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Executive Summary 

The goal of this research was continuing to investigate a new approach to 
address challenges in the acquisition of secure open architecture (OA) software 
systems for the Department of Defense (DoD; Department of Defense Open 
Systems Architecture [DoDOSA], 2011). Program managers, acquisition officers, 
and contract managers will increasingly be called on to review and approve security 
measures employed during the design, implementation, and deployment of OA 
systems. Our efforts sought to make this a simpler, more transparent, and more 
tractable process. Such a process must be easy to reuse, adapt, and streamline for 
different system application domains in order to realize cost reductions and improve 
acquisition workforce capabilities. 

Our research described in this report focuses on two problems for acquisition 
research: (1) how best to acquire secure OA software systems that include reusable 
software product line components (Mactall & Spruill, 2012; Womble, Schmidt, 
Arendt, & Fain, 2011); and (2) how to articulate and streamline a process for 
identifying and reviewing the security of OA software systems. Our overall research 
results presented in the following chapter stipulate that the best ways to streamline 
the process for acquiring secure OA systems in line with DoD’s Better Buying Power 
2.0 (“What is Better Buying Power?” 2013) guidelines are those that: (a) encourage 
the adoption of open (source) business models; (b) provide open source models of 
acquisition processes; and (c) employ techniques for streamlining acquisition 
processes for secure OA systems through direct measurement and assessment of 
acquisition processes, redesign and evolution of acquisition processes, design of 
new acquisition processes specific to secure OA systems, and through employment 
of cost management as an element in the design of future OA system acquisition 
processes. 

Our prior research demonstrated how complex OA systems can be designed, 
built, and deployed with alternative components and connectors into functionally 
similar system versions, to realize for overall system security. The case study 
research methods we continue to employ highlight opportunities for cost reduction 
through transparent system security requirements specification and OA system 
acquisition process streamlining. We believe our results can apply to both mission-
critical software systems within the DoD, as well as to enterprise software systems in 
other government agencies and industrial firms. For example, in the second and 
fourth sections of this report, we present the results that focus on the case studies 
centering on military command and control systems, such as the future C2RPC 
models being considered by naval commands (Garcia, 2010; Gizzi, 2011), in line 
with the multi-party engineering agile adaptive ecosystem (MPE/AAE) envisioned for 
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the Defense Information Systems Agency and other government agencies (Defense 
Information Systems Agency [DISA], 2012; Reed, Benito, Collens, & Stein, 2012). 

Finally, our principal research results are documented in five research 
publications that are included in this report in the following chapters. These follow 
from our research vision for this 2012–2013 effort that is summarized in the research 
overview presented in the first chapter. Then we present our overall research results 
for streamlining the process of acquiring secure open architecture software systems. 
Next, we explore the technical challenges with the development of processes in 
securing open architecture software systems. Then, we elaborate the results from 
the second chapter in the context of challenges in the development and evolution of 
secure open architecture command and control systems, where next-generation 
military command and control systems are expected to be developed from reusable 
software (product line) components that must realize a secure OA system, even 
though individual components may not necessarily be secure. Then we seek to 
generalize some of the challenges and results focusing on component-based OA 
software systems in different application domains, including those of interest to the 
DoD and other government agencies, where available software component 
capabilities that come with “provisionments” (i.e., we must determine which of our 
problems we face can be solved with available components) are seen to displace a 
traditional focus on software system “requirements” (we determine what capabilities 
we need in order to solve the problems we face). This, we believe, may represent a 
fundamental shift of how future acquisition processes and practices may be 
performed, especially as we transition to development of OA software systems that 
are composed using commercially available software components, such that our 
functional requirements must be addressed through the provided component 
capabilities or provisionments. Finally, we explore possible ways for systematically 
specifying the security requirements (or provisionments) of secure OA systems 
composed from software components whose security may not be known in advance. 
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Streamlining the Process of Acquiring 
Secure Open Architecture Software 

Systems 

Research Overview 
Introduction 

This research focuses on continuing investigation and refinement of 
techniques for streamlining the process, reducing the costs, and improving the 
readiness of future workforce for the acquisition of complex software systems. 
Emphasis was directed at identifying acquisition process streamlining and cost 
reduction opportunities within secure open architecture (OA) systems combining 
best-of-breed software components and software product lines (SPLs) that are 
subject to different security requirements.  

This chapter provides an overview of the research effort during the period of 
September 10, 2012, through September 9, 2013. It includes a statement of work 
and description of the four research activities engaged during this period, followed 
by identification of the two acquisition research problems being investigated, the 
research and development basis for our research, and identification of our research 
publications that contain our studies and results. Each section is presented in turn. 

Statement of Work and Research Description 
In our studies at hand, we investigate secure open architecture (OA) systems 

that incorporate SPL techniques that include proprietary and open source software 
(OSS) components, and overall configurations are subject to different security 
requirements. The combination of SPLs and OSS components within secure open 
architecture systems represents a most significant opportunity for reducing the 
acquisition costs of software-intensive systems by the DoD and other government 
agencies. This effort builds on both our prior acquisition research and related 
acquisition research efforts at the PEO IWS (Guertin & Clements, 2010; Guertin & 
Womble, 2012; Womble, Schmidt, Arendt, & Fain, 2011), Department of the Navy 
(Mactal & Spruill, 2012), and Software Engineering Institute (SEI; Bergey & Jones, 
2010; Jones & Bergey, 2011) that address SPLs, as well as SEI efforts addressing 
OSS (Hissam, Weinstock, & Bass, 2010). 

OSS is recognized as an integrated web of people, processes, and 
organizations, including project teams operating as virtual organizations (Scacchi, 
2007, 2009, 2010). There is a basic need to understand how to identify an optimal 
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mix of OSS within OA systems as products, production processes, practices, 
community activities, and multi-project (or multi-organization) software ecosystem. 
However, the relationship among OA, OSS, security requirements, and acquisition is 
poorly understood (cf. Scacchi, 2009, 2010; Scacchi & Alspaugh, 2011, 2012b; 
Naegle & Petross, 2007). Subsequently, in 2007–2008, we began by examining how 
different OSS licenses can encumber software systems with OA, which therefore 
give rise to new requirements for how best to acquire software-intensive systems 
with OA and OSS elements (Scacchi & Alspaugh, 2008). As a result of our most 
recent prior efforts (Alspaugh, Scacchi, & Asuncion, 2010; Scacchi & Alspaugh, 
2012b), we have been able to demonstrate that for enterprise information systems, 
which are widespread throughout the DoD and the U.S. government, it is both 
possible and feasible to develop systems that incorporate best-of-breed software 
components, whether proprietary or OSS, in ways that can reduce the initial and 
sustaining acquisition costs of such systems. Doing so, however, requires new 
guidance and ideally, automated tools, for explicitly modeling and analyzing the 
architecture of an OA system during its development and evolution, along with 
modeling the annotating the architecture with software component license rights and 
obligations. Our results thus demonstrate a significant technological advance in the 
acquisition and development of OA systems, as a breakthrough in negotiating and 
simplifying software license analyses throughout the contracting activities. Creating 
similar advances for secure OA systems is the next breakthrough needed, and the 
results of our efforts to create such advances are presented in this report. 

Overall, our research project sought to articulate acquisition research 
problems with respect to the issues that determine what types or kinds of answers 
can be realized through this investigation. Subsequently, we proposed a 
straightforward approach to the proposed effort that focused on four activities: 

 Investigating the interactions between software system acquisition 
guidelines and processes, software system requirements, 
requirements for OSS components, and consequences of alternative 
software system architectures that incorporate different mixes of OSS 
components, SPLs that combine both OSS and proprietary software 
components with open APIs and open standards (Scacchi & Alspaugh, 
2008, 2012b). This entailed exploring the balance between 
development, verification, and validation of property and security 
rights, as well as contractual obligations within continuously improving 
OSS system elements while managing the evolution of OA systems at 
design-time, build-time, and release and run-time. The main results of 
our studies in this activity area appear in our research publications 
elsewhere in this report (Scacchi & Alspaugh, 2013a, 2013b, 2013c, 
2013d). 
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 Developing formal foundations for establishing acquisition guidelines 
for use by program managers seeking to provide software-intensive 
systems in cost-reducing ways that rely on development and 
deployment of secure OA systems using OSS and SPL technology and 
processes (Alspaugh, Asuncion, & Scacchi, 2009b; Alspaugh, Scacchi, 
& Asuncion, 2010; Scacchi & Alspaugh, 2011, 2012b). The main 
results of our studies in this activity area appear in our research 
publications elsewhere in this report (Alspaugh & Scacchi, 2013a, 
2013b). 

 Continuing to develop concepts for the design of an automated system 
that can support acquisition of secure OA systems so as to (a) 
determine their conformance to acquisition guidelines/policies, 
contracts, and related license management issues, and (b) to facilitate 
and support future acquisition workforce with the skills to properly 
review, approve, and manage the acquisition of complex systems that 
incorporate a secure OA (Alspaugh, Scacchi, & Asuncion, 2010; 
Scacchi & Alspaugh, 2011, 2012b). The main results of our studies in 
this activity area appear in our research publications elsewhere in this 
report (Scacchi & Alspaugh, 2013b). 

 Documenting the investigation, foundations, and results of the 
research in (a) a technical report delivered within 30 days of project 
completion to the technical point of contact at NPS (i.e., this report 
submitted by October 9, 2013); (b) a research paper (Scacchi & 
Alspaugh, 2013a) included in the online Proceedings of the 10th 
Annual Acquisition Research Conference, in Monterey, CA, May 2013 
(see the next chapter of this report); and (c) related research venues 
and publications (see the last five chapters of this report). 

To help motivate the approach and results developed through this study, we 
provide some background on emerging issues in the acquisition of software-
intensive systems that require open architectures and encourage or embrace the 
utilization of OSS, such as rapid, distributed evolution to meet immediate warfighter 
needs and its interplay with validation and system management. Next, we describe 
the body of the proposed research effort. This covers the problem, issues, 
opportunities, and approach for acquisition research we identify. Finally, we present 
the primary form of our research results, documented in six research papers 
appearing as the last five chapters of this final report for 2012–2013. 
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Acquisition Research Problems 
Two lines of inquiry follow from our accomplishments described above and in 

detail elsewhere (Scacchi & Alspaugh 2011, 2012). One is how our results might 
shed light on secure software systems whose OAs conform to a reusable software 
product line, while the other is how our approach might be extended to also address 
the semantic modeling and analysis of a process for specifying and reviewing secure 
OA system requirements. 

Research Problem: Acquiring Secure OA Systems That Include 
Reusable SPL Components 

Organizing and developing software product lines (SPLs) relies on the 
development, use, and reuse of explicit software architectures (Bosch, 2001; 
Clements & Northrop, 2003). However, the architecture of an SPL is not necessarily 
an OA—there is no requirement for it to be so. Thus, we are interested in discussing 
what happens when reusable SPLs may conform to an OA, which is a concern we 
share with others (Guertin & Clements, 2010; Mactal & Spruill, 2012). In particular, 
our interest here is to consider how to cost effectively achieve a secure OA system 
that incorporates SPL components that are subject to different intellectual property 
licenses (Alspaugh, Asuncion, & Scacchi 2009a, 2009b; Alspaugh, Scacchi, & 
Asuncion, 2010) and to different security requirements (Scacchi & Alspaugh, 2011, 
2012). 

Three considerations come to mind. First, if the SPL is subject to a single 
homogeneous security policy and intellectual property license for each system 
element confined to its own security containment vessel (Scacchi & Alspaugh, 
2011), then the complexity of the security scheme may act to reinforce a vendor 
lock-in situation and potentially increase system costs. Motivating factors for OA 
include the desire to avoid such lock-in, and to embrace open innovation and open 
market competition (Guertin & Womble, 2012), whether or not the SPL components 
have open or standards-compliant APIs.   

Second, if an OA system employs a secure reference architecture much like 
we have in the design-time architecture depicted in Figure 1, which is then 
instantiated into different software product line configurations, as suggested in the 
secure build-time architecture shown in Figure 2, then such a design-time 
architecture effectively defines a reusable SPL consisting of possible different 
system instantiations composed from similar components instances (e.g., different 
but functionally similar Web browsers, word processors, email, calendaring 
applications, relational database management systems). However, alternative build-
time or run-time versions can be accommodated with the same or different security 
requirements. This flexibility merits further study that can reveal the elements and 
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criteria for a streamlined acquisition process, where alternative OA system 
configurations may be easier or lower cost to realize, yet still satisfy security 
requirements. Identifying such a process and how to tailor and streamline for 
different types of OA software systems (e.g., enterprise information systems, 
command and control systems, weapon systems) that can be developed with 
reusable SPL system components, is thus the focus of our proposed research effort.  

 

Figure 1. A Design-time Open Architecture for a Secure Enterprise 
Information System Software Product Line Consisting of a Web Browser, 

Word Processor, Email, and Calendaring Applications, Hosted on a Network of 
Servers and Host Operating System  

(Scacchi & Alspaugh, 2012)   
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Figure 2. A Secure Software Product Line for a Sample Enterprise 
Information System Consisting of Alternative, Functionally Similar Web 

Browser, Word Processor, Email, and Calendaring Components Sourced From 
Different Producers  

(Scacchi & Alspaugh, 2012) 

Third, if the SPL is based on an OA that integrates software components from 
multiple vendors or OSS components that are subject to heterogeneous licenses 
and property rights, then we have the situation analogous to what we have 
presented in our previous work (Alspaugh, Asuncion, & Scacchi, 2009a, 2009b, 
2010; Scacchi & Alspaugh, 2011, 2012a). This leads us to conclude that SPL 
concepts are compatible with secure OA systems that are composed from 
heterogeneously licensed components. Consequently, in this proposed effort, we 
seek to systematically investigate, model, and analyze how this might work in both 
(a) enterprise information systems and (b) command-and-control or related weapons 
systems, if they incorporate OSS and non-OSS components subject to different IP 
and security requirements. Our goal is to demonstrate what is possible and feasible 
in articulating and tailoring such an acquisition process framework, as well as 
demonstrating how feasible OA system alternatives within a reusable SPL facilitate 
cost reduction opportunities and workforce amplification capabilities in system 
acquisition efforts.  

Research Problem: Articulating and Streamlining a Process for 
Identifying and Reviewing the Security of OA Software Systems 

As already noted in our previous work (Alspaugh, Asuncion, & Scacchi, 
2009a, 2009b; Alspaugh, Scacchi, & Asuncion, 2010), software component licenses 
represent a collection of rights and obligations for what can or cannot be done with a 
licensed software component. Licenses thus denote non-functional requirements 
that apply to a software system or system components as intellectual property (IP) 
during their development and deployment. But rights and obligations are not limited 
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to concerns or constraints applicable only to software as IP. Instead, they can be 
written in ways that stipulate non-functional requirements of different kinds. 
Consider, for example, that desired or necessary software system security 
properties can also be expressed as rights and obligations addressing system 
confidentiality, integrity, accountability, system availability, and assurance (Breaux & 
Anton, 2008). 

Traditionally, developing robust specifications for non-functional software 
system security properties in natural language often produces specifications that are 
ambiguous, misleading, and inconsistent across system components and lacking 
sufficient details (Polydys & Wisseman, 2008; Yau & Chen, 2006). Using a semantic 
model to formally specify the security rights and obligations required for a software 
system or its components (Breaux & Anton, 2008; Yau & Chen, 2006) means that it 
may be possible to develop both a “security architecture” notation and model 
specification that associates given security rights and obligations across a software 
system or system of systems. Similarly, it suggests the possibility of developing 
computational tools or interactive architecture development environments that can 
be used to specify, model, and analyze a software system’s security architecture at 
different times in its acquisition and development—design-time, build-time, run-time, 
and post-deployment support-time.   

The approach we have been developing for the past few years for modeling 
and analyzing software system license architectures for OA systems (Alspaugh, 
Asuncion, & Scacchi, 2009a, 2009b, 2010; Scacchi & Alspaugh, 2012a) may 
therefore be extendable to also being able to address OA systems with 
heterogeneous software security policies, or as we have called them, software 
security policy and license rights and obligations. Furthermore, the idea of common 
or reusable software security policy and licenses may be analogous to the reusable 
security requirements templates proposed by Firesmith (2004) at the SEI. 
Consequently, continuing our exploration and extension of the semantic software 
architectural modeling, meta-modeling, and computational analysis tools to also 
support secure OA systems introduced in Scacchi and Alspaugh (2011, 2012) is the 
next stage of our research studies. With this in mind, we turn to provide additional 
background that helps shapes our proposed research effort. 

R&D Basis for Our Study and Approach  
Across the three military services within the DoD, OA means different things 

and is seen as the basis for realizing different kinds of outcomes (Scacchi & 
Alspaugh, 2008). Thus, it is unclear whether the acquisition of a software system 
that is required to incorporate an OA, as well as utilize OSS technology and 
development processes for one military service will realize the same kinds of 
benefits anticipated for OA-based systems by another service. Somehow, DoD 
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acquisition program managers must make sense of or reconcile such differences in 
expectations and outcomes from OA strategies in each service and across the DoD. 
But there is now more explicit guidance for how best to develop, deploy, and sustain 
complex software-intensive military systems utilizing OA and OSS components 
(Department of Defense Open Systems Architecture [DoDOSA], 2011; Hissam, 
Weinstock, & Bass, 2010). 

Security is an essential issue in military software acquisition. However, we 
have found little effective guidance for addressing it in ways that can take advantage 
of the characteristics of OA SPL systems or that address the specific challenges that 
arise for them, such as rapid evolution, components from a variety of sources with 
new versions at different times, and the specific structural characteristics of OA and 
SPL systems.Thus, there is an essential need for knowledge and process guidance 
that program managers and others in the acquisition workforce can readily use in a 
transparent manner. Further, we anticipate that with growing awareness of emerging 
cyber warfare threats, the security of OA systems will potentially be mandated and 
thus become part of program acquisition processes. This in turn raises concern 
about potential cost growth and whether the acquisition workforce is well prepared to 
provide the needed oversight, review, and approval. 

The Software Assurance Acquisition Working Group’s extensive report 
(Polydys & Wisseman, 2007) makes clear how important security is in software 
acquisition; it is mentioned on most pages of the report. The recommended 
approaches for improving the security of software systems involve manual reviews 
and process improvements. Reviews by experts are recommended and discussed 
for requirements, architectures, components, tests, and so forth, with a new review 
required for each new version; we believe this could constitute a serious and time-
consuming burden, especially in the context of tight budgets, short timelines, and 
reductions in the acquisition workforce. However, no specific guidance is offered for 
OA or SPL systems by these reports.  

Carnegie Mellon University’s Software Engineering Institute (SEI) is 
prominent in SPL research and practical guidance. The current Framework for 
Software Product Line Practice (Northrop & Clements, 2007) mentions security as 
one of the desired quality goals or attributes, along with reliability, usability, and 
others, but offers no specific guidance for addressing it. Recent papers from SEI 
presented at the Acquisition Research Symposium (Bergey & Jones, 2010; Jones & 
Bergey, 2011) discuss the benefits of a SPL strategy but do not explain how security 
fits into the specification or documentation of OAs. 

There appears to have been comparatively little research published on the 
topic of security and software product lines, even without considering open 
architecture, and very little on security and open architecture. One of the stronger 
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examples (Mellado, Fernández-Medina, & Piattini, 2010) summarizes a line of 
research over four years that addresses security requirements for software product 
lines (but not OAs), and guides requirements activities with the goal of addressing 
security concerns in a way that corresponds to the characteristics of a software 
product line. Their approach is process-oriented, supported by a research tool that 
manages the various repositories of information that are developed, but informal and 
primarily manual and dependent on expert practitioners. Only the requirements 
phase of development is addressed. 

The current guidance for program managers acquiring OA systems 
(DoDOSA, 2011) points to the need to identify and review the use of “security 
engines” that can support security enforcement tasks within system development or 
deployment. Similarly, current guidance on best practices on improving cost 
effectiveness in program acquisition (“What is Better Buying Power?”, 2013) offers 
no clear directions for how best to address or manage specific cost issues that arise 
during secure OA system acquisition. However, recent acquisition research indicates 
there is also a need for a more articulate and streamlined process that acquisition 
workers can follow to ensure that all relevant aspects of OA system security have 
been addressed in an easy to review format (cf. Scacchi & Alspaugh, 2012). 
Similarly, current research further points to the need to address how software reuse 
(Mactal & Spruill, 2012) and testing processes (Berzins, 2012) when SPLs are 
employed in OA systems as cost reduction and quality improvement strategies. 

Most of the guidance to date for acquisition of secure OA SPLs may be 
summarized as follows: collect experts in security requirements, architecture, and 
tests, have them review and guide the manual/informal development of 
requirements, architecture, and tests for the product line, and repeat all or selected 
parts of the process for each new version and product line instance. We find little 
guidance for incorporating formality, effective use of software tools, and then 
addressing and taking advantage of the specific characteristics of OA and SPL. 
Similarly, there is little guidance for what the best process is to identify and review 
OA system security when incorporating OSS components and other reusable SPL 
elements. There is no guidance for how to adapt or streamline such a process to 
reduce costs of acquiring different kinds of systems (e.g., enterprise information 
systems, command and control systems, embedded weapon systems), nor what 
information to consider or knowledge to acquire to enable a more effective 
acquisition workforce. 

Consequently, this leads us to consider the following questions. What is the 
most effective way to articulate a process for the most cost-effective acquisition of 
secure OA systems that can be streamlined to the needs of specific kinds of 
reusable software systems? What issues or research questions for acquisition 
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research follow from such a problem? What research approach can best explore the 
opportunities for acquisition research built from related research efforts in OA, 
reusable SPL, and software architectural analysis that can also inform future 
acquisition cost reduction practices and improve acquisition workforce capabilities? 
We now turn to briefly elaborate these questions in turn through the remainder of 
this proposal.     

Issues for Acquisition Research 

Based on current research into the acquisition of secure OA systems with 
OSS components and reusable SPLs (Scacchi & Alspaugh, 2011, 2012), this 
research project also explores and answers the following kinds of research 
questions: How does the interaction of requirements and architectures for secure OA 
systems incorporating OSS components facilitate or inhibit acquisition processes 
over time? What are the best available processes for continuously verifying and 
validating the functionality, correctness, openness, and security of OA when OSS 
components and SPLs are employed? How can use of continuously evolving OSS 
within a reusable OA or SPL be combined with the need to verify and validate critical 
systems security requirements and to manage their evolution? How do reliability and 
predictability trade off against the cost and flexibility of a secure OA system when 
incorporating reusable SPL components? How should secure OA software systems 
be developed and deployed to support warfighter modification in the field or 
participation in post-deployment system support, when OSS components are 
employed? 

Inter-Project Research Coordination 

We believe we are extremely well positioned to leverage our current research 
work and results (Scacchi & Alspaugh, 2008, 2011, 2012a, 2012b; Alspaugh, 
Asuncion, & Scacchi, 2009a, 2009b, 2009c; Scacchi, Alspaugh, & Asuncion, 2010) 
with the effort proposed here. We build on our current research efforts in OSS 
(Scacchi, 2007, 2010) and software requirements–architecture interactions (Scacchi 
& Alspaugh, 2008; Scacchi, 2009), as well as our track record in prior acquisition 
research studies. Similarly, we find current related research supported by the DoD 
addressing related issues in OSS (Hissam, Weinstock, & Bass, 2010) also 
influences our proposed effort. In addition, our effort builds from and contributes to 
research on software system acquisition within the DoD, focusing on software reuse 
(Mactal & Spruill, 2012), SPLs (Guertin & Clements, 2010; Bergey & Jones, 2010), 
open innovation and emerging software component markets (Guertin & Womble, 
2012), efficient testing of component-based OA systems and SPLs (Berzins, 2012), 
and how to improve software system acquisition through workforce upgrades and 
government–industry teaming (Heil, 2010). We thus believe our complementary 
research places us at an extraordinary advantage to conduct the proposed study 
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that addresses a major strategic acquisition goal of the DoD and the military services 
(DoDOSA, 2011; Robert, 2012). 

Prospects for Longer-Term Acquisition-Related Research and 
Application 

The military services have committed to orienting their major system 
acquisition programs around the adoption of an OA strategy that in turn embraces 
and encourages the adoption, development, use, and evolution of OSS (DoDOSA, 
2011). Thus, it would seem there is a significant need for sustained research that 
investigates the interplay and inter-relationships between (a) current and emerging 
guidelines for the acquisition of software-intensive systems within the DoD 
community (including contract management and software development issues), and 
(b) how secure, reusable software product lines that employ an OA incorporating 
OSS products and production processes are essential to improving the effectiveness 
of future, software-intensive program acquisition efforts. Beyond this, we have begun 
to be invited to participate within the Defense Information System Agency (DISA) 
and intelligence community (IC) working groups who are formulating future OA 
software licensing guidelines for future system acquisition efforts. Thus, our research 
supported by the Acquisition Research Program is finding audiences within the DoD 
and other government agencies, and is on paths that can lead to improvements and 
cost reductions in the acquisition of software-intensive OA systems.  

Research Results 
Our research studies and results are included in the remaining chapters of 

this final report as six individual research publications. These include four refereed 
conference papers and one additional paper submitted for review. 

The publication venue and citation for each of these five papers appear in 
order of publication date as follows: 

 Scacchi, W., & Alspaugh, T. A. (2013a). Streamlining the process of 
acquiring secure open architecture software systems, in Proceedings 
of the 10th Acquisition Research Symposium, pp. 608–623, May 2013. 
This paper presents the overall results from our study in 2012–2013 as 
applied to the development of cost-effective OA software systems 
composed from components sourced from online storefronts, such as 
those being investigated by the C4ISR research program at the Space 
and Naval Warfare Systems Center Pacific, San Diego, CA, or 
Forge.mil. 

 Scacchi, W., & Alspaugh, T .A. (2013b). Processes in securing open 
architecture software systems, in Proceedings of the 2013 International 
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Conference on Software and System Processes, pp. 126–135, May 
2013, San Francisco, CA. This paper closely examines technical 
issues that arise during the development processes for OA software 
systems when composing systems from components using widely 
available OSS development tools or methods. 

 Scacchi, W., & Alspaugh, T. A. (2013c). Challenges in the 
development and evolution of secure open architecture command and 
control systems, in Proceedings of the 18th International Command 
and Control Research and Technology Symposium, Paper 098, 
Alexandria, VA, June 2013. This paper examines the efficacy of the 
development of component-based OA software systems when sourced 
from a multi-party engineering (MPE) effort, such as is now being 
considered for future C2 systems by the DoD and other government 
agencies. 

 Alspaugh, T. A, & Scacchi, W. (2013a). Ongoing software development 
without classical requirements, in Proceedings of the 21st IEEE 
International Conference on Requirements Engineering, Rio de 
Janeiro, Brazil, pp. 165–174, July 15–19, 2013. This paper investigates 
how a move towards the development of component-based OA 
software systems may change requirements specification processes 
from being elicitation-oriented towards being more directed by 
available functional capabilities provided by commercially available 
software components. 

 Alspaugh, T. A, & Scacchi, W. (2013b). Moving towards formalizable 
security licenses, at 35th International Conference on Software 
Engineering, New Ideas and Emerging Results Track, San Francisco, 
CA (submitted for publication). This paper further elaborates properties 
and principles that can give rise to more streamlined ways and means 
for specifying the security of OA software systems, particularly those 
composed from commercially available software components. 

Overall, we are grateful for the support and funding we have received that 
enabled our acquisition research to continue, and to be documented in this final 
report. 
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Streamlining the Process of Acquiring Secure Open 
Architecture Software Systems 
Abstract 

We present results from our ongoing investigation of how best to acquire 
secure open architecture (OA) software systems. These systems incorporate 
software product line (SPL) practices that include closed source proprietary software 
and open source software (OSS) components, where such components and overall 
system configurations are subject to different security requirements. The 
combination of SPLs and OSS components within secure OA systems represents a 
significant opportunity for reducing the acquisition costs of software-intensive 
systems. We seek to make this a simpler, more transparent, and more tractable 
process. Such a process must be easy to reuse, adapt, and streamline for different 
system application domains in order to realize cost reductions and improve 
acquisition workforce capabilities. Further, such a process should be aligned with 
Better Buying Power initiatives addressing OA systems, improved competition, 
defense affordability, and acquisition workforce improvements. We identify different 
ways and means for streamlining the acquisition process for secure OA software 
systems through a focus on doing more with limited resources. Along the way, we 
pay particular attention to revealing how software licensing practices can affect cost 
in ways that hamper or better the buying power of acquisition programs. 

Introduction 
Our focus in this effort is to identify ways and means for streamlining the 

acquisition process for secure OA systems. These OA systems often rely on the 
integration of components that are independently developed by different software 
producers and made available as either OSS or proprietary closed source software 
executables. Program managers, acquisition officers, and contract managers will 
increasingly be called on to review and approve security measures employed during 
the design, implementation, and deployment of OA systems (Department of Defense 
Open Systems Architecture [DoDOSA], 2011). Our effort builds on both our prior 
acquisition research (e.g., Scacchi & Alspaugh, 2008, 2011, 2012a), and related 
acquisition research efforts at the PEO IWS (Guertin & Clements, 2010; Guertin & 
Womble, 2012, Womble, Schmidt, Arendt, & Fain, 2011), Department of the Navy 
(Mactall & Spruill, 2012), and Software Engineering Institute (SEI) that address SPLs 
(Bergey & Jones, 2010; Jones & Bergey, 2011; Northrop & Clements, 2007). It is 
also influenced by related research in the DoD community addressing OSS 
(Defense Information Systems Agency [DISA], 2012; Hissam, Weinstock, & Bass, 
2010; Kenyon, 2012; Martin & Lippold, 2011), component-based software 
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ecosystems (Reed, Benito, Collens, & Stein, 2012; Scacchi & Alspaugh, 2012b), and 
Better Buying Power initiatives (Defense Acquisition University [DAU], 2012). 

OSS represents an integrated web of people, processes, and organizations, 
including project teams operating as virtual organizations (Scacchi, 2007, 2009, 
2010). There is a basic need to understand how to identify an optimal mix of OSS 
within OA systems as products, production processes, practices, community 
activities, and multi-project (or multi-organization) software ecosystems. However, 
the relationship among OA, OSS, security requirements, and acquisition is poorly 
understood (cf. Naegle & Petross, 2007; Scacchi, 2009, 2010, 2011; Scacchi & 
Alspaugh, 2011, 2012b). Subsequently, in 2007–08, we began by examining how 
different OSS licenses can encumber software systems with OA, which therefore 
give rise to new requirements for how best to acquire software-intensive systems 
with OA and OSS elements (Scacchi & Alspaugh, 2008).  

As a result of our recent acquisition research efforts, we have been able to 
demonstrate that it is both possible and feasible to develop OA systems that 
incorporate best-of-breed software components, whether proprietary or OSS, in 
ways that can reduce the initial and sustaining acquisition costs of such systems.  

We believe that such results are applicable to both enterprise information 
systems, which are widespread throughout the DoD and the U.S. government, as 
well as command and control (C2; e.g., Reed et al., 2012; Scacchi & Alspaugh, 
2013b; Scacchi, Brown, & Nies, 2012) and other defense systems. Doing so 
however requires new guidance, and ideally, automated tools, for explicitly modeling 
and analyzing the architecture of an OA system during its development and 
evolution, along with modeling the annotating the architecture with software 
component license rights and obligations. Our results thus demonstrate a major 
technological advance in the acquisition and development of OA systems, as a 
breakthrough in simplifying software license analyses throughout the contracting 
activities. Creating similar advances for streamlining the acquisition process, while 
reducing the costs of secure OA systems, is the next breakthrough that is needed. 

In this paper, we describe ways and means for articulating, tailoring, and 
streamlining the process for how to simply and transparently specify and assess OA 
system security when acquiring different kinds of OA systems, and to do so in ways 
that highlight opportunities for cost reduction through system security requirements 
specification and OA system acquisition process streamlining. We provide examples 
of complex software elements that are applicable to many kinds of software-
intensive systems within the DoD, as well as within other government agencies and 
industrial firms. But we start in the next section by reiterating Better Buying Power 
principles and initiatives that guide this research by focusing on how to promote 
competition in acquisition and development of secure OA systems. 
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OA and Better Buying Power 
Better Buying Power (http://bbp.dau.mil/) is part of the DoD’s mandate to do 

more without more by implementing best practices in acquisition. BBP identifies 
seven areas of focus that group a larger set of 36 initiatives that offer the potential to 
restore affordability in defense procurement and improve defense industry 
productivity. One of the seven areas focuses on promoting competition, and this 
area includes an initiative to “enforce open system architectures and effectively 
manage technical data rights” (DAU, 2012). Technical data rights pertain to two 
categories of intellectual property (IP): They refer to the government’s rights to (a) 
technical data (TD–e.g., product design data, computer databases, computer 
software documentation) and (b) computer software (CS–e.g., source code, 
executable code, design details, processes, and related materials). These rights are 
realized through IP licenses provided by system product or service providers (e.g., 
software producers) to the government customer, so long as the customer fulfills the 
obligations stipulated in the license agreement (e.g., to indicate how many software 
users are authorized to use the licensed product or service according to a fee paid). 
As already noted, our acquisition research has focused on issues addressing OA 
systems and IP licenses since 2008 (Scacchi & Alspaugh, 2008). 

OA software systems offer the potential to improve acquisition by providing 
new ways and means to acquire, develop, deploy, and sustain software-intensive 
systems. These new ways and means in turn may transform how the DoD acquires 
complex systems by moving away from long-duration, proprietary (closed) system 
architecture, and difficult-to-control-cost of system development efforts, towards 
systems that may be more rapidly assembled and integrated in an OA manner with 
more transparent costs. Such a transformation may in turn reduce vendor lock-ins 
that often are associated with rising costs to sustained deployed systems that are 
inaccessible to competing vendors. So, closed architecture legacy systems often are 
subject to IP licenses whose consequence is to reduce competition while increasing 
system sustainability costs. Our research on OA systems dating many years back 
(Scacchi & Alspaugh, 2008) has consistently been aligned with efforts for improving 
competition in software system development and evolution through investigation of 
innovative ways and means to acquire and develop component-based OA software 
systems that are subject to diverse, heterogeneous IP licenses (Alspaugh, Scacchi, 
& Asuncion, 2010). But there is more to do to improve competition and defense 
affordability while effectively managing TD rights when addressing the acquisition of 
secure OA systems. In particular, this includes understanding that the processes for 
acquiring such systems are facilitated or constrained in light of overall BBP guidance 
and best practices, as well as how best to improve and streamline these processes. 
These topics are our focus in the remainder of this chapter. 
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How BBP Impacts the Processes for Acquiring OA Systems 
The move to OA systems represents a transition from the acquisition of 

monolithic systems to the acquisition of reusable system components that can be 
integrated to realize different configurations of a software product family for a 
specific application domain (Bergey & Jones, 2010; Guertin & Clements, 2010; 
Jones & Bergey, 2011; Northrop & Clements, 2007; Reed et al., 2012; Scacchi & 
Alspaugh, 2012b; Womble et al., 2011). These components are acquired within a 
software ecosystem that is evolving towards component provisioning within open 
repositories, where components from different producers are available for selection, 
evaluation, and system integration (Guertin & Womble, 2012; Martin & Lippold, 
2011; Reed et al., 2012; Scacchi, 2007; Scacchi & Alspaugh, 2012, 2013b). Figure 1 
provides a graphic view of how such an ecosystem spans from a sample of software 
producers and components through system integrators to software consumers and 
users. 
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Figure 1. A Sample Software Ecosystem of Producers, Components, 
Integrators, Alternative OA Systems, and Consumers/Users  

(Scacchi & Alspaugh, 2012b) 

Figure 2 provides a view of a sample of lightweight software components 
(“widgets” targeted for software developers or integrators in this example) for 
download and installation within a Web browser. These widgets, made by different 
producers, are available for acquisition from Google’s Chrome Web Store.  
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Figure 2. A Sample View of Lightweight Software Components (“Widgets”) 
That Can be Readily Acquired for Evaluation or Integration from 

Google’s Chrome Web Store 

Such an online store serves as a marketplace that provides access to ready-
to-run, closed source software executables from within an online software repository 
that can be navigated using the menu on the left-side, browsed by scrolling, or by 
entry of a search term or phrase in the upper-left corner (see Figure 2).  

Software components in an online marketplace like this are rated or 
recommended by other consumers, but the IP licenses for the TD and CS are 
hidden away with each component and may be challenging to locate prior to 
installation. Google Play for Android apps and the Apple App Store also offer 
software (widget) components for their respective computing platforms (Android and 
iPhone smartphones, or Nexus and iPad mobile tablet computers).  

Figure 3 provides a view of a different online repository that exclusively 
features OSS components found at SourceForge.net (similar to Forge.mil; DISA, 
2012; Martin & Lippold, 2011), where the IP licenses for each software component 
are prominently displayed when one selects to look more closely into the details and 
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development status of a component of interest. In contrast to the web browser–
specific software widgets available at the Chrome Web Store, the OSS components 
at SourceForge.net represent more substantial, production-oriented software tools or 
utilities that can operate as standalone application programs. Forge.mil may be 
envisioned to provide support for providing access to pre-tested and certified 
software components, whether lightweight widgets or more substantial application 
systems, in OSS code and ready-to-run executable forms with TD rights designed 
for government purposes. Thus overall, what we see is that if we want to improve 
competition through the acquisition of component-based software systems, that our 
choice of which online repository or marketplace to use leads to different kinds of 
software components with different IP license schemes. 
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Figure 3. Sample of OSS Security/Utility Components Found at 
SourceForge.net  

Next, we encounter challenges in the development of integrated OA systems 
that are configured from different software components. Figure 4 provides a visual 
representation that shows different software producers can develop different kinds of 
software components (small, medium, or large size/capability), which system 
integrators can select from in order to create an OA system product line of 
alternative component configurations.  
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Figure 4. A Component-based Software Ecosystem that Configures a 
Product Line of Four Alternative System Configurations, Conforming 

to an OA System Design in Figure 5 

Figure 5 shows a simple OA system design that accommodates alternative 
software components as applications or infrastructure elements which may be 
subject to OSS or proprietary licenses. The applications (“apps”) may include small, 
proprietary, and lightweight browser widgets, or large components like OSS-based 
Web browsers. The infrastructure software, which is assumed to serve as an 
independent foundation for application software, can include proprietary or OSS 
components like database management systems (or network file systems or other 
online repositories), and computer operating systems. Figure 6 then displays the 
selection of one set of conforming software components selected from the software 
ecosystem in Figure 4 that also conforms to the OA system design in Figure 5. 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 26 - 
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

 

Figure 5. A Simple OA System Design that Accommodates Software 
Components as Applications or Infrastructure Elements, Shown in Figure 4 

 

Figure 6. A Selection of Software Components from the Ecosystem in 
Figure 4 Conforming to the OA System Design in Figure 5 

Lightweight software widgets are developed using domain-specific scripting 
languages, like JavaScript or PHP, which are designed to operate with popular Web 
browsers or browser-based integrated system environments. These widgets 
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commonly represent small programs that are often produced with limited resources 
on short time frames and sometimes constitute only hundreds of lines of scripting 
source code. More complex integrated capabilities can be constructed by integrating 
a set of selected widgets using additional scripting code via integration techniques 
that produce inter-application “mashups.” Consequently, there is substantial 
competition in the widget/app marketplace. However, these lightweight software 
components often have short-term life cycles and few updates before their demise.  

At present, lightweight software components tend not to be sustained for 
periods beyond their early availability, widespread adoption, and deployment. Their 
life cycle may be measured in months, rather than years (or decades). 
Consequently, these lightweight components are effectively designed to be 
disposable, low-cost software—acquire it, then use it until something better is 
available, then repeat. This means it may be easier for producers of such 
components to develop new components with new(er) capabilities, technologies, or 
remote services, rather than trying to sustain the short-lived legacy code. In this 
regard, producing new components may be less costly than maintaining legacy 
components that depend on technologies or services that may no longer be 
available or viable. Lightweight software components with short life cycles in this 
regard may improve competition, overall system adaptability, and affordability, while 
reducing vendor lock-on to costly legacy software. Updated versions of such 
components may be provided to repair or replace problematic implementations, but 
they may also appear simply as an inducement to maintain use of the component 
until an extended (e.g., “Pro”) version becomes available for acquisition. Finally, the 
globally dominant online app stores like those operated by Apple, Blackberry, 
Google, Microsoft, and others tend to primarily or exclusively distribute small, 
lightweight software components as proprietary closed source executables on a per 
user basis and with IP licenses that prohibit open access, reuse, modification, and 
redistribution. But these choices are determined by the business models of the 
online repository or store operators, rather than on some critical technological 
dependency or constraint. So, new software products like lightweight components 
from online repositories and stores will likely require more agile acquisition 
processes, contracting practices, replacement/upgrade, and IP license management 
regimes. 

In contrast, the Web browsers in which these widgets run are themselves 
substantial multi-million source lines of code software components that are often 
integrated into larger software-intensive defense systems, like the C2RPC 
experimentation platform (Garcia, 2010; Gizzi, 2011). These browsers and other 
integrated software packages are tested and deployed on global scales, which in 
turn helps to insure their viability, sustainability, and quality within a highly 
competitive software product ecosystem. Their availability as either proprietary or 
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OSS forms indicates there is active, ongoing competition among their producers. In 
addition, these OSS browsers and other integrated software packages based on 
open standards (e.g., OpenOffice, LibreOffice) mean that commonly used, large-
scale software applications and software infrastructure systems are available with IP 
licenses that offer lower acquisition costs and improved competition, as well as 
improved defense affordability options. 

OSS components found at SourceForge.net or Forge.mil are typically 
somewhere in between in size, complexity, and functional capability of lightweight 
widgets and large integrated software packages. However, there is no requirement 
imposed in OSS repositories about what size, complexity, or capability components 
can be made available. So many OSS components range in size from thousands to 
hundreds of thousands of source lines of code, and they vary in terms of their quality 
and sustainability. OSS components from online repositories like SourceForge.net 
are generally available for free or at a low cost, and may or may not be designed 
around open standards. Many OSS-based applications do not rely on any standards, 
while much OSS-based infrastructure software relies on either open industry 
standards or de facto standards grounded in proprietary and legacy systems 
(sometimes referred to as “workalike” or functionally similar [Scacchi & Alspaugh, 
2012b] systems). In contrast, the DoD is seeking to make sure its online OSS 
repositories like Forge.mil (or others) will only host components that are pre-tested 
and certified as compliant with relevant standards, quality/reliability indicators, and 
security policies relevant to their problem domain (DISA, 2012; Kenyon, 2012; Reed 
et al., 2012). 

Software components and online component repositories/stores offer the 
potential to transform the ways and means for acquiring and developing component-
based OA systems. But at present, the size, functional complexity, quality, 
extensibility, and sustainability of different software components varies in part based 
on the repository or store from which they are acquired. Though components that 
can be integrated within a secure OA system offer the potential to increase 
competition, the acquisition processes need to be updated and the acquisition 
workforce newly trained in these new ways and means, in order to maximize the 
likelihood for Better Buying Power initiatives addressing OA systems. 

How Best to Improve and Streamline Acquisition Processes 
for Secure OA Systems 

The transition to the development, deployment, and sustainment of software-
intensive systems based on an OA means that new or revised acquisition processes 
may be needed. In particular, we believe such advances call for (a) the adoption of 
open business models within the DoD and its industry partners, (b) open source 
approaches to creating Web-based acquisition processes (Scacchi, 2001) that 
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specifically address BBP initiatives, and (c) employing techniques for streamlining 
these processes (Choi & Scacchi, 2001; Nissen, 1998; Scacchi, 2001; Scacchi & 
Noll, 1997) for secure OA systems. Each is described in turn in this section. 

Encouraging the Adoption of Open (Source) Business Models 

One goal of BBP initiatives is to reduce costs by improving competition. Such 
a situation may be disconcerting to legacy software producers who are long 
experienced with the long-term development of proprietary, large-scale software 
systems with closed architectures that are subject to traditional, cumbersome, and 
costly software product licenses and license management regimes (Anderson, 2012; 
Konary, 2009). A move towards agile and adaptive development of secure OA 
systems based on software components, that can be developed and integrated more 
rapidly and at lower cost with more favorable IP licenses, represents a new 
acquisition strategy (Reed et al., 2012; Scacchi & Alspaugh, 2013b). This suggests 
the need to incentivize software producers and system integrators, so as to ensure 
their ability to effectively produce both proprietary and OSS components that are 
economically viable yet cost effective to the government over the life of such 
systems. The overall BBP mandate recognizes this situation but does not specify the 
means for how best to accomplish it. We believe one promising candidate is for 
defense enterprises and program offices to adopt new open business models.  

The business models we have in mind should be rendered in an open source 
format. Such models should be computer-processable (i.e., amenable to automated 
enactment support) and transparent to participants in the acquisition workforce (e.g., 
available through Web-based application systems [Scacchi, 2001; Scacchi & Nissen, 
1997]). They should be similarly open to participants in software producer, system 
integrator, and system user enterprises. These models should incorporate a product 
line of common/reusable open system architectures that can integrate functionally 
similar software components in order to realize domain-specific system solutions 
(e.g., for domains like command and control, weapon systems, or enterprise 
computing; Bergey & Jones, 2010; Guertin & Clements, 2010; Jones & Bergey, 
2011; Northrop & Clements, 2007; Reed et al. 2012; Scacchi & Alspaugh, 2012b; 
Womble et al., 2007). These business models should incorporate Web-based 
computational models of acquisition processes (Nissen, 1998; Scacchi, 2001; 
Scacchi & Nissen, 1997) that manage the system development and support 
processes that surround the OA product line system models. Finally, these business 
models should highlight which acquisition or system development processes, or OA 
system features, require attention to IP licenses.  

Prior research has demonstrated that significant cost reductions and process 
streamlining are possible when open source business process models are utilized 
(Choi & Scacchi, 2001; Nissen, 1998; Scacchi, 2001; Scacchi & Nissen, 1998). 
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These kinds of models can be subjected to performance measurement across 
multiple acquisition process enactments, continuous improvement, and process 
redesign by the acquisition workforce (Scacchi, 2001). Now we propose to enhance 
and extend their value through the incorporation of OA system models. While 
demonstrating such a capability is beyond the scope of this study, prior research 
results suggest the plausibility of such an approach. So future acquisition research 
targeting BBP may be directed to creation of open business models that can be 
openly accessed, reused, modified, and redistributed where appropriate. 

Open Source Models of Acquisition Processes  

As noted, prior research has demonstrated the value and real payoffs of Web-
based computational models for defense acquisition processes (Choi & Scacchi, 
2001; Nissen, 1998; Scacchi, 2001; Scacchi & Nissen, 1998). However, many 
technological advances, organizational transformations, and shifting defense 
priorities have occurred since these results were first demonstrated and deployed 
years ago. Our own studies on design of secure OA system product lines are an 
example of technological advances not addressed in our earlier process models. But 
without explicit, open source process models that can be enacted through Web-
based user interfaces (i.e., Web browsers accessing remote application services 
while tracking process enactment progress and performance parameters), then the 
ability to realize their benefits like process streamlining and cost reduction is elusive 
and difficult to manifest. Among the reasons for why this is so is overcoming gaps for 
how best to (a) monitor and measure acquisition process performance without 
automated enactment support; (b) redesign legacy processes to better 
accommodate technical advances and to remove ineffective bureaucratic 
procedures, or that transform acquisition processes in ways that do more with less 
while also empowering the acquisition workforce; (c) design new acquisition 
processes like those for acquiring secure, component-based OA software systems 
subject to multiple IP licenses; and (d) accommodate software IP licenses and 
license management regimes as acquisition process cost elements. To better 
understand what gaps exist in these four areas, we now describe techniques for 
streamlining the acquisition processes for secure OA system. 

Techniques for Streamlining Acquisition Processes for Secure OA 
Systems 

A goal of this paper is to identify ways and means for streamlining acquisition 
processes for secure OA systems. In particular, we focus on four kinds of techniques 
that can be used to streamline such processes in ways that are responsive to the 
BBP initiative for open system architectures subject to complex IP licenses. These 
techniques are illustrative rather than exhaustive, as other kinds of techniques in 
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other areas are also expected to exist and be available for practice by the acquisition 
workforce. 

Process Measurement and Assessment—The most direct way to 
determine the efficiency and effectiveness of acquisition processes is by measuring 
their structural attributes. Such attributes indicate things such as (a) length of longest 
path of process steps/actions (process length); (b) number of distinct process paths 
(process width); (c) number of sub-process levels (process depth); (d) total number 
of process steps (process size); and (e) process size divided by process length 
(process parallelism), and other metrics (Nissen, 1998). But without an explicit 
graph-based model of acquisition processes, such measurements are impractical or 
implausible. Nonetheless, such metrics are a key for where to look for process 
improvement or process redesign opportunities. One might also recognize that some 
acquisition processes are underspecified, for example, by not explicitly accounting 
for where software licenses are negotiated or license trade-off analysis done. 
Similarly, as OA systems may include software components subject to different 
licenses (Alspaugh & Scacchi, 2010), then how are component–component license 
interactions assessed or analyzed, if at all? If acquisition processes do not explicitly 
account for new acquisition or license management activities that emerge due to 
advances in OA system development, then such processes are underspecified, 
which means their costs are hidden and difficult to control or minimize. Thus, if the 
goal of BBP is to help improve the affordability of OA systems within the DoD, then 
we need to be able to systematically model, measure, and assess our acquisition 
processes (Scacchi, 2001). Similarly, we need to better understand how to measure 
and assess open business models for use within the DoD and its industry partners to 
incentivize and continuously improve competition and defense affordability 

Process Redesign and Evolution—Once we have the ability to measure 
and assess current and emerging acquisition processes for secure component-
based OA systems, we can then begin to analyze (or simulate) them in ways that 
reveal process redesign opportunities and transformation heuristics (Choi & Scacchi, 
2001; Nissen, 1998; Scacchi, 2001; Scacchi & Nissen, 1998). Among the acquisition 
process pathologies we seek to identify are those where measured processes reveal 
sub-processes with low effectiveness (indicating high levels of iterative rework), low 
efficiency (indicating slow or bureaucratically cumbersome process steps that add 
marginal value to process completion), and problematic sub-processes (indicating 
underspecified process steps, steps that generate processing delays due to 
missing/or incorrect acquisition data, or inappropriate automated process enactment 
support). For example, current processes that assume long-term acquisition of 
monolithic software systems with proprietary components integrated within a closed 
architecture are likely not well-suited to address the challenges for acquiring secure 
OA systems that integrate software components from different online repositories. 
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We also place our acquisition workforce at a disadvantage if we do not empower 
them with the ability to measure, assess, and adaptively redesign their processes as 
technological advances like component-based OA systems are to be acquired. New 
software component technologies and software ecosystem niches (Scacchi & 
Alspaugh, 2012a) are also emerging, which necessitates new continuous 
development processes and new license management practices, and thus redesign 
and evolution of acquisition processes (Scacchi & Alspaugh, 2013a; Scacchi, Brown 
& Nies, 2012). These examples all point to new opportunities to redesign, evolve, or 
otherwise transform existing acquisition processes to better fit the challenges posed 
by the development, deployment, and support of secure, component-based OA 
systems. Finally, we can empower the acquisition workforce to realize continuously 
improved acquisition processes if we can provide them with the training and 
resources for modeling, analyzing, and redesigning their acquisition processes in 
ways that utilize Web-based automated process enactment systems, which also 
allow them to try out and walkthrough alternative process redesigns before 
committing to their use in daily operations,   

Design New Acquisition Processes—Across the DoD community, there are 
many variations in practice for how to specify and model the architecture of a 
software-intensive system. Some practices focus attention primarily on identification 
of major components or abstract layers, while minimizing (or ignoring) attention to 
interfaces and interconnections, which are more challenging to identify and manage. 
However, the BBP initiative for OA systems points to the need for managing explicit 
interface specifications that identify and reinforce the use of standard interfaces 
(DAU, 2012). Without such interface and interconnection specifications, it is not 
possible to determine the scope or potential conflicts/matches between the IP 
licenses (and thus, TD rights) for the overall system architecture. In contrast, we 
have demonstrated in our prior research that component-based OA systems 
become tractable and evolvable from IP license management and security 
perspectives when the system architecture of components, connectors, and 
interfaces are explicitly modeled (Alspaugh & Scacchi, 2010; Scacchi & Alspaugh, 
2011, 2012a, 2012b, 2013b). The use of standard interfaces further allows for 
simpler renderings of OA system structure, and thus simplifies license analysis. 
Further, once interfaces and interconnections become explicit, software component 
producers, system integrators, and system consumers can determine or negotiate 
which interfaces should be standardized in order to improve competition and 
affordability. These standards may then define acceptable data types, relationships 
between data types, data attribute value ranges, and exceptional data values in 
ways that are open, sharable, and reusable, as well as extensible when appropriate. 
Such improvements become possible by enabling an agile, adaptive ecosystem for 
software components of different size and capability relative to OA system product 
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lines for different application domains (Reed et al., 2012; Scacchi & Alspaugh, 
2012a, 2013b). Therefore, another important technique for streamlining the 
acquisition of secure, component-based OA systems, in line with BBP initiatives, is 
to provide the acquisition workforce with the resources and automated support to 
design and computationally enact new acquisition processes (i.e., explicitly modeled 
processes [Choi & Scacchi, 2001; Nissen, 1998; Scacchi, 2001; Scacchi & Nissen, 
1998]), where the processes are open, agile, and adaptive. Such modeled 
processes may also then be shared, reused, continuously improved, and 
redistributed across the ecosystem of defense enterprises and program offices.  

Cost Management as a Process Design Element—Part of the promise of 
the move to OA systems stems from their perceived potential to reduce acquisition 
life-cycle costs, improve competition, and improve defense affordability (DAU, 2012). 
But where and how are the associated cost factors or cost drivers for OA systems 
identified, tracked, and managed? After all, if we do not know where the cost factors 
are, or what activities, conditions, or events drive OA system acquisition costs, then 
we cannot effectively control such costs or make well-informed system capability–
cost tradeoffs. For example, people who manage the acquisition of large-scale 
software systems within various defense enterprises are familiar with the many types 
of end-user license agreements for proprietary, closed source software systems 
(Anderson, 2012). In contrast, these people may not know how best to manage the 
acquisition of OA systems whose software components are jointly subject to different 
OSS or proprietary licenses.  

The acquisition workforce has also learned in practice that software IP 
licenses are subject to change over time. However, one consequence is that long-
lived or widely used software systems become more costly and much less amenable 
to technology substitution or vendor replacement, thereby reducing competition due 
to vendor lock-in. This works against defense affordability. In contrast, emerging 
online repositories offer different kinds of software component with different 
functional capabilities (described earlier), along with different IP licenses and end-
user licenses (e.g., low cost, per user licenses). These repositories of software 
components represent a means for increased competition and affordability, but 
subject to different acquisition, development, or integration processes that are just 
coming to light. Accordingly, we believe that streamlining the acquisition process for 
secure, component-based OA systems requires that IP license cost obligations (e.g., 
license fees for end-user agreements) and license management regimes need to be 
incorporated into process measurement and assessment, process redesign and 
evolution, and design of new acquisition processes. This is also a subject for further 
acquisition research, but one offering practical near-term consequence. 
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Conclusions 
In this paper, we presented our current results from an ongoing investigation 

of how best to acquire secure open architecture (OA) software systems. These 
systems incorporate software product line (SPL) practices that include closed source 
proprietary software and open source software (OSS) components, where such 
components and overall system configurations are subject to different security 
requirements. The combination of SPLs and OSS components within secure OA 
systems represents a significant opportunity for reducing the acquisition costs of 
software-intensive systems by the DoD and other government agencies. Through 
our research efforts, we seek to make the acquisition of secure, component-based 
OA systems a simpler, more transparent, and more tractable process. Such a 
process must be easy to explicitly model, share, reuse, adapt, and streamline for 
different system application domains. Our goal was to identify ways and means for 
realizing cost reductions and improve acquisition workforce capabilities in ways that 
address Better Buying Power (BBP) initiatives associated with the move to OA 
systems and licenses (DAU, 2012).  

In this paper, we identified different ways and means for how to streamline 
the acquisition process for secure OA software systems through a focus on doing 
more with limited resources. Central to our approach was our effort to identify and 
characterize new ways and means for acquisition process measurement and 
assessment, process redesign and evolution, design of new acquisition processes, 
and incorporation of cost factors and cost drivers as an element in new acquisition 
processes. Along the way, we paid particular attention to revealing how licensing 
practices for emerging online software component marketplaces can affect cost in 
ways that either hamper or better the buying power of acquisition programs. 
Consequently, we sought to identify possible next steps for new acquisition research 
that can more accelerate efforts to improve competition and defense affordability, as 
well as empower the acquisition workforce going forward, in ways aligned with BBP 
initiatives.  
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Processes in Securing Open Architecture Software 
Systems 
Abstract 

Our goal is to identify and understand issues that arise in the development 
and evolution processes for securing open architecture (OA) software systems. OA 
software systems are those developed with a mix of closed source and open source 
software components that are configured via an explicit system architectural 
specification. Such a specification may serve as a reference model or product line 
model for a family of concurrently sustained OA system versions and variants. We 
employ a case study focusing on an OA software system whose security must be 
continually sustained throughout its ongoing development and evolution. We limit 
our focus to software processes surrounding the architectural design, continuous 
integration, release deployment, and evolution found in the OA system case study. 
We also focus on the role automated tools, software development support 
mechanisms, and development practices play in facilitating or constraining these 
processes through the case study. Our purpose is to identify issues that impinge on 
modeling (specification) and integration of these processes, and how automated 
tools mediate these processes, as emerging research problems areas for the 
software process research community. Finally, our study is informed by related 
research found in the prescriptive versus descriptive practice of these processes and 
tool usage in studies of conventional and open source software development 
projects. 

Categories and Subject Descriptors: D.2.11 [Software Engineering]: 
Software Architectures 

General Terms: Management, Security 

Keywords: Open architecture, configuration, process modeling, process 
integration, continuous software development. 

Overview 
Our goal is to identify and understand issues that arise in the development 

and evolution processes for securing open architecture (OA) software systems. OA 
software systems are those developed with a mix of closed source software (CSS) 
components with open APIs, and open source software (OSS) components, that are 
configured via an explicit system architectural specification. Such a specification 
may serve as a reference model or product line model for a family of concurrently 
sustained OA system versions and variants. We seek to research, develop, and 
refine new software process concepts, techniques, and tools for continuously 
assuring the security of large-scale OA software systems composed from software 
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components that include proprietary CSS and non-proprietary and free OSS. In the 
U.S., federal government acquisition policy, as well as many leading enterprise IT 
centers, now encourages the use of CSS and OSS in the development, deployment, 
and evolution of complex, software-intensive OA systems. 

In this paper, we employ a case study focusing on an OA software system 
whose security must be sustained throughout its ongoing development and 
evolution. We limit our focus to software processes surrounding the architectural 
design, continuous integration, release deployment, and evolution found in the OA 
system case study. To be clear, these processes focus on activities that construct 
and update configurations of software components, and are not the processes for 
developing the components themselves. The components involved in such OA 
systems have their own development life cycle, often within development projects 
that are independent or at arm’s length from the effort to develop and evolve an OA 
system composed from such components. 
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Figure 1. A Software Ecosystem of Software Components that Can Be 
Configured into a Product Line Indicating Four Functionally Similar OA 

Systems 

In our case study, we examine a simple OA enterprise computing system that 
configures a Web browser (such as Firefox or Opera), word processor (such as 
AbiWord or Google Docs), email and calendar component (such as Gnome 
Evolution or Gmail), and operating system (such as RedHat Linux, RedHat Fedora 
with SELinux, Microsoft Windows, Apple OSX, or SEAndroid) in conjunction with file, 
mail, and Web servers (which may be on distributed network servers) in a loosely 
coupled manner. However, even this simple OA system that we study draws on an 
ecosystem of diverse software component providers, whose software products can 
be configured into alternative, functionally similar system configurations that conform 
to an OA software product family, as indicated in Figure 1. Such an OA system is 
also a core of more complex, mission-critical command and control systems (Gizzi, 
2011; Scacchi, Brown, & Nies, 2012). Additionally, such a system can also be built 
and deployed for use on a mobile computing platform like a tablet or smartphone. 
Finally, our OA system can be encapsulated within security capability and 
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enforcement mechanisms (e.g., SELinux capabilities, virtual machine hypervisors) in 
order to secure the OA system (Defense Information Systems Agency [DISA], 2012; 
Smalley, 2012; US-CERT, 2011; Xen Hypervisor Project, 2013). 

We also use the case study to focus on the role automated tools, software 
development support mechanisms, and development practices play in facilitating or 
constraining OA software processes. Our purpose is to identify issues impinging on 
modeling (specifying) and integrating these processes and explore how automated 
tools mediate these processes, as emerging research problems areas for the 
software process research community. We also discuss how such issues affect 
practical simulation and analysis of these processes. 

In the remaining sections of this chapter, we first examine related research 
found in the prescriptive versus descriptive practice of software processes for 
architectural design, continuous integration, release deployment, and evolution. Next 
is our case study, describing an OA enterprise computing system that must remain 
continually secure as it evolves; we use this to help identify issues arising in the 
specification and integration of the four software processes when the goal of the 
overall process effort is to continually secure an OA system. We present examples 
throughout this case study. We then investigate the software process modeling and 
process integration issues that were observed in this study, as well as how they 
further constrain efforts to simulate or computationally analyze such processes, and 
conclude the paper. 

Related Research and Development Efforts 
We choose to focus on the processes from architectural design, continuous 

integration, and release deployment to software evolution for OA systems. Such 
systems incorporate both CSS and OSS components. In particular, our interest is to 
examine how these processes enable or constrain how to produce a secure OA 
system. In particular, we recognized that processes for software architecture design 
and software evolution (Madhavji, Fernandez-Ramil, & Perry, 2006) have received 
prior attention in the software process community, but continuous integration and 
release deployment have received much less attention. Similarly, relatively little is 
known about how design processes enable and constrain continuous integration and 
delivery, and how they in turn facilitate or constrain software evolution. Such an 
undertaking needs to go beyond prior efforts to specify and identify issues that may 
arise in processes for the development of component-based software systems 
(Crnkovic, Chaudron, & Larsson, 2006; Qureshi & Hussain, 2008). Earlier process 
studies like these do not address, for example, how new development technologies 
such as continuous integration systems mediate development processes for 
component-based systems. They also do not identify continuous integration, or 
software release delivery and installation, as salient development processes for 
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component-based software systems. This may be so as continuous integration and 
release management are relatively new software development processes, and such 
processes seem to be visibly practiced in large OSS development projects. Finally, 
these earlier studies offer little insight as to how functional or non-functional 
requirements for securing an OA system mediate its software development and 
evolution processes. But we do know some things about these processes from 
related efforts, especially for continuous integration. 

Continuous integration (CI) systems support automated processes for 
building, testing, and packaging a software system for release (“Continuous 
Integration,” 2012; Duvall, Matyas, & Glover, 2007; Fowler, 2000;). Without a CI 
system, developers must build, test, and integrate their software (component) 
products using hand-crafted scripts, and it is common for such scripts to have to rely 
on idiosyncratic dependencies on tool chains and libraries versions for each 
deployment platform targeted (e.g., Hypertable, 2013). In contrast, CI systems 
incorporate the capabilities of software build systems (Smith, 2011) that may invoke 
sequential, distributed, or parallel builds across multiple build servers (cf. 
ThoughtWorks CI Feature Matrix, 2012) to produce singular builds (e.g., “nightly 
builds”), continuously updated agile development builds (Fowler, 2000), or diverse, 
functionally equivalent executable variants (Jackson et al., 2011). The build systems 
access and update software code (version control) repositories via process 
automation scripts. CI sub-processes take as input directories and folders of source 
code files and produce software component executables. The executables may also 
be organized as a structured collection (an information architecture) of binary files, 
static data value and parameter setting files packaged in interlinked directories, 
constituting releases for deployment. Continuous delivery (CD) further extends CI to 
support automated release management and the creation of automated deployment 
tools such as “installation wizards” to be used by system administrators or end-users 
(Humble & Farley, 2010). For the remainder of our paper, we use the abbreviations 
CI and CD to refer to these sets of automatable software development processes. 

As Fowler (2000) observed about the need for continuous integration as an 
enabling mechanism for agile development, “the key is to automate absolutely 
everything and run the process so often that integration errors are found quickly. As 
a result everyone is more prepared to change things when they need to, because 
they know that if they do cause an integration error, it’s easy to find and fix” 
(emphasis added). CI processes can therefore be viewed with the assumption that 
errors resulting from process automation are normal, expected, and not necessarily 
easily anticipated. But why do these errors occur at all, and why do we need to run 
the process often in order to identify and resolve integration problems? We need to 
make closer, systematic observations to determine why or how these errors occur, 
so that we can advance our process engineering knowledge, as well as enable 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 44 - 
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

practical process improvement. A case study can serve as a starting point for this, 
and this is our strategy. 

Automated CI systems comprise composed environments of software tools, 
or sets of loosely coupled tools together by automated process invocation scripts 
that guide and constrain their use. Often these tools are independently developed 
and evolved. For example, a CI system like Hudson (Hudson-ci, 2011) includes 
source code build tools like Ant or Maven, an issue tracking (or bug reporting) tool 
like Bugzilla (Jensen & Scacchi, 2005) or Jira, and a software revision control 
browser and search engine like FishEye or ViewVC for viewing the contents of 
software revision control code repositories like CVS or Subversion. All of these tools 
happen to be OSS associated with active OSS development projects, so these tools 
are subject to ongoing development and evolution that improve their capabilities and 
add/remove functionality. Other CI systems may use different tools or locally 
developed capabilities in place of external OSS tools such as these. Consequently, 
this implies the process steps enacted by a CI system will vary (and evolve) 
depending on the choice of CI system, and on the external tools or locally embedded 
software functionality that a particular CI system uses. Whether such CI process 
steps are equivalent, similar, or incongruent across CI systems thus remains an 
open issue. But it is an issue that must be resolved when transitioning from one CI 
system, or CI system version, to another. However, current CI systems do not 
appear to address this, nor do they identify it as a concern in their recommended 
best practices (cf. Hudson-ci, 2011; ThoughtWorks CI Feature Matrix, 2012). 
Similarly, when we add the need to address the CI and CD of secure OA systems, 
we quickly finds gaps in the best practices that point to shortfalls either on the CI/CD 
process support side, the security capability side (US-CERT, 2011), or their 
interdependencies. 

Automated CI systems are continuously being improved or supplanted 
(Jenkins, 2013; Krill, 2011) and different CI systems offer different features, 
functional capabilities, and depend on different software tools (ThoughtWorks CI 
Feature Matrix, 2012). The same can be said for CD/release deployment systems, 
especially with regard to ongoing advances and refinement of software packagers, 
file distribution and mirror (copy server) synchronization, installers, and uninstallers 
(Humble & Farley, 2010). So, from a software process specification or modeling 
viewpoint, there are many distinct CI process instance types, and no single abstract 
CI or release deployment process prescription to follow and tailor to local 
development organization needs. CI and CD process enactment must therefore rely 
on manual best practices in addition to tool-based automation, and these practices 
are specific to each CI system and the tools therein (Hudson-ci, 2011). CI and 
release management system-based process automation thus are both ad hoc and 
idiosyncratic, rather than easily standardized or generalized, and yet are a 
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widespread software engineering process and practice used to produce thousands 
of software components (e.g., smartphone or tablet apps). 

Software delivery and deployment suffer similar kinds of process automation 
pathologies (e.g., IBM Software Group, 2007), to the extent that a key advantage of 
automation is now thought to be finding or process enactment errors, mistakes, or 
other articulation problems (Mi & Scacchi, 1991) by running the enactment more 
quickly. Software deployment errors, such as releasing and installing a premature 
system release candidate into production operations can have devastating technical 
or economic consequences, as was demonstrated by the experience of Knight 
Capital in the summer of 2012 (Dignan, 2012). How to provide automated tools and 
practical techniques that provide more robust acceptance and compliance checking 
prior to a new system version being installed prior to going live in operation, seems 
to be an underspecified process enactment problem. Adding robust diversity 
mechanisms and capabilities for dramatically improving OA system security (Gorlick, 
Strasser, & Taylor, 2012; Jackson et al., 2011; Scacchi & Alspaugh, 2013) remains 
an open question for further study. Once again, a case study can serve as a starting 
point for examining such issues and concerns, and this is our strategy. 

We see that part of the process challenge is how to understand and specify 
software processes that must interface with emerging CI and CD systems. These CI 
systems entail different kinds with different build, package, and release deployment 
process automation capabilities, or that produce integrated systems that operate on 
different platforms (ThoughtWorks CI Feature Matrix, 2012). To us, this raises 
concerns for process specification—determining what aspects of a software process 
are pertinent for modeling and simulation, as well as contributory to improving 
process effectiveness (Nichols, Kirwan, & Andelfinger, 2011), and process 
integration—integrating modeled process specifications with diverse automated 
process enactment mechanisms (Mi & Scacchi, 1992). It also raises issues for 
integration across multiple process representations that are supported by 
independently developed, heterogeneous process enactment mechanisms (Garg, 
Mi, Pham, Scacchi, & Thunquest, 1994). 

Case Study: A Secure OA Enterprise/C2 System 
We utilize a case study to explore and identify software process issues that 

arise while producing a secure enterprise computing software system. Such a 
system is produced using existing software applications as components, composing 
and configuring them to realize the overall system. The processes we examine are 
not those that develop such software applications, but rather those that use them as 
components of the system. However, this choice still highlights how the ongoing, 
independent development and evolution of the components motivates new 
versions/variants of the overall OA system. In this regard, software component 
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evolution is a driving force that impinges on the development and evolution of OA 
systems incorporating such components. 

Another aspect of our study is to recognize some software processes, like 
architectural design and software evolution, as having limited automated enactment, 
while others such as continuous integration and release management are potentially 
fully automated. This is not to say that no tools are involved in design or evolution, 
far from it. Rather, what is of interest is that software production and system 
integration organizations employ a flow of software processes that employ both fully 
and partially automated enactment. Assuming a world where all software processes 
are fully automated may be another challenge, but it is not one that is of practical 
use or consequence at this time. Our study thus addresses software process 
challenges that are both reflective of understanding of emerging software process 
research issues, and also may have practical application today and beyond. As 
such, we turn to our case study to elaborate the software processes of interest and 
to the issues they raise for software process research. 

Architectural Design Process 

The process for designing the configuration of an OA system at the 
component level is our focus here. We start by noting that we assume no pre-
existing process model or standard for such a process, nor do we propose to provide 
such a prescriptive process. As a review of the architectures of dozens of OSS 
systems (Brown & Wilson, 2012) makes clear, there is no common prescriptive 
process or preferred set of tools, nor is there a notational scheme for the 
architectural design of open software systems. Instead, we describe aspects of a 
design process we developed, practiced, and adapted that is supported in part with 
automated design tools. One of our goals with this process was to help identify 
situations, and practical non-functional requirements, that arise with an OA design 
process that constrains, and is constrained by, the other three downstream software 
processes in our study. 

We have used an OA tailored version of the UCI ArchStudio4 architecture 
design system (oAS4) as a locally developed plug-in to the Eclipse IDE to realize a 
partially automated system for architectural design activities (Alspaugh, Asuncion, & 
Scacchi, 2012, 2013). oAS4 allows us to visually model the architectural 
configuration of software components, component interfaces, and component 
connectors as OA system elements. oAS4 also produces output in an architectural 
description language (ADL) as a persistent artifact for external analysis, or for 
potential integration with CI systems with further processing (e.g., binding 
component classes to their build-time instances). We further focus our architectural 
design activities to produce an abstract system architecture that serves to denote a 
product line model of a family of alternative system configurations composed from 
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functionally similar components or component versions (Scacchi & Alspaugh, 2012). 
oAS4 can thus support our experimental studies in OA system design and design 
evolution across families of alternative system configurations (cf. an earlier approach 
to such problems at Narayanaswamy & Scacchi, 1987). 

We annotate our OA system designs within oAS4 using formal constraint 
expressions on components interfaces, such as intellectual property (IP) license 
obligations and rights (Alspaugh et al., 2012, 2013). Security policy constraints for 
components, configured sub-systems, or an overall system are expressed and 
analyzed in a similar manner (Scacchi & Alspaugh, 2013). The ability to model and 
automatically analyze such obligations and rights is needed at build-time and 
release deployment-time. Automated analysis mechanisms then allow us to 
determine whether the specified component interconnections entail matches or 
conflicts in component–component license alignments (Alspaugh et al., 2012, 2013). 
However, we have also observed that design-time actions must accommodate build-
time and deployment-time element bindings, as well as accommodate the evolution 
of licenses, policies, and system element versions  (Scacchi & Alspaugh, 2012). For 
example, when conflicts are found between the licenses of interconnected build-time 
component selections, we can then reconfigure our OA system design to eliminate 
the conflicts, to constrain the selection of components at build-time (within CI) to 
those whose licenses will match or not conflict, or to wrap or shim a component with 
an abstraction layer that does not transfer IP license obligations. 

Design of OA systems also raises issues for how to how best to secure the 
designed system architecture (US-CERT, 2011). Among the recommended 
practices for designing secure system architectures are providing capability-based 
user/developer access control that effectively limits access to input and output data, 
internal program code representations (e.g., memory address and system name 
spaces), persistent data storage, and to exposed I/O transaction processing 
interfaces. One increasingly common approach is to provide encapsulation 
mechanisms like virtual machines for software components or (sub-)system 
configurations, along with encrypted inter-component data/control flow connectors 
(e.g., HTTPS/SSL data communication protocols). Of these, passively secure 
connectors for networked components are widely available, while dynamically 
secured connectors are a recent advance (Gorlick et al., 2012). In our case, we 
choose to incorporate virtual machines to encapsulate our OA system, and we 
ignore alternative security protection schemes for simplicity. However, we 
recognized that even a seemingly simple decision like this still requires analyzing 
trade-offs about whether to encapsulate the entire system as a single virtual 
machine (relatively easy to address during deployment, though requiring deployment 
and installation of virtual machine software [e.g., Xen Hypervisor Project, 2013] on 
the target deployment computers) or to encapsulate each different component within 
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its own virtual machine that would then be interconnected using secure connectors 
(more challenging to address for deployment, but offering a more resilient OA 
system security [Scacchi & Alspaugh, 2013]). We decided to design something in-
between these two extremes, by taking into account where different components 
might be hosted within a networked, multi-server platform environment. What our OA 
system design process produced is an abstract architectural configuration of 
component types (each attributed with IP license constraints—not shown but 
described elsewhere; Alspaugh et al., 2012, 2013; Scacchi & Alspaugh, 2013), a 
minimal component interconnection scheme, and what we call a hybrid virtual 
machine confinement scheme, as shown in Figure 2. 

 

Figure 2. Design Configuration of a Secure OA Enterprise/C2 System, 
Shown With Security Encapsulation Layout 

Given that we have so far only examined the architectural design process, we 
note that we are already beginning to see that we need to anticipate non-functional 
requirements for the other downstream software processes that follow, particularly in 
the form of process enactment directives or constraints. We also begin to anticipate 
whether such information can be automatically propagated into the process 
automation tools used in these downstream processes. 

Continuous Integration Process 

In our study, one of the first activities in moving from architectural design to 
continuous integration is to identify specific software component versions that can be 
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instantiated within the current architectural configuration (Figure 2). While at first it 
might seem that this is a simple task, we have found that component and version 
selection are subject to the obligations and rights stipulated with a component’s 
associated IP license (Alspaugh et al., 2012). For example, common architectural 
design languages do not specify annotations for IP licenses, so as noted above, we 
extended our ADL within the oAS4 with IP obligation and right constraints (Alspaugh 
et al., 2012, 2013). This meant we could now analyze whether or how IP obligations 
and rights for each component–component interconnection match, conflict, or 
propagate. For example, reciprocal licenses like GPL can propagate their IP regime 
by design, though some enterprises seek to avoid this. By conceptually filling in 
selected component licenses, we can tell, prior to integration, whether the resulting 
release candidate may suffer from licensing problems or not. When conflicts or mis-
matches are discovered, again prior to further build-time process actions, alternative 
components with the similar functional capabilities and interfaces but different 
licenses may be substituted. Alternatively, the architectural configuration can be 
modified, for example, wrapping a component in a way that mitigates license 
conflicts (e.g., replacing a direct API–API interconnection which propagates license 
restrictions with a networked data communications link, as few licenses propagate IP 
across network connections). 

 

Figure 3. A Build-time Configuration of a Secure OA Enterprise/C2 
Computing System 

What we end up with from our build sub-process is a concrete OA system 
configuration with a specific selection of software components specified using oAS4, 
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whose output is intended for a manual build system or for entry into an automated CI 
system. A concrete configuration is seen in Figure 3. So our build sub-process can 
now instantiate components into a reusable OA software product line design, as we 
can determine families of component version instances that can be substituted 
within the OA system. For example, the Firefox Web browser may be replaced by 
Google Chrome in this configuration, because both are under permissive OSS 
licenses. However, a license match/conflict assessment would be required before 
replacing Firefox with Microsoft Internet Explorer (IE) or Opera, each of which is 
under a proprietary license. But in the abstract and concrete architectural 
configuration we have, we could substitute a Linux-based Opera browser without 
issue, but not IE, unless we add a library wrapper such as Wine (WineHQ, 2013), in 
order to run IE on Fedora Linux. 

So far, so good. But now we must consider how to transfer this component 
selection specification into the build system arises. An ideal solution might involve an 
automated hand-off. However, the specifics of such a hand-off will vary depending 
on the build system and the CI system we select. A more general solution would 
likely require (or benefit from) another abstraction layer for integration between the 
architectural design and build/CI process enactment mechanisms, which is an 
already recognized problem with a demonstrable solution (cf. Garg et al., 1994). We 
see that software process research may demonstrate solutions to messy process 
integration issues, but integration of process flows across tool-specific process 
enactment representations and automated mechanisms remains a lingering, 
practical problem that is not yet addressed by current CI or CD systems. 

A similar problem arises when we consider how to secure the concrete OA 
system configuration. For example, we can choose to include secure data 
communication connectors (e.g., secure protocols like HTTPS and TLS/SSL) in our 
configuration, but such capabilities are not instantiated at build-time. Instead, they 
depend on mechanisms and data (e.g., certificates) that are accessed at run-time 
once an integrated system release candidate is available. An OA system, or OA 
system components, can also be secured using virtual machine hypervisors (Xen 
Hypervisor Project, 2013) that confine and isolate deployed system/component 
within a virtual machine run-time environment. In addition, it should be possible to 
specify operating system access control and type enforcement capabilities (e.g., 
using SELinux libraries on Fedora), but again, these are not available for use until 
there is a deployable integrated system release candidate. Thus, these forms of 
security are most likely invisible to current CI systems and must be addressed 
through other means. 
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Release Deployment Process 

The software system you release and deploy depends on what (and how) you 
build and package for release and installation. For example, in our enterprise 
system, we want our software integration process to produce a run-time version of 
our designed software configuration for our target platform (e.g., local personal 
computer). Figure 4 displays a run-time instantiation in operation, based on the 
build-time configuration in Figure 3, hosted on a Fedora Linux operating system that 
utilizes the SELinux library to set access control and run-time capabilities for files 
and programs. 

 

Figure 4. A Screenshot View of a Deployed Release Configuration of Our 
OA Enterprise/C2 Computing System 

However, what we build and what we release may not be the same, though 
they need to be functionally equivalent. For example, when we select one or more 
CSS components (an already compiled and integrated executable binary image) 
with a common restrictive IP license (i.e., one that prohibits copying or redistribution) 
for inclusion in our build-time architectural configuration, during the build process, we 
must link it as an executable binary for inclusion in a release candidate for 
deployment (or deployment testing; cf. Jensen & Scacchi, 2005) on a local 
computer. Such inclusion is a prerequisite for overall integrated system testing 
processes required by CI. However, we cannot distribute such a release candidate 
to others, as it is common for CSS to not allow duplication or distribution of licensed 
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copies of software binaries. Instead, we need to specify and configure a deployment-
platform specific automated software installation mechanism (e.g., installation 
wizard) that needs to search for and find a local licensed copy of the CSS 
executable binary, and link it to the result of the build sub-process that provides a 
run-time linkage mechanism in expectation. A similar effort is needed to enable user 
acceptance testing or certification testing on their local platform. These release 
deployment process steps can be accomplished with some effort, but this effort 
could also be anticipated at design-time or build-time, when developers make their 
selection for which component instances to include in the system build. 

Automated software installation is an increasingly common expectation. 
Software installers run automated process enactment scripts crafted by developers. 
Once again, the process being enacted is not explicitly specified, nor is it separate 
from the internally coded software utility’s action invocation scripts. This means that 
it is not surprising to discover errors that arise during installation but are not easily 
anticipated without extensive prior experience in working with the installer on known 
target platforms. For example, an informal aid from IBM for guiding system 
administrators who enact software installation processes (IBM Software Group, 
2007) notes installation problems like (a) insufficient free space on disk storage prior 
to or during software executable installation; (b) software installations across a 
network that are “hung” or stuck due to lack of robust installation protocols that can 
time-out (abort) and/or re-initiate then re-validate process script commands already 
invoked; (c) installations that fail due to underspecified all/nothing installation 
transactions (cf. Gray, 1981) that do not completely update the information 
architecture of a multi-part software configuration (e.g., program registry update and 
reversible roll-back to prior registry; and/or setup of user configuration files); (d) 
failure to include a software uninstaller (or uninstallation process scripts) that allows 
conditional roll-back to previously installed software versions to be retrieved and 
activated; or (e) file/directory name collisions that arise at build-time versus 
deployment-time. 

Our observation is that if there is a sufficiently detailed, informing process 
specification or model for how best to install a software release, it is well hidden. We 
all rely on the correct operation and outcome on software installation processes on 
our networked personal computers and wireless mobile devices, but such processes 
often are problematic or fail. This situation is not inevitable, but it is widespread. 
There is a missed opportunity to improve the quality of release deployment process 
outcomes by some means other than the costly software installation trial and error 
learning experiences that afflict software release deployment personnel and system 
administrators. We should be able to do much better than this. The provision of 
explicit software installation process models that can guide the targeting of different 
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deployment platforms in specific organizations or for remote users begs for research 
and development attention. 

Evolution Process 

An OA system can evolve by a number of distinct mechanisms or process 
enactment pathways, some of which are common to all systems, but others of which 
arise only in OA systems or where components in a single system are 
heterogeneously licensed (Alspaugh et al., 2013). Figure 5 provides a summary of 
some of the various paths, further explained below. 

 

Figure 5. A Variety of Paths and Activities Accounting for the  
Evolution of OA Systems  
(Scacchi & Alspaugh 2012) 

Component Version Evolution—One or more components can evolve, 
altering the overall system’s characteristics. An example is upgrading the Firefox 
Web browser from version 17.0 to 17.1. Such minor version changes generally have 
no effect on system architecture. However, many large enterprises choose to sustain 
their software systems by relying on long-term support (LTS) versions of software 
components, rather than automatically updating to each release from software 
component producers. Instead, LTS components are replaced with new versions 
only over long time frames, where the new LTS version for installation may skip 
many intervening release versions. Such enterprises rely on local patches and 
workarounds between the LTS versions, under the belief that such an approach 
provides increased system stability and allows more comprehensive regression 
testing prior to deployment. But in these days of relentless attacks on system 
security, using LTS components entails locally sustaining system component or 
configuration versions with known vulnerabilities, often without code repositories that 
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match those employed for CI. The vulnerabilities must then be defended using 
separate, orthogonal system security mechanisms, such as virtual machines or 
hypervisors from VMWare or Xen (Xen Hypervisor Project, 2013). Once again, we 
can do better than this through the use of explicit process specifications that model 
and provide process integration support across CI and CD systems, along with code 
repositories. 

 

Figure 6. An Alternative OA System Configuration Resulting From 
Replacement of Selected Components  

Shown in Figure 4 During System Evolution  
(Scacchi & Alspaugh, 2012) 

Architectural Configuration Evolution—The OA can evolve by changing 
the kinds of connectors between components, rearranging connectors in a different 
configuration, or changing the interface through which a connector accesses a 
component, altering the system characteristics. Revising or refactoring the 
configuration in which a component is connected can change how its license affects 
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the rights and obligations for the overall system. An example is the replacement of 
components for word processing, calendaring, and email with Web browser–based 
services such as Google Docs, Google Calendar, and Google Mail. The replacement 
would eliminate the legacy components and relocate the desired application 
functionality; it would operate remotely, but interact from within the local Web 
browser component. The resulting system architecture might be considered simpler 
and easier to maintain, but is also less open and now subject to a proprietary Terms 
of Service license. Ongoing evolution and support of this subsystem is now beyond 
the control and responsibility of the local system developers. System consumer 
preferences for one kind of license over another, and the consequences of 
subsequent participation in a different OA system evolution regime, may thus 
determine whether such an alternative system architecture is desirable or not. 
Figures 6 and 7 show examples of such evolutions in architectural configuration at 
release deployment time. These figures can be compared to the system deployment 
in Figure 4, but now where the build-time architecture now reconfigures the word 
processor, email, and calendaring into the single Web browser component, thus 
refactoring the build-time and release deployment-time system configurations, while 
remaining within the design-time product family indicated in Figures 2 and 6.
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Figure 7. A Screenshot View of a Deployed Release Configuration  
of the Alternative OA System Configuration  

Resulting From System Evolution  
(Scacchi & Alspaugh, 2012) 

Component License Evolution—The license under which a component is 
available may change, as for example when the Mozilla core components changed 
from dual licensing to the tri-license (MPL, GPL, LGPL). Similarly, when Oracle 
Corporation took ownership of the Hudson CI system (Krill, 2011), the changes in 
intellectual property ownership and branding precipitated a major code fork and 
instigated parallel independent projects for sustaining development of this OSS CI 
system (Hudson-ci, 2011; Jenkins, 2013). Such evolutionary changes, which are 
common to OSS components, may require reconfiguring an OA system to migrate to 
a new (re-licensed) component version, or to an alternative system configuration 
(Scacchi & Alspaugh, 2012). 

In Response to Different Desired Rights or Acceptable Obligations—The 
OA system’s integrator or consumers may desire additional license rights (for 
example the right to sublicense in addition to the right to distribute) or no longer 
desire specific rights, or the set of license obligations they find acceptable may 
change. In either case, the OA system evolves in response, whether by changing 
components, evolving the architecture, or other means, to provide the desired rights 
within the scope of the acceptable obligations. 
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Rapid Dynamic System Reconfiguration—More advanced evolution 
scenarios entail support for building and releasing of multi-variant system 
deployment configurations that substitute functionally equivalent software 
component compilations that produce multiple, diverse executable binary images, 
each of which may execute in its own processor core, in a multi-threaded, multi-core 
processor (Jackson et al., 2011). Pursuing this new path requires a new compilation 
and build system regime, that in turn anticipates a new generation of CI and CD 
systems as future research subjects. 

As should be clear, our purpose is not to provide a prescriptive model of the 
OA system evolution process, but instead to illuminate how different OA system 
evolution paths and activities point to issues in process specification, process 
integration, and the integration of different process enactment representations and 
mechanisms that must span/link manual-to-automated process hand-offs. 

Overall OA Development and Evolution Process Issues 
Following from the software processes we examined in our case study and 

our review of related efforts, we see a number of issues for new software process 
research emerging. At least six such issues can be identified as follows. 

First, we find that a central goal of process automation with widely available 
software integration and release deployment tools is to find enactment errors and 
articulation problems more quickly, rather than to provide prescriptive process 
guidance. Such process enactment details cannot be easily anticipated in general, 
so process specification and enactment must rely on trial and error, as well as 
process discovery (Jensen & Scacchi, 2006) to surface where additional or new 
process knowledge is to be found. Consequently, it is not surprising to observe the 
rise of a new class of software developer role, as “build-meisters”—developers who 
specialize in addressing the intricacies, quirks, and problems that arise during 
software integration processes, since such processes remain ad hoc, undefined, and 
difficult to model or improve. 

Second, current continuous software development systems embody process 
specifications that are opaque, lack generality, and rely on the processing 
capabilities of specific incorporated tools to structure process enactment actions, 
decisions, and outcomes. Different CI systems embody different versions or variants 
of software build, test, and package processes. This implies that merely having a 
“defined” process model for processes like continuous integration and release 
deployment means that such a model will either be insufficiently detailed to provide 
anything beyond introductory level guidance, or more completely detailed but 
idiosyncratic because it is bound to specific process automation tools. This in turn 
makes the process specification problematic to adapt and evolve. There is a basic 
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need for richer process models that represent both the idiosyncratic details of 
process automation tools for continuous integration and release management, and 
the generalized abstractions of such processes that can be reused for process 
(design) guidance and tailoring in specific software development organization 
settings (cf. Nichols et al., 2011). 

Third, a recurring challenge from a process research standpoint is how to 
specify, model, analyze, or simulate software processes that span from mostly 
manual to mostly automated process enactment activities. 

Fourth, automated process enactment systems are themselves subject to 
continuous improvement and evolution. This means the processes being supported 
are potentially evolving. However, if their process specification or model is tacit, or is 
encoded in implementation details, then the process may be opaque to all except 
the tool’s developers. Thus, trying to specify, model, or simulate software processes 
that employ automated enactment systems requires the ability to address processes 
that are co-evolving, that is, how tool evolution drives development process 
evolution and how development process evolution precipitates tool evolution (cf. 
Scacchi, 2006). So choosing to attend only to one misses observation or 
specification of activities that enable or constrain the other. Such a dilemma points to 
another challenge for new software process research. 

Fifth, process guidance specification and enactment automation are easily 
conflated in continuous integration and release deployment systems. As a result, 
developers of OA systems rely on informal best practices to get continuously-
integrated software products out the door. Separating the specification of such 
processes from their implementation within the automated system would be an 
important contribution to the advancement of such systems. Similarly, providing 
guidance for how to specify processes more abstractly than as low-level process 
execution script commands (cf. Hypertable, 2013) would also contribute to the 
advancement of automated continuous software development systems. 

Sixth, the development and evolution of component-based OA systems is 
both an interesting and a challenging problem for the software process research 
community. Such systems are likely to follow continuous software processes—
processes that are repeatedly enacted hundreds to thousands of times during the 
sustained life of the system. Such processes are thus appropriate for careful 
empirical study, simulation, and analysis. The need to address how to continuously 
secure OA systems further complicates the challenges for software process 
research. Process streamlining optimizations, opportunities, and guidelines are likely 
subjects for further research and practical application. Similarly, when the software 
processes for securing an OA system involve automated process enactment, it 
appears that compliance testing—checking whether an automated enactment 
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produced a system configuration that is compliant with the system’s security policy—
will increase in importance. Such compliance is likely to be ad hoc, unless the 
security policy is formalized into a computational model (Scacchi & Alspaugh, 2013) 
that can be cross-checked with the enactment results. 

Last, empirical study of the software processes of interest, especially as they 
are observed in different OSS development projects, provides many insights and 
best practices that can help in the specification (modeling) and integration of 
processes for developing and evolving secure OA software systems. 

Conclusion 
Process models provide a valuable means for specifying complex software 

production processes. Such models may have their greatest impact for project and 
process management, and for coordinating disparate software production processes 
together with automated enactment tools spread across an ecosystem of software 
producers. Explicit, open, and sharable process specifications are key to realizing 
these potential benefits, while the absence of such specifications means lost 
opportunities to reduce overall software production costs, improve software quality 
and security, and to streamline and continuously improve such explicit processes. 

Managing and coordinating the development and evolution processes for 
producing secure open architecture software systems is challenging as we have 
shown in our case study. But as we have observed in our case study, widely 
available automated technologies for continuous integration and release deployment 
obscure or hide what these processes are. Further, we find that frequent errors and 
articulation problems in automated process enactment are expected, since process 
enactment details are ad hoc and idiosyncratic, while enactment processes are 
underspecified, not explicit, and encoded in an enactment system’s implementation. 
However, automated process enactment systems may offer the potential to be 
extended to support (partially) automated process discovery and computational re-
enactment (cf. Jensen and Scacchi, 2006), rather than just traditional process 
modeling and simulation. Thus, software producers of contemporary component-
based OA systems are working against their self interests, assuming their interests 
are to improve their productivity and software quality, while reducing avoidable 
rework and other software production cost drivers. 

Our study in this paper sought to identify a range of emerging issues in 
software process research, especially for process specification/modeling, as well as 
for process design, automation, and integration. Similarly, our case study highlights 
a number of ways how the need to continually secure an evolving OA system further 
complicates challenges for software process research. Finally, assuring that 
software development and evolution processes comply with extant system (or 
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enterprise) security policies—which are presently informal requirements specification 
documents—means that process compliance checking arises as a practical need 
unmet by available software process tools. 

Overall, our goal in this paper was to employ a case study and related 
research to help identify and articulate an emerging set of challenges for further 
software process research and development, Through both a review of related 
efforts and our case study, we identified a number of challenges for software 
process research whose investigation and resolution can lead to more streamlined 
and easier to continuously improve software development and evolution practices 
that are configured for specific organizations, different development tool chains, 
alternative target system platforms, and secure OA software product families, as well 
as for their evolutionary reconfiguration. 
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Abstract 
We identify challenges that arise during development and evolution of secure 

open architecture (OA) command and control (C2) systems. OA systems are those 
whose software system components and interconnection mechanisms are either 
proprietary closed source software offerings with open interfaces (e.g., application 
program interfaces), open source software, or some architectural configuration of 
closed and open source elements. Secure OA systems are those where the security 
of individual software elements may be uncertain, because of the ongoing evolution, 
poorly understood system integration compromises, or obtrusive software intellectual 
property licenses, yet where overall OA security must be continuously assured. We 
present a framework that organizes OA system security elements and mechanisms 
in forms aligned with stages of the life cycle of C2 for system design, building, and 
runtime deployment, as well as system evolution. We provide a case study to show 
our scheme and how it can be applied to C2 system architectures that rely on an 
OA. Finally, we show how our efforts complement and extend the agile C2 
framework that utilizes a new generation of software components and security 
mechanisms that are engineered and adapted by multiple parties and disseminated 
within a diverse marketplace ecosystem of software producers, integrators, and 
consumers. 

Introduction 
In this paper, we identify and investigate technical and acquisition challenges 

that arise during the development and evolution of secure open architecture (OA) 
command and control (C2) systems. OA systems are those whose software system 
components and interconnection mechanisms are either proprietary closed source 
software offerings with open interfaces (e.g., application program interfaces), open 
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source software (including government open source software or defense open 
source software (OSS) via Forge.mil) or some architectural configuration of closed 
and open source elements. Secure OA systems are those where the security of 
individual software elements may be uncertain, because of the ongoing evolution, 
poorly understood system integration compromises, or obtrusive software intellectual 
property licenses, yet where overall OA security must be continuously assured 
(Scacchi & Alspaugh, 2012a, 2012b, 2012c).  

It is now clear that future C2 systems must resist internal or external attacks 
on single and multiple system components, interconnection interfaces, or data 
repositories. No longer can we rely on air-gap system barriers, or security through 
proprietary obscurity, as individual security barriers can be compromised through 
intrusive cyberwarfare software attack vectors or social engineering. Furthermore, 
current approaches to system security are most often piecemeal with little or no 
support for guiding what system security requirements must address across different 
software system processing elements and data levels, and how those can be 
manifest during the design, building, deployment, and evolution of OA software 
systems. Finally, agile C2 efforts seek to transform overall system development and 
evolutionary adaptation time frames from years to months (or less; Reed, Benito, 
Collens, & Stein, 2012). This means fundamentally new approaches to secure C2 
system development and evolution must be available.  

We present a framework that organizes OA system security elements and 
mechanisms in forms that can be aligned with different stages of the life cycle of C2 
system design, building, and run time deployment, as well as system evolution. We 
provide a case study to show our scheme and how it can be applied to centralized 
C2 system architectures like C2RPC (Garcia, 2011; Gizzi, 2011) or to next-
generation decentralized C2 systems (Scacchi, Brown, & Nies, 2012) that rely on an 
OA. Finally, we show how our efforts complement and extend the agile C2 
framework that utilizes a new generation of software components (apps, widgets, 
connectors, and encapsulation mechanisms) that are sourced from a diverse 
marketplace ecosystem of software producers (Reed et al., 2012). 

Open Architectures for Command and Control Systems 
Open architecture (OA) software is a customization technique that enables 

third parties to modify a software system through its exposed architecture, evolving 
the system by replacing its components, connectors, or configuration. The three 
military services within the U.S. Department of Defense are pursuing initiatives that 
encourage the adoption of OA approaches and OA systems as way to reduce 
system development costs over the life of a system (Acquisition Community 
Connection [ACC], 2013). Increasingly more software-intensive systems are 
developed using an OA strategy, not only with proprietary closed source software 
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components with open APIs, but also with OSS components. However, composing a 
system with components that are subject to different intellectual property (IP) 
licenses increases the likelihood of conflicts, liabilities, and no-rights stemming from 
incompatible licenses. We call systems whose components are subject to different 
licenses heterogeneously-licensed systems (Alspaugh, Scacchi, & Asuncion, 2010). 
So in our work we define an OA C2 system as a software system for command and 
control consisting of components that are either OSS or proprietary with open APIs, 
whose overall system license rights at a minimum allow its use and redistribution, in 
full or in part. It may appear that using a system architecture that incorporates OSS 
components and uses open APIs will result in an OA system. But not all such 
architectures will produce an OA, since the (possibly empty) set of available license 
rights for an OA system depends on (a) how and why OSS and open APIs are 
located within the system architecture, (b) how OSS and open APIs are 
implemented, embedded, or interconnected, and (c) the degree to which the 
licenses of different OSS components encumber all or part of a software system’s 
architecture into which they are integrated (Alspaugh et al., 2010; Scacchi & 
Alspaugh, 2012; AAS12). 

The following kinds of software elements appearing in common software 
architectures can affect whether the resulting systems are open or closed (Bass, 
Clements, & Kazman, 2003).  

Software Source Code Components—These can be either (a) standalone 
programs, (b) libraries, frameworks, or middleware, (c) inter-application script code 
such as C shell scripts, or (d) intra-application script code, as for creating rich 
Internet applications using domain-specific languages such as XUL for the Firefox 
Web browser, “mashups,” or their composition into widgets (Feldt, 2007; Soylu et al., 
2011; OWl3). Their source code is available, and they can be rebuilt. Each may 
have its own distinct license.  

Executable Components—These components are in binary form, and the 
source code may not be open for access, review, modification, or possible 
redistribution. If proprietary, they often cannot be redistributed, and so such 
components will be present in the design- and run-time architectures but not in the 
distribution-time architecture.  

Software Services—An appropriate network-accessible software service can 
replace a source code or executable component.  

Application Programming Interfaces/APIs—Availability of externally visible 
and accessible APIs is the minimum requirement for an “open system” (Meyers & 
Oberndorf, 2001). Open APIs are not and cannot be licensed, and can limit the 
propagation of license obligations.  



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 68 - 
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

Software Connectors—Software whose intended purpose is to provide a 
standard or reusable way of communication through common interfaces, e.g., 
Microsoft.NET, Enterprise Java Beans, GNU Lesser General Public License (LGPL) 
libraries, and data communication protocols like the Hypertext Transfer Protocol 
(HTTP). Connectors generally limit the propagation of license obligations.  

Methods of Connection—These include linking as part of a configured 
subsystem, dynamic linking, client–server connections, and what we call “interface 
shims” (abstract interfaces or interface libraries). Methods of connection affect 
license obligation propagation, with different methods affecting different licenses.  

Configured System or Subsystem Architectures—These are software 
systems that are used as atomic components of a larger system, or as a reusable or 
“functional capability,” such that its internal architecture may be comprised of 
components with different licenses, affecting the overall system license. To minimize 
license interaction, a configured system or sub-architecture may be surrounded by 
what we term a license firewall, namely a layer of dynamic links, client–server 
connections, license interface shims, or other connectors that block the propagation 
of reciprocal obligation. Similarly, a configured system or subsystem can be 
encapsulated within a security mechanism such as a virtual machine (Xen.org, 
2012). 

Examples of such elements appear in descriptions and figures presented later 
in this paper. But the diversity of the kinds of elements that appear in an OA system 
enables the design, development, and evolution of agile C2 systems within an agile 
and adaptive software ecosystem (Reed et al., 2012), as we well show. 

Accommodating Agile C2 Development and Evolution  
The MITRE Corporation and others in the defense community seek to 

embrace the development of agile C2 systems (Reed et al., 2012). Such systems 
are envisioned to arise from the assembly and integration of system elements (such 
as application components, widgets, content servers, networking elements) within a 
software ecosystem of multiple producers, integrators, and consumers who may 
supply or share the results of their efforts. The assembly and integration of system 
elements produces “C2 system capabilities” (C2SCs). C2SCs may be produced, 
acquired, integrated, shared, or reused by different trusted parties. C2SCs may 
address a set of ISR data/signal processing components, office productivity 
components supporting mission planning, or the like. Our purpose is to identify how 
our approach to the design of secure OA systems can be aligned with their vision for 
agile C2 systems. Along the way we focus on design of OA system capability 
involving office productivity components that must be configured as a secure C2SC. 
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The design and development of agile C2 systems follows from two sets of 
principals: one set addressing guidelines and tenets for multi-party engineering 
(MPE) of C2 system components, and the other set addressing attributes of agile 
and adaptive ecosystems (AAE) for producing C2SCs or C2 system elements. For 
brevity, we simply identify these principles for MPE and AAE, as they are more fully 
explained elsewhere (Reed et al., 2012), but we do so in ways that foreshadow and 
more clearly align with our approach that follows in a later section. 

MPE Tenets: 

1. Provide small system components that can be rapidly developed and 
accommodate different functionally equivalent variants or functionally 
similar versions 

2. Certify components are consistent with “shared agreements” regarding 
security requirements, system architecture, data semantics, production 
and integration processes or process constraints, and other aspects of 
mission-specific or mission-common domain models 

3. Supply diverse C2 system components via a market of component 
producers or integrators 

4. Assemble and integrate C2SCs from components available in the 
market that are consistent with relevant shared agreements 

5. Provide feedback from C2 system users to component producers or 
capability integrators to improve market efficiency and effectiveness 

AAE Attributes: 

1. Encourage and sustain a software ecosystem that is agile (supports 
assembly and integration C2SC) from components in market, and 
adaptive (supports substitution of functionally similar component 
versions or functionally equivalent component variants), in line with 
user feedback. 

2. Component markets are federated so as to accommodate sharing, 
reuse, or trading of components across different system integrators or 
consumer organizations. 

3. Shared agreements serve as a basis for enabling multi-party 
collaboration in system development, integration, and 
evolution/sustainability. 

4. Production, integration, or post-deployment support for components or 
C2SCs must be viable for small businesses or large, as well as 
promoting market diversity and effectiveness. 
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5. Consumer/user organizations seek to manage portfolios of 
components or C2SCs that collectively improve mission effectiveness, 
agility, and adaptiveness, while reducing costs. 

Finally, to help understand what we mean by a software ecosystem, we use 
Figure 1 to represent where different parties are located across a generic software 
ecosystem and the supply networks or multi-party relationships that emerge to 
enable the software producers to develop and release products that are assembled 
and integrated by system integrators for delivery to consumer and end-user 
organizations. 
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Figure 1. A Generic Software Ecosystem Supply Network (Upper Part), 
Along with a Sample Elaboration of Producers, Software Components, and 

Licenses for an OA System Components They Employ (Lower Part)  
(Scacchi & Alspaugh, 2012) 

The lower part of Figure 1 also identifies where elements of shared 
agreements like IP licenses enter into the ecosystem and how the assembly of 
components into a configured system or subsystem architecture by system 
integrators effectively (and perhaps unintentionally) determines which IP license 
obligations and rights get propagated to consumer and end-user organizations. 
Agreement terms and conditions acceptable to consumer/end-user organizations 
flow back to the integrators. This helps reveal where and how shared agreements 
will mix, match, mashup, or not at the system architecture level, which is another 
reason for why we use (and advocate) explicit OA system models. 
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A Framework for Securing Agile OA C2 Systems 
Over the past five or so years, we have been researching, prototyping, and 

refining an approach to the acquisition, development, and evolution of OA software 
systems (Alspaugh et al., 2010; Scacchi & Alspaugh, 2012; AAS12). Central to our 
approach is our reliance on explicit models of software system architectures 
described in an architectural description language (Taylor, Medvidovich, & Dashofy, 
2009). Use of explicit architectural models is key to making OA systems tractable 
and observable, since we want to be able to make visible where and how a system’s 
architecture is open and where it is not, during different system development and 
evolution activities. Explicit architectural representations are also key to coordinating 
the development, integration, deployment, and evolution of complex OA software 
systems among a dispersed community of development and user organizations 
(Ovaska, Rossi, & Marttiin, 2003). Our models also draw attention to the 
identification of a system’s elements and their configuration into a system capability 
or complete system. In addition, our models allow for the system elements to be 
specified by type or instance (e.g., Web browser, Microsoft Internet Explorer), as 
well as optionally specifying functionally similar versions or functionally equivalent 
variants thereof (e.g., Internet Explorer 8 and Internet Explorer 9 are similar, while 
32-bit and 64-bit variants of IE9 are equivalent).1 Finally, we annotate our models 
with formal expressions that allow us to specify details like IP license or security 
policy obligations and user rights in ways that are amenable for acquisition 
contracting and auditing, and compliance practices (Alspaugh et al., 2010). Thus, 
our annotated OA system models form a core of the shared agreements identified as 
a key element to the development of agile C2 systems within an agile and adaptive 
ecosystem (Reed et al., 2012). The remainder of this section identifies other aspects 
of our approach that align with the MPE/AAE framework. 

Let us consider what needs to be specified during the acquisition of an OA C2 
system that allows for a system suggested by use within the command and control 
rapid prototyping continuum, C2RPC (Garcia, 2011; Gizzi, 2011). Such a system 
incorporates both mission-specific components (applications or widgets for 
processing ISR data, e.g., Gerschefske & Witmer [2012]) and also common office 
productivity applications that run on a personal computer networked to remote 
servers. Such a system can include a Web browser, word processor, email and 
calendaring applications that are configured to operate on a personal computer, 
where the PC’s operating system, Web browser, and other applications need to be 

                                            
1Many software producers utilize multi-level numerical identifiers or other nomenclature 
(e.g., Internet Explorer 10 Release Preview) to distinguish major version releases from 
minor revision variants (e.g., Internet Explorer 9 versus Internet Explorer 9.1.3) which we 
also accommodate. Such specificity is required to support system integration and 
deployment requirements. 
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configured to access remote data/Web content servers. Figure 1 shows part of the 
system ecosystem of software producers and the components they can provide for 
our enterprise system. A Web browser like Mozilla Firefox, Microsoft Internet 
Explorer, Opera, or Google Chrome can further be tailored and invoked through 
internal scripts to support small, mission-specific widgets, as might be developed 
using the Ozone Widget Framework (Ozone Widget Framework, 2013). 

Figure 2 shows the reference design of an OA system architecture of the 
office productivity capability associated with a C2 system (cf. Garcia [2011]). This 
OA system design also accommodates the integration of browser-based remote 
networked services or scripted widgets. What might a secure software product line 
for a system like this involve, and how might it provide benefits and security qualities 
to be specified for design time, build time, and run time? How can its OA and 
product-line characteristics contribute to security throughout the acquisition system 
life cycle? 

 

Figure 2. A Design-Time Reference Model of an OA System  
That Accommodates Multiple Alternative Software  

Component Selections and Configurations 

Within our approach, we address non-functional C2 system requirements, 
such as security, configurability into C2SC, and post-deployment adaptation. These 
requirements are elaborated at design and integration times by specific functional 
requirements that explain how and to what degree the non-functional requirements 
are going to be satisfied at deployment time for consumer/end-user organizations 
(Alspaugh et al., 2010; Scacchi & Alspaugh, 2012; AAS09). 
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Figure 3. A View of an OA Software Ecosystem That Provides  
Alternative, Functionally Similar Components Compatible  

With the Reference Design-Time Architecture 

Figure 3 illustrates a possible software product line that follows from the OA 
software ecosystem shown in Figure 2. Here a number of possible producers and 
the components they produce and license come into play, within four specific 
instance C2SC architectures. With appropriate architectural topologies, and 
appropriate shim components and connectors inserted between the major 
components, each of these four instances supports the same general functionality of 
the office productivity C2SC that can support mission planning. This means that it 
becomes possible to offer support for rapidly switching from one OA system 
configuration to another by substituting compatible (functionally similar) components. 
This gives us the ability to adapt the C2SC in ways that sustain its overall 
operational requirements, while allowing multiple parties to independently maintain 
or evolve the component configuration they choose. 

Last, it is also possible to achieve different nonfunctional requirements 
addressing support for security policies through the four architectural choices, for 
example, by requiring that computer operating systems on which such a capability is 
hosted must support an appropriate mandatory access control and type enforcement 
mechanism, such as is provided in the Security-Enhanced Linux protection service 
library (e.g., for computers running the RedHat Enterprise Linux or Fedora operating 
systems), or by requiring the use of secure network protocol connectors like HTTPS, 
which provide basic network data encryption functionality. 
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A Case Study for Securing OA C2 Systems 
We utilize a case study to describe and analyze our approach to design 

secure OA C2 systems or C2SCs. Such a study serves to help identify issues that 
arise pertaining to our support of MPE/AAE elements, which in turn drive the 
development or evolution of such systems, whether they are deployed in a fully 
developed environment, or whether they are envisioned to address challenges that 
arise in underdeveloped, degraded or resource-limited operational environments. 
Our study is divided into two parts, the first addressing design of a simple centralized 
C2 system with an OA for use in a fully developed environment, and the second 
addressing a similar but decentralized C2 system with an OA, which may be 
appropriate for experimental studies. 

Centralized C2 System Architecture 

Traditional C2 systems are designed to support a centralized system 
deployment. In such a situation, all core system elements or capabilities are located 
in a single facility, though such a facility may be mobile (e.g., airborne or shipboard). 

Within the overall ecosystem of Figure 3, Figure 4 shows one possible 
instance ecosystem involving specific producers (Mozilla—Firefox, abisource.org—
AbiWord, gnome.org—Evolution, Red Hat—Fedora) and specific component 
alternatives selected (i.e., Firefox, AbiWord, Evolution, Fedora).   
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Figure 4. A Selection Among Alternative Components That Can Be 
Included at Build-Time to Produce an Integrated System Compatible  

With the Design-Time Reference 

Figure 5 then shows what a deployed run-time instantiation of this OA C2SC 
might look like from the perspective of the system’s end-users. Here we see the 
Firefox Web browser (upper left corner), AbiWord word processor (upper right 
corner), Gnome Evolution email + calendaring application (lower left corner), and the 
Fedora operating system (lower right corner). Though the visual detail in this 
example is limited, the Red Hat Fedora Linux operating system (lower right corner) 
is shown utilizing the SELinux security protection library, for coding and enforcing 
mandatory access control on programs/data and other security enforcement 
functions. 
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Figure 5. An End-User Run-Time Version of the Selected Alternative 
Components That Fulfills the OA C2SC System Design  

Figure 6 outlines an alternative system configuration and the instance 
ecosystem that produces it.  This instance architecture substitutes services for 
components in the case of Google Docs for the word processing functionality and 
Google Calendar for the calendar functionality. With appropriate shims and changes 
to the architectural topology, this combination of major components could also 
support the system’s functional requirements, and because the services are 
accessed through client–server connections, which block the propagation of most 
license obligations, there are a number of ways to satisfy the IP constraints imposed 
by the component and service licenses. 

This alternative configuration also highlights possible acquisition-time 
concerns and the nonfunctional requirements and security license issues that follow 
from them. For example, a remote service such as Google Docs provides benefits 
and imposes costs with respect to a compiled component such as AbiWord.  On the 
one hand, the remote service makes some qualities easier to achieve (data sharing, 
backup, etc.) but on the other may make some qualities harder to achieve (data 
security over a network connection and in the “cloud,” up-time of the service, little or 
no control over when new versions of the service are used compared to complete 
control over when new versions of a component are integrated).  
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Figure 6. A Second Configuration of the OA C2SC Example, Using 
Alternative but Functionally Similar Components 

This ability to rapidly and conveniently substitute components (agility) to 
adapt to different end-user needs or required components aligns with the MPE/AAE 
elements. However, we still need to address how other elements in the shared 
agreements, like IP licenses, enable or constrain whether such an alternative 
configuration, though technically possible, meets other organizational requirements. 
This concern raises the following kinds of questions: 

 Who in the ecosystem of human actors (the multiple parties) for this 
system has the right to make the decisions to use a remote/networked 
computational service in place of a locally hosted software system 
component, or one component version in place of another? What 
obligations are they required to satisfy first? These questions are of 
concern at acquisition time and, we claim, are addressable through 
explicit acquisition policies that stipulate desired rights and acceptable 
obligations by the acquiring organization, where such policies are 
important to system acquisition officers, just as IP licenses do for IP 
rights and obligations important to software producers. Our shared 
agreements need to provide guidance for what to do here. 

 When can these decisions be made? In traditional development 
processes these would occur at design time, but in the larger view we 
examine here such decisions, or rather the shared agreements that 
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control them, are perhaps more properly considered at component, 
C2SC, or system acquisition time. As we will see below, it is also 
possible that in order to achieve specific security qualities they might 
be made at system integration time or at deployment time, in response 
to specific end-user organization needs. 

 

Figure 7. An End-User View of the Alternative Run-Time  
System Configuration  

Figure 7 shows a run-time view of this alternative configuration. To the end 
user this system appears quite similar to the one in Figure 5, and the differences 
might scarcely be noticed, which raises the next set of possibilities. 

Both these instance architectures displayed in Figure 5 and Figure 7 specify 
specific alternatives for the major components, for example, Mozilla Firefox for the 
Web browser component. But which version of Firefox? For example, it is quite 
possible that both of the instance architectures discussed above could be 
implemented using either Firefox 18 or Firefox 19, satisfying all the functional 
requirements with no change to the instance architecture and no revision of software 
shims. Who has the power to decide to use version 18 rather than version 19? How 
late in the software process can this decision be made—for example, could it be 
made as late as system startup time by a system user or in response to a particular 
security attack on the previous configuration? 
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Finally, an orthogonal consideration is the use of software-based access 
control containment vessels to encapsulate components or subsystems within a 
virtual machine, to monitor and control interactions among components and 
subsystems in order to block attacks and protect vulnerable parts of a system. 
Figure 8 shows a screenshot in ArchStudio of a design-time architecture utilizing 
eight containment vessels, seven for individual components and connectors and the 
eighth for the group of components and connectors associated with the computer’s 
operating system.  

For security, the Fedora operating system can employ the SELinux 
capabilities to restrict all shell/operating systems commands through mandatory 
access control and type enforcement, while other components can all be contained 
within one (for minimal security confinement) or more (for increased security 
confinement on a per component basis) Xen-based virtual machines (See Figure 8). 
The interoperability of SELinux and Xen is now a common feature of many large 
Linux system installations (e.g., Amazon.com now has more than 500,000 Linux 
systems running Xen; Xen.org, 2012). So it is possible for shared agreements to call 
for the use of multiple software-based security mechanisms to protect a OA system 
or C2SC, while still accommodating the MPE/AAE elements. This is an important 
accomplishment. 
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Figure 8. A Secure OA System Configuration Alternative That Encapsulates 
Multiple System Capabilities Within Different Virtual Machines (e.g., 
Using [Xen.org, 2012]), Where Each System Capability May be Under 

the Purview of a Different Organizational Authority 

Decentralized C2 System Architecture 

Decentralized C2 systems can employ OAs that accommodate their 
deployment and usage in degraded and limited operation environments. 
Decentralized C2 systems can have a very small physical footprint, and mission 
planners/commanders may be located potentially anywhere in the world. So 
decentralized OA C2 systems can serve as appropriate candidates for 
experimentation or training in underdeveloped, degraded, or denied operational 
environments. 

In our previous work, we have investigated and prototyped a C2 system 
called DECENT (Scacchi et al., 2012) that provides an immersive 3D virtual world 
for experimenting with decentralized C2 activities. DECENT is designed to run in a 
wide-area network environment that supports 3D browsers (or conventional Web 
browsers with 3D world viewer plug-ins) as clients, and remote servers to provide 
content and other services accessible through the browsers. DECENT operates on 
the Internet, but not on the Web, relying instead on a separate decentralized network 
grid architecture called the HyperGrid (Lopes, 2011). The HyperGrid infrastructure in 
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turn allows for the establishment and operation of distinct or interconnected 
hypergrids as separate administrative authorities for research, experimentation, or 
training applications. The MOSES hypergrid is such an example (Maxwell, 2012; 
Military Open Simulator Enterprise Strategy [MOSES], 2013).  

The Ozone Widget Framework (Ozone Widget Framework, 2013) supports a 
different form of decentralized OA. OWF provides support for the development of 
Web-compatible widgets as lightweight applications that access pre-specified kinds 
of content from remote servers. This allows the creation of virtual private networks 
offering Web-like applications and services through network-managed security 
capabilities. However, in an underdeveloped operational environment, such 
networking capabilities may not be available or reliable, so other means must be 
utilized to realize secure communications. Alternatively, applications or widgets that 
rely on signals from known types of sensors may also not be available or reliable, so 
other widget versions may be need to be provided. 

Subsequently, one strategy for developing a decentralized C2 system would 
combine the OA for a centralized C2 system, but allow for the system components 
(applications, widgets, content servers, operating systems, etc.) or C2SCs to be 
interconnected to local/remote servers through encrypted network connectors (e.g., 
secure data communication protocols like HTTPS or TLS, or robust dynamic 
capability connectors, like those used in the COAST [Gorlick, Strasser, & Taylor, 
2012]) that enable data, control, or signals to flow across (or tunnel beneath) virtual 
software defined networks. In other words, the user interface would still rely on a 
Web browser modality, yet in a simple implementation, be able to securely access 
hypergrid worlds in one window, with other widget-based content services located in 
other browser window or user sessions, depending on overall security policy. So we 
have a basis for developing a secure decentralized C2 system that allows a 
consistent OA system model whose components or connectors may be centralized 
or decentralized by design choice or security policy. However, compiling and 
deploying such a decentralized C2 system are the system development activities 
when the security components will be integrated. 

Overall, a decentralized C2 system can be developed using system elements 
(components, connectors, or embedded C2SCs) that may reside on local computer 
or remote networked computers that are accessed through software client 
applications that may reside within a C2 virtual world. Such choices may be most 
appropriate for OA C2 systems that are intended to support experimentation in C2 
mission planning activities. Such activities may be most relevant where 
underdeveloped or degraded system elements are employed, in order to help train 
mission commanders to learn how to articulate their requirements for new system 
components that can be rapidly developed, integrated, and deployed. It also can 
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serve to reveal other practical advantages and constraints that arise when end-user 
organizations follow the MPE/AAE guidelines for adapting and evolving their OA C2 
systems. 

Conclusions 
In this paper, we identified and investigated technical and acquisition 

challenges that arise during the development and evolution of secure open 
architecture (OA) command and control (C2) systems. OA systems are identified as 
those whose software system components and interconnection mechanisms are 
either proprietary closed source software offerings with open application program 
interfaces, open source software, or some architectural configuration of closed and 
open source elements. Secure OA systems are identified as those where the 
security of individual software elements may be uncertain, because of the ongoing 
evolution, poorly understood system integration compromises, or obtrusive software 
intellectual property licenses, yet where overall OA security must be continuously 
assured.  

We presented a framework that organizes OA system security elements and 
mechanisms in forms that can be aligned with different stages of the life cycle of C2 
system development. We focused attention to the design of OA C2 systems or C2 
system capabilities using commonly available software components that provide 
office productivity capabilities that support C2 operations. We provided a case study 
to show our scheme and how it can be applied to C2 system architectures that rely 
on an OA. Finally, we showed how our efforts complement and extend the agile C2 
framework that utilizes a new generation of software components and security 
mechanisms that are engineered or adapted by multiple parties and disseminated 
within a diverse marketplace ecosystem of software producers, integrators, and 
consumers. 
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Ongoing Software Development Without Classical 
Requirements  
Abstract 

Many prominent open source software (OSS) development projects produce 
systems without overt requirements artifacts or processes, contrary to expectations 
resulting from classical software development experience and research, and a 
growing number of critical software systems are evolved and sustained in this way 
yet provide quality and rich functional capabilities to users and integrators that 
accept them without question. We examine data from several OSS projects to 
investigate this conundrum and discuss the results of research into OSS outcomes 
that sheds light on the consequences of this approach to software requirements in 
terms of risk of development failure and quality of the resulting system. 

Keywords: open source software; open source requirements; 
provisionments. 

Introduction 
In 2002, one of us (Scacchi) published a study of requirements practices and 

artifacts in four open source software (OSS) development communities (Scacchi, 
2002). This was the first systematic study to show that OSS system and 
development processes do not rely on what may be termed classical requirements 
artifacts and processes, namely those involving problem-space requirements in a 
document or repository evaluated for completeness and internal and external 
consistency. Others have since reported similar results (German, 2003; Noll, 2008; 
Noll & Liu, 2010). Yet there are successful, ongoing OSS projects with users 
numbered in the millions, and hundreds of OSS systems relied on as critical 
infrastructure, such as GNU/Linux, the Apache HTTP server, the Mozilla Firefox 
Web browser, the PostgreSQL database system, and the Eclipse development 
platform to name a few (Stallman, 2007; Mockus, Fielding, & Herbsleb, 2002; 
PostgreSQL.org, 2013; Des Rivières & Wiegand, 2004). 

From the point of view of a classically trained software developer and 
requirements practitioner and researcher such as the other of us (Alspaugh), this is 
unexpected. The broad consensus among software experts and researchers over 
recent decades has been that devoting appropriate attention to requirements 
processes and artifacts is essential to project success (Brooks, 1975; Gause & 
Weinberg, 1989; Jackson, 1995; Lamsweerde, 2009; Sommerville, 2004; van Vliet, 
2000) and that failure to do so risks undesirable outcomes such as 

 a product that fails to meet stakeholder needs, 
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 a product that does not exhibit necessary levels of reliability, 
evolvability, or other software qualities, 

 schedule slips and budget overruns, or 

 in extreme cases failure to produce any product at all. 

How can it be that OSS development produces good software? 

In the remainder of this chapter, we explore this conundrum. We present a 
motivating example, Brooks’ thoughts on the success of Linux, and elaborate what 
we mean by “classical requirements artifacts and processes”, hereafter abbreviated 
as Classical Requirements, before describing our study and examining the OSS 
artifacts and processes that appear to serve in the place of Classical Requirements, 
using data from our previous work and work reported by others. We find that the 
overwhelming majority of requirements-like artifacts identified by ourselves and 
others may be characterized as what we term provisionments, which state features 
or qualities in terms of the attributes provided by an existing software version, a 
competing product, or a prototype produced by a developer advocating the change it 
embodies. 

The processes involving these artifacts resemble or in some cases are 
indistinguishable from the bug reporting, tracking, and response processes found in 
closed source software (CSS) development. 

We discuss several contexts in which provisionments appear common and 
are arguably appropriate: OSS of course, software game mods, and open 
architecture software ecosystems. 

Finally, we place our work in the context of related work, discuss several 
questions of interest, and conclude the paper. 

A Motivating Example: Brooks on Linux 
In reflecting on Raymond’s description (Raymond, 2001) of the open source 

process producing Linux, Brooks observes of this “marvelously functional and robust 
operating system” that “for Linux a functional specification already existed: Unix” 
(Brooks, 2010). This is a curious statement, since the development of Unix itself 
displayed characteristics of OSS development including 

 software developed for the developers’ own use rather than for an 
external client and users, 

 a strong emphasis on extensibility, and 

 no overt requirements artifacts or process preceding development. 
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Saying that Unix (specifically the Unix kernel) provided the requirements for 
Linux does not explain the problem; it merely moves it from Linux to Unix. The Unix 
kernel is marvelously functional and robust, too; was it developed using a functional 
specification or other Classical Requirements? 

If so, supporting evidence is in short supply. Ken Thompson wrote the initial 
version of Unix in four weeks in the summer of 1969, yet the first edition of the Unix 
manual was dated  November 3, 1971 (Salus, 1994). Salus noted that “the only way 
you could learn [the Unix system] was to sit down with one of the authors and ask 
questions” (Salus, 1994). Ritchie recalled that in 1969, “Thompson, R. H. Canaday, 
and Ritchie developed, on blackboards and scribbled notes, the basic design of a file 
system that was later to become the heart of Unix,” not the requirements, but the 
design (Ritchie, 1984). We have searched the writings of the creators of Unix and 
researchers reporting on it for Classical Requirements without finding evidence of it. 
It appears that it is indeed possible to produce a marvelously functional and robust 
operating system without the aid of a functional specification or other Classical 
Requirements. 

Brooks (2010) further noted, as we and others have, that OSS development 
works because the developers are users, saying “The whole requirements 
determination is implicit, hence finessed.” He found no contradiction in ongoing 
development without Classical Requirements once initial development is 
successfully complete. 

Classical Artifacts and Processes 
Researchers and practitioners have developed many types of requirements 

artifacts and many requirements processes. We do not consider any of them in 
detail here. Instead we focus on three characteristics shared by nearly every such 
approach with which we are familiar: 

 a requirements document or central requirements repository, defining 
the system requirements and providing a criterion for whether a 
particular candidate requirement is or is not a requirement for the 
system; 

 requirements that are preferentially described in terms of the problem 
space rather than the solution space; and 

 requirements processes for examining the requirements 
document/repository for completeness, internal consistency, and 
external consistency with the domain and stakeholder needs. 

These characteristics define what we term in this paper Classical 
Requirements. 
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We focus on these characteristics because they figure prominently in many 
influential requirements approaches and in the requirements practices of working 
CSS developers we have known or interviewed, and because convincing arguments 
have been made from them to project success and product quality (Brooks, 1975; 
Boehm, 1976; Gause & Weinberg, 1989; Jackson, 1995; Lamsweerde, 2009; 
Sommerville, 2004; van Vliet, 2000). 

Brooks (1987) famously said, “The hardest single part of building a software system 
is deciding precisely what to build. … No other part of the work so cripples the 
resulting system if done wrong. No other part is more difficult to rectify later.” 

Boehm (1976) asserted, supported by data, “Clearly, it pays to invest effort in 
finding requirements errors early and correcting them in, say, 1 man-hour rather than 
waiting to find the error during operations and having to spend 100 man-hours 
correcting it.” 

Lamsweerde (2009) characterized requirements errors as “numerous and 
persistent” and as the most expensive and dangerous of software errors. Gause and 
Weinberg (1989) noted, “Obviously, requirements are important because if you don’t 
know what you want, or don’t communicate what you want, you reduce your 
chances of getting what you want.” 

The particular form of the requirements is not material to our work. We note 
that the prominence and importance of particular requirements artifacts and 
processes often vary depending on the type of system. Not all are appropriate for 
development of every system, but many situations can benefit from an appropriately 
chosen selection of them. Some (overlapping) types and corresponding artifact or 
process choices might be 

 embedded systems, in which software is a component of a larger 
hardware system—a state-based specification; 

 real-time systems that must meet specific often-inflexible timing 
constraints—a temporal logic specification; 

 critical or high-assurance systems, for which what is required and what 
is acceptable must be determined with precision and the cost of failure 
is high—a model-checkable specification and validation by 
stakeholders; 

 systems that interact significantly with other automated systems—a 
formalized specification checked for consistency and completeness; 

 systems that play a role in specific organizational processes—
stakeholder analysis; 
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 systems that address novel problems or address problems in a novel 
way—processes that encourage exploration of the problem space. 

We note that the use of Classical Requirements in these situations and others 
may be connected to the typical CSS context in which 

 the system is produced by a development group for a client outside 
that group, 

 most or all of the system’s expected users are also outside that group, 

 the developers may or may not have expertise in the problem domain, 
and 

 the system is developed against a budget and a schedule. 

The requirements state the expectations and commitments of the client on the 
one hand and the development group on the other. The client balances the benefits 
of the specific proposed system against the cost of developing it and the wait until it 
is ready. The development group evaluates whether the budget, resources, and 
schedule are appropriate for the work involved. The two sides explore, negotiate, 
and (ideally) agree on a set of requirements. Both sides can then make plans based 
on specific criteria for acceptance. 

Method 
Research Questions and Metrics 

Our goal is to address the apparent conundrum of OSS development (OSSD) 
that does not use Classical Requirements yet successfully produces high-quality 
software. We apply the Goal Question Metric approach (Basili, Caldiera, & 
Rombach, 1994) to produce a measurement model operationalizing our goal into 
research questions, and associating each question with data that can be evaluated 
(Figure 1). 
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Figure 1. Goal Question Metric Model 

 (RQ1) To what extent do OSS projects in fact use Classical 
Requirements? 

 (RQ2) Where OSS projects do not use Classical Requirements, what 
artifacts and  processes are used instead, if any? 

Sources of Data 

We address RQ1 and RQ2 using data and results from our previous work 
(Scacchi, 2002, 2009) and from other published research on requirements in OSSD. 
For an introductory study we find this appropriate, in place of collection of a new set 
of data. A first step is to identify such research; there is not much. We used work by 
Noll and Liu (Noll, 2007, 2008; Noll & Liu, 2010) which provides both analysis and 
some raw data, and work by German (2003) providing analysis only. We also 
examined the data we found while investigating Brooks’ statement that Unix 
provided Linux’s function specification, using it primarily to cross-check, where 
possible, conclusions we drew from the other data sets. In some cases we followed 
up on specific data items and examined them in the original context. In a few cases 
we extended the data with newly-collected data, as for example, that shown in 
Figure 2. 

Validity 

In this subsection we discuss the internal and external validity of the study 
and threats to its validity. 

1. Internal validity: Internal validity is the soundness of the relationships 
within a study. Our study examined data and analysis from different 
researchers, then merged them in order to apply our metrics. We 
examined original data where possible in order to apply metrics more 
uniformly. We looked first for overt Classical Requirements, then for 
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requirements-like artifacts and processes, and finally for artifacts and 
processes that appeared to be used in place of requirements. In order 
to systematize our study, we coded and categorized each such 
instance, following standard qualitative practice (Creswell, 2003). 

2. External validity: External validity is the degree to which the results 
from the study can be generalized. Identification of successful OSS 
systems without overt Classical Requirements provides an existence 
proof that software can be successfully developed without it. Other 
results are more difficult to generalize reliably; for example, the study 
cannot provide strong support for a hypothesis that Classical 
Requirements does not contribute to reducing the risk of project failure, 
nor to increasing the probability that stakeholders will be satisfied. The 
study also does not provide strong support for hypotheses on the 
incorporation of OSS development approaches into CSS projects, as 
our study examines only OSSD data and analyses; these are intriguing 
and investigation of them remains as future work. 

3. Threats to validity: We examined every study we found that addressed 
OSSD requirements, eliminating any possibility of selection bias; 
however, the number of such studies is quite small (five), making it 
more difficult to generalize our results and increasing the possibility 
that other OSSD projects do not fit our conclusions. Other practitioners 
and researchers might apply different standards, for example with a 
broader or stricter definition of which instances qualify as Classical 
Requirements. We minimized this by defining Classical Requirements 
explicitly and in abstract terms. This threat affects only RQ1. 

OSS Artifacts and Processes 
Requirements-Like Artifacts and Processes 

We present several examples of specific requirements-like artifacts and 
processes we identified in our study. Perhaps the most common requirement-like 
OSS artifacts are isolated feature requests or bug reports submitted to tracking 
systems like Bugzilla (Figure 2), and discussed there or on email lists or electronic 
bulletin boards. An example is this proposal for OpenEMR (Noll & Liu, 2010): 

You could add a link to the existing superbill page which would open a 
new browser window/tab with a printable version that meets your 
criteria. This way, you could leverage existing code and probably not 
have to add a table. I am thinking of something similar to printable links 
elsewhere in the program, like in reports and patient report. 
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A second example is shown in Figure 2. Here a Firefox feature request is 
being discussed, in conjunction with possible changes to the implementation and 
architecture. Comment 4 may be taken as stating a requirement that Firefox provide 
the Profiler, specifically, and more generally that Firefox provide a specific kind of 
results (those that the Profiler currently provided, we infer). This fairly explicit 
requirement is stated in solution-space terms (what Profiler provides) rather than the 
corresponding problem-space terms; of course, this is probably considerably more 
compact. The discussion is focused on architecture and implementation issues 
involved in the requirement. Other requirements are considered only indirectly if at 
all, for example if the goal of replacing JSD1 with JSD2 + RDP is taken to imply a 
here-unstated software quality requirement. 

A third example is tabbed browsing, a Web browser feature little known not so 
many years ago, but now so nearly universal that the name tabbed browsing has 
become a token representing a complex of properties and user stories now assumed 
to be obvious and requiring no explanation. Mozilla/Firefox tabbed browsing appears 
to have first been proposed in a one-sentence scenario of use (“One thing that I 
would really want to see is the ability to open a link in the new window in background 
…”) posted to a Mozilla newsgroup, which was immediately followed by a post 
beginning “Have you tried tabbed browsing [in the Opera web browser]?” (Noll, 
2007). Both these are provisionments; the first cites current system behavior and 
describes a difference from it, while the second cites another system that exhibits 
the behavior referred to. 
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Figure 2. Discussion of a Feature Request in the Firefox Bugzilla, “Bug 
797876—Introduce New API for JS Content Profiling” 

Each feature request or bug report can be taken to imply a requirement, but in 
themselves they rarely constitute a Classical Requirements artifact. In the examples 
listed above, as for most requirements-like artifacts we identified, the artifacts are 
neither integrated into a central requirements document/repository, described in 
terms of the problem, nor being examined in the context of other requirements. Our 
study indicates that the OSS projects in question do not use Classical 
Requirements. 
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An OSS Requirements Document 

Our data sources included one example identified as a requirements 
document: “Firefox2/Requirements” (Mozilla Foundation, 2006), discussed by Noll 
(Noll, 2008). The document is interesting to us in two ways. 

First, our examination of the document found the items are expressed in 
general rather than specific terms, as in this representative example “[The system] 
will be optimized and tuned for general web browsing use cases,” with the specifics 
no doubt proposed, discussed, and agreed on through project mailing lists and 
discussion boards as in the examples in the previous section. We also note that all 
but one are stated as a difference from the previous Firefox version, using phrases 
such as “will update” and “will improve,” in other words as provisionments. 

Second, and perhaps more significant, this is the only presumptive 
requirements document or repository our research identified in our own searches 
and in related work on requirements in OSS. While its existence indicates that OSS 
development can tend toward Classical Requirements, its apparent uniqueness 
highlights our general finding that OSS development does not make use of Classical 
Requirements. 

Provisionments 
As stated previously, a provisionment is a statement of features or qualities in 

terms of the attributes provided by an existing software version, a competing 
product, or a prototype produced by a developer advocating the change it embodies. 
Most provisionments we encountered only suggest or hint at the behavior or quality 
in question; the expectation seems to be that the audience for the provisionment is 
either already familiar with what is intended or will play with the cited system and see 
the behavior or quality in question firsthand. 

In our study, we saw provisionments being used for requirements or 
requirements-like artifacts in two ways, either directly as a specification of behavior 
or quality, or as a starting point in a specification of behavior or quality differing in 
stated ways from that expressed by the provisionment. 

Later in this chapter, we provide examples of both types. Firefox Bugzilla 
comment 4 in Figure 2 (“I think that existing Firebug users would complain if the 
Profiler is removed or providing [sic] different kind of results”) uses a provisionment 
directly (though stated in the negative), while the OpenEMR proposal uses a 
provisionment (“the existing superbill page”) indirectly as a starting point for a 
difference (“You could add …”). 

A provisionment is distinct from a feature, a quality, a bug report, and similar 
entities in that each of those is something to be expressed, while a provisionment is 
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a way of expressing something. In our study, we found many feature requests and 
bug reports expressed using provisionments; OSS project archives appear to teem 
with feature requests and bug reports, and the majority we examined were 
expressed using provisionments. Statements of qualities were much less common 
but were also often expressed with provisionments. 

Some Example Contexts 
We discuss three contexts highlighting the interplay between requirements, 

provisionments, and architecture: open source software, here discussed at greater 
length; software games, some of which are themselves OSS and many of which 
support modifications that exhibit OSS characteristics, whether the underlying game 
is OSS or not, and are described using provisionments; and OA systems of complex 
components, for which provisionments mediated by architectural configurations play 
prominent roles. 

Open Source Software 

OSS requirements, to the extent that they can be identified, tend to be 
distributed across space, time, people, and the artifacts that interlink them. OSS 
requirements are thus decentralized—that is, they are decentralized requirements 
that co-exist and co-evolve within different artifacts, online conversations, and 
repositories, as well as within the continually emerging interactions and collective 
actions of OSSD project participants and surrounding project social world. To be 
clear, decentralized requirements are not the same as the (centralized) requirements 
for decentralized systems or system development efforts. Traditional software 
engineering and system development projects assume that their requirements can 
be elicited, captured, analyzed, and managed as centrally controlled resources (or 
documentation artifacts) within a centralized administrative authority that adheres to 
contractual requirements and employs a centralized requirements artifact 
repository—that is, centralized requirements. In this way as in others, OSSD projects 
represent an alternative paradigm to that long advocated by software engineering 
and software requirements engineering community (Scacchi, 2009). 

By the standards of classical software development and requirements 
practice, OSS requirements and processes are not satisfactory. Requirements are 
expressed indirectly at best; they are scattered across mailing lists, discussion 
boards, and bug trackers rather than collected in one place; they appear to be 
integrated only in the implementation of the system they refer to; they are almost 
universally stated in solution terms, not problem terms; once stated and discussed, 
they rarely appear to be referred to. 

An RE researcher or practitioner might well look at dispersed statements such 
as these and simply conclude that requirements were for practical purposes absent 
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by any reasonable or ordinary standard; if such decentralized, indirect requirements 
were used for a classical software development project, it would be judged to be at 
high risk of failure. 

One would think therefore that many open source projects should fail—and 
they do, in large numbers. About 59% fail according to one study (Wiggins & 
Crowston, 2010), roughly double the 31% rate at which classical projects are 
reported to fail according to a 1994 survey (Standish Group, 1994). Of course failure 
means something different for an OSSD project; there is no concept of over budget 
or behind schedule, and failed OSSD projects tend to wither away rather than being 
canceled. Nevertheless, the comparison is startling. 

Though most OSSD projects fail to produce a sustained sequence of widely-
used software system releases, a substantial number are striking successes. 
Hundreds of OSSD projects are critical in a number of areas: 

 the operation of the World Wide Web (the Firefox and Chrome web 
browsers and the Apache Web servers and Web services 
infrastructure), 

 interactive software development (Eclipse and NetBeans development 
environments), 

 customer relationship management (SugarCRM), 

 database management systems (PostgreSQL, MySQL), 

 operating systems (GNU/Linux, Darwin/OSX), 

 office communications systems (Asterix), 

and many more. 

Clearly OSSD processes are capable of producing high quality software 
systems, despite scanty requirements artifacts and processes. We see the use of 
provisionments to make statements about the functionality of current and future 
system versions as one key factor, particularly convenient for an ongoing project 
producing version after version, each of which is described not in absolute terms but 
in terms of its differences from the previous one. Others may include developing an 
(informal) architecture and reasoning about it, in place of developing requirements 
and reasoning about requirements; using extensibility (see below), developer 
prototypes, and frequent releases of new system versions to explore the problem 
space by experimenting with alternative solutions within it; the fact that OSS 
developers are also users of the systems they develop; and the extensive 
discussions of system issues and proposals, characteristic of OSSD projects, in 
online forums that are public and persistently available. 
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We note that many prominent OSS systems are strongly extensible, with 
mechanisms by which the core functionality of the system may be extended 
independently, without affecting the system core. These mechanisms allow end-
users to customize their copy of a system to suit their own needs and preferences, 
and in many cases allow developers to expeditiously prototype candidate 
provisionments. Examples of extensibility include Unix, supporting the addition of 
shell scripts, commands, libraries, and device drivers; Firefox, Eclipse, jEdit, and 
others, supporting the addition of plug-ins; and Firefox and jEdit again, and others, 
supporting the use of scripting languages. In addition to satisfying the system quality 
requirement (QR) of extensibility, extension mechanisms can also contribute to the 
requirement, for project success and continuation, to bring new contributors into the 
project community. Writing extensions for one’s one copy of a system is an easy and 
appealing first step towards making more substantial contributions to the project that 
produces the system. 

Extensibility and several other quality requirements will be seen to play 
important roles in games and OA systems too. 

Viewing OSSD from a classical RE standpoint, we still note some concerns. 
Classical RE has approaches for identifying relevant stakeholders, and we see no 
corresponding practice in OSSD. We are concerned that OSSD projects will tend not 
to identify stakeholder roles in which the stakeholders are not developers and (for 
whatever reason) not motivated to come forward and contribute. We are also 
concerned about the effectiveness of OSSD in exploring the problem space, as 
opposed to the solution space. If such exploration is occurring, it is doing so 
inconspicuously. 

We also do not claim that developers can easily see into their own goals and 
needs; they are only human, after all. We note only that what corresponds to 
elicitation may be more straightforward since the communication step vanishes. 

Software Game Mods 

Many software games are extensible and thus can be modified by their users 
to produce new games, ranging from simple modifications obviously similar to the 
host game to others almost unrecognizable as related to their hosts. 

User-modified computer games, hereafter referred to as game mods, are a 
leading form of user-led innovation in game design and game play experience. 
Game mods, modding practices, and modders are in many ways quite similar to 
their counterparts in the world of OSS development, even though they often seem 
isolated to those unaware of game software development. Modding is increasingly a 
part of mainstream technology development culture and practice, and especially so 
for games. Modders are players of the games they reconfigure, just as OSS 
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developers are users of the systems they develop. There is no systematic distinction 
between developers and users in these communities, except for the many 
users/players that contribute little beyond their usage and their demand for more 
such systems. Modding and OSSD projects are in many ways comparable 
experiments to prototype alternative visions of what innovative systems might be in 
the near future, and so both are widely embraced and practiced as a means for 
learning about new technologies, new system capabilities, new working relationships 
with potentially unfamiliar teammates from other cultures, and more (Scacchi, 2007). 

Game conversion mods are perhaps the most common form of game mods. 
Most such conversions are partial, in that they add or modify in-game characters, 
game resources such as weapons, potions, or spells, play levels, zones, 
landscapes, game rules, or play mechanics. In these cases, the conversion can 
often best be described in terms of provisionments of the host game. More ambitious 
modders go as far as to accomplish either total conversions that create entirely new 
games from existing games of a kind that are not easily determined from the 
originating game, or even parodies that implicitly or explicitly spoof the content or 
play experience of one or more other games via reproduction and transformation. 

One of the most widely distributed and played total game conversions is the 
Counter-Strike (CS) mod of the Half-Life first-person action game from Valve 
Software. The CS mod attracted millions of players preferring to play it over the 
original Half-Life game. Other modders began to further convert the CS mod in part 
or fully, to the point that Valve Software modified its game development and 
distribution business model to embrace game modding as part of the game play 
experience provided by the Half-Life product family. Valve has since marketed a 
number of CS variants. As of 2011, Valve Software had sold over 25 million copies 
of CS and its descendants (Makuch, 2011). 
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Figure 3. A Screenshot of Chex Quest, a Nonviolent Mod of Doom (Image 
Courtesy of User Vulpis Alba) 

Other player-modders have produced meta-mods, or mods that can 
themselves be modded, such as Garry’s Mod of Half-Life 2. Garry’s Mod has 
evolved into a modding toolkit used in hundreds of game conversions and producing 
inventive game play mechanics. Game conversions can also exhibit innovations in 
game design and re-purposing. The game Chex Quest is a conversion of the first-
person shooter game Doom into a non-violent game distributed in Chex cereal 
boxes and targeted to young people and gamers (Figure 3). 

Extensibility to support the creation of mods has become a necessary feature 
for a successful game. 

Open Architecture Software Ecosystems 

As we note in our previous work (Alspaugh, Asuncion, & Scacchi, 2009, 2013; 
Alspaugh, Scacchi, & Asuncion, 2010; Scacchi & Alspaugh, 2012b), a substantial 
number of development organizations have adopted a strategy in which a software-
intensive system is developed with an open architecture (OA; Oreizy, 2000), 
integrating components that may be OSS or proprietary with open application 
programming interfaces (APIs). Such systems evolve not only through the evolution 
of their individual components but also through replacement of one component by 
another, possibly from a different producer or under a different license. With this 
approach, the development organization becomes an integrator of components 
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largely produced elsewhere and interconnected through open APIs, with shim code 
added as necessary to achieve the desired result. This approach allows 
development of large systems of complex components, with relatively little coding 
needed. Requirements artifacts and processes are not prominent here. Instead, we 
see a prototyping process and a system described in terms of provisionments rather 
than requirements. 

One reason that reasoning with provisionments is appealing for OA systems 
is that the integrator cannot choose arbitrary functional capabilities. Instead, there 
are a limited number of alternative components to select among, and one must 
simply take what is available. As the components evolve the same situation recurs, 
in that the functional capabilities may change from version to version, and the 
integrator must work with what is available. The most straightforward approach is 
simply to reason based on what the selected components provide. 

A second reason is that individual components such as Firefox do not come 
with Classical Requirements that could be used to reason about requirements for the 
overall system. 
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Figure 4.  Ecosystem From Which Instantiations of the System Architecture 
Can Be Drawn 

The possible components that can be incorporated into a system define an 
ecosystem for it. Figure 4 sketches a potential ecosystem for a system composed of 
a Web browser, word processor, email and calendar component, and any scripts 
and shim code the integrator produces to knit them all together and achieve the 
desired functionality. If we hypothetically consider the requirements of the composed 
system, we note that the requirements would necessarily be decentralized, since 
whatever requirements process we used for the overall system would be 
independent of that used for each individual component. If we were able to get 
requirements for each component (which in general is not possible) and integrate 
them to arrive at requirements for this version of the overall system, this central 
requirements artifact would last only until the next component version was released, 
sending the situation back to decentralized requirements. 

In practice, integrators appear to follow the lead of the developers of the OSS 
components and work with provisionments. The acceleration of evolution caused by 
integrating the independent supply chains for the components currently selected is 
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driving a need to understand decentralized requirements and reason in terms of 
decentralized provisionments. 

Related Work 
Requirements in Open Source Development 

Scacchi (2002) was the first to systematically observe and posit the idea that 
OSS system and development processes do not rely on producing and review of 
formal functional requirements documents. Instead, OSS development projects 
commonly rely on “software informalisms,” no matter what the application domain, 
nor who the developers may be. Such informalisms are rendered within online 
artifacts like bug reports, messages in a discussion forum, online chat transcripts, 
and so forth that developers use to communicate their interests about different 
aspects of a system, its development, its user experience, or its need to evolve in 
some way. He found that OSS requirements often were described after the 
functionality they prescribe had already been implemented and found to be viable or 
practical—requirements after the fact. By 2009, Scacchi had identified a set of more 
than 20 different types of informalisms in use across different open source 
development (OSSD) projects, such that a given project might routinely use five to 
10 informalisms, with different projects utilizing different mixes of software 
informalisms so that no specific set seems to dominate (Scacchi, 2009). The 
informalisms identified were (a) project email; (b) discussion forums, electronic 
bulletin boards, and group blogs; (c) news postings; (d) instant messaging; (e) 
project digests summarizing (a)–(d); (f) usage scenarios as linked Web pages or 
screenshots; (g) how-to guides; (h) to-do lists; (i) Frequently Asked Questions lists; 
(j) project Wikis; (k) traditional system documentation; (l) external publications; (m) 
project licenses; (n) open software architecture diagrams; (o) intra-application 
functionality in scripting languages; (p) externally developed software modules 
(“plug-ins”); (q) software modules reused from other OSS projects; (r) project Web 
sites or portals; (s) project source code Web directories; (t) project repositories such 
as CVS; (u) bug reports; and (v) issue tracking databases such as Bugzilla. 
Provisionments may be found in many of these informalisms—especially (a–e), (u), 
and (v)—but the category of provisionments is orthogonal to them and, we believe, 
significant in itself. 

German (2003) described five sources for requirements for the GNOME 
project, based on his experience as a contributor. He termed them vision (a leader 
proposes a list of requirements), reference application (an outside system is to be 
imitated), asserted requirement (arising from discussions among contributors), 
prototype (an implementation illustrating a proposed feature to be discussed), and 
post-hoc requirement (like a prototype, but offered as a ready-to-integrate 
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implementation of a feature the contributor desires). Provisionments are most 
closely involved with German’s prototypes and post-hoc requirements. 

Noll (2008) examined the published requirements document for the Web 
browser version Firefox 2.0, identifying where each of the 14 items was first 
mentioned, how it was implemented, and why each was initially proposed. Eight 
were asserted by developers from their personal experience or knowledge of user 
needs, three were requested by users, and one was driven by a feature in 
competing browsers. This highlights that although OSS developers are themselves 
users, non-developer users also play a role in OSS evolution. 

Noll and Liu (2010) also examined requirements for the OpenEMR electronic 
medical records project, finding comparable proportions contributed by developers 
versus users. Each feature was briefly discussed in the project’s online developers 
forum, which they characterized as requirements validation and agreement. We 
found the OpenEMR requirements or features to be more difficult to classify, for 
example “Support for deleting immunizations,” and hypothesize that each acts as a 
token for the corresponding forum discussion. 

Requirements and Architecture 

The close relationship between requirements and architecture suggests that 
the affordances provided by requirements in classical development may somehow 
be provided through architectural means in OSSD. 

Nuseibeh (2001) proposed the Twin Peaks model as an expression of the 
interrelation of requirements and architecture: Problem concerns and solution 
concerns cannot in general be addressed in sequence, rather needing to be 
addressed concurrently. The model conveys a back-and-forth alternation treating 
both requirements and architecture in increasing detail. 

De Boer and van Vliet (2009) argued that the traditional distinction between 
requirements and architecture is misguided, and that there is no fundamental 
difference between them, saying “architecturally significant requirements [ASRs] are 
in fact architectural design decisions [ADDs], and vice versa.” Both are optative 
statements characterizing what is desired, and by their nature earlier optative 
statements constrain what later optative statements can be made. 

Diallo, Sim, and Alspaugh (2007) found that of systems with published 
development artifacts, only toy systems for textbooks have both complete 
requirements and a complete architecture. Of the remainder, roughly half had a 
complete architecture, another quarter had complete requirements, and the 
remainder had neither. We believe this occurs because requirements and 
architecture are to a certain degree redundant, so that developers have no need to 
develop both fully. 
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All this work suggests that if expected OSS requirements artifacts or 
processes do not appear to be present, the purposes of those artifacts and 
processes may be achieved through architectural means. 

Discussion 
Are OSS Requirements “Good”? 

This is a fascinating question to which we have no definitive answer. 

In one sense, the answer is “most definitely not.” The previous career of one 
of us (Alspaugh) included work as a developer, team lead, manager, and consultant 
occasionally called in to help struggling development projects. In each case, the 
struggles could usefully be ascribed to problems with the project’s requirements 
artifacts and processes, in that attacking those problems brought the projects in 
each case onto a path that could (and usually did) lead to success, and the OSS 
requirements–like artifacts and processes we examined evoke the problematic ones 
of those projects. 

However, the OSS data we examined in this study was not from troubled 
projects but from flourishing ones. We conclude that at least some of the work that 
Classical Requirements accomplishes is being done in another domain with 
processes appropriate to that domain; our hypothesis, potentially supported by some 
of the data we examined, is that some of it is being done in the software architecture 
domain, through processes that are more what we would expect though here again 
the artifacts do not appear to be overt. 

We note again that CSS bug reports and feature requests and the processes 
for managing them look much like those for OSS. 

Centralized vs. Decentralized 

Rather than a single central requirements or provisionments repository or 
document, updated as necessary, OSS projects almost universally appear to use 
email threads, electronic bulletin boards, and similar sequences of archived 
interactions as a record of them (and of virtually everything else, it appears). 

This choice prevents overall consideration and analysis of the provisionments 
as a whole. However, it may support a deeper goal for OSSD projects: creating and 
sustaining a community of contributors. The ongoing conversation, archived online 
so potential contributors can dip into it to see if interests them, provides an ongoing 
sequence of nudges to participate and a continuing reinforcement of community 
membership to those who do participate. This may be more valuable and 
fundamental than any incremental benefits likely to accrue from unifying the 
information into a single document. 
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Is OSSD Efficient? 

There do not appear to be data on this question yet. It is not clear that 
successful OSS projects produce results as expeditiously or more so than CSS 
projects do; they may well be slower in calendar time or take more person-months. 
Certainly the importance of schedules and budgets in CSS could drive more efficient 
development. Brooks noted that one would expect communication to be a more 
serious bottleneck for OSS than for CSS (Brooks, 2010), though we note this may 
be ameliorated by the reduction or elimination of communication between 
developers and stakeholders, since OSS developers are themselves users and 
stakeholders. 

Would OSS Benefit from Classical Requirements? 

Perhaps, but the answer is not clear; at this stage, we can only speculate. If 
the user-developers are identifying stakeholder needs sufficiently well and those 
needs are addressed sufficiently well by the incremental revisions that appear to 
characterize OSSD, then probably not. However if the needs would be best 
addressed by a reconsideration of the problem and a more radical change in the 
solution, Classical Requirements has advantages to offer. 

We note the truism that a new solution to a problem opens the eyes of its 
users to new problems not previously considered. A product that is evolving at a 
sufficiently rapid pace (and OSS systems are considered to evolve rapidly) may be 
obtaining many of the benefits of problem-space requirements processes through 
solution-space development processes. 

Are Provisionments Advantageous? 

We see an increasing trend of rapidly-evolving systems described and 
reasoned about in terms of whole-system provisionments, or of component 
provisionments related through the system’s architecture (Alspaugh, Asuncion, & 
Scacchi, 2009, 2013; Alspaugh, Scacchi, & Asuncion, 2010; Scacchi & Alspaugh, 
2012a). This may not only be increasingly typical but also in fact the appropriate 
approach for reasoning about a stakeholder problem and complex system solution, 
that is to be implemented by combining complex components. Such an approach 
manages complexity by reasoning in terms of the capabilities of known (though often 
themselves complex) components, arranged in architectural configurations in which 
the capabilities combine to address a problem. It manages ongoing evolution by 
describing future behavior in terms of differences from past behavior. 
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Are Provisionments Limited to OSS? 

No, they are not; we have seen them in our work as professional CSS 
developers, most prominently in bug reports and to a lesser extent in feature 
requests where they serve the same purposes as in OSS. 

Some professional CSS developers with whom we have discussed this 
research report that the requirements they work with might frequently be more 
accurately described as provisionments. And as we noted previously, OA system 
development often appears to be guided by reasoning with provisionments, whether 
the integrators are an OSS project or a proprietary development group, and with 
good cause. 

As we and many other researchers have noted, there is now far more data 
available from OSS development projects than there is from CSS projects, to which 
researchers typically have limited or no access. We recall the challenges we have 
faced in attempting to get access to proprietary development requirements in order 
to do research. Based on our results so far, we expect provisionments will be found 
to be in wide use in OSS development, or even in virtually universal use since they 
align so naturally with reported OSSD processes. It will be more difficult to assess 
the degree to which provisionments are used in CSS development, but based on 
what we have learned, we believe their use is widespread there also. 

Conclusion 
In this paper we examined the apparent contradiction between the success of 

at least some OSS systems and their lack of what may be termed classical 
requirements artifacts and processes or Classical Requirements. Then we listed four 
research questions. Here we summarize the answers arising from our study and our 
examination of related work. 

(RQ1) To what extent do OSS projects in fact use Classical Requirements? In 
the data we examined, Classical Requirements was almost completely absent. We 
found requirements-like artifacts and some requirements-like processes, but virtually 
nothing exhibiting the three characteristics by which we defined Classical 
Requirements in a previous section. 

(RQ2) Where OSS projects do not use Classical Requirements, what artifacts 
and processes are used instead, if any? The most prominent requirements-like 
artifacts we identified were provisionments, statements of features or qualities in 
terms of the attributes provided by an existing software version, a competing 
product, or a prototype produced by a developer advocating the change it embodies. 
These were ubiquitous in the data we examined. The processes were more difficult 
to characterize; perhaps the most common requirements-like process we saw was 
the discussion of provisionments in terms of solution-space issues. We hypothesize 
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that architectural reasoning and discussion played a role as well, but did not find 
strong evidence for it; we may have been looking in the wrong places for that. 

In summary, OSS’s lack of Classical Requirements results in some of the 
undesirable outcomes predicted by the broad consensus of software experts and 
researchers, but not all of them. In some contexts the advantages of OSS appear to 
outweigh this disadvantage. Further research will be needed to obtain more 
definitive answers and to provide guidance to making the most effective use of OSS 
development approaches. 
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Moving Towards Formalizable Security Licenses 
Abstract 

Security policies informally stipulate functional and non-functional 
requirements for how software systems should be designed and implemented to 
defend the system against attack. These policies must be both human-readable and 
computationally enactable. Stakeholders must be able to read and understand them 
in order to assess whether a policy meets the stakeholder’s needs. Software 
development environments must be able to compute with them in order to integrate 
components in ways that continuously assure the compliance with security policy 
specification. Computational processing of security requirements is particularly 
important when integrating unrelated components from a variety of software 
producers, as is increasingly the case. We introduce security licenses as a new 
approach for meeting both these goals. We have used an analogous approach for 
calculating how the software copyright licenses of open source and proprietary 
components interact in open architecture systems whose components come from 
disparate suppliers. The restricted natural language specification of security licenses 
provides readability, while the formal structures underlying them support 
computations to identify conflicts and gaps, provide guidance, and assess the results 
for the integrated system. 

Introduction 
Security policies and similar artifacts express a range of security 

requirements and mechanisms, such as 

1. discretionary versus mandatory access control lists; 

2. firewalls; 

3. multi-level security; 

4. authentication (certificate authorities, passwords); 

5. cryptographic support (e.g., public key certificates); 

6. encapsulation (e.g., virtualization, abstract APIs), hardware isolation 
schemes (Sun, Wang, Zhang, & Stavrou, 2012), and access control 
type enforcement capabilities; 

7. data content or control signal flow logging/auditing; 

8. honey-pots and traps; 

9. functionally equivalent but diverse multi-variant software executables 
(Franz, 2010; Salamat, Jackson, Wagner, Wimmer, & Franz, 2011); 
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10. security technical information guides (STIGs) for configuring the 
security parameters for applications (Defense Information Systems 
Agency, 2011) and operating systems (Smalley, 2012); 

11. secure programming practices (Seacord, 2008); and 

12. standards for development organization processes and practices 
(ISO/IEC, 2005). 

Some of these are computer processable, and others are easy for 
stakeholders to read and understand. However, few seem to be both. The 
processable items are typically at a low level (e.g., user I/O privileges specified by 
mandatory access control lists) while the easily-understood items are typically at a 
high level. The reader will also note that these are software implementation choices 
or software process choices rather than system architectural choices or security 
requirements/policy choices. Between these mechanisms and a workable concept of 
a comprehensive security policy for a system or its substantial components is a gap, 
with no obvious way to bridge it. 

 There is no common framework or conceptual basis with which to 
systematically specify, integrate, and evaluate mechanisms in 
combination, particularly at the software architectural level where 
diverse components are interconnected into buildable system 
configurations. It is unclear how the various security mechanisms are 
related and how one may contribute to or interfere with another. 

 Guidance is scant for analysts, architects, and developers who need to 
decide which security mechanism to use where, when, how, and why; 
and also for system integrators and administrators who need to decide 
how to update the selection of mechanisms and their configuration 
within a system as security needs and policies evolve. 

No satisfactory framework exists in which software security policy elements or 
mechanisms can be assembled into common or reusable patterns that can be 
designed and combined in a software system architecture to meet specific high-level 
security policies and requirements. 

We believe there is an opportunity to address security challenges throughout 
the system development and deployment process using security licenses. 

In our previous work (Alspaugh, Asuncion, & Scacchi, 2009, 2011, 2012; 
Alspaugh, Scacchi, & Asuncion, 2010; Alspaugh, Scacchi, & Kawai, 2012; Scacchi & 
Alspaugh, 2012) we showed how software copyright licenses for independently 
developed system components can be used to guide architectural choices and 
evaluate rights and obligations for the system as a whole, even when components 
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are governed by different licenses. Using our approach, a system architect can work 
both down from the top, propagating desired license rights for the system down to 
individual components to see what license obligations are required to obtain those 
rights, and up from the bottom, combining license rights and obligations for 
components and then subsystems into the total rights and obligations for the system. 
In either direction, our approach identifies conflicts or mismatches among licenses in 
the architecture. 

We propose an analogous approach for security licenses. System analysts 
and architects choose an appropriate security license or create a new one from 
desired security rights and acceptable security obligations, assign a candidate 
security license to each subsystem or component, and calculate the interactions 
between these choices at every level from an individual component up to the 
complete system. Of course assigning a particular security license to a component 
does not guarantee the component’s developer will make it satisfy its security 
obligations, any more than accepting a component under the GNU General Public 
License (GPL; Free Software Foundation, 2007) guarantees that the system’s 
stakeholders will satisfy all the obligations GPL imposes. But assigning a license 
(whether security or copyright) to each component records the assumptions being 
made about that component and its use, and evaluating those licenses in the context 
of the system’s architecture identifies mismatches and conflicts among those 
assumptions for that architecture’s design choices. When the evaluation is 
automated, as it is in our work (Alspaugh et al., 2011), it forms the foundation for 
design guidance with respect to the issues raised by the licenses, and a means for 
combining components with potentially dissimilar licenses in a configuration that can 
satisfy all of them. This means we can determine the overall interaction and effect of 
the security mechanisms that are expected to satisfy the obligations and of the 
security requirements and policies that the rights express. 

Effectiveness, Manageability, Evolvability 
Consider the case of the development of an open-architecture (OA) software 

system that integrates proprietary closed source (executable binaries) and open 
source code components from a variety of producers who do not coordinate their 
security activities or run-time capabilities. From the point of view of ensuring 
security, this is arguably the worst possible case, but it is an increasingly prevalent 
development model (Alspaugh et al., 2010). The OA approach gives access to a 
wide selection of complex components of high quality and allows the system to 
evolve as quickly as its integrators can find appropriate new versions or new 
components and evolve their architecture and shim code to accommodate them. 

Since the producers do not coordinate, they are unlikely to use the same 
security approaches, and indeed may not even publish what those approaches are. 
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To control security in the resulting system, each component is enclosed in a 
containment vessel (Scacchi & Alspaugh, 2013) that isolates the component with a 
hypervisor (Xen Hypervisor Project, 2012) and mediates all communication with the 
component (method/function calls, data streams) through shim code that monitors 
and restricts it. 

A typical current-day technique (Luo & Du, 2011) for managing security 
measures is to use low-level implementation mechanisms like capability lists to 
control each user/component’s access to resources such as function calls and data 
updates. Each access is delayed briefly while the monitor checks the access against 
the accessing component’s capability list, then blocked if the component was not 
granted the capability to access that resource. In our experience, each capability list 
is a text file listing allowed or forbidden capabilities, managed manually; new 
capabilities are typically added to the end of the file. In general, there appears to be 
no formal model supporting relationships among capabilities, thus interactions 
between capabilities must be identified and managed manually. This becomes 
extraordinarily tedious once the number of software components and diversity of 
user roles increases. The text files are detailed, which is a positive aspect, but 
therefore also long and mind-numbingly tedious, so errors inevitably creep in and 
are not noticed. All too often, available and viable low-level security capabilities are 
not utilized because they are so unwieldily, and their interactions are opaque. 
Because a capability list has no architectural, hierarchical, or recursive structure, 
managing them is not scalable. High-level security policies and low-level security 
capability mechanisms just don’t mesh well at present, and thus too often 
preventable security gaps arise and persist. 

A more sophisticated approach is possible using a declarative policy 
language such as Ponder (Damianou, Dulay, Lupu, & Sloman, 2001) or an 
ontology-based language such as KAoS (Uszok, Bradshaw, Johnson, et al., 2004) 
that groups capabilities hierarchically, in ontologies (KAoS) or grouped by roles 
(Ponder). However, they have no provision for organizing capabilities by software 
components that can be configured into tractably secure system architectures. 

Human Readable, Computer Processable 
In our previous work, we formalized software copyright licenses and the 

relations among them by identifying the actions involved in the rights granted by 
each license and the obligations imposed in return for each right. We placed these 
actions in a description logic ontology that specified which actions were equivalent, 
which overlapped, and which were subsumed by which others (in a particular 
interpretation of the licenses). We analyzed each license into specific rights and their 
entailed obligations, each involving an actor, a modality (may, need-not, must, must-
not), an action, and the parameters of the action. With this basis, we annotated each 
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component of an architecture with its license; the component (and in some cases 
nearby components, other revisions of the component, etc.; see our previous work 
for a more detailed discussion (Alspaugh et al., 2009, 2011; Alspaugh, Scacchi, & 
Kawai, 2012) was bound to parameters of the license, and the specific rights and 
obligations involving that component could then be calculated. From these, it 
became possible to calculate conflicts and gaps between the rights and obligations 
for individual components in the architecture, and to calculate the rights (if any) and 
obligations for the system as a whole. Where there were questions about why a 
particular right, obligation, conflict, or gap was present, the calculations also 
provided explanations and (for conflicts or gaps) guidance on possible resolutions. 

Security Licenses 
A security license is analogous to an ordinary software copyright license such 

as GPL. Software licenses consist of intellectual property (IP) rights granted by the 
licensor, in exchange for corresponding license obligations imposed on the licensee. 
A license presents the rights that are offered, and for each right enumerates the 
obligations that are required in order for that right to be granted. Many of the actions 
required for the obligations are related to the actions allowed by the rights. This is 
particularly so for open-source licenses, for which fulfilling some of the obligations 
requires parts of the rights that are granted. Also in open-source licenses, the 
obligations and rights are framed to take effect in an architectural context, with most 
obligations taking effect with respect to either the component for which rights are 
granted or component(s) determined by the connectors and architectural topology 
around that component. Because software licenses are commonly expressed 
informally in natural language, the rights and obligations are often presented in an 
intermingled manner, and much of a license may be devoted to defining terms, 
classes of entities referred to, and conditions under which the various provisions 
take effect. But the conceptual structure remains that of a list of rights offered, each 
in exchange for specific obligations to fulfill. 

Our innovation is to similarly but formally specify components’ security rights 
and obligations in restricted natural language, which we can then model, analyze, 
and support throughout the system’s development and evolution, and use to guide 
its design and instantiation. 

Structuring the security policies as licenses gives a form that is more readily 
accessible to human readers and helps convey intention and rationale by relating 
each obligation to the right it contributes toward. But we do so in ways that allow for 
automatic calculation of the interaction of rights and obligations throughout the 
interconnection neighborhood of each component, the subsystem containing the 
component, and so on recursively on up to the system as a whole (Alspaugh et al., 
2009, 2011). Where the security licenses assigned to the components in the 
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architecture conflict or misalign, automated support can identify the provisions in 
conflict, locate the conflict to the modules involved, and provide explanations 
showing the architectural chain of effects that led up to the conflict (Alspaugh et al., 
2011). Perhaps most importantly, it supports automation of the analysis of 
interactions between security measures and of the assessment of the system’s 
overall degree and kind of security as a function of the measures taken for each 
component, group of components, subsystem, and so forth recursively up to the 
system as a whole. 

We present these possible security rights and obligations as an indication of 
what sorts of actions might be regulated by security licenses for data organized into 
security compartments and code organized into components. 

Some Possible Security Rights 

1. The right to read/add/remove data in compartment T. 

2. The right to replace component C with another component D. 

3. The right to update component C to newer version C′. 

4. The right to revert component C to older version C′.  

5. The right to add/update component C in a specified architectural 
configuration. 

6. The right to alter the architectural topology of subcomponent B. 

7. The right to alter the architecture of system S. 

8. The right to add/update/remove security mechanism M in a specified 
configuration.  

9. The right to delegate security right R. 

10. The right to read the security license of component C. 

11. The right to replace the security license L of component C with another 
security license L′. 

12. The right to update security license L. 

Some Possible Security Obligations 

1. The obligation for user U to verify his/her identity, by password or other 
specified authentication process. 

2. The obligation for user U to have been vetted by authority A to 
exercise security right R. 

3. The obligation for user U to be delegated a one-time right by authority 
A to exercise security right R. 
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4. The obligation for component C to utilize security mechanism M. 

5. The obligation for component C to have been vetted by authority A to 
exercise security right R. 

6. The obligation for component C to have been vetted by authority A to 
be the object of security right R. 

7. The obligation for each component connected to component C to 
utilize security mechanism M. 

8. The obligation for each component connected to component C to allow 
it to exercise  security right R. 

9. The obligation for security license L to meet specified criteria. 

10. The obligation for security license L to be approved by authority A. 

Recent Events 
Coordinated international attacks on vulnerable software-intensive systems of 

high value and controlling complex systems are becoming ever more apparent. As 
the Stuxnet case demonstrates, security threats to software systems are multi-
valent, multi-modal, and distributed across independently developed software 
system components (Falliere, O Murchu, & Chien, 2011). The Stuxnet attacks 
entered through software system interfaces at either the component, application 
subsystem, or base operating system level, and their goal was to go outside or 
beneath their entry context. However, all of the Stuxnet attacks on the targeted 
software system could be blocked or prevented through security capabilities 
associated with OA system interfaces that would (a) limit access or evolutionary 
update rights lacking proper authorization, as well as (b) “sandboxing” (i.e., isolating) 
and holding up any evolutionary updates (the attacks) prior to their installation and 
run-time deployment. Furthermore, as the Stuxnet attack involved the use of 
corrupted certificates of trust from approved authorities as false credentials that 
allowed evolutionary system updates to go forward, it seems clear that additional 
preventions are needed that are orthogonal, external, and prior to, their installation 
and run-time deployment. 

Discussion and Conclusions 
Our efforts outline a number of contributions to this line of research and 

practice. 

First, software security licenses are based on the form and substance of 
formalized software copyright licenses. As our prior work has formulated and 
demonstrated, it is possible and practical to systematically develop human readable 
but computer processable formal specifications of copyright licenses. Subsequently, 
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this paper points the way towards the creation of human readable, yet 
computationally processable, formal specification of software security policies that 
can scale to complex system architectures that incorporate components subject to 
different, heterogenous license rights and obligations. 

Second, the ability to create formalized security licenses gives rise to the 
opportunity to create reusable security licenses that may correspond to common 
types of security goals or contexts. Here we reference the reusable license 
framework developed for original IP that are subject to one of the 12 possible 
copyright licenses available within the Creative Commons framework (Creative 
Commons, 2012). Such licenses are human readable and allow for automated 
compliance checking (within limits). 

Third, security licenses, like software copyright licenses, can be subject to 
both legal reasoning and software engineering rationalization. Copyright licenses are 
enforceable contractual agreements that courts recognize as defining legally-binding 
relationships between the licensor and licensee. Both compliance with and 
infringement of a license have economic consequences for licensees and design, 
configuration, and runtime consequences for developers, integrators, and users. So 
licenses represent a special class of software engineering construct that informs and 
constrains the choices made by software developers and integrators. Other areas 
subject to legal interpretation and engineering rationalization that might benefit from 
formalizable yet human readable licenses include end-user privacy agreements 
(regulating what kinds of data may be collected automatically, or by user 
agreement). 

Fourth, if security policies can be expressed in a formalizable, restricted 
natural language as we indicate, it is possible to develop automated tools and 
process techniques for specifying, modeling, and analyzing the overall security and 
integrity of a well-formed software system architecture. In our previous work, we 
demonstrated tools and techniques that can statically analyze whether a 
configuration of heterogeneously licensed components matches (i.e., is well-
formed), conflicts, or misaligns. A similar form of analysis for OA software can 
readily determine whether a overall system fails to satisfy its security license 
constraints, since if so, then the system is insecure and out of compliance by 
definition. Of course, security licenses do not solve the problem of system security in 
general, but they do provide a higher-level baseline or standard of excellence than 
commonly achievable with an informal natural language security policy document. 

Fifth, further advances in the creation of software development and run-time 
environments that continuously assess security license compliance automatically are 
possible. Such environment can potentially, for example, automate the instantiation 
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software build scripts that comply/enforce license obligations, while enabling security 
license rights code (e.g., low-level access control capabilities). 

Last, software security licenses are an important new class of software 
engineering construct. Calculations on the formalized security licenses of 
components in a system architecture can organize and guide the process of 
designing, developing, and configuring appropriately secure systems. This is a new 
way software engineering can contribute to developing and sustaining the security of 
complex, evolving software systems. 
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