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Abstract 

Acquisition decisions drive supply-chain requirements that incur financial 
costs and other critical impacts. To account properly for the resource impacts of 
demand for fuel and other supplies for new weapon systems and platforms, the 
Services are required to estimate the fully burdened cost of energy in acquisition 
analyses, including the resources required for the logistics activities necessary to 
deliver supplies to the warfighter in an operational scenario. This research uses 
economic input/output analysis to model the Department of Defense supply chain to 
estimate the fully burdened cost of fuel and other supplies as a function of the locus 
of demand to support acquisition decisions. This year’s accomplishments include (1) 
modeling logistics with force protection for fuel delivery to Navy assets in a threat 
environment and applying the results to real-world examples and (2) modeling the 
impact of consumption of multiple supply commodities by logistics activities 
themselves.  
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Estimating Supply-Chain Burdens in Support 
of Acquisition Decisions 

Introduction  
Department of Defense (DoD) policy and federal statute call for using the fully 

burdened cost of energy (FBCE) in cost estimates in analyses of alternatives (AoAs) 
that support acquisition decision-making, so that decisions reflect all of the costs 
throughout the DoD organization that will be incurred (or saved) by a given 
acquisition decision. In August 2012, the Assistant Secretary of Defense for 
Operational Energy Plans and Programs (ASD[OEPP]) issued specific guidance 
promulgated in Section 3.1.6 of the Defense Acquisition Guidebook (DAG; OSD, 
2012) on how to estimate the FBCE for a system (ASD[OEPP], 2012).  This 
guidance specifically calls for the inclusion of the logistics costs associated with 
delivering fuel (or other energy supply) to its point of consumption. Moreover, it 
specifies that the FBCE should be calculated for combat scenarios and that, in most 
planning scenarios, logistics will be organic (i.e., that DoD assets, rather than 
contractor assets, will be used). The use of organic assets has implications for the 
FBCE: although contractors must build all of their costs (except environmental 
externalities such as greenhouse gas global-warming potential) into the rates that 
they charge the DoD, their rates are fully burdened with respect to the cost of 
transport assets and any force protection, if necessary. However, DoD accounting 
systems and conventions do not necessarily assign all implied costs to logistics 
assets. In particular, transport assets and any force-protection escorts may need to 
be fueled and otherwise supplied from within the supply chain, using infrastructure 
and supply.  

The DoD’s focus on energy consumption and the logistics costs of delivering 
fuel and other energy-related supplies is justified by the dominance of fuel in total 
supply to both naval and land-based forward operations, both current and historical. 
Moreover, the fuel requirements associated with warfighting have been increasing; 
for example, current engineering estimates are that the Joint Strike Fighter will 
consume 110% more fuel than the Harrier that it replaces. The Littoral Combat Ship 
similarly consumes far more fuel than existing comparable vessels. On the ground, 
Deloitte (2010) estimated that total fuel consumption for troops in Operation Iraqi 
Freedom in 2007 was 22 gallons per soldier per day, as compared with about one 
gallon per soldier per day at the end of World War II (WWII). 

Although energy is the largest component of supply by both weight and 
volume in most ashore and naval missions, we note that the supply of any item to 
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the forward-operating warfighter requires logistics support, which requires resources, 
may limit capability when supply lines cannot be maintained, and is vulnerable to 
enemy attack. We therefore generalize our analysis to address the fully burdened 
cost of supply (FBCS). 

The Burden of Supply 
As discussed by Regnier, Simon, Nussbaum, and Whitney (2013), the 

logistics activities required to deliver fuel to the warfighter impose three major types 
of costs:  

1. Resources: The logistics activities required to meet fuel needs on the 
battlefield are themselves resource intensive because they require 
transport and force-protection assets, personnel, and consumables 
such as fuel and water. An Army study (Haggerty, 2008) found that 
only two of the top 10 fuel-consuming platforms are combat platforms, 
which highlights the magnitude of the resource costs involved with 
logistics activities. 

2. Capability Reductions: Logistics support is highly, but not infinitely, 
capable. Fuel and power demand therefore limit range and endurance. 
During the 2003 rapid push to Baghdad, General James Mattis1 is 
widely quoted as saying, “Unleash us from the tether of fuel” 
(Schwartz, Blakely, & O’Rourke, 2012, p. 11). General John Allen, 
Commander of the International Security Assistance Force/U.S. Forces 
in Afghanistan (ISAF/USFOR-A), added the following handwritten 
statement to a memorandum calling for improved energy efficiency: 
“Operational energy equates exactly to operational capability” 
(emphasis in the original). 

3. Vulnerability: There is also a danger of losses to the logistics assets 
themselves. For example, a Taliban bomb destroyed 22 fuel tankers in 
the Samangan Province of Afghanistan. The tankers were transporting 
supplies to coalition forces in July 2012 (“Afghanistan: Taliban Bomb”, 
2012). In addition to the risk of supply lines being stopped, there is also 
a risk of attacks on personnel. The Army Environmental Policy Institute 
(AEPI) estimated that the United States incurred one casualty for every 
24 fuel resupply convoys in Afghanistan (Eady, Siegel, Bell, & Dicke, 
2009). Citing the Center for Army Lessons Learned, Eady et al. (2009) 
estimated that historically, about 10%-12% of Army casualties may be 

                                            
1 In 2003, General Mattis was serving as the 1st Marine Division Commander. General Mattis later 
served as Commander, U.S. Central Command. 
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attributed to resupply. Moreover, strategic guidance indicates that 
threatened logistics networks should be anticipated in the future. 

Despite these costs, battlefield fuel demand is increasing. New technologies 
continue to increase the capability deployed with the warfighter. Unfortunately, more 
advanced platforms and systems tend to consume more fuel and electrical power. 
These increases have significantly outweighed the savings from technological 
improvements such as more efficient engines and lighter materials. Total warfighter 
fuel demands have been increasing steadily for decades—a 175% increase since 
the Vietnam conflict (Deloitte, 2010). 

Regnier et al. (2013) also explained the shortcomings in fuel demand 
estimates: 

A Defense Science Board (DSB) report (2008) highlighted the failure of 
DoD management processes to properly account for the enterprise-
wide costs of fuel. Before 2009, DoD analyses dramatically 
understated the total costs associated with fuel demand for new 
weapons systems and platforms. In cost analyses, fuel requirements 
were monetized at the Defense Logistics Agency-Energy (DLA-E, 
formerly Defense Energy Support Center) standard fuel price, 
regardless of where in the world the system was anticipated to be 
used, and whether DLA-E defense fuel supply points (DFSPs) could 
realistically be expected to provide fuel. The service-specific fuel 
logistics costs were neglected, therefore implicitly estimated at zero. 

Multi-Commodity Logistics Model 
As noted in previous research, logistics activities themselves consume fuel 

that must be transported in an organic supply chain, thus requiring fuel to transport 
and creating a fuel-multiplier effect (Regnier & Nussbaum, 2011; Dubbs, 2011). In 
the work reported here, we expand the analysis to reflect the fact that logistics 
activities consume supplies other than fuel. For ground-based operations, water is a 
particularly important supply item, and for extreme forward positions, water may be 
consumed in volumes comparable to fuel. We therefore expand the economic 
input/output (EIO) model of Regnier & Nussbaum (2011) to reflect a multi-commodity 
(more than one type of supply) self-sustaining (organic) supply chain. This 
expansion to model multiple commodities is one major contribution of the 2012 work, 
and the elaboration of this model and application of it to generate numerical results 
is part of our 2013 effort. 

Naval Logistics Model 
The second major contribution of the 2012 work is to build a model of naval 

resupply, with a capability to explore the impact of force-protection requirements. 
Current strategic guidance indicates that the U.S. Navy should anticipate operating 
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in regions where the enemy attempts to deny access. Historical experience from 
WWII indicates that fuel supply lines would be a prime enemy target, and therefore, 
exploring the impact of force-protection requirements for logistics vessels is critical 
to understanding the consequences of acquisition decisions that affect naval forces’ 
future fuel demands. Reinforcing the criticality of logistics to warfighting capability, in 
June 2010, the Chief of Naval Operations (CNO) released OPNAV Instruction 
3380.5, which designated Military Sealift Command (MSC) sealift vessels carrying 
munitions, unit movements, or military-essential materiel in support of actual combat 
operations as high-value units, a designation assigned to U.S. and NATO aircraft 
carriers, guided-missile submarines, and other strategic assets.  

Activities 
Under this award, we expanded the EIO model of a self-sustaining supply 

network, and reported on these results at the Ninth Annual Acquisition Research 
Symposium (Regnier, Simon, & Nussbaum, 2012), and explored the model’s 
applicability to humanitarian assistance and disaster response (HADR) missions. We 
described the model in terms of a ground-based supply chain, but it could also be 
applied to a naval network and a mixed-mode network, including air transport.  

Nussbaum and Regnier traveled to Washington, DC, in June 2012 to meet 
with staff of the ASD (OEPP) who are developing the FBCE guidance for the DAG, 
as well as other stakeholders. In September 2012, Regnier traveled to the Naval 
Research Laboratory in Washington, DC, to participate in the Fuels-at-Sea 
Research Workshop organized by the CNO’s Strategic Studies Group.  

Nussbaum and Regnier are supervising a thesis student who has built a 
Navy-specific model of logistics, based on the EIO framework, that estimates the 
total supply requirements for naval resupply, allowing the user to adjust the location 
of the warfighter and the threat scenario. The student, LT Brendon Hathorn, is in the 
Operations Analysis program at the Naval Postgraduate School (NPS). He is also a 
member of the first cohort of NPS students expected to receive an energy certificate. 

We have submitted a paper titled “The Fuel Multiplier in Fuel Supply 
Logistics” to the Journal of Defense Modeling and Simulation. This paper has come 
back to us with a request for minor revisions and resubmission. The model in this 
paper includes the impact of force-protection requirements on total fuel demand. 
Regnier and Simon also presented research results at the 2012 annual meeting of 
the Institute for Operations Research and the Management Sciences on October 17, 
2012, in Phoenix, AZ. 

A further paper introducing the multi-commodity self-sustaining supply 
network model is under preparation; we anticipate submitting it in early 2013. 
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Convoy-Based Model of Fuel Multipliers for Ground 
Operations 

As reported in Regnier et al. (2013), we extended work from Dubbs (2011) to 
build a more general convoy-based model of logistics activities in a multistage 
supply chain, implemented in an Excel spreadsheet. In this model, we can vary 

 force-protection requirements, which are captured by including combat 
vehicles as part of the convoy; 

 transport and force-protection vehicle characteristics, including payload 
and fuel efficiency; 

 the number of stages; and 

 the length of stages. 

We used this model to explore the Dubbs (2011) scenario as well as two scenarios 
from the AEPI’s Sustain the Mission Project (Siegel, Bell, Dicke, and Arbuckle, 
2008). 

Basic Fuel-Multiplier Model 
In this model, supply is transported over multiple stages using organic assets. 

Stages are indexed by s . Each stage begins and ends at a depot. Fuel that is 
required by transportation or force-protection assets is provided at each stage’s 
originating depot. Therefore, this fuel, which is required to operate the logistics 
assets, must also be transported to the originating depot. The model is as follows: 

Convoy 

݊௦்= number of transport vehicles in convoy for Stage ݏ 

݊௦= number of force-protection vehicles in convoy for Stage ݏ 

Fuel Consumption Rates 

݃௦்= fuel consumption per unit length for each transport vehicle on 
Stage ݏ 

݃௦= fuel consumption per unit length for each force-protection vehicle 
on Stage ݏ 

Other Stage Characteristics 

݀௦ = round-trip length of Stage ݏ (may be measured in units of time or 
distance, with consumption rates specified accordingly) 

 the type of transport) ݏ ௦ = fuel payload per transport vehicle on Stage
vehicle may differ by stage) 
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݃௦ = fuel consumption per hour by force-protection aircraft on Stage ݏ 

 the air support) ݏ ௦ = air support requirement (aircraft hours) on Stageݎ
is assumed to be provided by an Apache AS-64A) 

Fuel Multiplier 

The stage-wise fuel multiplier (i.e., the amount of fuel consumed on 
Stage ݏ per unit of fuel delivered to the end of Stage ݏ) can be written 
as ߚ௦ ൌ 1   where	௦,ߙ

௦ୀߙ
ೞ
ೞ

ௗೞ
ᇩᇭᇪᇭᇫ

ೠ	ೞೠ
್	ೝೌೞೝ
ೡೞ,

ೝ	ೡ

ା ೞ
ುೞ

ುௗೞ
ᇩᇭᇭᇪᇭᇭᇫ

ೠ	ೞೠ	್
ೝషೝ

ೡೞ,
ೝ	ೡ

ା ೞೞ
ಲᇩᇪᇫ

ೠ	ೞೠ	್
ೝ	ೌೝ,

ೞೠೝ,
ೝ	ೡ

ೞ
ೞᇣᇤᇥ

ೌ	ೠ	ೡೝ
	ೄೌ	ೞశభ,ೝ	ೡ

,  (1)That is, Equation 1 is the 

ratio of the amount of fuel consumed to the amount of fuel delivered. We also define 
the cumulative multiplier, ߚ௦, as the number of gallons of fuel that must be provided 
at the beginning of Stage 1 for one gallon to reach the end of Stage s (the beginning 
of Stage 1 + ݏ, or the battlefield, if Stage ݏ is the final stage).  

The multipliers ߚ௦ and ܤ௦ are dimensionless (in units of gallon/gallon) and may 
be used to estimate daily, weekly, or annual systemwide consumption by multiplying 
them by the appropriate rate of warfighter demand. The convoy composition on a 
given stage is modeled as constant over the period of interest. However, the model 
allows the convoy composition as well as the total payload to differ across stages. 
The cumulative multiplier ܤ௦ should be interpreted as a long-run average of the 
incremental consumption per additional gallon of fuel demanded. 

Note that ܤ௦ increases geometrically with the number of stages. For example, 
for ݊ identical stages with ߚ௦ ൌ ܤ ,constant ߚ ൌ  .ߚ

Results 
In Regnier et al. (2013), we applied this model to several scenarios, 

specifically the following: 

 transportation from Kandahar to a Bar Now Zad combat outpost (COP) 
in Helmand Province Afghanistan, following Dubbs (2011); 

 transportation from Kuwait to a Stryker Brigade Combat Team (SBCT) 
in Iraq, following Siegel et al. (2008); and 

 a 1,700-mile round-trip immature-theater supply chain, also following 
Siegel et al. (2008). 
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The results for these scenarios are included in Tables 2–4 in the appendix. 
The highlights are as follows: 

 As expected, larger convoys using high-payload transport vehicles and 
a lower ratio of force-protection assets to transport vehicles are more 
efficient. Therefore, the Kuwait-to-SBCT scenario, which uses sixteen 
8,000-gallon trucks with four escort vehicles and has the lowest 
multiplier effect—only 7% “extra” fuel is required, despite a round-trip 
distance of 1,100 miles.  

 In immature theaters and remote locations, infrastructure may not 
support large trucks or large convoys, and therefore, logistics is less 
efficient. Large convoys may also be impractical because the 
quantities demanded and storage facilities at forward locations are 
small. Therefore, for immature theaters and remote locations, fuel 
multipliers are likely to be much higher. In the immature theater 
scenario, 18% “extra” fuel is required per unit delivered to the 
warfighter.  

 In the Kandahar to Bar Now Zad scenario, road quality also slows 
down the convoy. This greatly increases the resource requirements, 
and therefore the multipliers, relative to a supply chain covering a 
similar distance but on better roads. In the Bar Now Zad scenario, 
which does not include air support, 71% “extra” fuel is required, despite 
the stage lengths being relatively short. If air assets are used in force 
protection, the impact of longer travel times is magnified.  

Since expeditionary units are likely to operate in remote environments with 
limited infrastructure and small convoys, the value of reducing fuel requirements for 
expeditionary units is very high, especially if their supply lines may be contested. 

It should be noted that although early Army fully burdened cost (FBC) 
methodologies did not capture the fuel-multiplier effect, the Sustain the Mission 
Project (Siegel et al., 2008) has led to the development of the Army’s FBC Tool, 
which does capture the single-commodity (fuel) multiplier effect, using a different 
approach. In the current implementation of the model (J. Montgomery, personal 
communication, October 1, 2012), the cost of fuel is calculated at the beginning of 
each stage and is used in cost estimates for later stages. This means that although 
the quantity of fuel (and other supplies) that the system must transport to support the 
warfighter is not directly calculated, the costs of fuel used in early stages are 
accounted for and allocated to later-stage logistics activities. Later versions of the 
tool will do the same for water, thus capturing at least the two-commodity multiplier 
effect. 
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Impact of Diverting Combat Assets to Force Protection 
Rather than looking at the total fuel requirements associated with transport 

and force-protection assets, another perspective is to consider combat capability as 
fixed; using combat assets in force protection diverts them from other missions. To 
explore the impact that force-protection requirements would have on capability 
available for other missions, we expanded the model. As described in Regnier et al. 
(2013), we used input-output (IO) analysis to represent force-protection assets as a 
“sector.” This sector’s output (measured in hours of patrol) may be applied to force 
protection (and be consumed by the transport sector), or it may be applied to other 
missions.  

IO analysis (Leontief, 1986) represents the flows of goods and services in a 
system—usually, a national, industrial economy—and assumes constant ratios of 
inputs are required per unit of output from each sector. For example, the automobile 
sector might require a certain amount of the steel sector’s output and a certain 
amount of the coal sector’s output per unit of steel produced. Letting sectors be 
indexed ݅, ݆, the input requirements are denoted with coefficients ܽ, where ܽ = the 

amount of output from Sector ݅ required by Sector ݆ to produce one unit of Sector 	݆’s 
output.  

The total amount of output (denoted ݔ) required by each sector ݅ is 
determined by a set of mass-balance equations:  

ݔ ൌܽݔ	,݅


,		except consuming sectors 																																				(2) 

 We built an IO model of the immature-theater supply chain described 
in Siegel et al. (2008) and in Table 4 in the appendix. Each stage was modeled as 
two sectors: a transport sector and a force-protection sector. In the model, each 
force-protection sector requires fuel provided by the prior stage’s transport sector, 
and each transport sector requires fuel provided by the prior stage’s transport sector, 
as well as force protection provided by the same stage’s force-protection sector. 

For convenience, we also defined the following: 

 ݅ ሺ݅ሻ= the stage associated with Sector	ݏ

்݅ሺݏሻ= the transport sector for Stage ݏ 

݅ሺݏሻ= the force-protection sector for Stage ݏ 

For transport Sector ݆ and ݅ ൌ ்݅ሺݏሺ݆ሻ െ 1ሻ, 

ܽ ൌ
ೞ	ሺೕሻ
 ೞሺೕሻା	ೞሺೕሻ

 ೞሺೕሻ
 ௗೞሺೕሻ

ೞሺೕሻ
 ೞሺೕሻ

ൌ 	
ೞሺೕሻାೞௗೞሺೕሻ

ೞሺೕሻ
 . (3) 
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Similarly, for force-protection Sector ݆, ݅ ൌ ்݅ሺݏሺ݆ሻ െ 1ሻ, when the units of force-
protection output are the same as the denominator of the fuel consumption rate, ݃௦, 

ܽ ൌ 	
ೞሺೕሻ
ು ೞሺೕሻ

ು ௗೞሺೕሻ

ೞሺೕሻ
ು ௗೞሺೕሻ

ൌ ݃௦ሺሻ
 .     (4) 

For transport Sector 	݆, and 	݅ ൌ ݅ሺݏሺ݆ሻሻ, 

ܽ ൌ 	
ೞሺೕሻ
ು ௗೞሺೕሻ

ೞሺೕሻ
 ೞሺೕሻ

.     (5) 

All other ܽ ൌ 0. The amount of output required for each stage, ݔ, is either 

determined exogenously (e.g., warfighter demand is the output of the transport 
sector in the final stage) or determined as the solution to the set of mass-balance 
equations given in Equation 2, for all ݅ whose output is not exogenous. 

Table 5 shows an IO coefficient matrix that matches the AEPI immature-
theater example, except that no air protection is used and, therefore, the multiplier 
effect is lower than it would be in the original scenario. In particular, it is 5,439 
gallons/5,000 gallons = 1.09. 

Constructing the IO matrix allowed us to examine the amount of force 
protection required and how those requirements are affected by particular 
characteristics of the supply chain. 

Optimal Depot Placement 
In the basic fuel-multiplier model, the stage-wise multipliers increase only 

linearly with distance, as implied by Equation 1. The model treats the logistics 
assets’ internal fuel tanks as separate from the transport vehicles’ payload. This is 
consistent with operations on relatively short stages. However, as we noted in 
Regnier et al. (2012), if logistics assets are allowed to resupply from the payload of 
the fuel transport assets (which would be realistic for longer stages), the stage-wise 
fuel multiplier would increase faster than linearly in the length of the stage because 
the denominator—the amount of fuel delivered at the end of the stage—would 
decrease as the logistics assets consumed the payload. Specifically, if the internal 
fuel tank capacity is included in the payload, ߚ௦ would become 

௦ߚ ൌ
ೞ
ೞ

ᇩᇪᇫ

ೌೌ
ೝ	ೡ

ೞ
ೞ

ᇩᇪᇫ

ೌೌ
ೝ	ೡ

	ି	 ೞ
ೞ

ௗೞା	ೞ
ುೞ

ುௗೞା	ೞೞ
ಲᇩᇭᇭᇭᇭᇭᇭᇭᇭᇪᇭᇭᇭᇭᇭᇭᇭᇭᇫ

ೠ	ೞೠ	್	ೞೞ	ೌೞೞೞ,ೝ	ೡ

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ೌ	ೠ	ೡೝ		ೞೌ	ೞశభ,ೝ	ೡ

.    (6) 
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Figure 1 shows the impact of increasing the length of the stage, ݀௦, on the 
stage-wise multiplier ߚ௦.  As discussed earlier, the cumulative (enterprise-wide) 
multipliers increase geometrically with the number of stages. However, constructing 
the supply chain with fewer and longer stages does not necessarily solve the 
problem; there will be fewer individual stage multipliers, but they will be larger. In 
addition, we must consider the costs of establishing and operating each depot. In 
setting up a new supply chain, therefore, an important question is, How many depots 
should there be, and how should they be positioned? 

 

Figure 1. Stage-Wise Fuel Multiplier 
Note. This figure shows a stage-wise fuel multiplier as a function of the length of the stage. It 
is based on Equation 7 and the immature-theater scenario (see Table 4 in the appendix) with 

four transport vehicles and four force-protection vehicles. 

We have begun to address this question in work this year. In particular, we 
proved that in a simple fuel supply chain with only one type of transport vehicle and 
constant terrain, the minimum cost is obtained using stages of equal length.  We 
developed a cost function that computes an overall cost for any given number of 
equal-length stages; this function can be used to determine the optimal number of 
stages. 

Multi-Commodity Logistics Model 
As noted previously, neglecting the fuel multiplier in a multi-stage supply 

chain leads to a systematic underestimate of the total resource requirement—and 
the total amount of logistics activity—required to provide supply to the warfighter.  
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Moreover, logistics activities consume additional resources, such as water, 
that must also be supplied internally in a self-sustaining supply chain. Not only does 
supply type (commodity) consumed by logistics activities have its own multiplier but 
the multipliers interact. As shown in Figure 2, the transportation of each commodity 
requires consumption of the other commodity. 

 

 

Figure 2. Schematic of Three-Stage Self-Sustaining Supply Chain That 
Consumes Two Commodities: Fuel and Water 

Note. Logistics assets (personnel and fuel trucks) are shown for each stage, and stocking at 
each depot is shown. The arrows represent flows of supply to logistics assets and (at the far 

right) to the warfighter, with blue arrows for water and black arrows for fuel. 

We have developed a basic model of the multi-commodity supply chain that 
may be used to estimate these cross-commodity multipliers and the associated 
enterprise-wide resource requirements. In this model, a supply chain has ݊ nodes, 
indexed ݅; we now index stages according to their originating node, so stage 
݅	connects node ݅ with node ݅  1.  There are ݉ commodities (units are normalized), 
indexed ܿ, transported and consumed by this supply chain.  
ݔ  = the amount of Commodity ܿ needed at the destination (given) 
ݔ
  = the amount of Commodity ܿ required at Node ݅ 
ܺ = the total resource requirement at Node ݅  

ൌݔ




ୀଵ
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݀ = length of Stage ݅   
ݎ
 = the amount of Commodity c consumed per unit length on Stage i 
ܴ = the total amount of resources consumed per unit length on Stage i 

ൌݎ




ୀଵ

	.	 

This model is designed to provide an estimate of monetary costs, including 
both the resource requirements and other costs of logistics activities—such as labor. 
Labor requirements are proportional to the amount of logistics activity required in the 
supply chain, but labor is not transported by the network. Future work may include 
modeling the deployment phase; such a model would include the transportation of 
personnel. 

This work is ongoing, and dissemination of this work is part of our research 
effort in 2013. 

Naval Resupply Under Threat 
Although the U.S. Navy has operated nearly unopposed since the end of 

WWII, the experiences during WWII demonstrate that supply lines, and especially 
fuel, are a key vulnerability that a capable enemy can exploit to severely undermine 
and potentially defeat U.S. forces. Goralski and Freeburg (1987) and Yergin (1991) 
narrated vividly how many of the key decisions on all sides were motivated by the 
objective of securing access to petroleum supplies. Japan’s domestic energy 
resources were (and remain) limited, and its entry into the war was largely motivated 
by its goal to secure petroleum supplies; at the time, it had only two years of 
reserves, even without wartime demand.  

The focus on petroleum supplies continued throughout the war, quite 
justifiably, as limits on the availability of petroleum also drove key decisions—for 
example, the U.S. did not have enough fuel to steam both its destroyer and its 
carrier fleets and had to choose between them (Goralski & Freeburg, 1987). The 
need to refuel contributed to the loss of 793 U.S. Navy lives and three destroyers 
sunk by Typhoon Cobra in December 1944. The fleet was attempting to refuel when 
it was overtaken by the storm (Drury & Clavin, 2007).  

A large part of the Germans’ war strategy was to disrupt supply traveling from 
the U.S. to the UK as well as from the U.S. Gulf Coast and the Caribbean to ports on 
the U.S. Atlantic Coast. Yergin (1991) quoted British Intelligence’s official history, 
saying that “It was only by the narrowest of margins that the U-boat campaign failed 
to be decisive during 1941” (p. 356). 
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In his thesis, provisionally titled Resource Burden of Logistics to Navy Ships 
Under Threat Scenarios (anticipated graduation is March 2013), LT Hathorn 
develops an EIO-based model of Navy logistics using a global network based on the 
Combat Logistics Force Planner (CLFP) (see Brown and Carlyle, 2008) and supply 
consumption factors for each U.S. Navy and MSC vessel class.  

Model 
Motivated by historical experiences of the centrality of threats to fuel supply 

lines in WWII strategy and by the potential for U.S. naval operations in a high-threat 
(anti-access) environment anticipated by the 2010 Quadrennial Defense Review 
Report (DoD, 2010), Hathorn’s model estimates the IO multipliers as a function of 
threat scenarios. 

Network 
Hathorn’s model uses the global network model used in the CLFP. The CLFP 

is described in Brown and Carlyle (2008). Nodes are indexed by ݅ and ݆, and arcs 
connect the nodes. Each possible threat level (ݐ = low, med, or high) on each arc is 
represented by a stage. Since stages are directional, each arc and threat level 
require two stages, one for each direction. Stages are denoted as follows: ݏ,,௧ = the 

stage transporting supply from node ݅ to ݆, under threat level ݐ, and ݐሺݏሻ is the threat 
level of stage ݏ. We also write ݅ሺݏሻ and ݆ሺݏሻ to represent the source and destination 
nodes, respectively, associated with stage ݏ. 

Consumption Rates 

Each stage has a resource-consumption level that is estimated based on 
planning factors, also from the CLFP. The planning factors for each vessel class, 
indexed ݇, are the daily consumption rates of each type of supply—fuel (jet fuel and 
diesel fuel), dry stores, and ordnance.  

  = daily fuel consumption rate from the CLFP for vessel class ݇ (barrels)ܨܲܨ

 ݇  = daily stores consumption rate from the CLFP for vessel classܨܲܵ
(pallets) 

ܨܱܲ  = daily ordnance consumption rate from the CLFP for ship class ݇ (short 
tons) 

Fuel is by far the dominant supply type—for example, for a guided-missile 
destroyer (DDG), over 95% of daily supply consumption (by weight) is fuel. 
Therefore, in Hathorn’s thesis, all supply is normalized by weight so that all units are 
in short tons. All supply is treated as identical and priced at the price of the F-76 
Diesel Fuel Marine (DFM). 
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Consumption rates for each vessel class are calculated as follows: 

 = daily consumption rate of the normalized commodity by vessel class	ݎ
݇	(short tons/day) 

     = (7 lbs/gallon) × (42 gallons/barrel) × (short ton/2,000 lbs) × ܨܲܨ	+ ܵܲܨ + 
ܨܱܲ  

To calculate consumption rates for each stage, we need to model the impact of the 
threat level on resource consumption. It is assumed that Combat Logistics Force 

(CLF) vessels are protected by an escort of combat vessels. The composition of the 
convoy for each threat level is determined as part of the scenario and is denoted 

using	ݒ,௧ (i.e., the number of vessels of class ݇) in the convoy under threat level ݐ, 
assumed constant within a scenario. The ratio of consumption to payload is

Rs 
vk,t(s)rkds

k


supply consumption 
during on stage s  

vk,t (s)capk
k

total payload capacity
of convoy on stage s

  

,      (7) 

where ܿܽ= the payload capacity for vessel of class ݇ (short tons) and ݀௦= the 
length of stage ݏ (days), including transit as well as time to load transport vessels 
and to replenish warfighting vessels at the destination.  

Scenario 

A scenario consists of  

 the position of warfighter demand (for fuel or any other supply);  

 the availability or non-availability of ports as sources of supply; and  

 a threat level for each arc. 

For a given scenario, Hathorn’s model estimates the total amount of supply 
from source nodes required per unit of supply delivered to the warfighter. The results 
show how the total resource requirements increase with the length of the supply 
chain and with the force-protection requirements and increase as supply nodes 
become unavailable due to threat. This implies that the value of reducing warfighter 
fuel requirements is higher than estimated in a low-threat scenario. The Navy has 
counted on uncontested supply lines for decades; therefore, historical costs to 
deliver fuel to forward-deployed ships will not reflect the costs in an access-denial 
scenario. 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 15 - 
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

Input-Output Model 

Hathorn used an IO model to estimate the total resource requirement (TRR) 
at each node and ultimately for the entire network, associated with a particular 
scenario. As can be seen in Figure 3, there may be many possible paths that supply 
could take through the network. The IO model must be based on one such path. 
Therefore, Hathorn used a linear programming optimization to select a single path 
through the network, for a given scenario. The decision variable is ݖ௦ ∈ ሼ0,1ሽ, a 
binary variable indicating whether stage ݏ) ݏ ൌ 1ሻ is used in the scenario or not.  Let 
݆ represent the destination node. The linear programming formulation is  

min݀௦ݖ௦ ൭ݎݒ,௧ሺ௦ሻ


൱ 																																																			(8)
௦

	 

subject to 

demand	constraint:  ௦ݖ 
௦:ሺ௦ሻୀವ

	1,	and                                                              (9) 

 

mass െ balance	constraints:		  ௦ݖ
௦:ሺ௦ሻୀ

ᇩᇭᇭᇪᇭᇭᇫ

୪୭୵	୧୬	୲୭	
୬୭ୢୣ	

	 	  ௦ݖ
௦:ሺ௦ሻୀ

,
ᇩᇭᇭᇪᇭᇭᇫ

୪୭୵	୭୳୲	୭
୬୭ୢୣ	

																																																(10) 

for all transshipment nodes ݊ (i.e., nodes that are neither sources nor destinations).   

Now, the IO coefficients for each pair of stages (sectors) can be calculated as  

ܽ௦ᇲ,௦ ൌ ௦ሺ1ݖ  ܴ௦ሻ,     (11) 

and	the total amount of output required of stage ݏ, per short ton of supply delivered 
to the node, is 

௦ݔ ൌ  ܽ௦,௦ᇲݔ௦ᇲ
௦ᇲ:ሺ௦ᇲሻୀሺ௦ሻ

	.																																																				ሺ12ሻ 

.The TRR of the logistics system is equal to the total, system-wide, supply 
requirement per unit of supply delivered to the destination.  The TRR = ݔ௦∗, where s* 
is the supply node.  

Operating and Support Costs 
Although this model may be used to estimate the total amount of supply 

required by the logistics system per unit delivered to the warfighter, FBC includes 
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other cost elements as well. Moreover, these other elements are also affected by the 
multiplier effect—specifically, for long paths from the source node to the destination 
node, the early stages will need to deliver larger amounts of supply to sustain later-
stage logistics activities. The other cost elements should go up proportionally with 
the amount of supply that early stages deliver.  One of the biggest cost elements is 
other operating and support (O&S) costs required to operate CLF and escort 
vessels. The DAG calls for O&S costs, as well as depreciation and infrastructure 
costs, of delivery assets to be included in FBCE estimates. Hathorn used the Navy 
Visibility and Management of Operating and Support Costs (VAMOSC) database to 
estimate these costs; he avoided double-counting the cost of supplies that are 
captured in the TRR by excluding cost elements for fuel and other supplies.  

Results 

Hathorn’s thesis will be completed in March 2013. Results are therefore 
preliminary. However, for a long transportation, from San Diego to the Spratley 
Islands, with high threat in the region beyond Guam, and with the most common 
MSC vessel, the FBC of fuel is over $11/gallon, comparable to the FBC of fuel at 
remote COPs in Afghanistan (Moore et al., 2011). This estimate uses the VAMOSC 
database for O&S costs, excluding supply (which is captured by the IO model), for 
the CLF and escort vessels. This is a conservative underestimate of the true cost 
because it includes only costs for the one-way trip to the warfighter and excludes 
other costs such as vessel depreciation and environmental costs. 

Conclusions 
Drivers of the Fuel Multiplier—and FBCE 

FBCE analyses that implicitly or explicitly assume that supply of fuel, water, 
food, and spare parts will be available along the supply line systematically 
underestimate the FBCE if the assumption does not hold.  

In new theaters, it is generally unrealistic to assume that fuel, drinking water, 
and other supplies required by logistics activities will be readily available. The same 
is true for austere and post-disaster environments where HADR operations are likely 
to occur. As reported in Regnier et al. (2013), two factors are the primary drivers of 
the cumulative (enterprise-side) fuel multiplier:  

1. Resource Intensity: The more fuel, labor, spare parts, ammunition, 
and other resources required per unit of supply delivered by each 
stage, the larger the single-stage multiplier and the larger the multiplier 
for all downstream points. This means that logistics and force-
protection platforms that are relatively inefficient and terrain that lowers 
platforms’ fuel efficiency drive up the fuel multiplier. A high-threat 
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environment that requires force protection for transport assets drives 
greater resource intensity in the supply chain, in turn increasing the 
fuel multiplier.  

2. Length: The distance between sources of fuel (or other supplies) and 
points of consumption (by both the end user and logistics platforms) 
drives the multiplier. Both the number of stages in the organic supply 
chain and the length of each stage drive the cumulative fuel multiplier. 
In particular, the multiplier increases faster than linearly with the 
number of stages in the organic portion of the supply chain and with 
the length of each stage (Regnier et al., 2012). 

Future Directions 
We have already begun expanding our work on the resource demands of 

multi-commodity supply chains.  We plan to apply our model to a real-world supply 
chain and to submit this work to an academic journal in 2013.  We will also explore 
the use of the multi-commodity model in HADR supply chains as part of our work in 
2013.  This will involve adding the deployment phase to the model, since it 
represents a significant proportion of the overall costs of HADR logistics. 

In addition, we will extend our analysis of depot placement to more complex 
self-sustaining supply chains, and we will continue to develop Hathorn’s naval 
resupply model and use it to analyze acquisition-relevant scenarios. 
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Appendix:  Fuel-Multiplier Model Scenarios 

This appendix shows results of the fuel-multiplier model for three scenarios 
reported in Regnier et al. (2013): 

 transportation from Kandahar to a combat outpost (COP) named Bar 
Now Zad in Helmand Province Afghanistan, following Dubbs (2011); 

 transportation from Kuwait to a Stryker Brigade Combat Team (SBCT) 
in Iraq, following Siegel et al. (2008); and 

 a 1700-mile round-trip immature-theater supply chain, also following 
Siegel et al. (2008). 

Table 1. Vehicle Characteristics Used in the Scenarios in Tables 2–4 
 

 
Fuel Consumption 

Rate Payload
(gallons)

Type 
(gallons

per mile)
(gallons 

per hour) 
Medium Tactical Vehicle Replacement (MTVR)  13.3 1,800
8000-gallon tanker trailer, towed by M967 tractor 0.22 8,000
5000-gallon tanker trailer, towed by M967 tractor 0.22 5,000
TRUCK TANK FS 2500G M978A 0.19 2,500
Mine-Resistant Ambush Protected vehicle 
(MRAP) 10.2 
MRAP All-Terrain Vehicle (MATV) 6.9 
Apache (AH-64D) 175.0  
M1117 Armored Security Vehicle 0.13
 
Note. The hourly consumption rates used in the Helmand Province scenario are based on poor 
terrain and low speeds and are from Dubbs (2011). Consumption rates for the platforms used in the 
Sustain the Mission Project scenarios are from the current version of the Army’s Fully Burdened Cost 
Tool and are derived from AMSAA. 
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Table 2. Analysis of the Bar Now Zad Supply Chain in Helmand Province 
 

ds Convoy Composition 
Total Fuel 

Consumption
Total 

Payload
Stage 

Multiplier
Cumulative 
Multiplier  (round

-trip 
hours) 

Vehicle Type 
Vehicle 

Quantity
Air 

Support 

Stage Transport
Force 

Protection
  (hours) (gallons) (gallons)   

1 (Kandahar to Leatherneck) 5 MTVR MRAP 43 11 0 3,423 77,400 1.04 1.71 

2 (Leatherneck to Now Zad) 36 MTVR MRAP 8 4 0 5,305 14,400 1.37 1.64 

3 (Now Zad to Bar Now Zad) 8 MTVR MRAP 1 3 0 352 1,800 1.20 1.20 

 

Table 3. Analysis of the Army Sustain the Mission Project Base-Case Scenario (A Supply Chain in Iraq) 
 

ds Convoy Composition 
Total Fuel 

Consumption 
Total 

Payload
Stage 

Multiplier
Cumulative 
Multiplier  (round-

trip 
miles) 

Vehicle Type 
Vehicle 

Quantity
Air 

Support

Stage Transport
Force 

Protection
  (hours) (gallons) (gallons)   

1 (Kuwait to Cedar II) 450 8000 M1117 16 4 5.1 2,700 128,000 1.02 1.07 

2 (Cedar II to ESC) 500 8000 M1117 16 4 11.4 4,000 128,000 1.03 1.05 

3 (ESC to BSB) 100 5000 M1117 16 4 2.3 800 80,000 1.01 1.02 

4 (BSB to SBCT) 40 M978A M1117 16 4 0.9 301 128,000 1.01 1.01 
 

  

ns
T ns

P s Bs

ns
T ns

P s Bs
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Table 4. Analysis of the Army Sustain the Mission Project Immature-Theater Scenario, a 1,700-Mile Round-
Trip Organic Supply Chain 

 

ds Convoy Composition 
Total Fuel 

Consumption 
Total 

Payload 
Stage 

Multiplier
Cumulative 
Multiplier (round-

trip 
miles) 

Vehicle Type 
Vehicle 

Quantity Air Support

Stage Transport 
Force 

Protection   

(hours) (gallons) (gallons)   

1 425 5000 M1117 16 4 9.7 3,400 80,000 1.04 1.18 

2 425 5000 M1117 16 4 9.7 3,400 80,000 1.04 1.13 

3 425 5000 M1117 16 4 9.7 3,400 80,000 1.04 1.09 

4 425 5000 M1117 16 4 9.7 3,400 80,000 1.04 1.04 

 

Table 5. An Input-Output Matrix for a Supply Chain With Transport (T) and Force-Protection (FP) Components 

ns
T ns

P s Bs

Component (Stage and Type) 
Component 1 1 2 2 3 3 4 4 

(Stage and Type) Origin T FP T FP T FP T FP 
Origin 0 1.018 0.131 0 0 0 0 0 0

1 T 0 0 0 1.018 0.131 0 0 0 0
1 FP 0 0.021 0 0 0 0 0 0 0 
2 T 0 0 0 0 0 1.018 0.131 0 0 
2 FP 0 0 0 0.021 0 0 0 0 0 
3 T 0 0 0 0 0 0 0 0.131 0.131 
3 FP 0 0 0 0 0 0 0 0 0 
4 T 0 0 0 0 0 0 0 0 0 
4 FP 0 0 0 0 0 0 0 0.021 0 
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Note. The fuel consumption rates match the Sustain the Mission Project immature-theater scenario, with no air support. 
 

Output  5,439  5,326  113  5,215  111  5,106  109  5,000  5,000 
(units) (gallons)  (gallons) (hours) (gallons) (hours) (gallons) (hours)  (gallons) (hours) 
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