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Abstract 

This paper proposes the idea that affordable quality assurance can be 
achieved by focusing testing effort based on severity of risk exposure. This implies 
that testing effort should be allocated based on results of a suitable risk analysis: 
Parts of the software that could cause high-severity mishaps should be subjected to 
more intensive testing to control costs of future software failures, and those that 
cannot should be subjected to less intensive testing to safely reduce testing cost. 
We explain the concept of software slicing and detail how it can be used to link risk 
analysis and testing. We also identify some existing software tools that can be used 
to do software slicing and evaluate their readiness to support the proposed process 
improvement. 

Keywords: Software Testing, Safe Cost Reduction, Software Slicing, 
Software Reuse, Open Architecture 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - ii - 
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

THIS PAGE INTENTIONALLY LEFT BLANK  



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - iii - 
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

About the Author 

Valdis Berzins is a professor of computer science at the Naval Postgraduate 
School. His research interests include software engineering, software architecture, 
reliability, computer-aided design, and software evolution. His work includes 
software testing, reuse, automatic software generation, architecture, requirements, 
prototyping, re-engineering, specification languages, and engineering databases. 
Berzins received BS, MS, EE, and PhD degrees from MIT and has been on the 
faculty at the University of Texas and the University of Minnesota. He has developed 
several specification languages, software tools for computer-aided software design, 
and fundamental theory of software merging.  

Graduate School of Business & Public Policy 
Naval Postgraduate School 
Monterey, CA 93943-5000 
Tel: (831) 656-2610 
Fax: (831) 656-3407 
E-mail: berzins@nps.edu 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - iv - 
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

THIS PAGE INTENTIONALLY LEFT BLANK  



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - v - 
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

NPS-AM-13-104 

 

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
ëéçåëçêÉÇ=oÉéçêí=pÉêáÉë=

Improving Acquisition Process Efficiency via Risk-Based Testing 

25 September 2013 

Dr. Valdis Berzins, Professor 

Naval Postgraduate School 

Disclaimer: The views represented in this report are those of the author and do not reflect the official policy 
position of the Navy, the Department of Defense, or the federal government. 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - vi - 
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

THIS PAGE INTENTIONALLY LEFT BLANK  



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - vii - 
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

Table of Contents 

Introduction ................................................................................................................ 1 

Software Slicing and Related Previous Work ............................................................. 4 

Existing Slicing Tools ................................................................................................. 8 

Analysis of the Indus-Kaveri Slicing Tool ................................................................... 8 

Conclusions ............................................................................................................. 12 

References .............................................................................................................. 13 

 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - viii - 
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

THIS PAGE INTENTIONALLY LEFT BLANK  



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - ix - 
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

List of Figures 

Figure 1.  Sample Program P1 ......................................................................... 6 

Figure 2.  Static Slice of P1 Based on C1 (a) and on C2 (b) ............................ 7 

 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - x - 
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

THIS PAGE INTENTIONALLY LEFT BLANK  



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - xi - 
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

List of Tables 

Table 1.  Kaveri Evaluation Results ................................................................ 9 

Table 2.  Indus Evaluation Results ................................................................ 11 

 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - xii - 
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

THIS PAGE INTENTIONALLY LEFT BLANK



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 1 - 
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

Improving Acquisition Process Efficiency 
via Risk-Based Testing 

Introduction 
Our objective is to affordably achieve acceptable levels of operational risk by 

setting testing levels based on risk analysis, and to decrease the cost of testing a 
reusable software component for each new context via improvements in process 
efficiency. 

Previous work on system risk assessment in the context of safety certification 
has combined severity of potential failures with estimated probabilities of occurrence 
to gauge risks associated with system operation, but this work is directly applicable 
only at the whole-system level. This is due to the fact that software-related 
operational hazards are mostly associated with the physical parts of the system, 
which are only indirectly affected by the software.  

We are investigating methods to determine how much testing and what other 
risk-mitigation measures, if any, should be applied to each software component in an 
open architecture. However, the relationship between the individual embedded 
software components and the associated external effects is currently difficult to 
determine due to the size and complexity of practical software components and lack 
of automated decision support. We are investigating how to apply software slicing 
and related dependency analysis techniques to solve this challenge. To our 
knowledge, this is the first attempt to apply this new approach to address this 
system-of-systems challenge. 

The intended principles of operation for the proposed software risk-mitigation 
approach are as follows: 

1. Perform a conventional whole-system operational risk analysis, using 
approaches adapted from safety procedures certification such as those 
identified in the Department of Defense’s (DoD; 2012) Standard 
Practice: System Safety. The result of this step is a list of potential 
mishap types, associated with and ranked by their risk levels. We 
extend the definition of mishaps in this context to include various 
aspects of mission failures that could be induced by system failures, in 
addition to the types of mishaps traditionally considered in a safety 
certification. 

2. Perform a system-level dependency trace to identify which subsystems 
affect each type of mishap listed in Step 1 and which software services 
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affect each of those subsystems. This part of the process involves 
skilled human effort, using well-established risk assessment methods 
such as fault tree analysis, supported by relevant historical data when 
it is available, and otherwise using subjective human judgment guided 
by risk matrices (see DoD, 2012). 

3. Perform a software dependency analysis using software slicing, to 
identify which software modules affect each of the software services. 
This part of the process is new, along with Steps 4–6. Our study is 
aimed at refining these steps and assessing their feasibility and 
effectiveness in practice. Step 3 is completely automatable in theory, 
and some tools for slicing currently exist. Assessing suitability of 
existing tools to carry out this step is one of our goals, and some 
results in that direction are reported here. 

4. Using the mishap list from Step 1 and the dependency relations from 
Steps 2–3, identify the set of potential mishaps that can be affected by 
each software module. 

5. Associate the maximum risk level of the set of mishaps identified in 
Step 4 with the corresponding software modules. 

6. Use the risk level derived in Step 5 to determine the level of testing 
and possible levels of additional risk mitigations to be associated with 
each software module. 

Steps 4, 5, and the first half of 6 are readily automatable, although existing 
software tools do not do so yet. Doing this is relatively easy if the results of Step 3 
can be captured in a form suitable for further automated processing. This depends 
on the nature of the application programming interface (API), if any, provided by the 
software slicing tools. 

The motivating acquisition goal is to reduce total system ownership costs, 
particularly the cost associated with quality assurance per system update. The 
overall impact of adopting this approach would be more effective test and evaluation. 
If the worst-case risks associated with each component are known, then they can 
provide a principled and systematic basis for determining how much testing each 
component needs. This approach will put the informal guideline to “test the most 
critical components the most thoroughly” on a sound quantitative basis, by providing 
an objective means for calculating how many test cases are needed for a given 
component, based on the associated risk levels. Some of the building blocks needed 
for this calculation can be found in Berzins (2008). 
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The testing approach described previously seeks to limit operational risks by 
running more test cases on the modules whose failure would lead to the most 
severe consequences. This is a statistical procedure aimed at reducing the 
likelihood of sampling errors—that is, reducing the likelihood that the finite set of test 
cases actually run may pass successfully by pure chance, even though the failure 
rate of the component is actually unacceptably high. Cost is driven by two 
components: the effort associated with testing and the cost associated with 
operational failures due to software faults that remain undiscovered or uncorrected. 
The second component of the cost is difficult to determine a priori, because it is 
driven by unknown attributes of the system and its environment. The risk analysis 
provides an approximate characterization of the second cost component based on 
best available information. The testing level is set so that we run the minimum 
number of test cases needed to establish sufficient statistical confidence that the 
second component of the cost will be acceptably low.  

Our hypothesis is that this is the best practical approach for reducing this cost 
component. Traditional quantitative optimization methods are not applicable in this 
case because we do not have accurate and tractable models of the second 
component of the cost, and obtaining such models is unlikely to be technically or 
economically feasible. The proposed method is expected to produce better results 
than unguided, subjective human judgment or educated guesswork because it is 
systematic and takes all available data into account.  

Our long-term scientific goal is to enable new acquisition processes that 
achieve system dependability but require less quality assurance effort per system 
update or per each potential configuration of the system. This includes avoiding 
repetition of test procedures when they do not provide new information, as well as 
seeking quality assurance methods that enable a single analysis to simultaneously 
certify a set of many different possible system configurations (Berzins, Rodriguez, & 
Wessman, 2007). When fully developed, such methods will under some conditions 
eliminate the need for integration testing after reconfiguration and should eventually 
enable plug-and-fight capabilities if the range of needed configurations can be 
characterized in advance and the proposed pre-certification procedures can be 
affordably carried out for a set of plug-compatible components spanning the 
expected range of potential configurations. The content of this report indirectly 
contributes to this long-term goal. As outlined in Berzins (2008), software slicing can 
determine some conditions under which it is safe not to retest a component after a 
system upgrade. That procedure also depends on the availability of reliable slicing 
tools with APIs suitable for supporting post-processing of the computed slices. 

This report focuses on enabling a principled and computer-aided connection 
between a system-wide risk analysis, a risk budget for each individual software 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 4 - 
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

module or service, and the test cases needed to establish an appropriate level of 
confidence that the implementation of the module or service meets its risk budget. A 
risk budget for a system is the maximum acceptable probability that the system will 
fail within a given time period. Wall clock time is appropriate in most cases because 
large-scale systems have physical realizations that work continuously whenever the 
system is in operation. However, software components are different because they 
operate in discrete steps, in response to discrete signals that may or may not occur 
at regular time intervals. The natural formulation of risk budgets for software 
modules and services is the probability of their failure per each execution of the 
module or service. The expected number of software component executions per 
mission, or per system lifetime, must then be estimated to connect software testing 
considerations to the system-level risk analysis. 

This report examines Step 3 of the risk-mitigation approach in detail, because 
this is the part of the process that benefits the most from automated decision 
support. Software slicing is a kind of dependency analysis that can be carried out by 
software tools that operate on the source code of the software components to be 
tested based on associated system risks. Algorithms to do this are known and in 
theory should be fast enough to be affordably applied to practical-sized (large) 
software systems. 

The section Software Slicing and Related Previous Work briefly explains 
software slicing, including relevant previous work and some examples that illustrate 
what it does. The next section, Existing Slicing Tools, describes some existing tools 
for software slicing. The section Analysis of the Indus-Kaveri Slicing Tools describes 
our analysis of one such tool, the Indus-Kaveri slicer for Java and outlines the 
results of the analysis. Finally, the Conclusions section presents our conclusions 
regarding the slicing tool and implications with respect to risk-based testing.  

Software Slicing and Related Previous Work 
Software slicing is a kind of dependency analysis that automatically reduces a 

program to a smaller form that produces the same behavior with respect to some 
observation points, which typically show only part of the entire behavior of the 
program. The concept was originally developed by Mark Weiser in the 1980s.  

The original definition of a program slice as introduced by Weiser is based on 
the deletion of program statements: “A slice is an executable subset of program 
statements that preserves the original behavior of the program with respect to a 
subset of variables of interest and at a given program point,” as paraphrased by De 
Lucia (2001, p. 142).   

In order to understand program slicing, we need to understand what a slicing 
criterion is. According to Weiser (1984), a slicing criterion of a program is a tuple <p, 
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V>, where p is a statement in the original program and V is a subset of variables in 
the program.  

A slice of a program based on the slicing criterion C = <p, V> is an executable 
subset of statements from the original program that reproduces the behavior of the 
original program at point p, with regards to the set of variables in V (De Lucia, 2001). 
In other words, the slice of a program can be obtained by deleting statements from 
the original program that do not affect the values of the variables in V at program 
point p. This way, the original program and its slice will produce the same values for 
the set of variables in V at program point p. 

We can have more than one slice of a program with respect to a given slicing 
criterion: In fact, the entire program is considered a slice. The smaller the slice, the 
better it is. Unfortunately, finding a minimal slice is an unsolvable problem. Weiser 
(1984) has proven that “there does not exist an algorithm to find statement-minimal 
slices for arbitrary programs” (p. 353). 

A slice contains all of the statements that affect the part of the behavior of the 
program that is visible from the point of view of the slicing criterion. A minimal slice 
contains only statements that affect the program’s visible behavior, and in a small 
slice, almost all of the statements in the slice affect its visible behavior (with respect 
to the chosen slicing criterion). In the context of risk-based testing, we assume that a 
given low-level software component can affect a top-level software service if and 
only if any part of the low-level component is contained in the slice of the entire 
software system with respect to a slicing criterion corresponding to the result 
computed by the top-level software service. This is precisely the information needed 
in Step 3 of the risk-mitigation approach outlined in the Introduction. 

This is a safe approximation: It is exactly correct if the slice is statement 
minimal. If the slice is small but not minimal, this criterion will still find all of the low-
level components that can affect the top-level service, although it might also find 
some others that cannot affect the service. Thus the approximation will never miss 
any critical subcomponents, although it could sometimes call out a subcomponent as 
critical when in fact it is not. This would subject that subcomponent to extra testing, 
which would be safe but wasteful. This is why smaller slices are better in our 
context, and why relative size of slices produced is included in our assessment 
criteria for slicing tools.  

If two different versions of a program have the same slice with respect to a 
slicing criterion, then they must have the same behavior, for those aspects visible 
through the slicing criterion. This property is the basis for reduction of regression 
testing via slicing. Practical application for reduction of regression testing requires 
computing the slices of each software service in the current and next versions of the 
system and comparing them. Since slices can be large and many are needed, this 
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requires reliable slicing tools and automated ability to compare slices to determine 
whether they represent the same program. 

To better illustrate the concept of slicing, consider the sample code in Figure 
1. 

 

Figure 1. Sample Program P1 
(Z’ghidi, 2013) 

A static slice of the program in Figure 1 with respect to variable x at line 15 
would result in all program statements that might affect the value of x up to line 15 of 
the program, which can be obtained by deleting irrelevant statements from the 
original program that do not influence the value of variable x at line 15. Figure 2(a) 
shows a slice of program P1 in Figure 1 based on the slicing criterion C1 = <line 15, 
x>. Figure 2(b) shows another slice of program P1 based on the slicing criterion C2 
= <line 16, y>. These slices show the parts of the program that contribute to each of 
the two output variables, x and y. Although the examples may appear to depend on 
common-sense understanding of what the programs are doing, these slices can be 
computed automatically based on analysis of control flow and data flow. These are 
processes that have been routinely used in optimizing compilers for decades. 

Program slicing has been used in a wide variety of applications, including 
testing (Binkley, 1998; Gupta, Harrold, & Soffa, 1992; Harman & Danicic, 1995; 
Hierons, Harman, & Danicic, 1999; Hierons, Harman, Fox, Ouarbya, & Daoudi, 
2002), debugging (Agrawal, DeMillo, & Spafford, 1993; Lyle & Weiser, 1987), 
program understanding (De Lucia, Fasolino, & Munro, 1996; Harman, Hierons, 
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Danicic, Howroyd, & Fox, 2001), reverse engineering (Canfora, Cimitile, & Munro, 
1994), software maintenance (Cimitile, De Lucia, & Munro, 1996; Gallagher, 1991), 
change merging (Berzins & Dampier, 1996; Horwitz, Prins, & Reps, 1989), and 
software metrics (Bieman & Ott, 1994; Lakhotia, 1993). More detailed surveys of 
previous work on slicing can be found in Binkley and Harman (2004). These 
applications have mostly been demonstrated in research labs using home-grown 
tools. 

Our recent work (Berzins, 2012; Berzins, Lim, & Ben Kahia, 2011) has 
identified potential applications of software slicing and related dependency analysis 
methods to setting testing levels of subsystems based on global (system-wide) 
operational risk. These analyses bridge the gap between system-wide risk analysis 
and risk exposure levels due to potential failures of lower level subsystems. It has 
also outlined the initial concepts for risk-based resource allocation in a planned 
series of system upgrades. The current report is focused on developing the details of 
these ideas. 

 

Figure 2. Static Slice of P1 Based on C1 (a) and on C2 (b) 
(Z’ghidi, 2013) 

We note that manual determination of the software dependencies needed for 
risk-based testing is very labor intensive and error prone if done manually, especially 
on the scale of practical military software systems. In such systems, the dependency 
chains can be long and indirect, involving mixtures of data flow and control flow 
whose paths may involve code in widely separated parts of the system, some of 
which may operate at different times than the affected top-level service. In particular, 
manual inspection of a program call graph is not sufficient to find all of the relevant 
dependencies, because data flow links through state variables of classes and other 
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repositories of state information (such as databases) are left out by such a simplified 
approach. This implies that reliable software slicing tools are a necessary part of 
practical risk-based testing, if we need the results to be dependable and cost 
effective. 

Existing Slicing Tools 
Despite its potential benefits, slicing has not been widely used in industry. 

This may be partly due to lack of appropriate commercial tools and partly due to lack 
of familiarity with the possible benefits. Prior work at the Naval Postgraduate School 
(NPS; Lim & Ben Kahia, 2011) has identified several slicing tools that might be 
suitable, including Code Surfer, a commercial slicing tool for C/C++ developed by 
Gramma Tech; Jslice, a slicing tool for Java; and Indus-Kaveri, another slicing tool 
for Java. Lim and Ben Kahia (2011), doing a prior investigation of these tools, had 
licensing issues with Code Surfer and documentation problems with Jslice, and 
decided to analyze Indus-Kaveri. Preliminary results were reported in Berzins et al. 
(2011) and Berzins (2012). This report completes the assessment of the Indus-
Kaveri slicing tool. 

Analysis of the Indus-Kaveri Slicing Tool 
Indus is a static analysis tool that can be used to perform static slicing of 

programs written in Java. Kaveri is an Eclipse plug-in that uses the Indus program 
slicer to compute slices of Java programs and then displays the results visually as a 
set of highlighted statements in the editor (Jayaraman, 2008). Eclipse is an open-
source integrated development environment (IDE) that was designed to be 
extensible via independently developed plug-ins, with the goal of integrating 
advances in software analysis tools developed by different research and 
development teams. 

Kaveri acts as a user interface that can be used to simplify program 
understanding and program debugging. It visually highlights the set of relevant 
statements with respect to a given slicing criterion, which helps the programmer to 
focus on statements that may affect the value of a variable of interest, such as the 
result of a failed test case, and ignore other irrelevant statements. 

Despite the usefulness of Kaveri, the tool cannot be used for safe reduction of 
regression testing without being modified. For risk-based testing, we need to find 
which software services are included in the computed slice. In order to decide 
whether a newer version of a program needs to be retested, we need to compare a 
slice of the original program with the corresponding slice of the new program. In 
either case, if the output of the slicer is simply a set of highlighted statements on a 
screen display, these additional steps would be labor intensive, and it would not be 
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possible to automate the process for large-scale applications. In both cases, we 
would need to save the output of the slicer into a file for further processing (Lim & 
Ben Kahia, 2011). Unfortunately Kaveri does not provide such a capability. 

Assuming that the output issues for the tool could be fixed, we sought to 
check whether Indus-Kaveri performs correctly by using simple test cases, each of 
which focused on particular features of the language being analyzed by the tool, in 
this case Java. Details of these test cases can be found in Z’ghibi (2013). The 
results of the testing are summarized in Table 1. 

Table 1. Kaveri Evaluation Results 
(Z’ghibi, 2013) 

Tested Construct Slice Correctness Precise Issues 

Assignment 
Statements 

Correct Yes None relevant 

Loops Incorrect 
Not 

Applicable 
Does not select loop 
closing brackets 

If Conditions Incorrect 
Not 

Applicable 

Does not select else 
statements and condition 
closing brackets  

Switch Conditions Incorrect 
Not 

Applicable 
Does not include case 
conditions 

Arrays Correct No 
Treats all elements of the 
array as a single object 

Pointers Correct  No 
Overestimated slice in 
the presence of aliasing  

Object Attributes Correct Yes None relevant 

Inheritance Correct Yes None relevant 

Method 
Overloading 

Correct Yes None relevant 

Method Overriding Correct No 
Cannot determine which 
method is being called 

Exceptions Incorrect 
Not 

Applicable 

Does not include closing 
brackets and exception 
keywords (try/catch) 

External Classes Incorrect 
Not 

Applicable 

Does not highlight 
relevant statements in the 
external class  
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Some of the discovered limitations, such as not highlighting variable 
declarations, can be overlooked in the current context; other limitations, however, 
make the tool produce an incorrect slice and, therefore, need to be addressed 
before we can use Kaveri in risk-based testing or the safe reduction of regression 
testing. 

Despite being able to compute correct and precise slices for some test cases, 
Kaveri has some serious limitations. First, the tool is only able to highlight relevant 
statements of the slice and does not allow printing the slice to a text file. This makes 
it hard to automatically process the computed slices. Second, Kaveri does not select 
the closing brackets that indicate the end of classes, methods, loops, conditional 
statements, and exception blocks, which can alter the meaning of the computed 
slice and thus invalidate a risk analysis based on it. Third, Kaveri is not able to slice 
through external classes and can only highlight relevant statements in the file 
containing the slicing criterion. This is a serious limitation because almost all 
practical applications are large enough to occupy multiple files (typically each class 
is in a separate file). 

A method for overcoming these limitations was developed (Z’ghibi, 2013). 
This method invokes the Indus Java program slicer directly using the command-line 
interface, rather than going through the graphical interface provided by Kaveri. Indus 
is the underlying computation engine used by the Kaveri interface. This slicer 
operates on Jimple, which is an intermediate-level representation of Java programs, 
between byte code and Java statements. Before the slicer computes the slice of a 
Java program with respect to a given criterion, the code of the program is converted 
to Jimple. The slicer computes the slice, then saves the result represented in a 
Jimple format to a file (Jayaraman, 2008). Our investigation developed some code 
that processes this output to produce a representation of the Java slice. The results 
of this investigation are summarized in Table 2. 
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Table 2. Indus Evaluation Results 
(Z’ghibi, 2013) 

This shows that most of the problems with Kaveri can be overcome by using 
Indus directly. The prototype post-processor developed in the study is not complete, 
in that it leaves one of the limitations unresolved and in that it depends on some 
restrictions on the syntax of the source program that were introduced to simplify the 
implementation. 

We conclude that the modified tool developed in this study can be used to 
demonstrate feasibility of the risk-based testing method outlined in the Introduction 
for experimental case studies that work around its known limitations. It cannot be 
used in large-scale applications without additional refinement and development of 
the post-processing software to remove its remaining limitations. 

Tested 
Construct 

Slice 
Correctness Precise Issues 

Assignment 
Statements 

Correct Yes None relevant 

Loops Correct No 
Includes non-relevant 
loop statements 

If Conditions Correct No 
Includes some irrelevant 
statements 

Switch 
Conditions 

Incorrect Not Applicable 
Does not include case 
conditions 

Arrays Correct No 
Treats all elements of the 
array as a single object 

Pointers Correct  No 
Overestimated slice in 
the presence of aliasing  

Object Attributes Correct Yes None relevant 

Inheritance Correct Yes None relevant 

Method 
Overloading 

Correct Yes None relevant 

Method 
Overriding 

Correct No 
Cannot determine which 
method is being called  

Exceptions Correct No 
Includes all statements in 
the exception checking 
block 

External Classes Correct Yes None relevant 
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Conclusions 
We found that the combination of Indus and Kaveri is not reliable in the sense 

that it sometimes produces incorrect slices. Much of the problem can be attributed to 
weaknesses and faults in the graphical interface provided by Kaveri, as indicated by 
the experimental direct use of the the Indus Java Program Slicer through its 
command-line interface.  

Remaining difficulties are related to the fact that Indus works on Jimple, an 
intermediate representation close to Java bytecode, rather than directly on the Java 
source. The Jimple-level slices produced by Indus appear to be correct, but mapping 
the output back to the Java source has problems, particularly for the mappings used 
by Kaveri. Experimental code developed in this study shows that it can be done 
better. However, there was not enough time in the study to implement a product 
quality mapping to Java, and further engineering is required to produce a post-
processor that would enable Indus to be used for risk-based testing of practical 
systems. Practical application of the proposed method requires either finding a 
different and better commercial slicing tool or further development of a product 
quality post-processing tool.  
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