used to run Kaveri is as follows:

 Windows 7 (32 bit)

 Eclipse 3.2.0—http://archive.eclipse.org/eclipse/downloads/index.php

 Java 1.4.2_19 (and the VM 5.0)

 Java 1.5.0_22 (optional—plug-in development only)

 Indus Plug-in 0.8.3.14—
http://projects.cis.ksu.edu/gf/project/indus/frs/?action=&_br_pkgrls_tota
l=50&_br_pkgrls_page=2

 Kaveri Plug-in 0.8.3—
http://projects.cis.ksu.edu/gf/project/indus/frs/?action=&_br_pkgrls_tota
l=50&_br_pkgrls_page=1

 Groovy Monkey 0.6.1—http://sourceforge.net/projects/groovy-
monkey/?source=directory

The Indus and Kaveri plug-ins for Eclipse are installed simply by adding the

necessary files to the plug-in directory. In the case of Groovy Monkey, the user has

to navigate to the “plug-ins” directory of the downloaded .zip file and copy the “.jar”

contents to the plug-ins directory of Eclipse. Eclipse and Java have built-in

installation/set-up procedures. Note that Eclipse may not run if newer versions of

Java have been installed. In such an environment, while the user may get Eclipse to

run by using the “-vm” option, the plug-ins will not be available.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 6 -
k^s^i=mlpqdo^ar^qb=p`elli=

Eclipse is stand-alone in that the installed files can simply be copied from one

machine to another (i.e., no registry entries or files are installed externally). Once all

of these applications and plug-ins have been installed, the slicer has to be

configured as follows:

 Open Eclipse and create a new workspace if you don't already have
one.

 Click the Indus menu bar item and select “Slicer Configuration.”

 On the Configurations tab, select “Create” (see Figure 1).

 Rename the new configuration to something like “my backward
slicing.”

 In the Slice tab, check the box for “Executable slice” and make sure
the slice type is set to “Backward slice.”

 Make sure that no other boxes are checked for any of the other tabs.

 Create another configuration and name it something like “my fwd
slicing.”

 In the Slice tab, check the box for “Property Aware Slicing” and make
sure the slice type is set to “Forward slice.”

 On the General Dependence tab, check the top three boxes.

 Make sure that no other boxes are checked for any of the other tabs.

 Click “OK”—this has to be done before the next step otherwise the new
changes will not be saved.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 7 -
k^s^i=mlpqdo^ar^qb=p`elli=

Figure 1. Indus Configuration Editor

Once the two configurations are set up, we need to link them with the buttons:

 Select the “Slice Button Configurations” tab.

 Select your newly created configurations for backward and forward
slice actions.

Now you should be able to create a Java file and slice it using the buttons in

the Eclipse toolbar (see Figure 2).

Figure 2. Eclipse Toolbar

It should be noted that Java projects are made compliant only with Java 1.4.

Errors develop when the project compliance level (see Figure 3) is set to a later

version.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 8 -
k^s^i=mlpqdo^ar^qb=p`elli=

Figure 3. Java Compliance Level

B. Test Cases

After installation, we subjected Kaveri to a series of test cases. The slicing

criteria we used were the testing of four simple programs with increasing complexity.

The first was a program with all code residing in main. The second was a procedure

call within the same class. The third was a call to a separate external class. The

fourth class tested Indus compatibility with a recent Java version. The fifth test was

an evaluation of the tool’s ability to recognize when a class calls itself. The sixth test

was an evaluation of the way the tool interprets object references and changes to

their respective contents.

C. Test Results and Interpretation

The test results are found in Appendix A. As can be seen from these results,

Indus is capable of performing slices, but the results are not perfect. In fact, the

slicer sometimes ignores code statements that are essential to the proper

functioning of the slice, such as the case with slicing the Test2 file. In addition, when

slicing a Java file that calls external classes, Kaveri does not visually provide a way

of showing which classes are included in the slice.

Indus appears to work fine with small-scale programs, but many issues start

to arise as the complexity of a program grows. Unfortunately, Test 4 revealed a

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 9 -
k^s^i=mlpqdo^ar^qb=p`elli=

limitation with Indus in that it only operates using Java 1.4.2. Test 4 incorporates

new features available in Java 1.5 and above and, thus, cannot be run using Java

1.4.2. This highlights another limitation with Indus in that it cannot be used with

modern Java programs.

Test 5 highlighted an issue that made the tool provide what appears to be an

incorrect/incomplete slice. We believe that this behavior is due to Kaveri slicing

based on values, specifically, the returned value. To confirm this, Test 5 was

modified to return a value. The program was then sliced correctly based on the

returned variable. What appeared to be an incorrect slice in the original Test 5

occurred because the System.out.println() method does not return a value. This

behavior is counterintuitive, as a user would have expected that the slice be

performed based on the input variables as well. To allow the program to be sliced in

accordance with the way a user expects it to, the program has to be modified to

ensure that the variables of interest affect the output object. This can be achieved by

manually coding these return values, but preferably through the use of wrappers to

automate the work and reduce chances of errors being introduced. Regardless of

this additional difficulty, the slicing criterion should not affect the behavior invariance

property (i.e., the behavior of the sliced program is no different from the behavior of

the original program).

D. Limitations

 The Indus tool in its current form is unrealistic for real-world scenarios.
According to the developer, only programs that are compatible with
Java VM 2 can be sliced.

 Kaveri does not appear to automatically slice classes or modules
referenced that are not located in the same Java file. This effectively
limits the ability of the plug-in to analyze real-world applications. Indus
does not identify the end of a code block. This means that the output
from Indus is not readily compilable, as it does not specify which lines
of code belong to a loop or method.

 Variables must be declared and initialized in the same line. Indus does
not appear to consider the declaration of a variable to be relevant to a

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 10 -
k^s^i=mlpqdo^ar^qb=p`elli=

slice, and, thus, does not comply with the define-use principle of
testing.

 Indus and Kaveri are very difficult to set up and configure, let alone
modify. The dependence on external tools and plug-ins that the system
relies on is a big hindrance. This is aggravated by the lack of support
for the tool, in that the developer is no longer focused on providing
updates and maintenance of the software. We performed a web search
as well as contacted the person who developed Indus to see if there is
a stable commercial version of the tool, and we concluded that there
was not any commercial version of Indus-Kaveri.

 As an example of set-up difficulties, the tool requires Java version 1.5
to compile, version 1.4.2 to run, and version 1.2 as a target source.
The end result is that the tool is only capable of slicing legacy code.

 Indus ignores the lines with closing brackets. This is significant in “for”
and “while” loops, especially if the user wishes for the program to
output an executable file.

 Slices are based on value, specifically the return value. If the user
wishes to slice based on the input variables as well, then the program
has to be modified to return an object based on the input variables.

E. Tool Alternatives

Some limitations of the Indus-Kaveri tool can be overcome by using the

command line version of Indus (SliceXMLizerCLI), along with a parser program that

would analyze the output files resulting from slicing a Java program with

SliceXMLizerCLI. Unlike the Kaveri plug-in, which does not slice external classes,

the output of the SliceXMLizerCLI command would include a slice of external

classes called by the program being sliced.

When slicing a Java program P with the Indus command line interface, we

would have as an output the Jimple of the slice of program P and Jimple code of

other external classes in program P that are needed to compute the slice of P.

Jimple is an intermediate representation of a Java program that is easier to

understand than Java bytecode, but more difficult to understand than Java code.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 11 -
k^s^i=mlpqdo^ar^qb=p`elli=

III. Conclusion

The tool analysis provided shows that the Indus-Kaveri plug-in works as

described in the product documentation. It does not tend to produce an excessively

large slice, thus potentially saving time because it does not run irrelevant code.

Despite this, however, it has many limitations that prevent it from being used in a

commercial setting. Even if the plug-in were updated to be compatible with Java

programs that use the latest Runtime, that display highlighting within external

classes used, or that produce complete executable code, it nevertheless would

require an impractically major overhaul to allow the program to behave as a user

would intuitively expect it to (i.e., slices based on input and output values).

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 12 -
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 13 -
k^s^i=mlpqdo^ar^qb=p`elli=

Appendix A. Test Results

A. Test 1 Results

Figure 4. Visual Output for the fuelEconomy Line

The slice highlighted the lines that were expected; no major issues were

found.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 14 -
k^s^i=mlpqdo^ar^qb=p`elli=

B. Test 2 Results

Figure 5. Visual Output for prx(2)

The slice highlighted the appropriate method to be called, but, interestingly, it

did not highlight the System.out.println(x) line. More detail on this is found in the

main text.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 15 -
k^s^i=mlpqdo^ar^qb=p`elli=

C. Test 3 Results

Selecting for p2.a = 2, the results shown in Figure 6 were obtained.

Figure 6. Selecting for p2.a = 2

No output or slice was observed for class “Point,” but the appropriate lines

have been identified.

D. Test 4 Results

The program failed to run due to the use of an autoboxing feature found in

Java 1.5 and above. Since Indus and Kaveri work only with Java 1.4.2, Test 4 could

not be run or tested.

E. Test 5 Results

 public class Car {

 public String make = "";

 public String model = "";

 public String year = "";

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 16 -
k^s^i=mlpqdo^ar^qb=p`elli=

 public int mileage = 0;

 private int gasConsumption = 0;

 public static void main(String args[]){

 Car c1 = new Car("Mercedes", "C220", "1994");

 Car c2 = new Car("Audi", "A4", "2000");

 c1.setGasConsumption(25);

 c1.mileage=185000;

 c2.setGasConsumption(27);

 c2.mileage=125000;

 c1.displayDetails();

 c2.displayDetails();

 }

 public Car (String mk, String md, String yr){

 this.make=mk;

 this.model=md;

 this.year=yr;

 this.mileage=0;

 }

 public int getGasConsumption() {

 return this.gasConsumption;

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 17 -
k^s^i=mlpqdo^ar^qb=p`elli=

 }

 public void setGasConsumption(int gasConsumption) {

 this.gasConsumption = gasConsumption;

 }

 public void displayDetails(){

 System.out.println("Make: " + this.make);

 System.out.println("Model: " + this.model);

 System.out.println("Year: " + this.year);

 System.out.println("Mileage: " + this.mileage);

 System.out.println("");

 }

 }

Based on the results of Test 5, it appears that the tool provides an incorrect

slice as the line c1.mileage=185000; is not highlighted when it should be.

As a further test, the program was slightly modified to provide an output

based on the displayDetails method:

package nps.edu;

public class Car {

 public String make = "";

 public String model = "";

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 18 -
k^s^i=mlpqdo^ar^qb=p`elli=

 public String year = "";

 public int mileage = 0;

 private int gasConsumption = 0;

 public static void main(String args[]){

 Car c1 = new Car("Mercedes", "C220", "1994");

 Car c2 = new Car("Audi", "A4", "2000");

 c1.setGasConsumption(25);

 c1.mileage=c1.mileage + 1;

 c2.setGasConsumption(27);

 c2.mileage=125000;

 int x;

 x = c1.displayDetails();

 System.out.println(x);

 //c2.displayDetails();

 }

 public Car (String mk, String md, String yr){

 this.make=mk;

 this.model=md;

 this.year=yr;

 this.mileage=0;

 }

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 19 -
k^s^i=mlpqdo^ar^qb=p`elli=

 public int getGasConsumption() {

 return this.gasConsumption;

 }

 public void setGasConsumption(int gasConsumption) {

 this.gasConsumption = gasConsumption;

 }

 public int displayDetails(){

 System.out.println("Make: " + this.make);

 System.out.println("Model: " + this.model);

 System.out.println("Year: " + this.year);

 System.out.println("Mileage: " + this.mileage);

 return this.mileage;

 }

}

Having the program return a value related to mileage causes the tool to

highlight the appropriate lines.

F. Test 6 Results

package edu.nps.cs;

public class Test3 {

 public static void main(String[] args) {

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 20 -
k^s^i=mlpqdo^ar^qb=p`elli=

 Point p1 = new Point();

 Point p2 = new Point();

 p1.a = 1;

 p2 = p1;

 if (p1.a == p2.a) {

 System.out.println("points are equal");

 }

 p2.a = 2;

 if (p1.a == p2.a) {

 System.out.println("points are still equal");

 } else {

 System.out.println("points are no longer equal");

 }

 p2.a = p2.a + 1;

 System.out.println("P1: p1.a = " + p1.a);

 System.out.println("P2: p2.a = " + p2.a);

 }

}

Apart from the missing declaration of the point p2, the slice is otherwise

correct. The Indus-Kaveri plug-in detects the relationship between two objects that

have been equated to each other.

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 21 -
k^s^i=mlpqdo^ar^qb=p`elli=

List of References

De Lucia, A. (2001). Program slicing: Methods and applications. Proceedings of the
First IEEE International Workshop on Source Code Analysis and Manipulation
(pp.142–149). doi:10.1109/SCAM.2001.972660

Lim, P., & Ben Kahia, M. (2011). Suitability of commercial slicing tools for safe
reduction of testing effort (Unpublished master’s thesis). Naval Postgraduate
School, Monterey, CA.

 Weiser, M. (1984). Program slicing. IEEE Transactions on Software Engineering,
SE-10(4), 352–357.

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =
k^s^i=mlpqdo^ar^qb=p`elli=

2003 - 2012 Sponsored Research Topics

Acquisition Management

 Acquiring Combat Capability via Public-Private Partnerships (PPPs)

 BCA: Contractor vs. Organic Growth

 Defense Industry Consolidation

 EU-US Defense Industrial Relationships

 Knowledge Value Added (KVA) + Real Options (RO) Applied to
Shipyard Planning Processes

 Managing the Services Supply Chain

 MOSA Contracting Implications

 Portfolio Optimization via KVA + RO

 Private Military Sector

 Software Requirements for OA

 Spiral Development

 Strategy for Defense Acquisition Research

 The Software, Hardware Asset Reuse Enterprise (SHARE) repository

Contract Management

 Commodity Sourcing Strategies

 Contracting Government Procurement Functions

 Contractors in 21st-century Combat Zone

 Joint Contingency Contracting

 Model for Optimizing Contingency Contracting, Planning and Execution

 Navy Contract Writing Guide

 Past Performance in Source Selection

 Strategic Contingency Contracting

 Transforming DoD Contract Closeout

 USAF Energy Savings Performance Contracts

 USAF IT Commodity Council

 USMC Contingency Contracting

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =
k^s^i=mlpqdo^ar^qb=p`elli=

Financial Management

 Acquisitions via Leasing: MPS case

 Budget Scoring

 Budgeting for Capabilities-based Planning

 Capital Budgeting for the DoD

 Energy Saving Contracts/DoD Mobile Assets

 Financing DoD Budget via PPPs

 Lessons from Private Sector Capital Budgeting for DoD Acquisition
Budgeting Reform

 PPPs and Government Financing

 ROI of Information Warfare Systems

 Special Termination Liability in MDAPs

 Strategic Sourcing

 Transaction Cost Economics (TCE) to Improve Cost Estimates

Human Resources

 Indefinite Reenlistment

 Individual Augmentation

 Learning Management Systems

 Moral Conduct Waivers and First-term Attrition

 Retention

 The Navy’s Selective Reenlistment Bonus (SRB) Management System

 Tuition Assistance

Logistics Management

 Analysis of LAV Depot Maintenance

 Army LOG MOD

 ASDS Product Support Analysis

 Cold-chain Logistics

 Contractors Supporting Military Operations

 Diffusion/Variability on Vendor Performance Evaluation

 Evolutionary Acquisition

 Lean Six Sigma to Reduce Costs and Improve Readiness

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =
k^s^i=mlpqdo^ar^qb=p`elli=

 Naval Aviation Maintenance and Process Improvement (2)

 Optimizing CIWS Lifecycle Support (LCS)

 Outsourcing the Pearl Harbor MK-48 Intermediate Maintenance
Activity

 Pallet Management System

 PBL (4)

 Privatization-NOSL/NAWCI

 RFID (6)

 Risk Analysis for Performance-based Logistics

 R-TOC AEGIS Microwave Power Tubes

 Sense-and-Respond Logistics Network

 Strategic Sourcing

Program Management

 Building Collaborative Capacity

 Business Process Reengineering (BPR) for LCS Mission Module
Acquisition

 Collaborative IT Tools Leveraging Competence

 Contractor vs. Organic Support

 Knowledge, Responsibilities and Decision Rights in MDAPs

 KVA Applied to AEGIS and SSDS

 Managing the Service Supply Chain

 Measuring Uncertainty in Earned Value

 Organizational Modeling and Simulation

 Public-Private Partnership

 Terminating Your Own Program

 Utilizing Collaborative and Three-dimensional Imaging Technology

A complete listing and electronic copies of published research are available on our
website: www.acquisitionresearch.net

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= =
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

^Åèìáëáíáçå=êÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=ëÅÜççä=çÑ=ÄìëáåÉëë=C=éìÄäáÅ=éçäáÅó=
k~î~ä=éçëíÖê~Çì~íÉ=ëÅÜççä=
RRR=avbo=ol^aI=fkdboplii=e^ii=
jlkqbobvI=`^ifclokf^=VPVQP=

www.acquisitionresearch.net

