
 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 1=
k^s^i=mlpqdo^ar^qb=p`elli=

 

Approved for public release, distribution unlimited. 
 

Prepared for: Naval Postgraduate School, Monterey, California 93943 

NPS-AM-10-040 

mol`bbafkdp==
lc=qeb==

pbsbkqe=^kkr^i=^`nrfpfqflk==

obpb^o`e=pvjmlpfrj==
tbakbpa^v=pbppflkp==

slirjb=f=

 

Acquisition Research 

Creating Synergy for Informed Change
May 12 - 13, 2010 

 

Published: 30 April 2010 

 

bu`bomq=colj=qeb



 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 2=
k^s^i=mlpqdo^ar^qb=p`elli=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The research presented at the symposium was supported by the Acquisition Chair of the 
Graduate School of Business & Public Policy at the Naval Postgraduate School. 
 
 
To request Defense Acquisition Research or to become a research sponsor, please 
contact: 
 
NPS Acquisition Research Program 
Attn: James B. Greene, RADM, USN, (Ret.)  
Acquisition Chair 
Graduate School of Business and Public Policy 
Naval Postgraduate School 
555 Dyer Road, Room 332 
Monterey, CA 93943-5103 
Tel: (831) 656-2092 
Fax: (831) 656-2253 
E-mail: jbgreene@nps.edu  
 
Copies of the Acquisition Sponsored Research Reports may be printed from our website 
www.acquisitionresearch.net  



 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 186=
k^s^i=mlpqdo^ar^qb=p`elli=

Ontology-based Software Repository System  

Jean Johnson—Jean Johnson is a Lecturer in the Systems Engineering Department at the Naval 
Postgraduate School, Monterey, California.  After serving on active duty in the US Navy, she 
supported the NAVSEA Warfare Systems Engineering Directorate (NAVSEA06) before coming to 
Naval Postgraduate School.  Her current research focus areas are software repositories to enable 
reuse and the use of modeling and simulation in DoD acquisition.  She is currently a PhD candidate in 
Software Engineering. 

Jean M. Johnson 
Systems Engineering Department 
Naval Postgraduate School 
Monterey, CA 
e-mail: jmjohnso@nps.edu 
 

Abstract   
The reuse of software and related artifacts is a key tenant of DoD acquisition 

improvement initiatives, including the Naval Open Architecture program.  While there are 
many inhibitors of reuse, software repositories are considered enablers in that they provide 
a central store of artifacts as well as capabilities for search, retrieval, and reconfiguration of 
existing components into newly developed systems.  However, current software repositories 
lack robust search and discovery capabilities and are thus limited enablers.   

This research expands on previous efforts to reform the organizational approach to 
software repositories by using ontologies as the framework of repository information.  By 
combining metadata with domain, architectural, and other information, more sophisticated 
search techniques are enabled.  In this paper, we describe the approach and demonstrate, 
through a use case, a new type of search that takes advantage of the context provided by 
the ontologies and emphasizes human interaction.  New navigation techniques will be 
employed that guide human users, offering suggestions based on projected needs. The 
improved search capability will encourage developers to consider reuse and improve the 
software reuse enabling power of software repositories. 

Introduction 
Architectural and other information about software systems may be captured in a 

domain-specific ontological framework for a software repository to enable new types of 
searches.  The relations in the ontology are used to determine associations between 
repository artifacts to facilitate intuitive navigation.  A fisheye graph view enables 
visualization of artifacts within a contextual framework that provides suggestions based on 
users’ actions.  The emphasis is to provide a rich human interface that maximizes the 
combined knowledge of both the community of human users and the computer-based 
repository system.  Capturing ontologies in standard formats results in an extensible 
framework, which can easily be shared between multiple repositories using XML-based 
technologies, thereby improving interoperability.   

The initial target of the research is the US Navy’s Software, Hardware Asset Reuse 
Enterprise (SHARE) repository.   In 2007, researchers at the Naval Postgraduate School 
(NPS) were tasked to develop a component specification and ontology for the SHARE 



 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 187=
k^s^i=mlpqdo^ar^qb=p`elli=

software repository, which was then recently established.  The component specification and 
ontology provide a rich structural and semantic framework for SHARE that enables multiple 
kinds of search and discovery techniques.  Follow on work was assigned to develop designs 
for a software repository tool that will fully utilize the repository framework to improve the 
usefulness of SHARE.  This paper captures the results of the effort with the intention of 
illustrating how the approach can be extended to additional applications and domains. 

Current State of the Art 

Improvements to the current state of the art for software reuse repositories are 
required (Shiva & Shala, 2007).  Current software reuse repositories such as SourceForge 
(http://sourceforge.net) and Comprehensive Perl Archive Network (CPAN) 
(http://www.cpan.org) typically enable search and discovery of software artifacts through 
keyword searches over metadata or browsing through metadata via broad categories of 
artifacts (i.e., faceted classification) (Guo & Luqi, 2000).  This approach is only effective in 
relatively small repositories or in situations where the users are well familiar with the 
contents of the repository.  This is because successful discovery depends on the searchers’ 
ability to express the desired results in the same vocabulary used by the artifact submitter or 
repository manager.  In other words, if you know exactly what you are looking for, and how 
to ask for it, you will find it. 

Search tools are not designed to aid users that do not already know the desired 
outcome of the search.  A repository interface should guide searchers through the discovery 
process based on the users’ context, suggesting search threads and recommending items 
for retrieval.  However, current repositories do not support this type of repository navigation.   

Current repositories in general do not relate artifacts to any context other than 
characterizations identified within the metadata.  These typical characterizations enable a 
list-type search result, similar to the popular children’s card game “Go Fish.”  Users can 
request, “Give me all of your artifacts of type xyz.”  Unfortunately, if you don’t know what you 
want, you cannot ask for it.  If you ask for artifacts of type xyz and there are no artifacts 
labeled as such in the repository, the search ends (go fish).  Without contextual linkages 
between artifacts in the repository, guided searches are not possible.  But, with a guided 
search, the system can recommend other potential solutions based on a given context.    

Proposed Improvements  

This research aims to produce a new kind of software repository that addresses the 
current shortfalls.  There are four design characteristics that constitute the novelty of the 
approach.   

First we take a broad view of reuse.  Although reusable software artifacts are often 
defined to include any product related to the development of software, typical software 
repositories enable only the reuse of code or executable files and maybe some architecture 
and design products.  We consider all types of artifacts from the software engineering life 
cycle—including requirements, test scripts, etc.—and plan for them in the design.   

Second, we propose the use of ontologies to provide the contextual framework for 
the repository.  We will show how these ontologies can be used to guide users to discover 
artifacts that they may find useful.   

Third, we will exploit the use of domain-specific information in our repository design.  
By narrowing the reuse efforts to a particular domain, we increase our likelihood of 



 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 188=
k^s^i=mlpqdo^ar^qb=p`elli=

developing a repository that will be relevant to the user group.  In the same way that 
successful strategic reuse has most often been associated with a domain-centric or product 
line development approach, a reuse repository is likely to be most successfully employed if it 
embodies, and is limited to, the domain knowledge base.   

Finally, we propose the use of multiple views that will allow the user to view the 
repository contents in a comfortable visual arrangement for their particular use, depending 
on the experience of the user.  The multiple views approach is analogous to Kruchten’s 
multiple views of software architecture as depicted in his famous “4+1” paper (Kruchten, 
1995).   

Paper Organization 

The remainder of the paper is organized as follows.  In section two, we describe the 
proposed repository system.  In section three, we provide a use case demonstration of the 
repository functionality.  Sections four and five provide discussions of relevant related work, 
a summary, and suggested related future work. 

A New Repository Tool 
We propose the development of a new software repository tool that will encourage 

improved (increased and more effective) reuse of software artifacts by presenting 
information about the contents of the repository to the user in ways that allow the user to 
project their individual context onto the repository.  Here we consider the user’s context to 
include their instantaneous progress in the development process at the time of search, the 
system modeling paradigms with which they are comfortable (e.g., UML or DODAF), and 
their understanding of the particular domain for which they are developing systems.  

In this section we will present the key features of the new repository tool, including 
an explanation of what is meant by the guided search and descriptions of the proposed 
ontology-based repository framework and envisioned visualization techniques.  

Guided Search 

The tool will support the human user by enabling smart navigation of the repository 
contents based on information collected.  It is important to note that we can never 
completely automate the search process if we intend to incorporate unique user situations 
into the search algorithms.  Therefore, the tool we suggest will guide the user through a 
search but cannot complete the search on its own.  This is an important claim since the 
resulting necessary interaction between human and machine is an essential feature of the 
tool. 

We envision a graphical “point and click” user interface that enables navigation of 
repository contents reflecting user interests.  This requires an interface that allows users to 
project their context onto the search mechanisms.  In other words, the users bring particular 
information needs and goals based on the problem they are trying to solve.  For example, 
users may seek particular functionality best obtained through a functional organization of the 
information in the repository; they may seek particular artifacts best obtained through a 
document resource organization of the information; or, they may seek information on certain 
testing methodologies that have been applied so that a work activity organization of the 
information would best apply.  



 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 189=
k^s^i=mlpqdo^ar^qb=p`elli=

In our approach, relationships among assets and artifacts are recorded in the 
repository ontology framework, allowing users to navigate to and select artifacts based on 
their various relationships to an item of interest.  Simple questions are posed of the user to 
initiate and direct the search at key moments.  The items that are shown most prevalently to 
the user are determined by a prioritization scheme that takes into account previous user 
actions.  Additionally, the user has the ability to “turn off” the relationships that are not 
helpful for the current search objectives.  These capabilities are demonstrated in more detail 
for the SHARE repository in section three. 

Repository Framework 

In this section, we describe the framework for the repository that enables the 
functionality described.  In (Johnson & Blais,  2008), we proposed two major aspects for this 
framework: a component specification and ontology. The component specification is a 
description or model of the items in the repository and consists of both typical metadata and 
a behavioral model of the component.  The ontology describes concepts and relationships to 
create various perspectives or contexts for examining the contents of the repository. These 
aspects of the framework are discussed further below. 

Component Specification—Metadata 
The metadata for each artifact should incorporate all necessary data for discovery 

and implementation.  The metadata will aid repository users in determining if the item is 
suited for their use and will provide information about how to use the asset when it is 
retrieved.  We refer to the “standard” or “typical” metadata since there are many existing 
examples of metadata similar in concept to that developed for the SHARE repository.  The 
intent of the metadata is to describe artifacts and assets contained in the repository in 
sufficient detail to aid the repository user in determining if the item is worth retrieving for a 
particular use. 

To be clear, we must provide our definition of two terms.  The Navy Open 
Architecture (OA) program has adopted similar definitions for asset and artifact as those 
used in the Object Management Group (OMG) Reusable Asset Specification (RAS).  In the 
RAS, artifacts are defined as “any work products from the software development lifecycle,” 
and assets are a grouping of artifacts that “provide a solution to a problem for a given 
context” (Object Management Group, 2005).  Accordingly, the RAS describes an approach 
for packaging artifacts into an asset.  This is consistent with the current SHARE approach 
and remains consistent in the proposed metadata XML schema described here.  Artifacts 
are described individually and the asset description consists of the listing of artifacts 
included for that asset along with some descriptive information (see Figure 1). 

The artifacts schema is designed to be flexible in its implementation.  All elements, 
types, and attributes in the schema are defined globally to facilitate reuse. The root element, 
Artifacts, is simply a container for any number of artifacts contained in a single instance of 
the schema.  A specific artifact can be incorporated into the file in one of three ways—by 
providing the full artifact description or by reference, either to a physical location or by URL. 

The guts of the artifact metadata are captured in the ArtifactDescription sub-element 
of the full artifact description.  The information necessary to describe the artifacts differs 
depending on whether the artifact is software code or some other type.  Therefore, the 
schema allows a choice between two types of artifact descriptions as shown in Figure 2. 
The NonCodeDescription element applies to any artifact not considered software code.  The 
group of elements contained therein (shown in Figure 3) is also required for artifacts that fall 



 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 190=
k^s^i=mlpqdo^ar^qb=p`elli=

under the CodeDescription element category, but additional elements are required for code 
artifacts.   For brevity, we have presented a small subset of the schema developed.  
Detailed descriptions of each element of the SHARE metadata schema are available in 
(Johnson & Blais, 2008). 

While much of the metadata described is lacking in novelty, a subset of the elements 
identified as part of the NonCodeDescription element begins to reveal the unique approach 
we have developed.  First, the ArtifactType, ApplicableSystems, and 
ObjectiveArchitectureTags all serve the specific purpose of relating individual repository 
artifacts to the ontological framework described later in the section.  Second, the 
SoftwareBehaviorDescription element is a specific focus of the design.  Since this piece of 
the component specification is not commonly incorporated into repositories in a 
standardized manner, we feel it is a specific focus area to identify the appropriate 
representation mechanisms for software behavior in the repository context. 

 

 
Figure 1. Asset Element1 

                                                 
1 Diagrams of the XML structures have been 
generated by Altova XML-Spy. The product is 

 

                

 
Figure 2. Artifact Description 

Element 

                                                                        
available at 
http://www.altova.com/products/xmlspy/xml_editor.h
tml. Altova offers a free 30-day license for trial use 
of the product.  The Altova presentation of elements 
incorporates a plus (+) symbol on the right edge of a 
box to indicate that the element contains sub-
elements.   

A
n asset is 
a 
grouping 

f



 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 191=
k^s^i=mlpqdo^ar^qb=p`elli=

 

Figure 3. NonCodeDescription Element 

 
Component Specification—Software Behavior Description 
One of the loftier goals of a software repository is to support automatic composition 

of systems from reusable components.  This is a difficult problem, which many have tried to 
solve.2  It is especially difficult if the components were not originally designed for reuse.  As 
a necessary first step towards more sophisticated uses of a repository, behavioral 
descriptions must be machine readable in order to support automated search and discovery.  
Furthermore, the behavior descriptions must be formalized and consistently applied to each 
item in the repository if the intent is to automatically compose them into a larger functioning 
system. 

The array of contributors to SHARE and non-homogeneity of the repository contents 
requires caution in dictating standards that impact the development processes of the asset 
developers.  It would not, for example, make sense to insist on a specific component 
technology across all Navy software programs in order to standardize the interface 
protocols. Yet, this is the type of precision required to truly enable software composition from 
reusable components.  Recognizing that we fall short of this goal for this phase of the effort, 

                                                 
2 The proceedings from the International Symposium on Software Composition, an annual event, provide 
examples of research into the breadth of research topics currently being pursued in the area of software 
composition.  The web site for the 2008 conference is located at http://www.2008.software-composition.org/.    



 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 192=
k^s^i=mlpqdo^ar^qb=p`elli=

we have sought a balance between method robustness and ease of implementation in our 
software behavior specification.   

In our approach, component behavior is potentially captured in two ways (as shown 
in Figure 4).  First, the functionality of the software related to the artifact is identified by a list 
of functions selected from the Navy’s Common System Function List (CSFL).  The Navy’s 
CSFL is a listing of functions that are performed by Navy systems.  It provides a 
standardized taxonomy for the functionality found in this application domain.  We have 
converted the CSFL into an ontology expressed in the Web Ontology Language (OWL), and 
acceptable entries for the CommonSystemFunction metadata element are validated against 
this ontology.  If we require asset submitters to state the functionality of the components in 
these terms, we can then build the tools to guide users in selecting desired behavior in the 
same terms. 

 
Figure 4. SoftwareBehaviorDescription Element 

Second, the interface information may be captured as a Web Service Description 
Language (WSDL) document.  In this research, we explored characterization of software 
interfaces based on current and emerging Web Services (e.g., WSDL) and Semantic Web 
Services (e.g., WS-BPEL, OWL-S) approaches. The work is preliminary, and it will be 
necessary to adopt a more precise description of code artifacts to introduce these 
techniques. As a start, we included the option of inserting a WSDL description of software 
services in the SoftwareBehaviorDescription element.   

As the DoD moves toward Service Oriented Architectures (SOA), services may 
become a more frequent part of the SHARE repository. In that case, the WSDL describing 
those services (often automatically generated by the software development or execution 
environment of modern software systems) can be directly utilized in the repository to provide 
a detailed view of the service interfaces and operations. For software that is not developed 
and deployed as services, it is still feasible for public methods within the software to be 
parsed automatically to create WSDL-like descriptions. These may be incomplete 
descriptions with respect to full compliance to WSDL structures, but could still provide a 
well-defined way to describe the software for search and discovery. 

Ontology Framework 
The ontology framework provides contextual semantics  that describe relationships 

among items in the repository to aid in associating artifacts with users’ needs.  It includes 
descriptions of the relationships of the components to form a contextual model of the 
repository items.   

The taxonomies/ontologies we developed for SHARE are based on several types of 
relationships between the items in the repository, as well as with relevant domain 



 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 193=
k^s^i=mlpqdo^ar^qb=p`elli=

architectural descriptions and other information.  They capture an artifact’s place in the 
software engineering lifecycle, its architectural fit in its original system, its architectural fit in 
any system in which it was subsequently used, and identification of the component’s fit in 
the Surface Navy Objective Architecture.  Each of these ontologies is described in this 
section.  

Software Lifecycle-Artifact Ontology 
The software lifecycle-artifact ontology relates software artifacts to activities in the 

software engineering lifecycle.  Aside from the “has subclass” relationship that exists in the 
software artifacts and lifecycle activities taxonomies, there are four additional properties that 
link these class structures: 

 mayProduceArtifact—For each lifecycle activity, identifies which artifacts are 
most commonly produced as a result of that activity.  The inverse property is 
oftenDevelopedDuring.  The property maps items in the LifecyclePhases class 
(domain of the property) to the SoftwareArtifact class (range of the property). 

 oftenDevelopedDuring—For each artifact, identifies the activity or activities that 
most commonly produce it.  The inverse property is mayProduceArtifact.  The 
property maps items in the SoftwareArtifact class (domain) to the 
LifecyclePhases class (range). 

 mayRequireUseOf—For each lifecycle activity, identifies the most commonly 
needed artifacts.  The inverse property is oftenUsedDuring.  The property maps 
items in the LifecyclePhases class (domain) to the SoftwareArtifact class (range). 

 oftenUsedDuring—For each artifact, identifies the activity or activities in which it 
is most commonly needed.  The inverse property is mayRequireUseOf.  The 
property maps items in the SoftwareArtifact class (domain) to the 
LifecyclePhases class (range). 

To demonstrate, a diagram showing the relations captured for the 
RequirementsSpecification and RequirementsDatabase classes of the software artifact 
taxonomy are shown in Figure 5. 

 



 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 194=
k^s^i=mlpqdo^ar^qb=p`elli=

 
Figure 5. Properties Assigned to RequirementsSpecification and 

RequirementsDatabase Classes (developed using Jambalaya tab in Protégé)3 

Objective Architecture Taxonomy 
This taxonomy represents the decomposition of the common architecture for Navy 

combat systems, and was built directly from the already existing Surface Combat System 
Top-Level Objective Architecture.  The taxonomy enables the repository system to correlate 
artifacts that have similar relationships based on commonality within the architecture to 
suggest them as possible items for retrieval.   

System-SubSystem Ontologies 
Here we provide one example (Figure 6) of how systems/subsystems and their 

interfaces can be captured as an ontology to complement the repository framework.  Our 
recommendation is that ontologies be developed to capture each of the systems contained 
in the repository.  As mentioned previously, the system/subsystem taxonomies would be 
used to verify the entries for the System and Subsystem elements in the metadata in order 
to assign artifacts to classes and subclasses (as individuals) within the ontology.  Once 
these are assigned, the repository application could derive interface and other relationships 
from the ontology.   

Each piece of the repository framework enhances the search capabilities in different 
ways.  The basic metadata in the XML schemas provide search criteria for finding 
components of interest in the repository as well as specific information about the artifacts to 
determine if they are appropriate for retrieval. OWL taxonomies and ontologies enable 

                                                 
3 We used Stanford’s Protégé-OWL tool to develop all taxonomies and ontologies.  This is an open source, free 
ontology editor, available online at http://protege.stanford.edu/.     



 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 195=
k^s^i=mlpqdo^ar^qb=p`elli=

identification of functionality and associated resources that may be beneficial to users. In 
short, the metadata is evaluated to enable retrieval decisions, the software behavior 
representations enable searches based on functionality, and the ontologies point the user to 
helpful artifacts that they may not have initially considered.  

 
Figure 6. System Ontology Example (Aegis) (Jambalaya Graphic in 

Protégé) 

Visualization 

The tool must provide visualization techniques that will exploit the contextual 
information captured in the ontology and enable guided search capabilities.  We suggest 
that multiple visualization tools be made available so that users can view the repository 
context and contents in a familiar setting. 

One example of the type of tool that will be supported by the framework is a fish-eye 
graph. Fish-eye graphs display objects of interest to users, along with the relationships the 
objects have with other items. As the relationships interesting to users are explored, the 
graph highlights the item and brings it to the front of the display. Users can then weed out 
uninteresting items by removing from view the relationships that are not important. The 
results are a single or small grouping of items that users have found interesting with 
supporting information available by the click of a mouse. 

Since domain information is captured in the repository framework, other architectural 
views may be used to present the repository contents in a display that is familiar to the user.  
For example, various views from the Department of Defense Architectural Framework 
(DoDAF) may be used as the backdrop to artifact nodes in order to provide a frame of 



 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 196=
k^s^i=mlpqdo^ar^qb=p`elli=

reference that is comfortable for users accustomed to the associated graphics.  Artifact 
groupings may also be represented as UML diagrams to allow for easy interpretation by 
software developers.   

 

 
Figure 7. Screen Template 

Use Case Demonstration 
Here we describe, omitting some details, a use case scenario for the new tool to 

bring to light how each of the major features of the repository framework comes into play.  
This represents one possible scenario of interaction between a user and the repository 
system.  The system reactions are described in terms of the individual windows on the 
screen that will update based on human-driven events.  These windows include the 
Navigation Pane, Results Pane, User Blogs, Frequently Asked Questions, and Helpful 
Links, as shown in Figure 7. 

In this scenario, the users need to build a replacement for a particular subsystem of 
the Aegis combat system, generically termed “Submodule B.”  They consult the SHARE 
repository to find artifacts that will help in the development of the requirements for the new 
subsystem.  Potentially, there are requirements for an existing system that can be reused.  
There may also be additional artifacts to be discovered that may be helpful in the 
requirements development process.  When the tool is first initiated, an initial (home) screen 
is provided to the user (Figure 8). 



 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 197=
k^s^i=mlpqdo^ar^qb=p`elli=

 
Figure 8. SHARE Home Screen



 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 198=
k^s^i=mlpqdo^ar^qb=p`elli=

The initial navigation pane includes a short welcome and some guidance for how to 
get started.  There is a list of initial questions that helps the system orient the view 
specifically for the user.  These questions are intended to provide a starting point for the 
guided search by “anchoring” the initial search results appropriately within the ontologies 
based on relevant information provided by answering simple questions.  If the user does not 
care to answer the questions, the guided search can begin immediately by pressing the 
SEARCH button.  Tips are provided as popup windows that can be opened by left-clicking 
the hyperlink if the user is not sure how to get going, or if he is unsure about how to answer 
specific questions.  The most often retrieved artifacts are presented as the default “results” 
in the result pane.  Blogs that pertain to the repository system as a whole are presented 
(those with the most activity listed first) in the user blogs pane.  The most often asked 
questions are provided, with a link to additional questions, in the FAQ pane.  The questions 
displayed pertain to the entire repository.  Finally, links to general information about the 
repository, related repositories identified by stakeholders, and other locations relevant to the 
content of the repository (Navy Open Architecture) are displayed in the helpful links pane. 

The available answers in the drop down menus for each of the initial questions are 
dependent on the ontologies represented in the repository framework.  As the questions are 
answered, each of the panes is updated to reflect each choice.  A priority scheme is applied 
after each user selection, and items ranked highest according to the scheme may appear in 
the display if applicable.  After a user has answered all questions in this scenario, the 
individual panes may appear as in Figure 9.  The chosen answers appear in the drop down 
windows of the navigation pane.  All other panes have been updated to reflect the choices 
made by the user to this point.  The results, user blogs, FAQs, and helpful links panes all 
show reprioritized items that are associated with the requirements activity, the surface 
domain, the Aegis system, and Submodule B, where applicable.  Additionally, items that are 
not specifically tagged to each of these selections may be listed based on the graphical 
distance captured through the use of the ontology relations. 

 
Figure 9. Home Screen After all Questions Answered 



 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 199=
k^s^i=mlpqdo^ar^qb=p`elli=

Once the user has selected the appropriate answers to each question, the SEARCH 
button is pressed.  Since the default view was chosen, the navigation pane switches to the 
fisheye view of the repository contents (Figure 10).  The fisheye view presents the artifacts 
of the repository as a graph that centers on the most relevant items.  The positioning and 
size of the artifacts in the fisheye graph are determined by the prioritization scheme applied 
after certain user actions.  The connectors between artifacts are the relations captured in the 
ontologies.  Each of the types of relations is listed in an interactive menu that allows the user 
to turn the relations off and on depending on interest.  

Additional features of the fisheye navigation include: 

 Pop-up windows for artifacts and relations—Activated by mouse-scrolling 
actions, the artifact pop-up window contains a subset of the metadata for the 
artifact (see  

 ).  The relation pop-up window describes how the two connected artifacts are 
related. 

 Artifact detail page—Left-clicking on an artifact node opens an artifact detail 
page, which provides more of the artifact metadata. 

 Action window—Right-clicking on an artifact node opens a drop-down action 
window that allows the user to open more information about the artifact or add it 
to the retrieval listing. 

 
Figure 10. Initial Search Return—Fisheye View 



 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 200=
k^s^i=mlpqdo^ar^qb=p`elli=

 
Figure 11. Artifact Pop-Up Window 

Users can also add an item to their retrieval listing by selecting the option from the 
results pane.  Each time the user selects an item for retrieval, the prioritization scheme is 
reapplied and each of the panes is updated to reflect the highest priority items.   

After choosing all interesting items, the user selects Retrieval->Retrieve Items from 
the navigation pane drop down menu.  A separate window is provided that contains the 
user’s choices to this point, as shown in Figure 12.  Select metadata is presented in addition 
to the names of artifacts to help the user review the list.  The user can modify the list by 
deleting anything deemed irrelevant at this point.  When the user is satisfied that the list of 
desired items is complete, the user presses the RETRIEVE button. 

 
Figure 12. Retrieval List 

Information is provided to assist the user in requesting and retrieving the items.  Any 
items available for immediate download are made available using appropriate hyperlinks.  
Items that require request/approval processes are also enabled through a step-by-step 
automated process.  This extra step is required for repositories that have security and 



 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 201=
k^s^i=mlpqdo^ar^qb=p`elli=

intellectual property limitations, such as the SHARE repository.  If the Ontology Based 
Software Reuse Repository System is developed for an open source repository, it should be 
possible to simply provide links to the artifacts themselves.  In this case, it would be 
desirable to replace the “Retrieve” column in the results pane with a “Download” column, 
and to add a menu option for downloading the artifact when the user right-clicks on an item 
in the navigation pane.  

Related Work 
Sugumaran and Storey propose the use of domain knowledge in repositories to aid 

in the natural language processing of queries for component retrieval (Sugumaran & Storey, 
2003).  In their prototype system, the ontology captures synonyms and relations between 
objects in the domain.  The system enables the user to enter queries using natural 
language, and the ontology enables more coverage in the returned items by including items 
that contain the relations captured in the ontology.   

This work is closely related to the system proposed herein, since they both address 
some limitations of traditional keyword and faceted classification-based searches.  However, 
there are several key differences.  First, the Sugumaran et al. ontology is limited to a single 
view of the typical objects and terms within a specific application domain; whereas our 
approach includes multiple views as described.  Second, the visualization enabled by the 
ontology is vastly different.  In the Sugumaran et al. approach, syntactic analysis is 
conducted on a query entered through a free text interface, resulting in lists of processes, 
actions, and matching or related components that the user can then choose to view in more 
detail.  Our approach enables the user to navigate the repository contents in a more 
interactive way.  Finally, the use of the ontology to provide a lexicon for matching terms is 
extended in our approach since artifacts in the repository are captured as individual items in 
the ontology classes.  This approach provides wider use of the ontology in representation of 
repository contents and user interaction.   

Yao and Etzkom also focus on the use of ontologies for enhancing search retrieval 
based on natural language queries.  They extend the idea by suggesting the use of 
Semantic Web technologies such as RDFS/DAML+OIL to apply the methodology to the 
World Wide Web as a large software repository  (Yao & Etzkorn, 2004).   

Summary and Future Work 
In this paper, we have presented an ontology-based approach for the development 

of a software reuse repository.  Our claim is that the knowledge captured by the ontologies 
enables new ways of discovering desired software artifacts based on computer aided 
navigation rather than the more traditional query/response discovery.  We described the 
repository framework that provides the contextual depth to support such navigation and 
demonstrated the approach using a use case.   

Throughout the project we have identified several areas for future work.  First, we 
recognize a need to investigate the automated population of artifact metadata.  A significant 
challenge will be the generation of XML metadata from existing reusable resources and help 
for users in describing future submissions to the repository. Current approaches for 
automatic generation of metadata from content libraries should be explored for potential 
application to the ontology-based repository and more specifically for the SHARE metadata 
context.  We suspect that a combination of techniques will be useful. 



 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 202=
k^s^i=mlpqdo^ar^qb=p`elli=

Second, providing a practical software behavior representation remains a 
challenging area for continued exploration. The current work provides an identification of 
principal functionality of an artifact through the CSFL and possible description of operations 
and input/output messages from a service perspective using WSDL. The work is admittedly 
preliminary. Research into related areas of Semantic Web Services, Business Process 
Execution Language, and others continues to hold promise for this aspect of the repository 
framework. 

Third, additional user views may be desirable other than those we have described 
here.  Some investigation into the feasibility of translating the ontological information 
between various model types is warranted. 

Finally, in addition to the Navy’s CSFL, similar lists have been developed for 
operational activities (COAL) and for information elements (CIEL). It would be interesting to 
express these taxonomies in OWL, as was done with CSFL, and then to create 
interrelationships across the classes, for example, to determine what information elements 
are generally employed in performing certain system functions, or what information elements 
are generally produced by performing certain system functions.  Further exploration with 
subject matter experts (SMEs) is needed to determine potential benefit from such 
approaches.  

Acknowledgments 
This research would not have been possible without the financial and moral support 

of Mr. Nick Guertin, Director of the Navy Future Combat Systems Open Architecture 
Program.  I would also like to sincerely thank Dr. Mikhail Auguston, who has been my 
mentor and guide throughout this research.   

References 
Guo, J., & Luqi. (2000). A survey of software reuse repositories. In Proceedings of the 

Seventh IEEE International Conference and Workshop on the Engineering of 
Computer Based Systems, 2000 (ECBS 2000) (pp. 92-100). 

Hassan, A. E. (2008). The road ahead for mining software repositories. In Proceedings of 
the 2008 IEEE Frontiers of Software Maintenance (pp. 48-57). Beijing, China. 

Johnson, J., & Blais, C. (2008). Software hardware asset reuse enterprise (SHARE) 
framework: related work and development plan. Monterey, CA: Naval Postgraduate 
School. 

Johnson, J., & Blais, C. (2008). Software hardware asset reuse enterprise (SHARE) 
repository framework final report: Component specification and ontology. Monterey, 
CA: Naval Postgraduate School. 

Kruchten, P. (1995). The 4+1 view model of architecture. IEEE Software, 12(6), 42-50. 
Object Management Group. (2005). Reusable asset specification (Vers. 2.2).  
Shiva, S., & Shala, L. (2007). Software reuse: Research and practice. In Proceedings of the 

Fourth International Conference on Information Technology, 2007 (ITNG '07) (pp. 
603-609). 

Sugumaran, V., & Storey, V. C. (2003). A semantic-based approach to component retrieval. 
The DATA BASE for Advances in Information Systems, 34(3), 8-24. 

Yao, H., & Etzkorn, L. (2004). Towards a semantic-based approach for software reusable 
component classification and retrieval. In Proceedings of the ACM 42nd Southeast 
Conference (ACMSE '04) (pp. 110-115). Hunstville, AL.



 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 203=
k^s^i=mlpqdo^ar^qb=p`elli=

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 204=
k^s^i=mlpqdo^ar^qb=p`elli=

2003 - 2010 Sponsored Research Topics 

Acquisition Management 
 Acquiring Combat Capability via Public-Private Partnerships (PPPs) 

 BCA: Contractor vs. Organic Growth 

 Defense Industry Consolidation 

 EU-US Defense Industrial Relationships 

 Knowledge Value Added (KVA) + Real Options (RO) Applied to Shipyard 
Planning Processes  

 Managing the Services Supply Chain 

 MOSA Contracting Implications 

 Portfolio Optimization via KVA + RO 

 Private Military Sector 

 Software Requirements for OA 

 Spiral Development 

 Strategy for Defense Acquisition Research 

 The Software, Hardware Asset Reuse Enterprise (SHARE) repository 

Contract Management 
 Commodity Sourcing Strategies 

 Contracting Government Procurement Functions 

 Contractors in 21st-century Combat Zone 

 Joint Contingency Contracting 

 Model for Optimizing Contingency Contracting, Planning and Execution 

 Navy Contract Writing Guide 

 Past Performance in Source Selection 

 Strategic Contingency Contracting 

 Transforming DoD Contract Closeout 

 USAF Energy Savings Performance Contracts 

 USAF IT Commodity Council 

 USMC Contingency Contracting 

Financial Management 
 Acquisitions via Leasing: MPS case 

 Budget Scoring 

 Budgeting for Capabilities-based Planning 



 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 205=
k^s^i=mlpqdo^ar^qb=p`elli=

 Capital Budgeting for the DoD 

 Energy Saving Contracts/DoD Mobile Assets 

 Financing DoD Budget via PPPs 

 Lessons from Private Sector Capital Budgeting for DoD Acquisition Budgeting 
Reform 

 PPPs and Government Financing 

 ROI of Information Warfare Systems 

 Special Termination Liability in MDAPs 

 Strategic Sourcing 

 Transaction Cost Economics (TCE) to Improve Cost Estimates 

Human Resources 
 Indefinite Reenlistment 

 Individual Augmentation 

 Learning Management Systems 

 Moral Conduct Waivers and First-tem Attrition 

 Retention 

 The Navy’s Selective Reenlistment Bonus (SRB) Management System 

 Tuition Assistance 

Logistics Management 
 Analysis of LAV Depot Maintenance 

 Army LOG MOD 

 ASDS Product Support Analysis 

 Cold-chain Logistics 

 Contractors Supporting Military Operations 

 Diffusion/Variability on Vendor Performance Evaluation 

 Evolutionary Acquisition 

 Lean Six Sigma to Reduce Costs and Improve Readiness 

 Naval Aviation Maintenance and Process Improvement (2) 

 Optimizing CIWS Lifecycle Support (LCS) 

 Outsourcing the Pearl Harbor MK-48 Intermediate Maintenance Activity  

 Pallet Management System 

 PBL (4) 

 Privatization-NOSL/NAWCI 

 RFID (6) 



 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 206=
k^s^i=mlpqdo^ar^qb=p`elli=

 Risk Analysis for Performance-based Logistics 

 R-TOC AEGIS Microwave Power Tubes 

 Sense-and-Respond Logistics Network 

 Strategic Sourcing 

Program Management 
 Building Collaborative Capacity 

 Business Process Reengineering (BPR) for LCS Mission Module Acquisition 

 Collaborative IT Tools Leveraging Competence 

 Contractor vs. Organic Support 

 Knowledge, Responsibilities and Decision Rights in MDAPs 

 KVA Applied to AEGIS and SSDS 

 Managing the Service Supply Chain 

 Measuring Uncertainty in Earned Value 

 Organizational Modeling and Simulation 

 Public-Private Partnership 

 Terminating Your Own Program 

 Utilizing Collaborative and Three-dimensional Imaging Technology 

 

A complete listing and electronic copies of published research are available on our website: 
www.acquisitionresearch.org    

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 207=
k^s^i=mlpqdo^ar^qb=p`elli=

 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 

 

 

 

^Åèìáëáíáçå=êÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=ëÅÜççä=çÑ=ÄìëáåÉëë=C=éìÄäáÅ=éçäáÅó=
k~î~ä=éçëíÖê~Çì~íÉ=ëÅÜççä=
RRR=avbo=ol^aI=fkdboplii=e^ii=
jlkqbobvI=`^ifclokf^=VPVQP=

www.acquisitionresearch.org 


