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Abstract 

 There are between 150 and 200 parameters for measuring the performance 

of ship maintenance processes in the U.S. Navy.  Despite this level of detail, 

budgets and timelines for performing maintenance on the Navy’s fleet appear to be 

problematic.  Making sense of what these parameters mean in terms of the overall 

performance of ship maintenance processes is clearly a big data problem. 

The current process for presenting data on the more than 150 parameters 

measuring ship maintenance performance costs and processes, containing billions 

of data points, is still done by static, cumbersome spreadsheets.  The central goal of 

a recent research project was to provide a means to aggregate voluminous 

maintenance data in such a way that the causal factors contributing to cost and 

schedule overruns can be better understood by ship maintenance leadership. 

Big data visualization software was examined to determine if visualization 

tools could improve the understanding of U.S. Navy ship maintenance by its leaders.  

Our research concludes that the visualization of big data supports decision making 

by enabling leaders to quickly identify trends, develop a better understanding of the 

problem space, establish defensible baselines for monitoring activities, perform 

forecasting, and evaluate metrics for use. 

Keywords: Big Data, Big Data Visualization, Visualization Software, 3D 
Printing, 3D Laser Scanning Technology, Collaborative Product Lifecycle 
Management. 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - ii - 
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

THIS PAGE INTENTIONALLY LEFT BLANK  



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó= - iii - 
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

Executive Summary 

The extraordinary demand placed on U.S. armed forces requires that the 

highest levels of readiness be maintained.  The pressure to reduce costs, while 

maintaining the highest levels of readiness, compels each of our military services to 

periodically review internal processes to ensure responsible use of our nation’s 

resources.  One such process currently in review involves Department of Defense 

maintenance programs.  In FY2011, the U.S. Navy spent $682 million maintaining its 

destroyers, representing only 22% of the 286 ships currently in the fleet.  According 

to a 2012 Government Accountability Office report on ship readiness, by 2019, the 

U.S. Navy expects to have grown its fleet by another 14 ships to a total of 300.  The 

size of the U.S. Navy’s ship maintenance budget makes it a prime candidate for 

review. 

Reviewing ship maintenance programs is a complex task.  There are between 

150 and 200 parameters for measuring the performance of ship maintenance 

processes in the U.S. Navy.  Despite this level of detail, budgets and timelines for 

performing maintenance on the Navy’s fleet appear to be problematic.  Making 

sense of what these parameters mean is clearly a big data problem.  Fortunately, 

the value of big data analysis has become evident and many analysis solutions exist.  

Big data visualization was selected for closer examination and a sample of U.S. 

Navy ship maintenance availabilities were used to explore the technique. 

Big data visualization software was examined to determine if visualization 

tools could improve the understanding of U.S. Navy ship maintenance by its leaders.  

This report concludes that the visualization of big data supports decision making by 

enabling leaders to quickly identify trends, develop a better understanding of the 

problem space, establish defensible baselines for monitoring activities, perform 

forecasting, and evaluate metrics for use.  For U.S. Navy ship maintenance decision 

makers desiring ways to improve the speed and accuracy of their decisions, they 

should consider the use of visualization software in their industry.  To optimize the 

use of big data visualization, the authors recommend the continued and expanded 

collection of data, identification of performance accounting software for tracking, and 
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the use of forecasting once accurate ship maintenance performance baselines are 

established.  
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Visualization of Big Data Through Ship 
Maintenance Metrics Analysis for Fleet 

Maintenance and Revitalization 

Introduction 
Overview 

There are between 150 and 200 parameters for measuring the 
performance of ship maintenance processes in the Navy. Despite this level of 
detail, budgets and timelines for performing maintenance on the Navy’s fleet 
appear to be problematic. Making sense of what these parameters mean in terms 
of the overall performance of ship maintenance processes is clearly a “big data” 
problem. 

A team from the Naval Postgraduate School (NPS) was requested by 
Program Executive Office (PEO) Ships to work with naval ship maintenance 
metrics groups to provide additional options regarding how large datasets could 
be optimized.  The current process for presenting data on the more than 150 
parameters measuring ship performance maintenance costs and processes, 
containing billions of data points, is still done by static, cumbersome 
spreadsheets.  The central goal of this project was to provide a means to 
aggregate voluminous maintenance data in such a way that the causal factors 
contributing to cost and schedule overruns can be better understood by ship 
maintenance leadership.  By providing this kind of information in an intuitively 
visual form, leadership could be assisted in budget and scheduling decision 
making. 

The results of the project are presented in several sections in this report.  
In the Literature Review section, we review the big data world by looking at the 
$11 billion dollar industry in 2012.  We examine the issues, components, 
technologies, and tools surrounding big data.  In the section titled, “Governement 
Spending on Big Data,” the focus is on big data and the federal government, 
which spent approximately $5 billion in 2012 on national security and military 
applications.  Included in this section are public- sector big data projects, case 
studies, and lessons learned.  “Ship Maintenance Vignettes” are presented next 
to provide a framework for understanding ship maintenance activities in the U.S. 
Navy.   

The following  section, “Ship Maintenance Simulations,” illustrates the 
power of big data visualization software, with data provided by naval ship 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 2 - 
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

maintenance metrics groups.  It provides examples of how large datasets could 
be optimized with alternative presentation methods showing a ship’s 
maintenance status, including all operational costs and schedule deviations from 
planned maintenance.  It shows how visualization tools can dig deeper into 
numbers to improve how key information is summarized and ultimately used in 
making critical maintenance allocation decisions.  Data were collected on 19 U.S. 
Navy guided missile destroyers (DDG) including 21 maintenance availabilities for 
those 19 DDGs.  Information that was collected included definitized estimates 
prepared by subject matter experts (SMEs) in the planning process, along with 
the actual cost and availability data on three maintenance categories.  Two 
simulations were run testing the potential impact of incorporating select 
technologies on ship maintenance processes.  Conclusions and 
recommendations are presented in the final section. 

Literature Review 
Big Data 

The world is exploding in digital data.  IDC Corporation predicts that from 
2005 to 2020, the digital universe will grow by a factor of 300, from 130 exabytes 
to 40,000 exabytes, or 40 zettabytes.  Moreover, the digital universe will about 
double every two years from now to 2020, a 50-fold growth in 10 years as seen 
in Figure 1 (Gantz & Reinsel, 2012). 

More than five billion people are calling, texting, tweeting, and browsing on 
mobile phones worldwide and 350 million tweets are sent per day (Gantz & 
Reinsel, 2012).  Companies around the world are capturing trillions of bytes of 
information on customers, suppliers, and operations.  The McKinsey Global 
Institute (MGI; Manyika et al., 2011) estimates that global enterprises stored 
more than seven exabytes of new data on disk drives in 2010, while consumers 
stored more than six exabytes of new data on devices such as PCs and 
notebooks.  The U.S. government produced 848 petabytes of data in 2009.  Data 
collected by the U.S. Library of Congress as of April 2011 totals 235 terabytes. 
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Figure 1. The Digital Universe 
(Gantz & Reinsel, 2012) 

For the purposes of our research, we will use MGI’s definition of big data 
as “datasets whose size is beyond the ability of typical database software tools to 
capture, store, manage, and analyze” (Manyika et al., 2011).  There are many 
challenges with big data, including the ability to capture, store, curate, search, 
transfer, share, analyze, and visualize the data.  This section focuses on the big 
data eco structure.  It begins with a discussion of the market size, then discusses 
some of the tools and technologies used in big data analysis, and looks at federal 
government initiatives involving big data. 

The total big data market reached $11.59 billion in 2012 and was 
estimated to grow at an annual growth rate of 61% to $18.1 billion in 2013, 
according to Wikibon (Kelly, Floyer, Vellante, & Miniman, 2013).  Figure 2 shows 
revenue by type while Figure 3 gives a breakdown by component.  Big data 
consists of software, hardware, services, and storage. 
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Figure 2. Big Data Revenue by Type  
(Kelly et al., 2013) 

 

Figure 3. Big Data Revenue by Component 
(Kelly et al., 2013) 

In addition, Wikibon (Kelly et al., 2013) predicts the big data market to 
exceed $47 billion by 2017, growing at a 31% compound annual growth rate over 
the five-year period from 2012 to 2017, as seen in Figure 4. 
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Figure 4. Big Data Market Projection by Segment  
(Kelly et al., 2013) 

The Big Data Ecosystem 
Fueling the growth in big data sales are several factors: 

 increased awareness of the benefits of big data as applied to 
industries beyond the web, most notably financial services, 
pharmaceuticals, and retail;  

 maturation of big data software such as Hadoop, NoSQL (not only 
structured query language), data stores, in-memory analytic 
engines, and massively parallel processing analytic databases;  

 increasingly sophisticated professional services practices that 
assist enterprises in practically applying big data hardware and 
software to business use cases;  

 increased investment in big data infrastructure by massive Web 
properties—most notable Google, Facebook, and Amazon—and 
government agencies for intelligence and counter-terrorism 
purposes. (Kelly et al., 2013, Growth Drivers and Adoption Barriers, 
para. 3)) 

Wikibon has been tracking the market size, following more than 60 
vendors that include both big data pure-plays and others for whom big data is 
part of multiple revenue sources.  Table 1 is a current list of the vendors. 
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Table 1. 2012 Worldwide Big Data Revenue by Vendor ($US millions)  
(Kelly et al., 2013) 

Vendor  
Big Data 
Revenue  

Total 
Revenue  

Big Data 
Revenue 
as % of 
Total 
Revenue

% 
Big Data 
Hardware 
Revenue 

% 
Big Data 
Software 
Revenue 

% 
Big Data 
Services 
Revenue  

IBM  $1,306  $103,930  1%  19%  31%  50%  

HP  $664  $119,895  1%  34%  29%  38%  

Teradata  $435  $2,665  16%  31%  28%  41%  

Dell  $425  $59,878  1%  83%  0%  17%  

Oracle  $415  $39,463  1%  25%  34%  41%  

SAP  $368  $21,707  2%  0%  67%  33%  

EMC  $336  $23,570  1%  24%  36%  39%  

Cisco Systems  $214  $47,983  0%  58%  0%  42%  

PwC  $199  $31,500  1%  0%  0%  100%  

Microsoft  $196  $$71,474  0%  0%  67%  33%  

Accenture  $194  $29,770  1%  0%  0%  100%  

Palantir  $191  $191  100%  0%  36%  64%  

Fusion-io  $190  $439  43%  71%  0%  29%  

SAS Institute  $187  $2,954  6%  0%  59%  41%  

Splunk  $186  $186  100%  0%  71%  29%  

Deloitte  $183  $31,300  1%  0%  0%  100%  

NetApp  $138  $6,454  2%  77%  0%  23%  

Hitachi  $130  $112,318  0%  0%  0%  100%  

Opera Solutions $118  $118  100%  0%  0%  100%  

CSC  $114  $15,825  1%  0%  0%  100%  

Mu Sigma  $114  $114  100%  0%  0%  100%  

Booz Allen 
Hamilton  

$88  $5,802  1%  0%  0%  100%  

Amazon  $85  $56,825  0%  0%  0%  100%  

TCS  $82  $10,170  1%  0%  0%  100%  

Intel  $76  $53,341  0%  83%  0%  17%  

Capgemini  $72  $14,020  0%  0%  0%  100%  

MarkLogic  $69  $78  88%  0%  63%  38%  

Cloudera  $56  $56  100%  0%  47%  53%  

Actian  $46  $46  100%  0%  50%  50%  
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2012 Worldwide Big Data Revenue by Vendor ($US millions)  

Vendor  
Big Data 
Revenue  

Total 
Revenue  

Big Data 
Revenue 
as % of 
Total 
Revenue

% 
Big Data 
Hardware 
Revenue 

% 
Big Data 
Software 
Revenue 

% 
Big Data 
Services 
Revenue  

       

SGI  $43  $769  6%  83%  0%  17%  

GoodData  $38  $38  100%  0%  0%  100%  

1010data  $37  $37  100%  0%  0%  100%  

10gen  $36  $36  100%  0%  42%  58%  

Google  $36  $50,175  0%  0%  0%  100%  

Alteryx  $36  $36  100%  0%  55%  45%  

Guavus  $35  $35  100%  0%  57%  43%  

VMware  $32  $3,676  1%  0%  71%  29%  

ParAccel  $24  $24  100%  0%  44%  56%  

TIBCO 
Software  

$24  $1,024  2%  0%  53%  47%  

Informatica  $24  $812  2%  0%  63%  37%  

MapR  $23  $23  100%  0%  51%  49%  

Pervasive 
Software  

$22  $51  37%  0%  41%  59%  

Attivio  $21  $26  80%  0%  62%  38%  

Fractal 
Analytics  

$20  $20  100%  0%  0%  100%  

Hortonworks  $18  $18  100%  0%  50%  50%  

Rackspace  $18  $1,300  1%  0%  0%  100%  

QlikTech  $16  $321  5%  0%  74%  26%  

DataStax  $15  $15  100%  0%  59%  41%  

Basho  $14  $14  100%  0%  63%  38%  

Microstrategy  $13  $595  2%  0%  59%  41%  

Tableau 
Software  

$13  $130  10%  0%  59%  41%  

Kognitio  $13  $12  100%  0%  47%  53%  

Couchbase  $12  $12  $100%  0%  64%  36%  

Datameer  $10  $10  100%  0%  80%  20%  

LucidWorks  $9  $9  100%  0%  60%  40%  

Digital 
Reasoning  

$10  $10  100%  0%  51%  49%  
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2012 Worldwide Big Data Revenue by Vendor ($US millions)  

Vendor  
Big Data 
Revenue  

Total 
Revenue  

Big Data 
Revenue 
as % of 
Total 
Revenue

% 
Big Data 
Hardware 
Revenue 

% 
Big Data 
Software 
Revenue 

% 
Big Data 
Services 
Revenue  

Aerospike  $9  $9  100%  0%  80%  20%  

Neo 
Technology  

$9  $9  100%  0%  62%  38%  

Think Big 
Analytics  

$8  $8  100%  0%  0%  100%  

Calpont  $8  $8  100%  0%  60%  40%  

RainStor  $8  $8  100%  0%  67%  33%  

SiSense  $7  $7  100%  0%  40%  60%  

Revolution 
Analytics  

$7  $13  56%  0%  55%  45%  

Talend  $6  $51  12%  0%  80%  20%  

Jaspersoft  $6  $31  20%  0%  62%  38%  

Juniper 
Networks  

$6  $4,365  0%  70%  0%  30%  

Pentaho  $6  $31  19%  0%  62%  38%  

DDN  $4  $278  2%  63%  0%  38%  

Actuate  $5  $137  3%  0%  63%  37%  

Original Device 
Manufacturers  

$2,375  $100,000  2%  100%  0%  0%  

Other  $1,613  $197,170  1%  17%  13%  70%  

Total  $11,565  $1,244,602 1%  37%  19%  44% 

Big data is generated by a variety of sources.  Big data originates from 
sources including industry specific transactions, machine/sensor indications, web 
applications, and text (Ferguson, 2013).  Industry specific transactions can 
include call records and geographic location data.  Machines generate extremely 
large volumes of information every day and can range in complexity from simple 
temperature readings to the performance parameters of a gas-turbine engine.  
Big data on the web also ranges in format from machine language to customer 
comments on social networks and is also produced in considerably sizeable 
portions.  Text sources can include archived documents, external reports, or 
customer account information (Ferguson, 2013). 

Because big data comes from a variety of sources, it also possesses 
characteristics that distinguish it from data in the traditional context.  Common 
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terms used to define the qualities of big data include volume, variety, velocity, 
and value (Dijcks, 2013).  From this listing of sources, one can understand that 
the volume of data generated on a daily basis is enormous.  For example, Dijcks 
(2013) stated that just a single jet engine produces 10 terabytes of data in 30 
minutes.  Extrapolate that example to include all the aircraft currently airborne, 
and then include all the factory infrastructure around the globe collecting data on 
production, service life, and maintenance requirements, and the enormity of big 
data volumes begins to emerge.  Another characteristic of big data, variety, can 
be directly translated from the various sources into the variety of data formats.  
Various data formats require additional consideration to ensure the ability of all 
systems to share data.  Velocity, which is related to volume, is the frequency with 
which big data is created.  To illustrate velocity, consider the relative size of a 
single Twitter feed (140 characters) to the large number of feeds generated in a 
given time period (Dijcks, 2013).  Finally, value is the feature of big data that is 
important to any enterprise. Refer to Appendix A for a paper regarding the 
implications of big data on enterprise architecture (EA), the information 
technology infrastructure of an organization. 

Big Data Technologies and Tools 
Many techniques can be used to analyze datasets.  These techniques, 

which often draw upon statistics and computer science, can be applied to big 
data to generate insights into large and diverse datasets, as well as smaller, 
diverse datasets.  Table 2 summarizes some techniques. 

Table 2. Big Data Analysis Techniques  
(Manyika et al., 2011) 

A/B testing  Technique in which a control group is compared with a variety of test groups in order 
to determine what treatments (i.e., changes) will improve a given objective variable. 

 Big data enables huge numbers of tests to be executed and analyzed, ensuring that 
groups are of sufficient size to detect meaningful (i.e., statistically significant) 
differences between the control and treatment groups.

Association rule 
learning 

 Set of techniques for discovering interesting relationships (i.e., “association rules”) 
among variables in large databases.  

 These techniques consist of a variety of algorithms to generate and test possible 
rules.  

 An application is market basket analysis, in which a retailer can determine which 
products are frequently bought together and use this information for marketing (a 
commonly cited example is the discovery that many supermarket shoppers who buy 
diapers also tend to buy beer).  

 Used for data mining. 
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Classification  Set of techniques to identify the categories in which new data points belong, based 
on a training set containing data points that have already been categorized.  

 One application is the prediction of segment-specific customer behavior (e.g., buying 
decisions, churn rate, consumption rate) where there is a clear hypothesis or 
objective outcome.  

 These techniques are often described as supervised learning because of the 
existence of a training set; they stand in contrast to cluster analysis, a type of 
unsupervised learning.  

 Used for data mining. 
Cluster analysis  Statistical method for classifying objects that splits a diverse group into smaller 

groups of similar objects, whose characteristics of similarity are not known in 
advance.  

 An example of cluster analysis is segmenting consumers into self-similar groups for 
targeted marketing.  

 This is a type of unsupervised learning because training data are not used.  
 Used for data mining. 

Crowdsourcing  Technique for collecting data submitted by a large group of people or community (i.e., 
the “crowd”) through an open call, usually through networked media such as the 
Web. 

 This is a type of mass collaboration and an instance of using Web 2.0. 
Data fusion and 
data integration 

 Set of techniques that integrate and analyze data from multiple sources in order to 
develop insights in ways that are more efficient and potentially more accurate than if 
they were developed by analyzing a single source of data.  

 Signal processing techniques can be used to implement some types of data fusion.  
 One example of an application is sensor data from the Internet of Things being 

combined to develop an integrated perspective on the performance of a complex 
distributed system such as an oil refinery.  

 Data from social media, analyzed by natural language processing, can be combined 
with real-time sales data, in order to determine what effect a marketing campaign is 
having on customer sentiment and purchasing behavior. 

Data mining  Set of techniques to extract patterns from large datasets by combining methods from 
statistics and machine learning with database management. 

 These techniques include association rule learning, cluster analysis, classification, 
and regression.  

 Applications include mining customer data to determine segments most likely to 
respond to an offer, mining human resources data to identify characteristics of most 
successful employees, or market basket analysis to model the purchase behavior of 
customers. 

Ensemble 
learning 

 Using multiple predictive models (each developed using statistics and/or machine 
learning) to obtain better predictive performance than could be obtained from any of 
the constituent models.  

 This is a type of supervised learning. 
Genetic 
algorithms 

 Technique used for optimization that is inspired by the process of natural evolution or 
“survival of the fittest.”  

 Potential solutions are encoded as “chromosomes” that can combine and mutate.  
 These individual chromosomes are selected for survival within a modeled 

“environment” that determines the fitness or performance of each individual in the 
population.  

 Often described as a type of “evolutionary algorithm,” these algorithms are well-suited 
for solving nonlinear problems.  

 Examples of applications include improving job scheduling in manufacturing and 
optimizing the performance of an investment portfolio. 

Machine learning  Subspecialty of computer science (within a field historically called “artificial 
intelligence”) concerned with the design and development of algorithms that allow 
computers to evolve behaviors based on empirical data.  

 A major focus of machine learning research is to automatically learn to recognize 
complex patterns and make intelligent decisions based on data. Natural language 
processing is an example of machine learning. 
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Natural language 
processing (NLP) 

 Set of techniques from a subspecialty of computer science (within a field historically 
called “artificial intelligence”) and linguistics that uses computer algorithms to analyze 
human (natural) language.  

 Many NLP techniques are types of machine learning.  
 One application of NLP is using sentiment analysis on social media to determine how 

prospective customers are reacting to a branding campaign. 
Neural networks  Computational models, inspired by the structure and workings of biological neural 

networks (i.e., the cells and connections within a brain), that find patterns in data.  
 Neural networks are well-suited for finding nonlinear patterns.  
 Can be used for pattern recognition and optimization. Some neural network 

applications involve supervised learning and others involve unsupervised learning.  
 Examples of applications include identifying high-value customers that are at risk of 

leaving a particular company and identifying fraudulent insurance claims. 
Network analysis  Set of techniques used to characterize relationships among discrete nodes in a graph 

or a network.  
 In social network analysis, connections between individuals in a community or 

organization are analyzed (e.g., how information travels) or who has the most 
influence over whom.  

 Examples of applications include identifying key opinion leaders to target for 
marketing and identifying bottlenecks in enterprise information flows. 

Optimization  Portfolio of numerical techniques used to redesign complex systems and processes 
to improve their performance according to one or more objective measures (e.g., 
cost, speed, or reliability).  

 Examples of applications include improving operational processes such as 
scheduling, routing, and floor layout, and making strategic decisions such as product 
range strategy, linked investment analysis, and R&D portfolio strategy. 

  Genetic algorithms are an example of an optimization technique. 
Pattern 
recognition 

 Set of machine learning techniques that assign some sort of output value (or label) to 
a given input value (or instance) according to a specific algorithm.  

 Classification techniques are an example. 
Predictive 
modeling 

 A set of techniques in which a mathematical model is created or chosen to best 
predict the probability of an outcome.  

 Example of an application in customer relationship management is the use of 
predictive models to estimate the likelihood that a customer will “churn” (i.e., change 
providers) or the likelihood that a customer can be cross-sold another product.  

 Regression is one example of the many predictive modeling techniques. 
Regression  Set of statistical techniques to determine how the value of the dependent variable 

changes when one or more independent variables is modified. 
 Often used for forecasting or prediction.  
 Examples of applications include forecasting sales volumes based on various market 

and economic variables or determining what measurable manufacturing parameters 
most influence customer satisfaction.  

 Used for data mining. 
Sentiment 
analysis 

 Application of natural language processing and other analytic techniques to identify 
and extract subjective information from source text material.  

 Key aspects of these analyses include identifying the feature, aspect, or product 
about which a sentiment is being expressed, and determining the type, “polarity” (i.e., 
positive, negative, or neutral), and the degree and strength of the sentiment.  

 Examples of applications include companies applying sentiment analysis to analyze 
social media (e.g., blogs, microblogs, and social networks) to determine how different 
customer segments and stakeholders are reacting to their products and actions. 

Signal 
processing 

 Set of techniques from electrical engineering and applied mathematics originally 
developed to analyze discrete and continuous signals (i.e., representations of analog 
physical quantities [even if represented digitally] such as radio signals, sounds, and 
images).  

 This category includes techniques from signal detection theory, which quantifies the 
ability to discern between signal and noise.  

 Sample applications include modeling for time series analysis or implementing data 
fusion to determine a more precise reading by combining data from a set of less 
precise data sources (i.e., extracting the signal from the noise). 
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Spatial analysis  Set of techniques, some applied from statistics, which analyze the topological, 
geometric, or geographic properties encoded in a dataset. 

 Often the data for spatial analysis come from geographic information systems (GIS) 
that capture data including location information (e.g., addresses or latitude/longitude 
coordinates).  

 Examples of applications include the incorporation of spatial data into spatial 
regressions (e.g., how is consumer willingness to purchase a product correlated with 
location?) or simulations (e.g., how would a manufacturing supply chain network 
perform with sites in different locations?). 

Statistics  Science of the collection, organization, and interpretation of data, including the design 
of surveys and experiments.  

 Statistical techniques are often used to make judgments about what relationships 
between variables could have occurred by chance (the “null hypothesis”) and what 
relationships between variables likely result from some kind of underlying causal 
relationship (i.e., that are “statistically significant”).  

 Statistical techniques are also used to reduce the likelihood of Type I errors (“false 
positives”) and Type II errors (“false negatives”).  

 Example of an application is A/B testing to determine what types of marketing 
material will most increase revenue. 

Supervised 
learning 

 Set of machine learning techniques that infer a function or relationship from a set of 
training data.  

 Examples include classification and support vector machines. 
Simulation  Modeling the behavior of complex systems, often used for forecasting, predicting, and 

scenario planning. Monte Carlo simulations, for example, are a class of algorithms 
that rely on repeated random sampling (i.e., running thousands of simulations, each 
based on different assumptions).  

 Result is a histogram that gives a probability distribution of outcomes.  
 One application is assessing the likelihood of meeting financial targets given 

uncertainties about the success of various initiatives. 
Time series 
analysis 

 Set of techniques from both statistics and signal processing for analyzing sequences 
of data points, representing values at successive times, to extract meaningful 
characteristics from the data.  

 Examples of time series analysis include the hourly value of a stock market index or 
the number of patients diagnosed with a given condition every day. 

 Time series forecasting is the use of a model to predict future values of a time series 
based on known past values of the same or other series.  

 Some of these techniques (e.g., structural modeling) decompose a series into trend, 
seasonal, and residual components, which can be useful for identifying cyclical 
patterns in the data.  

 Examples of applications include forecasting sales figures, or predicting the number 
of people who will be diagnosed with an infectious disease. 

Unsupervised 
learning 

 Set of machine learning techniques that finds hidden structure in unlabeled data.  
 Cluster analysis is an example of unsupervised learning (in contrast to supervised 

learning). 
Visualization  Techniques used for creating images, diagrams, or animations to communicate, 

understand, and improve the results of big data analyses. 

There are a growing number of technologies used to aggregate, 
manipulate, manage, and analyze big data. Some of the more widely used 
technologies used to aggregate, manage and analyze big data are found in Table 
3. 
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Table 3. Big Data Analysis Technologies  
(Manyika et al, 2011) 

TECHNOLOGY COMMENTS
Big Table  Proprietary distributed database system built on the Google File System.  

 Inspiration for HBase. 
Business 
Intelligence  

 A type of application software designed to report, analyze, and present data.  
 Often used to read data previously stored in a data warehouse or data mart.  
 Also used to create standard reports that are generated on a periodic basis, or to 

display information on real-time management dashboards (i.e., integrated 
displays of metrics that measure the performance of a system). 

Cassandra  An open source (free) database management system designed to handle huge 
amounts of data on a distributed system.  

 System was originally developed at Facebook and is now managed as a project 
of the Apache Software foundation. 

Cloud Computing  A computing paradigm in which highly scalable computing resources, often 
configured as a distributed system, are provided as a service through a network. 

Data Mart  Subset of a data warehouse, used to provide data to users usually through 
business intelligence tools. 

Data Warehouse  Specialized database optimized for reporting, often used for storing large 
amounts of structured data.  

 Data uploaded using ETL (extract, transform, and load) tools from operational 
data stores, and reports are often generated using business intelligence tools. 

Distributed 
System 

 Multiple computers, communicating through a network, used to solve a common 
computational problem.  

 Problem is divided into multiple tasks, each of which is solved by one or more 
computers working in parallel.  

 Benefits of distributed systems include higher performance at a lower cost (i.e., 
because a cluster of lower end computers can be less expensive than a single 
higher end computer), higher reliability (i.e., because of a lack of a single point of 
failure), and more scalability (i.e., because increasing the power of a distributed 
system can be accomplished by simply adding more nodes rather than 
completely replacing a central computer). 

Dynamo  Proprietary distributed data storage system developed by Amazon. 
Extract, 
Transform, and 
Load (ETL) 

 Software tools used to extract data from outside sources, transform them to fit 
operational needs, and load them into a database or data warehouse. 

Google File 
System 

 Proprietary distributed file system developed by Google; part of the inspiration for 
Hadoop.31 

 
Hadoop  Open source software framework for processing huge datasets on certain kinds of 

problems on a distributed system. Its development was inspired by Google’s 
MapReduce and Google File System. It was originally developed at Yahoo! and is 
now managed as a project of the Apache Software Foundation. 

HBase  Open source, distributed, non-relational database modeled on Google’s Big 
Table.  

 Originally developed by Powerset and is now managed as a project of the Apache 
Software foundation as part of the Hadoop. 

MapReduce  Software framework introduced by Google for processing huge datasets on 
certain kinds of problems on a distributed system. 

 Also implemented in Hadoop. 
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Mashup  Application that uses and combines data presentation or functionality from two or 
more sources to create new services. 

 Applications are often made available on the Web, and frequently use data 
accessed through open application programming interfaces or from open data 
sources. 

Metadata  Data that describes the content and context of data files (e.g., means of creation, 
purpose, time and date of creation, and author). 

Non-Relational 
Database 

 A database that does not store data in tables (rows and columns).  

R  Open source (free) programming language and software environment for 
statistical computing and graphics.  

 R language has become a de facto standard among statisticians for developing 
statistical software and is widely used for statistical software development and 
data analysis.  

Relational 
Database 

 Database made up of a collection of tables (relations;  i.e., data are stored in rows 
and columns).  

 Relational database management systems (RDBMS) store a type of structured 
data.  

 SQL is the most widely used language for managing relational databases. 
Semi-Structured 
Data 

 Data that do not conform to fixed fields but contain tags and other markers to 
separate data elements.  

 Examples include XML- or HTML-tagged text.  
SQL  Originally an acronym for structured query language, SQL is a computer language 

designed for managing data in relational databases.  
 Technique includes the ability to insert, query, update, and delete data, as well as 

manage data schema (database structures) and control access to data in the 
database. 

Stream 
Processing 

 Technologies designed to process large real-time streams of event data.  
 Enables applications such as algorithmic trading in financial services, RFID event 

processing applications, fraud detection, process monitoring, and location-based 
services in telecommunications.  

Structured Data  Data that reside in fixed fields.  
 Examples include relational databases or data in spreadsheets.  

Unstructured 
Data 

 Data that do not reside in fixed fields.  
 Examples include free-form text (e.g., books, articles, body of e-mail messages) 

and untagged audio, image and video data.  
Visualization  Technologies used for creating images, diagrams, or animations to communicate 

a message that are often used to synthesize the results of big data analyses. 

In working with massive amounts of data, displaying summary data and 
using visualization is critical to finding connections and relevance among millions 
of parameters and variables to convey linkages, hypotheses, metrics, and project 
future outcomes.  Taken one level further, Interactive Visualization moves 
visualization from static spreadsheets and graphics to images capable of drilling 
down for more details, and immediately changing how data are presented and 
processed. 

Examples of visualization methods include the following:  

 Bar charts are commonly used for comparing the quantities of 
different categories or groups. An example is shown in Figure 5. 
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Figure 5. Bar Chart  
(Choy, Chawla, & Whitman, 2012) 

 Box plots (see Figure 6) represent a distribution of data values.  
They display five statistics of minimum, lower quartile, median, 
upper quartile, and the maximum values that summarize the 
distribution of a set of data.  Extreme values are represented by 
whiskers extending from the edges of the box. 

 

Figure 6. Box Plot  
(Choy et al., 2012) 

 Bubble plots (see Figure 7) are variations of a scatter plot in which 
the data markers are replaced with bubbles, with each bubble 
representing an observation (or group of observations).  They are 
useful for datasets with many values or when values differ by 
orders of magnitude.  
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Figure 7. Bubble Plot  
(Choy et al., 2012) 

 Correlation matrices (see Figure 7) combine big data with fast 
response times to identify quickly which variables among 
millions/billions are related.  They  also show the relationship 
strength between variables. 

 

Figure 8. Correlation Matrix  
(Choy et al., 2012) 

 Cross-tabulation charts (see Figure 9) show frequency distributions 
or other aggregate statistics for the intersections of two or more 
category data items. Crosstabs enable examination of data for 
intersections of hierarchy nodes or category values.  
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Figure 9. Cross-Tabulation Chart  
(Choy et al., 2012) 

 Clustergrams (see Figure 10) display how individual members of a 
dataset are assigned to clusters as the number of members 
increases. 

 

Figure 10. Clustergram  
(Manyika et al., 2011) 

 Geo maps (see Figure 11) display data as a bubble plot overlaid on 
a geographic map. Each bubble is located either at the center of a 
geographic region or at location coordinates.  

 

Figure 11. Geo Map  
(Choy et al., 2012) 
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 Heat maps (see Figure 12) display a distribution of values for two 
data items using a table with colored cells.  Colors are used to 
communicate relationships between data values. 

 

Figure 12. Heat Map  
(Choy et al., 2012) 

 Histograms (see Figure 13) are variations of bar charts using 
rectangles to show the frequency of data items in successive 
numerical intervals of equal size. They are often used to quickly 
show distribution of values in large datasets. 

 

Figure 13. Histogram  
(Choy et al., 2012) 

 History flow charts (see Figure 14) show the evolution of a 
document edited by multiple contributing authors.  Time appears on 
the horizontal axis, while contributions to the text are on the vertical 
axis; each author has a different color code and the vertical length 
of a bar indicates the amount of text written by each author. 
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Figure 14. History Flow  
(Manyika et al., 2011) 

 Line charts (see Figure 15) show the relationship of one variable to 
another by using a line that connects the data values. They are 
most often used to track changes or trends over time.  

 

Figure 15. Line Chart 
(Choy et al., 2012) 

 Pareto charts (see Figure 16) are a specialized type of vertical bar 
chart where values of the dependent variables are plotted in 
decreasing order of frequency from left to right.  They are used to 
quickly identify when certain issues need attention.  
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Figure 16. Pareto Chart  
(Choy et al., 2012) 

 Scatter plots (see Figure 17) are two-dimensional plots showing 
joint variation of two (or three) variables from a group of table rows.  
They are useful for examining the relationships, or correlations, 
between numeric data items. 

 

Figure 17. Scatter Plot  
(Choy et al., 2012) 

 Tag clouds (see Figure 18) are weighted visual lists in which words 
appearing most frequently are larger and words appearing less 
frequently are smaller.  

 

Figure 18. Tag Cloud  
(Manyika et al., 2011) 
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 Tree maps (see Figure 19) are a variation of heat maps using 
rectangles (tiles) to represent data components.  The largest 
rectangle represents the dominant division of the data and smaller 
rectangles represent subdivisions.  

 

Figure 19. Tree Map  
(Choy et al., 2012) 

Government Spending on Big Data 
The federal government is fueling the growth of big data spending on 

national security and military applications.  According to the Biometrics Research 
Group (King, 2013), federal agencies spent approximately US$5 billion on big 
data resources in fiscal year (FY) 2012, and they estimate annual spending will 
grow to US$6 billion in 2014.  By 2017, that figure will reach US$8 billion, 
growing at a compound annual growth rate of 10% as shown in Figure 20. 
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Figure 20. U.S. Government Spending on Big Data 
(King, 2013) 

During the near to midterm, Biometrics Research Group (King, 2013) 
predicts that most of the spending will be on military applications of the U.S. 
government with federal agencies pursuing more than 150 big data projects 
(grants, procurements, or related activities).  The agency leading big data 
research is the U.S. DoD, with more than 30 projects and, in particular, the 
Defense Advanced Research Projects Agency (DARPA) with nine major projects 
(King, 2013).  

In a recent study sponsored by EMC (King, 2013) that surveyed 150 U.S. 
government information technology (IT) executives, 70% of respondents stated 
that big data will be critical to all government operations within five years.  Big 
data, according to the survey, has the potential to save nearly $500 billion, or 
14%, of agency budgets across the federal government by increasing efficiency, 
enabling smarter decisions, and deepening insight.  However, only 31% of 
respondents said their agency has an adequate big data strategy (King, 2013). 

Government agencies are seeking to make big data a greater part of their 
mission. The Department of Homeland Security (DHS) posted a solicitation July 
24, 2013 (DHS, 2013), requesting additional information from industry in order to 
identify transformational opportunities to improve mission and operational 
efficiencies and lower costs through advanced analytic automation for the DHS 
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and Homeland Security Enterprise (HSE).  The request for information (RFI) read 
as follows:  

The purpose of this RFI is to ascertain available sources to provide widely 
used big data infrastructure, computing, storage, analytics, and 
visualization capabilities that are based on open source or commonly 
available commercial technologies and represent technology options of 
high value to the future of homeland security. 

Big Data Projects in Government 
In 2012, the Obama administration announced the Big Data Research and 

Development Initiative to help solve challenges by improving the ability to extract 
knowledge and insights from large and complex collections of digital data (Office 
of Science and Technology Policy, 2012).  The initiative’s objective is to analyze 
big data and achieve advances in several sectors, such as healthcare, security, 
the environment, education, and the sciences.  Six federal departments and 
agencies launched the initiative with more than $200 million in commitments that 
promise to greatly improve the tools and techniques needed to access, organize, 
and glean discoveries from huge volumes of digital data. 

The Big Data Research and Development Initiative was created to achieve 
the following:  

 Advance state-of-the-art core technologies needed to collect, store, 
preserve, manage, analyze, and share huge quantities of data;  

 Harness these technologies to accelerate the pace of discovery in 
science and engineering, strengthen our national security, and 
transform teaching and learning; and  

 Expand the workforce needed to develop and use big data 
technologies (Office of Science and Technology Policy, 2012, p. 1). 

The DoD announced plans to invest approximately $250 million annually 
across the military departments in a series of programs that will 

 Harness and utilize massive data in new ways and bring together 
sensing, perception, and decision support to make truly 
autonomous systems that can maneuver and make decisions on 
their own. 

 Improve situational awareness to help warfighters and analysts and 
provide increased support to operations. The Department is 
seeking a 100-fold increase in the ability of analysts to extract 
information from texts in any language, and a similar increase in the 
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number of objects, activities, and events that an analyst can 
observe (Office of Science and Technology Policy, 2012, pp. 2-3). 

According to King (2013), DoD big data programs include XDATA, Cyber-
Insider Threat (CINDER), Anomaly Detection at Multiple Scales (ADAMS), 
Insight, Mind’s Eye, Machine Reading, Mission-Oriented Resilient Clouds, 
Programming Computation on Encrypted Data (PROCEED), and Video and 
Image Retrieval and Analysis Tool (VIRAT). 

XDATA is a four-year, $25 million per-year program to develop 
computational techniques and software tools for analyzing large volumes of data, 
both semi-structured (e.g., tabular, relational, categorical, meta-data) and 
unstructured (e.g., text documents, message traffic).  Some core challenges 
include developing scalable algorithms for processing imperfect data in 
distributed data stores and effective human-computer interaction tools that are 
rapidly customizable to facilitate visual reasoning for diverse missions.  XDATA 
envisions open source software toolkits for flexible software development, 
enabling processing of large volumes of data for use in targeted defense 
applications (King, 2013, para. 13). 

The CINDER program seeks to develop innovative approaches to detect 
activities consistent with cyber espionage in military computer networks.  
CINDER will apply various models of adversary missions to normal activity on 
internal networks as a method to expose hidden operations.  The program also 
intends to increase the accuracy, rate, and speed with which cyber threats are 
detected (King, 2013, para. 6). 

The ADAMS program addresses the issue of anomaly detection and 
characterization in massive datasets.  Data anomalies are intended to cue the 
collection of additional, actionable information in a wide variety of real-world 
contexts.  Initially, ADAMS will focus on insider threat detection, in which 
anomalous actions by an individual are detected against a background of routine 
network activity (King, 2013, para. 5). 

The Insight program addresses key shortfalls in current intelligence, 
surveillance, and reconnaissance systems.  Automation and integrated human-
machine reasoning enable operators to analyze greater numbers of potential 
threats ahead of time-sensitive situations.  This program seeks to develop a 
resource management system that automatically identifies threat networks and 
irregular warfare operations by the analysis of information from imaging and non-
imaging sensors and other sources (King, 2013, para. 7). 

The Mind’s Eye program seeks to develop a capability for visual 
intelligence in machines.  Unlike the  traditional study of machine vision where 
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progress has been made in recognizing a wide range of objects and their 
properties or the nouns in the description of a scene, Mind’s Eye seeks to add 
the perceptual and cognitive underpinnings needed for recognizing and 
reasoning about the verbs in those scenes.  Collectively, these technologies 
could enable a more complete visual narrative (King, 2013, para. 9). 

The Machine Reading program seeks to realize artificial intelligence 
applications by developing learning systems that process natural text and insert 
the resulting semantic representation into a knowledge base rather than relying 
on expensive and time-consuming current processes for knowledge 
representation that require expert and associated knowledge engineers to hand 
craft information (King, 2013, para. 8). 

The Mission-Oriented Resilient Clouds program aims to address security 
challenges inherent in cloud computing by developing technologies to detect, 
diagnose, and respond to attacks (King, 2013, para. 10). 

The PROCEED research effort targets a major challenge for information 
security in cloud-computing environments by developing practical methods and 
associated modern programming languages for computation on data that 
remains encrypted the entire time it is in use.  Interception by an adversary would 
be more difficult if users had the ability to manipulate encrypted data without first 
decrypting (King, 2013, para. 11). 

The VIRAT program aims to develop a system to provide military imagery 
analysts with the capability to exploit the vast amount of overhead video content 
being collected.  If it is successful, VIRAT will enable analysts to establish alerts 
for activities and events of interest as they occur.  Tools will also be developed to 
enable analysts to rapidly retrieve, with high precision and recall, video content 
from extremely large video libraries (King, 2013, para. 12). 

Government Big Data Case Studies 
Government agencies have implemented big data projects to transform 

agencies’ processes and procedures.  The U.S. Army, for example, is already 
leveraging big data technologies in conjunction with cloud computing (Conway, 
2012).  Started in April 2009, the U.S. Army’s Big Data Cloud program extends to 
forward operating bases, which can double as local nodes that collect data from 
various sources.  The private cloud, which went live in March 2011, conveys the 
latest intelligence information to U.S. troops in Afghanistan in real or near-real 
time (Conway, 2012). 

The National Archive and Records Administration (NARA) challenge is to 
digitize a huge volume of unstructured data to provide quick access while 
maintaining the data in both classified and unclassified environments 
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(TechAmerica Foundation, 2012.  NARA is charged with providing the Electronic 
Records Archive (ERA) and online, public access systems for U.S. records and 
documentary heritage.  In January 2012, NARA managed approximately 142 
terabytes of information, consisting of more than seven billion objects and 
incorporating records from across the federal agencies, Congress, and several 
presidential libraries.  There are more than 350 million annual hits on its website.  
In addition to managing the ERA, NARA must digitize more than four million 
cubic feet of traditional archival holdings, including about 400 million pages of 
classified information scheduled for declassification, pending review with the 
intelligence community (TechAmerica Foundation, 2012). 

NARA used big data tools to address those challenges.  In conjunction 
with traditional data capture, digitizing, and storage capabilities, advanced big 
data capabilities were used for search, retrieval, and presentation, all while 
supporting strict security guidelines.  Faster result ingestion and categorization of 
documents, improved end user experience, and dramatically reduced storage 
costs were the results (TechAmerica Foundation, 2012).  Other big data cases 
involving government agencies are summarized in Table 4. 
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Table 4. High-Level Summary of Case Studies  
(TechAmerica Foundation, 2012) 

Agency/Org/Co. 
Big Data Project 

Name 

Underpinning 
Technologies 

Big Data 
Metrics 

Initial Big 
Data Entry 

Point 

Public/ 
User 

Benefits 
NARA ERA 
 

Metadata, Submission, 
Access, Repository, 
Search, and Taxonomy 
applications for storage 
and archival systems  
 

Petabytes, 
Terabytes/sec, 
Semi-structured  
 

 Warehouse 
Optimization 

  Distributed 
Info Mgt 

Provides ERA 
and Online 
Public Access 
systems for 
U.S. records & 
documentary 
heritage 

National Aeronautics 
and Space 
Administration 
(NASA) Human 
Space Flight 
Imagery  
 
 

Metadata, Archival, 
Search, and Taxonomy 
applications for tape 
library systems, 
government off-the-shelf 
(GOTS) 

Petabytes, 
Terabytes/sec, 
Semi-structured 

Warehouse 
Optimization 

Provide 
industry and 
the public with 
iconic and 
historic human 
spaceflight 
imagery for 
scientific 
discovery, 
education, 
and 
entertainment 

National Oceanic 
and Atmospheric 
Administration 
(NOAA) National 
Weather Service  
 

HPC modeling; data from 
satellites, ships, aircraft, 
and deployed sensors 

Petabytes, 
Terabytes/sec, 
Semi-
structured, 
ExaFLOPS, 
PetaFLOPS 

Streaming Data 
& Analytics, 
Warehouse 
Optimization, 
Distributed Info 
Mgt  
 

Provide 
weather, 
water, and 
climate data, 
and forecasts 
and warnings 
for the 
protection of 
life and 
property and 
enhancement 
of the national 
economy. 

Internal Revenue 
Service (IRS) 
Compliance Data 
Warehouse  
 

Columnar database 
architecture; multiple 
analytics applications; 
descriptive, exploratory, 
and predictive analysis 

Petabytes Streaming Data 
& Analytics, 
Warehouse 
Optimization, 
Distributed Info 
Mgt 

Provide 
taxpayers top 
quality service 
by helping 
them to 
understand 
and meet their 
tax 
responsibilitie
s and enforce 
the law with 
integrity and 
fairness. 

Centers for 
Medicare & 
Medicaid Services 
(CMS) Medical 
Records Analytics  

Columnar and NoSQL 
databases, Hadoop 
being looked at, EHR on 
the front end, with legacy 
structured database 
systems (including DB2 
and COBOL) 

Petabytes, 
Terabytes/day 

Streaming Data 
& Analytics, 
Warehouse 
Optimization, 
Distributed Info 
Mgt 

Protect the 
health of all 
Americans 
and ensure 
compliant 
processing of 
insurance 
claims 

Lessons Learned 
It is useful to better understand big data, this somewhat ambiguous 

concept, by taking advantage of lessons learned by other organizations dealing 
with similar problems.  The TechAmerica Foundation Big Data Commission 
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released a study in October 2012  on how big data can move beyond the tidal 
wave of data and transform government.  The Commission’s mandate was to 
demystify the term big data by defining its characteristics, describing the key 
business outcomes it will serve, and providing a framework for policy discussion.  
Its goal was to provide guidance to federal government’s senior policy- and 
decision-makers. 

The Commission identified a number of lessons learned from early 
government big data initiatives (TechAmerica Foundation, 2012): 

 The path towards becoming big data “capable” will be iterative and 
cyclical. 

 Successful big data initiatives seem to begin with a burning 
business or mission requirement that government leaders are 
unable to address with traditional approaches.  

 Successful big data initiatives commonly start with a specific and 
narrowly defined business or mission requirement, and not a plan 
to deploy a new and universal technical platform to support 
perceived future requirements.  

 Successful initiatives seek to address the initial set of use cases by 
augmenting current IT investments, but do so with an eye to 
leveraging these investments for inevitable expansion to support far 
wider use cases in subsequent phases of deployment. 

 Once an initial set of business requirements has been identified 
and defined, the leaders of successful initiatives then assess the 
technical requirements, identify gaps in their current capabilities, 
and plan the investments to close those gaps. 

 Successful initiatives tend to follow three patterns of deployment 
underpinned by the selection of one big data “entry point” that 
corresponds to one of the key characteristics of big data—volume, 
variety, and velocity. 

 After completing their initial deployments, government leaders 
typically expand to adjacent use cases, building out a more robust 
and unified set of core technical capabilities. These capabilities 
include the ability to analyze streaming data in real time; the use of 
Hadoop or Hadoop-like technologies to tap huge, distributed data 
sources; and the adoption of advanced data warehousing and data 
mining software (TechAmerica Foundation, 2012, p. 7). 
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The Commission made the following recommendations for government 
agency leaders to adopt when implementing big data solutions: 

 Understand the “Art of the Possible” by reviewing case studies of 
prior implementations to understand practical examples. 

 Identify two to four key business or mission requirements that big 
data can address for the government agency, and define and 
develop underpinning use cases that would create value for both 
the agency and the public. 

 Take inventory of the “data assets.” Explore the data available both 
within the agency enterprise and across the government ecosystem 
within the context of the business requirements and the use cases. 

 Assess current capabilities and architecture against what is 
required to support goals, and select the deployment entry point 
that best fits your big data challenge, whether it is volume, variety, 
or velocity.  

 Explore which data assets can be made open and available to the 
public to help spur innovation outside the agency (TechAmerica 
Foundation, 2012, p. 8).  

Big Data in the U.S. Navy 
The U.S. Naval Air Systems Command (NAVAIR) has optimized its 

resources with big data.  NAVAIR implemented the Decision Knowledge 
Programming for Logistics Analysis and Technical Evaluation (DECKPLATE) 
system to centralize and streamline management of aircraft fleet and aircraft 
carriers deployed around the world (Sverdlik, 2012).  DECKPLATE is used to 
manage fleet resources during both military and humanitarian missions.  When 
the Fukushima Daiichi nuclear power plant was leaking radiation, DECKPLATE 
was used to determine readiness of the fleet operating in the area.  It also 
provided real-time data on the danger of radiation exposure by the Navy’s assets 
during this time (Sverdlik, 2012). 

DECKPLATE provides the following: 

 Enterprise-Wide Visibility. DECKPLATE uses about 23 years of 
trend analysis of aircraft readiness, checking data on areas such as 
aircraft maintenance, flight usage and inventory, configuration 
baseline management, engine total asset visibility, technical 
directives, and supply cost. 
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 Daily Reporting. Daily readiness reporting is provided with 
messages going out every day from an aircraft carrier deployed at 
sea concerning aircraft status.  In 2004, these reports would be 
correlated on a monthly basis, put on a DVD, and sent to 
commanders with the readiness status. 

 Constant Process Optimization.  DECKPLATE provides on-going 
improvements of its processes.  It can provide data to address 
problems pro-actively, before they occur, which the traditional 
reporting process did not allow for. 

 Changing Logistics Philosophy.  Historically, the military wanted 
100% of its assets up 100% of the time and that required 
expenditures to fix things that weren’t really necessary.  With 
DECKPLATE, an initiative was created to optimize the logistics 
process to have the right assets with the right configuration in the 
right place at the right time (Sverdlik, 2012, Enterprise-Wide 
Visibility, para. 6). 

The next phase for DECKPLATE is binning in which data would be 
evaluated on a more granular level (Sverdlik, 2012). In the binning project, a 
history of some 200 million maintenance actions would be broken down into the 
individual maintenance actions required.  The historical maintenance actions 
would then be further broken down into every 15 minutes.  This process will 
answer the question, “Was the aircraft awaiting maintenance during that time or 
was it awaiting supply?”  The final objective of identifying exactly how and where 
time was spent on the aircraft during the maintenance period requires a massive 
amount of data to be collected and analyzed over a five-year period on 
approximately 5,000 aircraft (Sverdlik, 2012). 

Ship Maintenance Vignettes 
Introduction 

Maintenance is crucial to the Navy’s fleet readiness and ensures that the 
fleet reaches its expected service life.  This section uses vignettes to show three 
aspects of ship maintenance that provide a framework for understanding these 
types of activities within the Navy.  It begins with a general discussion on 
maintenance and modernization budgets, and then provides specific ship case 
examples. 
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Maintenance and Modernization Spending 
Maintenance and modernization are essential to derive full benefits of 

DoD assets and, more importantly, they enable the U.S to respond quickly to 
security challenges and offer humanitarian assistance around the world.  In 
FY2010, the DoD spent approximately $83.7 billion to maintain strategic material 
readiness for 13,900 aircraft, 800 strategic missiles, 350,000 ground combat and 
tactical vehicles, 283 ships, and myriad other DoD weapon systems (Office of the 
Assistant Secretary of Defense for Logistics and Material Readiness 
[OASD(L&MR)], 2011).  Figure 21 shows the systems supported by the DoD.  
Maintenance was provided through the efforts of approximately 657,000 military 
and civilian maintainers and thousands of commercial firms. 

 

Figure 21. Systems Supported by DoD Maintenance  
(OASD[L&MR], 2011) 

Performed at several levels, DoD material maintenance ranges in 
complexity from daily system inspections, to rapid removal and replacement of 
components, to complete overhauls or rebuilds of a weapon system.  The three 
levels of maintenance are as follows: depot-level maintenance for the most 
complex and extensive work; intermediate-level maintenance for less complex 
maintenance activities performed by operating unit back-shops, base-wide 
activities, or consolidated regional facilities; and field-level maintenance, a 
combination of organizational depot and intermediate levels (OASD[L&MR], 
2011). 

In early 2011, the DoD operated 17 major depot activities and expended 
more than 98 million direct labor hours (DLHs) annually (Avdellas, Berry, Disano, 
Oaks, & Wingrove, 2011).  DoD depots’ property, plants, and equipment were 
valued at more than $48 billion with an infrastructure consisting of more than 
5,600 buildings and structures (Avdellas et al., 2011). 
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To maintain readiness and ensure that the fleet reaches its expected 
service life, the Navy spent $8.5 billion on ship maintenance in FY2011.  Figure 
22 shows the Navy’s maintenance budget. 

 

Figure 22. U.S. Navy Ship Maintenance Costs  
(Department of the Navy [DoN], 2012a) 

Maintenance Vignettes 
Each of the three vignettes describes an aspect of ship maintenance work: 

new work (NW), deferred maintenance (DM), and modernizations.  Although 
there is another category, original work, maintenance for which planning has 
been completed and is included in the maintenance package before the evolution 
(an availability, or avail), this section focuses on NW, DM, and modernizations. 

NW is maintenance added to a specific ship’s availability after planning 
has been completed (i.e., not part of the original maintenance package).  NW can 
result from discrepancies that have not yet been discovered or from work which 
was not added to the availability work package until after planning was complete.  
DM refers to the status of maintenance rather than the time of its inclusion in the 
maintenance package and may be either original work or NW.  DM is work that is 
rescheduled to be completed later in the current availability or as part of a future 
maintenance period.  Modernizations (or mods) are system upgrades.  A 
modernization can range in scope from a short-term software upgrade to a long-
term ship infrastructure remodeling.  Generally, the planning for all the 
modernization work is completed before the availability begins and is therefore 
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classified as original work.  However, in the modernization vignette in this 
section, two cases demonstrate that situations can arise that require 
modernization work to become NW.  Figure 23 shows the relationships among 
the different categories. 

 

Figure 23. Ship Maintenance Work Classifications 

The three ships used in the vignettes, under the cognizance of Norfolk 
Ship Support Activity (NSSA), are the United States Ship (USS) Wasp (LHD-1), 
the USS Bataan (LHD-5), and the USS Iwo Jima (LHD-7).  First, LHD-7 will be a 
case study to describe NW.  Second, to depict DM, both LHD-5 and LHD-7 will 
be examples.  Finally, LHD-1 and LHD-7 are used to illustrate modernizations, as 
shown in Figure 24. 

 

Figure 24. Vignette Overview 

The three vignettes that follow were derived from two phone conversations 
with David J. Furey, a civilian employee of the NSSA, on September 9, and 
September 11, 2013. 
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New Work Vignette:  USS Iwo Jima 

The USS Iwo Jima is an example requiring NW, DM, and modernization. 
In addition, this case examines NW and how complications from NW can impact 
schedules. In this vignette, the focus is on the rudder and the bilge.  The rudder, 
a critical portion of the ship’s steering system, caused a schedule extension due 
to degradation that was not readily apparent.  All appropriate assessments, 
checks, and leakage tests were conducted by maintenance technicians, and the 
results indicated the rudder was in good condition.  All the tests associated with 
the rudder were within specified parameters, and the rudder passed the 
preliminary inspection.  Unfortunately, bearing clearance testing, tests which 
analyze rudder performance over the entire range of operation (full left to full 
right), exposed inconsistencies prior testing did not reveal.  Results from the test 
were irregular and upon examination of the rudder bearings, metal debris and 
rust were discovered.  The NSSA ultimately made the decision to remove and 
replace the rudder, which resulted in the availability schedule being extended by 
14 days. 

NW was also required on the bilge of the USS Iwo Jima.  As part of the 
entire availability, high pressure washing was required in the bilge.  While 
performing this evolution, fuel piping was damaged and a leak developed.  Ship’s 
force, a term which describes the active duty sailors onboard the ship, repaired 
the damage by using a soft patch.  A soft patch is a temporary repair method for 
low pressure piping.  However, the NSSA was constrained by more restrictive 
requirements and was required to replace the faulty piping.  To determine the 
extent of the damage, ultrasonic testing (UT) was used, which uses sound wave 
properties to determine the amount of pipe wall thickness remaining.  If less than 
50% of the pipe wall remains, the NSSA is required to replace the pipe.  UT was 
performed and revealed 40 ft. of fuel piping, and an additional 20 ft. of oily waste 
piping, that required replacement.  The availability schedule was extended by 40 
days to replace the identified piping. 

Deferred Maintenance Vignette: USS Bataan and USS Iwo Jima 

In these vignettes, the USS Bataan example relates to cost-cutting while 
the  USS Iwo Jima example relates to prioritization.  The overall magnitude of 
work to be accomplished during the USS Bataan availability made it a target of 
cost-cutting during shrinking fiscal budgets in 2012.  A common item to be 
deferred is paintwork and the USS Bataan was not an exception.  Much of the 
tank paintwork was deferred from the 2012 availability to the 2015 availability as 
a result of fiscal cutbacks. 
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The USS Iwo Jima also experienced DM, but the maintenance was 
deferred because higher priorities required the ship to be waterborne.  
Specifically, the 7-K-O-W tank, the forward feed tank for the ship’s ballast 
system, was due for preservation and required the ship to remain in drydock.  
The tank had not been opened since commissioning as this was the ship’s first 
drydock availability.  Inspection revealed the tank to be in Tank Condition 4, 
which means that a profound failure had been discovered.  UT showed that no 
more than 17% surface wastage had occurred and, therefore, the tank had 
become a candidate for deferral.  Higher priority maintenance necessitated that 
the ship be waterborne, so the drydock was flooded and the 7-K-O-W tank 
preservation was deferred. 

While the effect on a ship’s availability schedule of the addition of NW can 
be directly measured, the consequence of deferring maintenance is a matter of 
risk.  The USS Iwo Jima added NW to its availability and incurred schedule 
delays, or lost operating days (LODs); 14 days were attributed to work on the 
rudder and 40 days to the replacement of pipe.  In both cases, the impact can be 
easily measured. 

As for DM, the impact can range from minimal to substantial.  For 
instance, the tank paintwork for the USS Bataan was deferred until the next 
planned availability in 2015.  The paintwork would have cost a certain dollar 
amount in 2012 and would have provided the tank a level of preservation 
protection.  In 2015, the paintwork will cost more not only because of inflation 
and the degradation of the paint associated with time, but also because corrosion 
will have developed at a higher rate than it would have with a fresh application of 
paint.  The difference between the cost of paintwork in 2015 versus the cost in 
2012 (including corrosion correction) is the impact of this DM example and would 
be comparatively minimal.  However, the possibility of a larger effect exists.  
Perhaps the development and growth of corrosion on the 7-K-O-W tank is 
underestimated.  If the corrosion progresses significantly faster, then the 
likelihood of structural failure increases.  Should the structural failure occur 
outside the maintenance environment of the shipyard, then the impact would be 
far greater and the costs associated with unscheduled maintenance much higher.  
The decision to defer the preservation of the tank must consider both the 
likelihood and severity of all the possible outcomes.  In other words, the decision-
maker must consider all the associated risks before deferring maintenance. 

Modernizations Vignettes: USS Iwo Jima and USS Wasp 

Modernizations have the most potential to impact schedule of the three 
classifications of shipyard maintenance examined in this section.  In the cases of 
the USS Iwo Jima and USS Wasp, modernizations may affect the timetable 
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because not all the required drawings had been completed prior to the start of 
work.  For the USS Iwo Jima, a single modernization will be presented, whereas 
the USS Wasp serves as a more general example.  However, a brief overview of 
the shipyard planning evolution will be presented first to explain the importance 
of timely drawings. 

Before the shipyard period starts, the plan for a scheduled availability 
must be completed.  To complete the plan for an availability, NAVSEA must 
approve the contractor-provided estimate (DoN, 2012b).  To generate the 
estimate, however, the contractor must review all the drawings (first-tier and 
second-tier) associated with the work to be performed (D. Furey, personal 
communication, September 9 and 11, 2013).  First-tier drawings are the main 
focus of the modernization, whereas second-tier drawings involve infrastructure 
and subsystems related to the work.  For a particular modernization, if all the 
drawings are not completed, then the contractor cannot create the estimate and 
an approved plan will not exist.  In addition, availabilities must sometimes 
commence on a partial solution; otherwise, all work would be completed late.  In 
the situation without an approved plan, the project completion date (PCD) has a 
larger margin of error, and schedule changes are more likely to occur. 

This was the case with the CANES installation in the USS Iwo Jima 
availability.  CANES, or Consolidated Afloat Networks and Enterprise Services, 
as its name implies, is a program created to consolidate many networks and 
services aboard ships into a single information technology system.  Although not 
all of the drawings were received, the maintenance period started anyway.  
There was other work to perform; CANES was not the only reason for the USS 
Iwo Jima to visit the shipyard.  As drawings for CANES were completed, they 
were then provided to the contractor.  However, the plan for CANES could not be 
approved until all the drawings were received, the contractor generated the 
estimate, and NAVSEA accepted the plan. 

In the case of the USS Wasp, the estimated modernization cost was 
extremely high at $250 million to $300 million.  The high cost was partially due to 
modernizations needed to accommodate the F-35 Joint Strike Fighter (JSF) 
since the USS Wasp was to be the first ship to test the JSF and part of the flight 
deck had to be strengthened.  Not only was the structural reinforcement of the 
after flight deck a large package, but the ship was also undergoing many other 
modernizations.  Unfortunately, the USS Wasp also started its availability without 
a complete plan.  Twenty modernization packages were not included in the plan, 
including the structural reinforcement of the after flight deck, because the 
drawings had not yet been delivered. 
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In addition, the NSSA erroneously included one large work item in the plan 
for which second-tier drawings had not yet been received.  The contractor 
brought the discrepancy to the NSSA’s attention explaining that they, the 
contractor, would not be able to complete an estimate before the plan was 
completed (also known as 100% lock).  The NSSA had two options, either extend 
the lock or pull the work item out and add it back in later as NW.  They chose the 
latter. 

In both these vignettes, modernizations had significant potential to 
severely affect the scheduled PCD because the drawings were not completed.  
Two questions arise associated with the implications of missing PCD on ship 
maintenance costs: 

 Is there a cost premium to new work?  In other words, do costs 
increase because a modernization was added after 100% lock? 

 Are LODs caused by planning or scope?  In other words, is it the 
planning process or the scope of work which is to blame for missing 
PCD? 

Summary 
The U.S. Navy ship maintenance process is already an enormously 

expensive endeavor.  Situations which result in NW or DM only add cost to the 
process in the form of budget and schedule overruns.  The information regarding 
those overruns is available to decision-makers, but only in cumbersome, static 
spreadsheets and in very large quantities.  Executive-level ship maintenance 
decision-makers need a way to easily and intuitively understand the information 
available to them so that decisions can be made which would reduce the 
occurrence of NW and DM.  Ship maintenance executives require a big data 
technology that would provide a clear understanding of the relationships among 
all the variables, specifically those which cause increased costs and schedule 
overruns.  In the next section of this report, software is used to analyze the 
historical maintenance information of a selected group of U.S. Navy ships.  It will 
show how big data technology could be used to provide decision-makers with a 
clear, intuitive visualization of ship maintenance costs. 

Ship Maintenance Simulations 
Overview 

A team from the Naval Postgraduate School (NPS) was tasked by PEO 
Ships to work with naval ship maintenance metrics groups to provide additional 
options regarding how large datasets could be optimized.  In particular, 
presentation methods were requested succinctly showing a ship’s maintenance 
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status, including all operational costs and schedule deviations from planned 
maintenance.  Project sponsors also sought suggestions for improving how key 
information could be summarized and ultimately used in making critical 
maintenance allocation decisions.  The current process for presenting data on 
the more than 150 parameters measuring ship performance maintenance costs 
and processes, containing billions of data points, is still done with static, 
cumbersome spreadsheets.  

The project was conducted in three distinct phases as seen in Figure 25.  
First, data were collected on 19 U.S. Navy guided missile destroyers (DDG) with 
maintenance periods spanning a few years, 2010 to mid-2013.  Data were 
collected on 21 maintenance availabilities for those DDGs and included 
definitized estimates prepared by SMEs in the planning process, along with the 
actual cost and availability data on three maintenance categories.  In Phase 2, a 
hypothesis was tested and two simulations were run using the Knowledge Value 
Added (KVA) methodology.  In Simulation 1, we tested the potential impact of 
incorporating three-dimensional printing (3DP) on ship maintenance programs 
while in Simulation 2 we evaluated the combination of 3DP plus two more 
technologies (3D laser scanning technology [3D LST] and Collaborative Product 
Lifecycle Management [CPLM]).  In Phase 3, a visualization tool offered by an 
independent software vendor was selected to show how large volumes of data 
could be shown in a succinct manner. 
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Figure 25. Project Phases 

The visualization software provides a higher level of visual clarity, enabling 
faster and more intuitive interpretation of ship maintenance data by presenting 
the data relationships in diagrams, graphs, and charts.  Relationships among 
variables are more readily discoverable and, more importantly, those 
relationships can be used in forecasting to develop more accurate maintenance 
data, estimates that are based on historical data.  Decision-makers are able to 
see analytical results quickly with visualization software, which allows them to 
find relevance among millions of variables, communicate concepts and 
hypotheses to others, and even forecast possible scenarios. 

This section of the report is divided into several topics.  First, maintenance 
categories and the data collection process are reviewed.  Final simulation results 
are highlighted to provide a framework for understanding the power of 
visualization software, followed by a general discussion of the original definitized 
cost estimate (Figures 27–29).  Actual costs are then compared with the 
definitized cost estimates and discrepancies between the two are discussed 

   Phase 1 : Data Collection

• Definitized estimates for 19 guided missile destroyers (DDG) 

• Twenty-one maintenance availabilities from 2010 to mid-2013 

• Actual costs from Surface Team One Metrics System (ST1MS) 

• Cost categories of Growth, New Growth, New Work, Original 

Phase 2: Simulations

• Simulation 1 Three-dimensional printing technology (3DP) 

• Simulation 2 Three-dimensional printing technology (3DP) 

Three-dimensional laser scanning technology (3D LST) 
Collaborative Product Lifecycle Management (CPLM) 

Phase 3: Analysis & Results

• Definitized cost estimates for maintenance work  ($313.7 million) 

• Actual costs for maintenance work ($435.5 million) 

• Cost estimates after simulations incorporating technologies ($271.1 

million) 

• Potential cost savings of  37.7%  ($164.4 million) 
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(Figures 30–34).  An analysis of the potential effect on ship maintenance costs 
by incorporating specific technologies in Simulation 1 and Simulation 2 is 
discussed in greater detail (Figures 35–38).  Alternative presentation methods, 
which drill down into specific detail, are then explored (Figures 39–41).  Next, a 
description and analysis of a common ship maintenance metric, lost operating 
days (LODs), is given along with a recommendation of a more useful metric, 
availability density (Figures 42–44).  This section concludes with further 
examples of visualization tools’ abilities to  drill down into specific details.  
(Figures 45 and 46). 

Maintenance Cost Categories 
There are several cost categories for ship maintenance: original work 

(OW), growth (G), new work (NW), and new growth (NG).  OW is the estimated 
ship maintenance cost (shipyard or contractor, labor, and material costs) at the 
completion of planning and is also known as the definitized cost estimate.  The 
definitized cost estimate is a figure provided by a SME in the planning process. 

G is an expansion of OW and can result from many factors, including 
undiscovered discrepancies or an increase in scope.  For example, the OW plan 
for a hypothetical ship called for preservation work on the ship’s hull.  While 
conducting the preservation work, the maintenance technician discovered hull 
damage that required minor repair.  The minor repair work would be classified as 
G.   

NW is maintenance that is added to a ship’s availability after planning has 
been completed (i.e., not part of the original work maintenance package).  NW 
can result from discrepancies that have not yet been discovered and are 
unrelated to previously planned maintenance or from work that was not added to 
the availability work package until after planning was complete.  For example, 
while conducting preservation work on the hypothetical ship, the maintenance 
technician discovered damage to a communication antenna.  The resulting repair 
work would be classified as NW.   

NG is the growth resulting from an expansion in NW, similar to the 
relationship between G and OW.  For example, the antenna maintenance 
technician conducting antenna repair work discovered that the antenna was 
beyond repair and needed to be replaced.  Replacement of the antenna would be 
considered NG. 

Data Collection 
Data for this analysis were derived from the ST1MS)website 

(https://mfom-shipmain.nmci.navy.mil).  In particular, ship availabilities were 
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selected for examination based on several factors designed to establish a proof 
of concept for the use of big data to shape executive-level decisions.  The 
availabilities were restricted to only U.S. Navy DDGs whose maintenance period 
started by 2010 and whose final reports were closed and completed by the time 
this study began in 2013.  Ships whose close-out reports were incomplete or 
missing data were not included in the analysis. 

The figures in this section are screenshots of solar graph results that were 
captured while using the visualization software program to process the ship 
maintenance data obtained from the ST1MS website.  The data consist of 21 
maintenance availabilities for the DDGs. 

Final Simulation Results Incorporating Different 
Combinations of Technologies into U.S. Navy Ship 
Maintenance Programs 

Two simulations were run to show the potential cost savings of 
incorporating specific technologies.  In Simulation 1, only 3DP technology was 
evaluated while in Simulation 2, three combined technologies were evaluated.  
Tables 5 and 6 reflect the differences between definitized costs, actual costs, and 
projected costs for Simulations 1 and 2.  The definitized cost estimate was 
$313.7 million, compared to the actual cost of $435.5 million.  If 3DP, 3D LST, 
and CPLM technologies combined were incorporated into the ship maintenance 
processes, the costs would have been reduced to an estimated $271.1 million. 

Table 5. Cost Comparison by Ship  
(Based on J. Kornitsky, personal communication, November, 2013) 
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Table 6. Cost Comparison by Work  
(Based on J. Kornitsky, personal communication, November, 2013) 

 

Visualization Software Analysis of U.S. Navy Ship 
Maintenance 

Visualization Model 

The visualization model (Figure 26) is an overview of how the DDG 
spreadsheet data was mapped into the software.  It shows four cost categories 
on top, all 19 ships by name in the middle, and their combined availabilities at the 
bottom.  The lines between the boxes depict connection relationships. 

The 24 boxes referred to in the model have a number above each that 
represents the aggregate cost.  For example, the box on the middle left side of 
Figure 26, labeled Stout, indicated $28.1 million of aggregate cost attributed to 
the availability.  In addition, the horizontal bar between the cost number and the 
box represented the relative portion of cost attributed to that availability when 
compared with all availabilities.  The box in the top left corner, labeled Growth, 
indicated a relative cost which resulted in the length of the bar shown.   

At the bottom of each box, the number of connections to all other variables 
was depicted in two ways.  The number displayed in the bottom right of each box 
and the number of ovals displayed in the bottom left of each box.  At the box at 
the bottom of Figure 26, labeled Avail, indicated 21 connections to all other 
variables with both the numeral, “21,” and the number of ovals displayed, 21. 

At the top of Figure 26, four boxes are depicted and represent one 
category of cost, type of work.  The labels on each box indicate a particular type 
of work, G, NG, NW, and OW.  Each particular type of work accounted for the 
amount of cost indicated. 

In the middle of Figure 26, the 19 boxes labeled with ship names indicate 
the maintenance cost each ship incurred.  For 17 of the ships, the ship 
maintenance cost was attributed to a single availability.  For the Arleigh Burke 
and the Donald Cook, the ship maintenance cost was attributed to two 
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availabilities.  For example, the box labeled Arleigh Burke in Figure 26 indicated 
$35.7 million in ship maintenance cost, but for two unique availability periods.  
This can be verified by referencing the number in the lower-right portion of the 
ship name boxes.  For most of the ships, this number was 4 and the number of 
ovals was four.  This represented the number of connections to the kinds of cost.  
In any single availability, there were four types of work (cost) identified (OW, G, 
NW, and NG).  In the cases of the Arleigh Burke and Donald Cook ships, there 
were two availabilities recorded, and, therefore, eight connections to the four 
types of work (cost) as was indicated by the number, 8, and the eight ovals 
indicated in either box in Figure 26. 

The single box depicted at the bottom of Figure 26 represented the 
aggregate forecasted cost of all availabilities, $271.1 million. 
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Figure 26. Visualization Model  
(J. Kornitsky, personal communication, November, 2013)
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Definitized Estimate, All Ships 

Definitized estimates are the total projected costs of an availability upon 
completion of the planning phase of ship maintenance, provided by SMEs in the 
planning process.  According to the Joint Fleet Maintenance Manual (DoN, 2012b), the 
planning phase for an availability for a DDG begins 720 days before the first day of 
maintenance (A-720).  By this day, A-720, an availability must be added to the U.S. 
Navy surface ship availability schedule.  The next milestone, a letter of authorization, 
occurs on or before A-360 and obligates the stakeholders to specific cost of prorate 
schedules.  Through the next three milestones, A-240 (50%), A-120 (80%), and A-75 
(100%), progressively more of the budgeted funds must be allocated, or locked, to 
specific work items.  By A-60 the overall plan for maintenance must be finalized to allow 
the detailed work schedule to be formulated and cost estimates completed.  The final 
cost estimate, or definitized work package, must be finished by A-35 and represents all 
costs attributed to OW.  After definitization, all additional work items are considered to 
be G, NW, or NG (DoN, 2012b). 

Figure 27, the Definitized Estimate, All Ships, shows how each ship contributed 
to the total expected cost of all the availabilities analyzed.  The total of $313.7 million is 
greater than the total presented in the previous image, $271.1 million.  As explained 
earlier, this is because the first screenshot shows the total costs after the combined 
incorporation of three different technologies into the ship maintenance process. 

All the figures shown in this section present a parent-child type of relationship 
hierarchy, similar to object-oriented programming.  In Figure 27, there exists only a 
simple relationship with each instance having assumed a single role.  The total 
definitized estimate of $313.7 million in the center is the parent, while all the ships, and 
their total maintenance costs, are the children.  Multi-role instances, where the single 
solar graph screenshots can be both parent and child, will be presented in later figures, 
beginning with Figure 29.   

Each ship contributed to the total definitized estimate of $313.7 million.  The 
amount each contributed is presented in three different ways.  First, the size of each 
bubble signifies its cost relative to the total cost bubble in the middle of the screenshot.  
The larger the relative cost of the ship identified, the larger the bubble.  Second, the 
relative impact of each ship on cost is also identified by a percentage written on the line 
connecting each ship with the total.  Finally, the actual dollar amount of each ship’s 
impact upon the definitized estimate is shown either inside the instance for larger 
contributors or near the instance for smaller ones. 

The Winston Churchill, for example, which is located at the eight-o’clock position 
on Figure 27, was not the largest contributor to the total definitized estimate.  However, 
a brief visual analysis of the entire figure shows it was not the least significant either 
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because many of the ship solar graph screenshots are smaller.  The relative sizes and 
organization of all the instances enable an intuitive understanding to be quickly 
developed.  The Winston Churchill screenshot is larger than the four instances directly 
below it, but it is also smaller than the four instances directly above it.  The relative 
location of the Winston Churchill instance enables a decision-maker to quickly identify 
that the ship’s relative contribution to the overall definitized estimate lies somewhere in 
the middle of the pack.   

If further understanding of the relative contribution is needed, the decision-maker 
would then refer to the percentage indicated along the line connecting the Winston 
Churchill to the total estimate.  The Winston Churchill accounted for 3.7% of the total 
definitized estimate.  However, if the actual dollar amount contributed to the total is 
desired, then the decision-maker could refer to the number located within the instance.  
In the case considered, the Winston Churchill accounted for $11.7 million in absolute 
terms. 
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Figure 27. Definitized Estimate, All Ships Screenshot  
(J. Kornitsky, personal communication, November, 2013) 
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Definitized Estimates of the Top Five Ships  

Figure 28, Definitized Estimate, Top Five Ships, is nearly identical to Figure 27 
except that it has been modified to identify the largest cost contributors. The five largest 
contributors are shown, and the remaining 14 ships are aggregated into “all other.” 

Consider the decision-maker analyzing the presentation.  If the executive is only 
interested in the largest cost contributors, then the addition of the other 14 ships only 
makes interpretation of the information more difficult.  However, the aggregation of the 
remaining ships into a single instance also provides another view of the data.  In this 
example, the total definitized estimate of the other ships is $105.6 million and 
represents 33.6% of the entire sum.  This view may be significant to a decision-maker 
who originally thought that the largest cost contributors represented a much larger 
portion of the total.  In this figure, a decision-maker would easily be able to determine 
that the impact of the remaining 14 ships is much greater than the impact of any single 
large cost contributor. 

Alternatively, if the decision-maker was more interested in determining the 
sources of the expenses, then an additional level of detail would be necessary.  While 
Figure 28 provided cost information, the costs were aggregated at the ship level.  An 
executive interested in determining the primary drivers of cost would need more detailed 
information that can be found in Figure 29. 
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Figure 28. Definitized Estimate, Top 5 Ships Solar Graph  
(J. Kornitsky, personal communication, November, 2013)
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Definitized Estimates of Top Five Ships by Expense Details 

Figure 29, Definitized Estimate, Top 5 Ships, Expense Detail, adds one level of 
detail to the figure previously discussed.  These added dimensions are two cost 
categories of labor and material, which can be seen radiating further from the graph’s 
center and labeled with the availability’s identification number from which it originated.  
These additional details to the definitized estimate of the top five ships increased the 
complexity of the parent-child hierarchy and produced different numbers of children 
among the ship-level instances.  For the executive using this solar graph to make 
important ship maintenance decisions, it is important to understand the changes. 

First, the parent-child relationship hierarchy has increased in complexity.  With 
the addition of another level of detail, or another layer of children, the ship name solar 
screenshots have become both parent and child.  The ship names are still children to 
the parent, total definitized estimate, but are now also parents to the expense details.  
For example, located at the one-o’clock position in Figure 29, the Barry solar graph 
instance has spawned two children, Labor and Material.  The Barry, originally only a 
child to the total definitized estimate, is now also a parent to its two children.  However, 
this concept has produced ship name parents with varying numbers of children and their 
causes may not be initially intuitive. 

Earlier, both the Arleigh Burke and the Donald Cook ships were identified as 
being irregular because they represented multiple availabilities.  The addition of 
expense detail has further demonstrated the presence of two separate maintenance 
periods within each.  Just above the three-o’clock position in the solar graph, the Arleigh 
Burke shows four children.  Two are labeled as Labor and two are labeled as Material.  
However, each one labeled Labor is identified by a unique availability identification 
number, and each one labeled Material has the same unique numbers.  The Arleigh 
Burke and Donald Cook multiple availability instances produced four children as 
opposed to the two children generated by the single availability instances of the Barry, 
Ramage, and Stout ships.   

To an executive, the additional level of detail in the solar graph begins to remove 
ambiguity and provide clear relationships among the sources of cost.  But, if the manner 
and method in which the detail is presented is confusing, then the additional information 
will only further confound the decision-maker.  Understanding why ships produced 
varying numbers of Labor and Material children is important for the executive to make 
appropriate decisions regarding ship maintenance based on the solar graph.  However, 
the six children subordinate to the All Other instance at the ten-o’clock position in Figure 
29 also require explanation. 

The reason the All Other instance produced six children is two-fold.  First, the All 
Other instance includes 14 ships and, therefore, 14 availabilities (since the Arleigh 
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Burke and Donald Cook have already been accounted for).  The definitized cost 
estimate for each availability has been categorized into Labor and Material.  So, 14 
availabilities should have generated 28 expense detail children.  There are more than 
just two or four children available to display.  This leads to the second part of the two-
fold explanation.  In Figure 29, the number of children to be displayed was arbitrarily 
chosen.  The top five largest contributors retained their individual solar screenshots, and 
the remaining were aggregated into the All Other instance.  The choice to display the 
top five ships in the screenshot with less detail has also affected this graph.  The 
biggest five individual contributors, all which happen to be Labor instances, are 
displayed while the remaining are aggregated into the All Other instance.  Again, the 
implication for the executive using this solar graph to form ship maintenance policy 
decisions is that if the manner and method of solar graph creation aren’t known, then 
the insight derived from the graph will be erroneous.  For example, if decision-makers 
assumed that the All Other category displayed all its children, then they would 
misunderstand the graph and believe that only labor costs were incurred for those 14 
ships. 

From Figure 28, previously seen, the decision-maker was interested in finding 
more about the cost sources.  Now in Figure 29, with an added level of detail, the 
decision-maker could make more observations and gain a deeper understanding of cost 
drivers.  For instance, the top five ships all demonstrated that for a given availability, 
labor impacted cost more than material.  Specifically, consider the Barry, Ramage, and 
Stout.  The labor costs accounted for percentages ranging from 70.8% to 73.4%.  In this 
small sample, the decision-maker could develop cost baselines indicating that for a 
given availability, labor accounted for about 70% of the cost and material accounted for 
about 30%.  Given that the small sample size is an accurate screenshot of DDG ship 
maintenance, then the definitized cost estimates of future availabilities could be 
compared to the baseline and predictions generated about how the cost profile might 
change before work is completed. 
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Figure 29. Definitized Estimate, Top 5 Ships, Expense Detail Solar Graph 
(J. Kornitsky, personal communication, November, 2013)
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Actual Costs of the Top Five Ships by Type Expense 

While the definitized cost estimate solar graphs do produce valuable information, 
they represent only well-educated guesses of the actual cost.  The next screenshot 
(Figure 30) provides actual cost and is organized by the top five ships with an additional 
level of detail.  Figure 30 also provides the additional information of Type of Expense. 

Most noticeably, the total actual cost, represented by the largest solar instance in 
the center of the graph, has increased to $435.5 million.  However, referring back to the 
previous figure (Figure 29), definitized cost was estimated to be $313.7 million so the 
costs actually increased by 38.8%.  A visualization tool enables the decision-maker to 
drill down further to identify the largest cost drivers. 

The types of expenses figure provides the ability to drill down further into the cost 
sources.  Whereas expense detail was broken down into only labor and material 
categories, type expense splits those into (shipyard) labor, sub (contractor) labor, 
(shipyard) material, and sub (contractor) material.  From here forward, the additional 
description in parentheses will be excluded, but the terms will retain their definitions.  
Labor and material, in the context of type expense, refer to the labor and material costs 
associated with the shipyard hosting the availability.  Sub labor and sub material refer to 
the same costs, but those associated with the expense incurred by subcontractors.   

In the Arleigh Burke, at the four-o’clock position on the figure, the definitized 
estimate for this ship was $46.9 million, and the actual cost was $58 million.  That 
represents an increase of 23.7%.  However, a decision-maker, knowing that labor is a 
larger contributor to cost than material, wants to know what type of labor expense is 
more responsible, the shipyard or the subcontractors.  In the case of the Arleigh Burke, 
sub labor accounted for 50.2%, whereas labor represented only 19.2% of total 
availability cost.  Representing a majority of cost for the Arleigh Burke, perhaps sub 
labor should be examined for cost-reduction opportunities. 

The bubble charts of either definitized estimates or actual costs provide decision-
makers with valuable insight.  However, the size difference between estimates and 
actual costs would provide an understanding of the sources of cost growth.  For 
instance, an executive is interested in determining the primary driver of increased costs.  
While the previous solar graphs possess the necessary information, further calculations 
are needed to figure changes in cost.  If the relative and actual changes in cost were 
displayed on the same graph, then the decision-maker would be able to easily identify 
the primary drivers of cost growth and cost savings.  The next four figures (Figures 31–
34) demonstrate the concept of representing both the definitized estimates and actual 
costs simultaneously. 
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Figure 30. Actual Cost, Top 5 Ships, Type Expense Solar Graph  
(J. Kornitsky, personal communication, November, 2013)
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Definitized Estimate versus Actual of the Top Five Ships by Type 
Expense 

Figure 31, Definitized Estimate versus Actual, Top 5 Ships, Type Expense, 
displays a zoomed-in look at the comparison format to provide an introduction to the 
new characteristics and to review some old ones.  Starting at the nine-o’clock position 
on the bubble chart (Figure 31), the first characteristic examined is the shell.  The shell 
thickness and color represent the difference in amount of change and whether the 
change was cost growth (red) or cost savings (green). 

Proceeding clockwise, the terms are familiar, but their presentation is new.  
Definitized cost estimate and actual cost refer to the estimated cost at the end of 
planning and the cost incurred upon completion of the availability, respectively.  In this 
figure, the definitized estimate is represented by the inner layer of the shell and the 
actual cost by the outer layer.  For example, the largest bubble represents total cost.  
The inner layer shows how large the instance would be if only the total definitized 
estimate, $313.7 million, was displayed.  The outer layer shows how large the instance 
would be if only the total actual cost, $435.5 million, was displayed.  The difference 
between the layers, or the thickness of the shell, represents the change in cost and is 
numerically indicated by the percentage shown, 38.7%.  The definitized estimate was 
less than the actual cost, which means that there was cost growth, and is represented 
by the color red. 

Although the next two aspects of the bubble chart are familiar, they require 
further clarification.  First, the number represented in millions of dollars is the final state 
of the instance.  For this comparison between definitized estimate and actual cost of the 
Barry, located at the one-o’clock position in Figure 31, the final state is the actual cost, 
which was $70.1 million.  Second, the percentage immediately below the actual cost 
value indicates the change from the initial state (definitized estimate) to the final state 
(actual cost).  In the case of the Barry, the cost grew by 46% from the definitized 
estimate to the actual cost. 

The final characteristic identified on the close-up is another percentage.  
Whereas the percentage within the instance represented cost growth, the percentage 
on the line between parent and child represented the proportion of the parent’s cost that 
the child contributed.  In the figure, the dialog box arrow points at the percentage the 
child instance accounted for with regard to its parent, the Barry, or 17.4% of the total 
actual cost incurred by the Barry. 
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Figure 31. Definitized Estimate Versus Actual, Top 5 Ships, Type Expense, Solar Graph Close-Up  
(J. Kornitsky, personal communication, November, 2013)
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Definitized Estimate Versus Actual of the Top Five Ships by Type 
Expense 

The most distinguishing feature of Figure 32, Definitized Estimate Versus Actual, 
Top 5 Ships, Type Expense, which has been organized to display the top five ships to 
show an additional level of detail according to type expense, is the near absence of 
green.  The two instances of cost savings, both titled All Other and located at about the 
nine- and five-o’clock positions on the outermost ring, are relatively insignificant, 
representing only 0.1% of the total cost, $435.5 million.  Examples of cost growth are 
abundant, but an examination of the largest contributor to total cost may produce 
valuable insight for the executive-level decision-maker. 

The All Other instance at the ten-o’clock position represents 14 ships.  Those 14 
ships accounted for $150.5 million, or 34.5%, of the total actual cost.  The red shell and 
the percentage inside the All Other instance together indicate 42.5% aggregate cost 
growth for the 14 ships.  These numbers reveal that the All Other category would be an 
area for a decision-maker to examine more closely in an attempt to identify the drivers 
of cost growth.  A cursory glance at the children of the All Other instance shows that 
subcontractors, both sub labor and sub material, experienced more than 50% cost 
growth.  Therefore, subcontractors are a primary driver of cost growth for at least the 14 
ships represented by the All Other instance. 

The visualization software provides the ability to delve into the data to discover 
more detail.  For example, if personnel are preparing a presentation based on 
Definitized Estimate versus Actual, Top 5 Ships, Type Expense data (Figure 32), and 
the decision-maker asks the question, “What was the definitized estimate for the 
Barry?,” then the answer can be found readily.  Rather than regress to previous 
screenshots, the presenter can simply select the Barry instance and pull up a bar chart 
which, among other information, displays the definitized estimate.  Perhaps the 
decision-maker requests even finer details.  The software possesses the ability to drill 
down five levels of detail and can reproduce the data located on the original 
spreadsheet.  So, more detail is available than just what is displayed on the static 
screenshots presented here.  Refer to the two figures titled Barry Drill Down (Figures 44 
and 45) near the end of this section for examples. 
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Figure 32. Definitized Estimate Versus Actual, Top 5 Ships, Type Expense Solar Graph 
(J. Kornitsky, personal communication, November, 2013)
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Definitized Estimate Versus Actual of the Top Five Ships by Work 

Figure 33, Definitized Estimate Versus Actual, Top 5 Ships, Work, is the last of 
three figures showing simultaneous display of both definitized estimates and actual 
costs, and provides the additional detail of work instead of type of expense.  As 
previously discussed, maintenance work is broken into four types: OW, G, NW, and NG.  
Changing the detail to allocate cost by work creates a couple of peculiarities, both 
related to the definitions of the work, and important for the executive-level decision-
maker to understand. 

There are two anomalies when the data are changed to show work details.  The 
first peculiarity is that there are now a significant number of instances that possibly 
indicate cost savings.  Unfortunately, all the percentages within the green shelled 
instances are left blank revealing that no change (0%) has taken place.  That is 
because the instances are representing OW, which does not change after the 
completion of planning, making the percentage within the instance irrelevant.  For 
example, refer to the Arleigh Burke solar graph instance at the four-o’clock position in 
Figure 33.  The green shelled child instance attached to the Arleigh Burke is labeled 
Original for OW.  The percentage displayed is blank which indicates 0% change in cost 
has occurred because any change in cost is recorded by the other categories of work.  
The percentage which is important for the decision-maker to acknowledge, though, is 
indicated along the line connecting the child to parent.  The, 80.8% for OW, indicated 
what portion of the total actual cost, for the Arleigh Burke, that OW accounted for. 

The second peculiarity, also a result of definitions, is that the instances for the 
other three categories of work are all solid red.  Solid red indicates that the baseline, or 
definitized estimate in this case, was $0 and the actual cost is all cost growth.  That is 
because the other three categories of work (G, NW, NG) all result from work needed in 
addition to the OW and are, therefore, cost growth by definition.  Continuing with the 
examination of the Arleigh Burke, its larger solid red child is labeled Growth.  The 
percentage within the instance is blank, but again, it is less important.  The significant 
values important to the decision-maker are the actual cost of G, $8.4 million, and the 
proportion of the Arleigh Burke’s total actual cost that G work accounted for, 14.5%.  
With the two peculiarities defined and understood, reconsider the previous figure to 
identify a cost driver. 

The decision-maker examined the largest All Other instance more closely and 
determined that subcontractors were a primary driver of cost growth.  The decision-
maker might then ask to see the additional detail organized by work to further expand 
his or her understanding.  Again looking at the All Other instance located at the ten-
o’clock position in Figure 33, the largest driver of cost growth is NW, which accounted 
for $34.4 million, or 22%, of the actual costs for All Other 14 ships.  Combine the 
knowledge derived from examining both graphs (Definitized Estimate versus Actual, 
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Top 5 Ships, Type Expense and Work, Figures 32 and 33, respectively) and the keen 
decision-maker might direct staff personnel to investigate NW performed by 
subcontractors for cost-savings opportunities. 

Figure 33 demonstrates how costs aggregate from the bottom up.  Costs are 
created at the operational level and occur in different forms.  Here, the forms are 
categorized according to the classification of work that  created the cost.  As the costs 
move from the outer rings of the solar graph, the costs are aggregated into ship 
instances that provide less cost detail, but is still useful as another way of looking at 
cost.  Finally, all the ships’ actual costs are aggregated into the center solar instance, 
Total.  The visualization software offers the opportunity to view the cost data at many 
levels of detail, each of which delivers valuable information for decision-makers. 
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Figure 33. Definitized Estimate Versus Actual, Top Five Ships, Work Solar Graph 
(J. Kornitsky, personal communication, November, 2013)



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 68 - 
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

Simulation 1 and 2: Introduction of 3DP and AM Radical 

Visualization tools provide decision-makers with insights into historical data, and 
more importantly, offer forecasting capabilities.  Before implementing process changes, 
which involve risk and uncertainty, an executive could use bubble charts to forecast the 
effects of such changes.  Consider the following example. 

The executive-level decision-maker has analyzed the figures previously 
presented and has concluded that changes to the ship maintenance process are 
necessary to control cost growth.  Three technologies have been identified to reduce 
costs: 3D Printing (3DP), 3D Laser Scanning Technology (3D LST), and Collaborative 
Product Lifecycle Management (CPLM).  To test this hypothesis, two simulations were 
conducted with differing implementation strategies.  In Simulation 1, 3DP technology 
only was applied, while in Simulation 2, all three technologies (3DP, 3D LST, and CPLM 
combined) were applied to the ship maintenance process.  Simulation results, which 
could identify potential cost savings, are discussed further in this section. 

To quantify the potential benefits of those technologies, the Knowledge Value 
Added (KVA) methodology was applied.  KVA assigns a value to the knowledge assets 
of an organization (Housel & Bell, 2001) and was used to forecast the effect that 3DP, 
3D LST, and CPLM technologies would have on U.S. Navy ship maintenance programs.  
In one prior study, the researchers found that 3DP and CPLM could result in cost 
savings of as much as 81% (Kenney, 2013).  Another study determined that cost 
savings of as much as 84% could result from the use of 3D LST and CPLM in U.S. 
Navy ship maintenance programs (Komoroski, 2005).  The potential impact of these 
three technologies has been determined to be substantial.  Therefore, they were used 
to demonstrate the ability of the software program to create intuitive screenshots of the 
cost savings generated by their implementation. 

In the previous set of comparison figures, the definitized estimate was the 
baseline, and actual cost was the value compared.  In the next set of four comparison 
figures (Figures 34–37), the baseline and the value compared are changed to examine 
the effect of three different technologies on ship maintenance actual cost.  In the first 
two figures to follow (Figure 34 and 35), the actual cost is the baseline and the 
forecasted effect of 3DP only is the compared value.  The next two figures (Figures 36 
and 37) visualize the effect that the combination of 3DP, 3D LST, and CPLM , labeled 
as Additive Manufacturing (AM) Radical, has on ship maintenance costs. 

Actual Versus 3DP for the Top Five Ships by Type Expense 
Figure 34, Actual Versus 3DP, Top 5 Ships, Type Expense, visualizes the effect 

on actual cost of implementing 3DP into the ship maintenance process.  The familiar top 
five ship format is maintained, and the additional level of detail is organized by type 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 69 - 
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

expense.  The baseline is the actual cost incurred and the compared value is the 
backcasted effect that 3DP would have had on actual cost. 

To the executive-level decision-maker analyzing the effect of 3DP on U.S. Navy 
ship maintenance, this figure provides two important pieces of information.  The first is 
that overall, the actual cost of ship maintenance can be reduced with the 
implementation of 3DP technology.  Figure 34’s center instance shows that the effect of 
3DP on the ship maintenance process could have reduced the total cost by 2.1% as is 
indicated by the percentage and the green shell.  The cost of ship maintenance with the 
incorporation of 3DP is now $426.2 million versus the original $435.5 million for a 
savings of $9.3 million.  The Barry, again located at the one-o’clock position, is the ship 
that demonstrates the largest percentage cost savings at 6.1% and reduced costs 
across all types of expense. 

Second, not every ship may benefit from the use of 3DP technology.  Just above 
the three-o’clock position on Figure 34, the Stout indicates 1.4% cost growth for a 
backcasted total cost of $64.1 million, or $0.9 million greater than the original cost.  
Drilling down one level of detail into expense type, the decision-maker can easily 
determine that every category of expense contributed to the cost growth for the Stout.  
However, additional levels of detail are available, and the executive may request that 
more information be displayed to help identify the primary drivers of cost growth for the 
Stout and/or the leading sources of cost savings for the Barry.  Therefore, Figure 35, 
organized by work, adds another layer of detail. 
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Figure 34. Actual Versus 3DP, Top 5 Ships, Type Expense Solar Graph 
(J. Kornitsky, personal communication, November, 2013)
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Actual Versus 3DP of the Top 5 Ships by Type Expense, Work 
Figure 35, Actual Versus 3DP, Top 5 Ships, Type Expense, Work, is the second 

in the series of comparison figures.  It allows the decision-maker to visually drill down 
into the data even further.  In Figure 34, the Barry displayed cost savings across all 
types of expense, and the Stout indicated cost growth  with the implementation of 3DP 
into the ship maintenance process.   The addition of the classification of work detail 
however, indicated where each ship derived its savings or growth with 3DP. 

The executive drilling down into the 3DP backcasted cost data for the Barry can 
quickly identify one classification of work, in one type of expense, which produced cost 
growth.  The only red-shelled solar graph instance subordinate to the Barry in Figure 35 
is the NG instance, subordinate to Sub Labor, which has been backcasted to account 
for $1.3 million dollars of Sub Labor cost.  However, the percentage growth is not 
displayed because the software limits the presence of information to reduce clutter and 
increase clarity.  But, the executive requiring more information can simply select the 
red-shelled NG instance, and more information is available immediately, including the 
percentage of cost growth.  If the decision-maker decided to implement the 3DP-only 
strategy, then the NG work attributed to Sub Labor could be an aspect that should be 
looked at for improvement. 

The executive examining the Stout, at the two-o’clock position in Figure 35, more 
closely can quickly see that even though the aggregate change in cost is cost growth, 
there are indications of possible cost savings.  Immediately subordinate to the Stout, 
Sub Labor is backcasted to account for $31.3 million.  Again, the percentage increase in 
cost is not displayed, but is available by selecting the solar graph instance.  Even 
though the Sub Labor instance indicates cost growth, there are children subordinate to 
Sub Labor that signify cost savings.  For example, the Growth instance is green shelled 
and is backcasted to account for $6.4 million.  To the decision-maker, this figure is 
forecasting the possible effect of implementing 3DP into ship maintenance using 
historical data, and it provides the ability to examine the effect a particular technology 
might have on cost without the risk and uncertainty involved with actual implementation. 
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Figure 35. Actual Versus 3DP, Top 5 Ships, Type Expense, Work Solar Graph 
(J. Kornitsky, personal communication, November, 2013)
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Actual Versus AM Radical of the Top 5 Ships by Type Expense 
Figures 36 and 37 compare the baseline, actual cost, to the backcasted effect 

that the implementation of all three combined technologies might have had on cost.  
The structure of the graph remains familiar, but the increase in cost savings 
demonstrates the ability of the software to produce intuitive screenshots that easily 
communicate the differences in effect on cost.  Figure 36, Actual Versus AM Radical, 
Top 5 Ships, Type Expense reverts back to the format of Actual Versus 3DP, Top 5 
Ships, Type Expense (Figure 34) with less detail, but easily demonstrates the difference 
in cost savings.  The substantial increase in cost savings is communicated by, most 
intuitively, the thickness of the solar graph instance shells, but is also indicated by the 
absolute and relative values displayed in or near the instance. 

To the executive-level decision-maker concerned with cost, the most evident 
display of cost savings is the center instance.  The total backcasted cost of ship 
maintenance for all 19 ships, had 3DP, 3D LST, and CPLM technologies been 
implemented, is $271.1 million or 37.7% cost savings under actual cost.  The difference, 
$164.4 million, could have been used to finance other needs such as system upgrades, 
structural improvements, or reducing the number of maintenance jobs deferred until the 
next availability due to shrinking fiscal budgets.  The decision-maker analyzing the 
change in cost might also be interested in understanding the difference in cost savings 
of individual ships. 

In contrast to the 3DP-only implementation strategy, which slightly increased cost 
for one of the top five ships, AM Radical decreased costs for all top five ships.  There 
appear to be substantial cost savings in the All Other solar graph instance located at the 
ten-o’clock position in Figure 36 as well, but current settings prevent concluding that all 
19 ships incurred cost savings.  In the case of the Barry, cost savings is significantly 
increased.  With implementation of 3DP only, the backcasted cost was $65.8 million, or 
6.1% cost savings.  With the use of all three technologies, or AM Radical 
implementation, the backcasted cost for the Barry is $43.9 million, a cost savings of 
37.3% when compared with actual cost.  Drilling down one layer of detail, two of the 
type expense children subordinate to the Barry have thicker green shells than the 
others, an intuitive indication of substantial cost savings.  In fact, Sub Labor and Sub 
Material account for almost 80% of the increase in the cost savings of AM Radical over 
the 3DP-only implementation strategy for the Barry. 

Earlier, in the description of the Definitized Estimate Versus Actual, Top 5 Ships, 
Type Expense (Figure 32) solar graph, the executive-level decision-maker identified 
subcontractor labor and material as primary drivers of cost growth.  The keen decision-
maker might begin to formulate that a possible solution to subcontractor labor and 
material cost growth is the implementation of all three technologies.  However, the 
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addition of another layer of detail is available, and it could provide either supporting or 
contradictory evidence. 
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Figure 36. Actual Versus AM Radical, Top 5 Ships, Type Expense Solar Graph 
(J. Kornitsky, personal communication, November, 2013)
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Actual Versus AM Radical of the Top 5 Ships by Type Expense, Work 
Figure 37, Actual Versus AM Radical, Top 5 Ships, Type Expense, Work, the 

fourth and final screenshot of this comparison series, allows the executive-level 
decision-maker to drill down visually into the data even further.  The additional layer of 
detail is organized by work and provides more information about the sources of cost 
savings. 

An executive analyzing this figure could notice the most obvious aspect first, the 
fact that AM Radical implementation creates cost savings throughout the entire dataset.  
Whereas 3DP-only implementation indicated cost growth in one ship, various type 
expenses and classifications of work, the backcasted effect AM Radical implementation 
could have produces cost savings in every instance.  For example, with 3DP-only 
implementation, the Actual Versus 3DP, Top 5 Ships, Type Expense, Work solar graph 
(Figure 35) identified cost growth in one classification of work, NG, which accounted for 
$1.3 million of Sub Labor.  But with AM Radical implementation, the NG instance 
subordinate to the Barry on this solar graph, Figure 37, indicates cost savings and now 
accounts for $0.99 million.  As stated before, the percentage change is not displayed to 
reduce clutter; however, it is available by simply selecting the instance.  Possibly more 
interesting to the executive-level decision-maker is the case of the Stout which changed 
from a source of cost growth to a significant driver of cost savings. 

In the previous solar graph, Actual Versus 3DP, Top 5 Ships, Type Expense, 
Work (Figure 35), showing the backcasted effect of 3DP, the Stout displayed an 
absolute cost of $64.1 million and cost growth of 1.4%.  The classification of work which 
contributed most to the cost of the Stout was OW, a child of Sub Labor, and indicated 
an absolute cost of $21.5 million.  But with AM Radical implementation, this solar graph 
(Figure 37) backcasted the cost to $15.3 million for the OW associated with Sub Labor, 
a cost savings of $6.2 million when compared to 3DP-only implementation.   

The Stout, as well as the other top five ships, could have produced significant 
cost savings had the AM Radical approach been implemented.  However, the actual 
costs have already been incurred.  The significance of this series of figures is that a 
decision-maker can visualize the effect the technology implementation strategies might 
have had on historical data and then make predictions about the effect on future costs.  
The decision-maker, armed with the predictions derived from the solar graphs, weighs 
additional executive-level organizational considerations, and then is able to make better 
cost-control choices for the future of U.S. Navy ship maintenance. 
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Figure 37. Actual Versus AM Radical, Top 5 Ships, Type Expense, Work Solar Graph 
(J. Kornitsky, personal communication, November, 2013)
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Alternative Figures 

The final series of solar graph figures (Figures 38–40) demonstrates the flexibility 
of visualization tools, enabling drilling down into specific details.  All but the first of the 
figures described thus far have used the top five ships structuring concept for the first 
level of detail.  While the use of the single method of organizing the first layer of detail 
made comprehension of the graphs easier, it limited the appearance of the flexibility of 
the third-party software.  Therefore, other methods of organizing and presenting the 
data are explored in the following three comparison figures. 

Definitized Estimate Versus Actual of the Type Expense by Work 
Figure 38, Definitized Estimate Versus Actual, Type Expense, Work, is useful for 

the decision-maker interested in analyzing cost growth without discriminating by ship.  
This figure reverts back to using the definitized estimate as the baseline and the actual 
cost as the comparison, as in Definitized Estimate Versus Actual, Top 5 Ships, Type 
Expense and Definitized Estimate Versus Actual, Top 5 Ships, Work (Figures 32 and 
33, respectively).  However, the top five ships are not used as an organizing concept.  
Instead, the first layer of detail is grouped by type expense and the additional layer is 
organized by work. 

Consider the theory arrived at by the executive during analysis of the Definitized 
Estimate Versus Actual, Top 5 Ships, Type Expense figure (Figure 32).  The decision-
maker noted that subcontractor labor and material appeared to be primary drivers of 
cost growth.  In this screenshot, Figure 38, the Sub Labor instance appears at ten 
o’clock and the Sub Material instance at three o’clock.  The indicated percentages of 
cost growth are 45% and 44%, respectively.  Compared to the cost growth of Labor and 
Materials associated with the shipyard, 28.5% and 27.1%, respectively, subcontractors 
also appear here to be primary drivers of cost growth.  The decision-maker is interested 
in understanding the causes of subcontractor cost growth at a deeper level of detail.  
Therefore, the executive might analyze the graph further and discover that NW is the 
largest absolute contributor to both Sub Labor, at $31.5 million, and Sub Material, at 
$13.5 million. 

The same information was derived from the analysis of two sequential solar 
graphs described earlier.  Those were Definitized Estimate Versus Actual, Top 5 Ships, 
Type Expense and Definitized Estimate Versus Actual, Top 5 Ships, Work (Figures 32 
and 33, respectively).  The same understanding was derived from two unique 
presentations, one with two graphs and the other with this one graph.  Arriving at the 
same conclusion from different presentations of the data builds confidence in the 
decision-maker that the data are accurate and the visualization methods, valid. 
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Figure 38. Definitized Estimate Versus Actual, Type Expense, Work Solar Graph 
(J. Kornitsky, personal communication, November, 2013)
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Definitized Estimate Versus Actual of the Work by Ship 
The remaining two alternative figures are complementary.  Figure 39, Definitized 

Estimate Versus Actual, Work, Ship, is a figure that a decision-maker could use to 
identify problem areas of cost growth based on classification of work.  Figure 40,  Actual 
Versus AM Radical, Work, Ship, keeps the same organization format, but enables the 
decision-maker to analyze how the implementation of the three technologies could have 
created cost savings. 

In Figure 39, which demonstrates cost growth, there is only one peculiarity that 
has already been explained.  All the thin, green-shelled instances on the left side of the 
graph represent 0% growth because of the definition of OW, which cannot grow in 
expense.  Also, the solid, red-shelled instances on the right side represent only cost 
growth that occurred and are classified as either NW, G, or NG because of their 
definitions. 

Figure 39 is important to the executive-level decision-maker because it exhibits 
data already presented in another format.  The other format was the Definitized 
Estimate Versus Actual, Top 5 Ships, Work figure (Figure 33), which organized the first 
level of detail by ship and the second level by work.  In this graph, the organizing 
concepts have been reversed.  If the same deduction can be derived from this 
screenshot, then the decision-maker’s confidence, in their ability to make accurate and 
valid choices for the future of U.S. Navy ship maintenance processes, increases. 

The deduction already made by the decision-maker was that NW, over the other 
classifications of work, accounted for the largest portion of cost growth.  Referring to the 
Definitized Estimate Versus Actual, Work, Ship solar graph (Figure 39), a quick visual 
scan over the classification of work instances creates an intuitive understanding.  The 
NW instance is the largest indicator of cost growth.  Further examination by the 
decision-maker provides the dollar values that support the intuitive perception.  The NG 
instance, located at the five-o’clock position, accounted for $7.7 million.  The G 
instance, located just below the three-o’clock position, represented $47.1 million.  
Finally, the NW instance, located at the two-o’clock position, produced $66.8 million in 
cost growth.  Even though the data were organized and presented differently, the same 
deduction was reached: NW was the primary driver of cost growth. 

If the executive were interested in determining the ships that produced the 
largest cost growth, then simply referring to the additional level of detail would provide 
the answer.  For example, since NW was the primary driver of cost growth, identification 
of the largest contributing ship may provide a specific case for further analysis of cost 
growth.  Referring to the NW instance, located at the two-o’clock position in Figure 39, 
the child ship that represents the largest portion of cost growth is the Donald Cook.  The 
decision-maker, remembering that the Donald Cook represents two availabilities, would 
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drill down into the next level of detail by selecting the Donald Cook.  Then, the 
determination would be made whether either one of the Donald Cook availabilities or 
the next largest individual ship (the Barry) was the ship representing the most cost 
growth for NW.  Once the ship was identified, the executive could direct further study 
into the causes of cost growth. 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó - 82 - 
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

 

Figure 39. Definitized Estimate Versus Actual, Work, Ship Solar Graph 
(J. Kornitsky, personal communication, November, 2013)
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Actual Versus AM Radical of the Work by Ship 
Actual Versus AM Radical, Work, Ship (Figure 40) shows the backcasted effect 

that the implementation of all three technologies combined might have had on U.S. 
Navy ship maintenance costs.  Figure 40 maintains the organizing structure of the 
immediately previous solar graph to provide easy comparison for the executive-level 
decision-maker. 

For example, the decision-maker is interested in figuring out the overall effect 
that AM Radical implementation has compared to definitized cost.  The center instance 
in Figure 40, Total, indicates the bottom-line cost savings that may have occurred had 
the AM Radical implementation strategy been employed.  At $271.1 million, AM Radical 
implementation might have resulted in 37.7% cost savings, but that’s compared to 
actual cost.  Referring to the OW instance located at the nine-o’clock position on the 
previous solar graph, Definitized Estimate Versus Actual, Work, Ship (Figure 25) the 
value is $313.7 million.  Because of the definition of OW and the position of the OW 
instance at the first level of detail, it also represents the total definitized estimate.  
Simple math shows that AM Radical implementation might have caused the ships 
analyzed to come in under budget by $42.6 million, or 13.6%.  Cost growth could have 
been turned into cost savings through the backcasted effect that AM Radical 
implementation might have had on the ships studied.  To the executive-level decision-
maker, this is important because if the three technologies (3DP, 3D LST, and CPLM 
combined) were selected for implementation, then future U.S. Navy ship maintenance 
budgets might be reduced and result in reallocation of funding to higher priority projects. 
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Figure 40. Actual Versus AM Radical, Work, Ship Solar Graph 
(J. Kornitsky, personal communication, November, 2013)
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LOD and Availability Density Bubble Charts 

Lost operating days (LOD) have long been considered by the U.S. Navy ship 
maintenance metrics groups to be a valuable indication of the performance of the ship 
maintenance process.  The LOD metric is often included in reports made by regional 
maintenance centers (RMCs) to Naval Sea Systems Command (NAVSEA) as an 
indication of the effect on ship’s schedule caused by delays (M. Leftwich, personal 
communication, September 4, 2013).  However, the LOD metric has been linked to the 
quality of the definitized estimate and that quality has been determined to be random (T. 
Laverghetta, personal communication, November 26, 2013).  To the executive-level 
decision-maker, the important aspect of ship maintenance is cost.  Availability density is 
considered a better metric for predicting cost and was provided to this study for further 
analysis (P. Pascanik, personal communication, November 21, 2013).  Of the following 
three figures (Figures 41–43), the first two highlight the lack of correlation between the 
LOD metric and actual cost.  The third demonstrates the validity of using the availability 
density metric to indicate actual maintenance cost. 

LOD Versus Expense (Actual Cost) 
Figure 41, LOD Versus Expense (Actual Cost), is presented first to provide an 

introduction to the structure of the chart.  The next figure, LOD Versus Expense (Actual 
Cost) – Highlighted (Figure 42), will then be considered as the chart important to the 
U.S. Navy ship maintenance executive-level decision-maker interested in controlling 
costs. 

In Figure 41, the LOD Versus Expense (Actual Cost) figure is structured as an 
XY scatter plot.  The X-axis represents expense or actual cost of a ship availability and 
ranges from $0 to $70 million.  The Y-axis represents the total LODs incurred during an 
availability and ranges from 0 to (-107); negative numbers represent operating days 
lost.  The data points scattered throughout the chart represent the LOD and expense 
values for the individual availabilities and are labeled with their unique availability 
identification numbers.  For example, the data point labeled Avail 56387 near the center 
of the bubble chart represents one of the availabilities for the Donald Cook.  The LODs 
incurred during that availability totaled 63, and the total expense was $33.4 million. 
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Figure 41. LOD Versus Expense (Actual Cost) Bubble Chart 
(J. Kornitsky, personal communication, November, 2013)
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LOD Versus Expense (Actual Cost) – Highlighted 
Figure 42, LOD Versus Expense (Actual Cost) – Highlighted, is important to the 

executive-level decision-maker because it demonstrates that the LOD metric is not 
useful for forecasting the actual cost of an availability.  This is shown by both a visual 
analysis of the chart and by a  mathematical calculation of the correlation factor. 

Visually, the data points show that smaller availabilities, under $30 million, can 
result in either the highest number or the lowest number of LODs.  For example, the 
data point labeled Avail 52371 in Figure 42 is for the James E. Williams and indicates 
an actual cost of $4.2 million with a total of zero LODs.  Meanwhile, the data point 
labeled Avail 57133 is for one of the Arleigh Burke availabilities and indicates an actual 
cost of $9.1 million with a total of 107 LODs.  In fact, the six data points highlighted in 
the lower left corner of the bubble chart all represent availabilities of relatively small cost 
that incurred relatively high numbers of LODs, which prevent the appearance of a linear 
relationship.  Therefore, the LOD metric is not a good indicator of availability cost. 

Mathematical calculation also demonstrates the lack of connection between the 
LOD metric and expense.  The expense, or actual cost, of each availability was totaled, 
to include OW, G, NW, and NG.  Then, a correlation factor was calculated between the 
cost of each availability and the number of LODs incurred during each availability.  The 
correlation factor is (-0.14).  This number shows that, mathematically, the LOD metric is 
not a good indicator of cost.  For the executive-level decision-maker, LODs have been 
visually and mathematically shown not to correlate well with cost.  However, the metric 
that correlates well with cost is the metric provided to this study for further analysis. 
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Figure 42. LOD Versus Expense (Actual Cost)—Highlighted Bubble Chart 
(J. Kornitsky, personal communication, November, 2013)
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Availability Density Versus Expense (Actual Cost) 
The metric of availability density was provided to this study and is defined as the 

Total Actual Man Days divided by the Total Availability Duration Days.  In other words, 
the availability density number represents the average number of man-days performed 
each calendar day of the availability.  For example, in Figure 43, the Stout (Avail 54703) 
used 134,254 man-days to complete its availability, which lasted 275 calendar days.  
The availability density for the Stout is 488.  For each calendar day of the Stout’s 
availability, an average of 488 man-days were performed. 

Figure 43, Availability Density Versus Expense (Actual Cost), changes one axis 
to represent the new metric.  The X-axis remains as expense, but the Y-axis now 
represents availability density and ranges from 55 to 611.  For example, the Stout (Avail 
54703) data point near the top-right corner of the chart indicates an average of 488 
man-days per availability calendar day and an actual cost of $63.2 million. 

Availability density is a better indicator of cost and the Availability Density versus 
Expense (Actual Cost) bubble chart (Figure 43) proves that visually and mathematically.  
Visually, availability density correlates with expense.  For example, the data point 
labeled Avail 57133 near the bottom-left portion of the chart represents one of the 
Arleigh Burke availabilities and indicates an availability density of 85 and expense of 
$9.1 million.  In the diagonally opposite corner, Avail 54318 represents the Barry and 
indicates an availability density of 611 and expense of $70.1 million.  Visually, 
availability density provides a good indication of availability expense through its linear 
response. 

Mathematically, availability density and cost correlate very well.  The expense of 
each availability was again totaled.  Then, a correlation factor was calculated between 
the cost and availability density of each availability.  The correlation factor is 0.98.  This 
number shows that, mathematically, the availability density metric is a strong indicator 
of cost.  Availability density is visually and mathematically an accurate indicator of cost. 

For the executive-level decision-maker, predicting the actual cost of events in 
progress is extremely valuable.  The metric availability density shows such a strong 
correlation to cost that it may be able to predict whether a particular current availability 
is expected to meet or exceed the definitized estimate.  The ability to predict the ending 
actual cost of a ship maintenance evolution in progress would enable decision-makers 
to avert large cost growth by implementing changes earlier in the U.S. Navy ship 
maintenance process. 
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Figure 43. Availability Density Versus Expense (Actual Cost) Bubble Chart 
(J. Kornitsky, personal communication, November, 2013)
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Drill-Down Spreadsheets 

Figures 44 and 45 are examples of drill-down spreadsheets that can be produced 
from any solar graph instance.  The ship selected as the target for drill down was the 
Barry and a time-analysis spreadsheet was produced at two different levels of detail.  
The time analysis covers the actual cost, 3DP-only implementation backcasted cost, 
and AM Radical implementation backcasted cost.  The titles of each spreadsheet 
indicate the levels of detail shown; Barry Drill Down, 3 Levels of Detail (Figure 44) 
shows three levels of detail, and Barry Drill Down, 4 Levels of Detail (Figure 45) shows 
four. 

These spreadsheets would be valuable to the executive-level decision-maker 
who wanted to see the numbers that the visualization software translates into intuitive 
solar graphs.  For example, consider the executive analyzing the Actual Versus AM 
Radical, Top 5 Ships, Type Expense solar graph, Figure 36.  The Barry instance, 
located at the one-o’clock position on that graph, indicates a backcasted absolute cost 
of $43.9 million if all three technologies had been implemented into the ship 
maintenance process.  However, the decision-maker wants to see the absolute values 
for the actual cost, the 3DP-only backcasted cost, and the AM Radical backcasted cost 
together for comparison.  Then, simple selection of the Barry instance would produce 
the option to generate detailed spreadsheets at varying levels of detail.  If the decision-
maker only wanted to see a little additional detail, then the Barry Drill Down, 3 Levels of 
Detail (see Figure 44) option might be selected.  If the decision-maker really wanted to 
drill down into the data, then the Barry Drill Down, 4 Levels of Detail (see Figure 45) 
spreadsheet could be generated.  Either way, these spreadsheets provide the 
executive-level decision-maker with drill-down capability sufficient to meet the needs of 
the most detail-oriented executive. 
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Figure 44. Barry Drill Down, 3 Levels of Detail  
(J. Kornitsky, personal communication, November, 2013) 
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Figure 45. Barry Drill Down, 4 Levels of Detail  
(J. Kornitsky, personal communication, November, 2013)
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Summary 
Visualization tools make it easier for executive-level decision-makers to 

determine the status, path, and origin of ship maintenance costs.  NPS researchers 
were asked to identify new ways of summarizing millions of data points that are 
critical in making maintenance decisions.  The visualization software illustrated how 
additional tools for big data could provide the diagrams, charts, and graphs to 
facilitate maintenance costs allocation decisions.  In addition, we have provided a 
methodology to help mitigate the risk and uncertainty in decision-making.  

The big data collected and stored by ST1MS is a giant trove of information.  
In this limited study, only 19 DDGs and 21 availabilities were analyzed.  Primary 
drivers of cost growth and possible sources of cost savings were identified.  
Consider the use of big data visualization methods for not just every ship in the U.S. 
Navy, but also in the U.S. Coast Guard.  These methods could also be applied to 
aircraft and ground vehicle maintenance.  The scope is expandable to any system 
that collects big data.  The ability to intuitively analyze large amounts of information 
and gain a deeper understanding of the relationships among the components of an 
entire system makes big data visualization so important for everyone, including U.S. 
Navy ship maintenance executive-level decision-makers. 

Conclusions and Recommendations 
Conclusions 

PEO Ships asked the team from NPS to work with U.S. Navy ship 
maintenance metrics groups to provide additional options regarding the optimization 
of large datasets.  Static, cumbersome spreadsheets are no longer suitable for 
executive-level decision-makers to make strategic choices regarding ship 
maintenance budgeting and scheduling.  The visualization software used to present 
ship maintenance big data provides a means to aggregate voluminous data in 
visually intuitive ways to better understand cost drivers and factors that lead to 
schedule overruns.  Big data visualization allows decision-makers to identify trends 
quickly, develop a better understanding of the problem space, establish defensible 
baselines for monitoring activities, perform forecasting, and determine the 
usefulness of metrics. 

Visualization software provides decision-makers with a tool that makes quick 
identification of trends possible.  Refer to Figures 32 and 33 (Definitized Estimate vs. 
Actual, Top 5 Ships, Type Expense and Work, respectively) or Figure 38 (Definitized 
Estimate vs. Actual, Type Expense, Work).  In the example scenarios presented, an 
executive-level decision-maker was interested in identifying the largest cost 
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contributor.  Visual analysis of the figures led the decision-maker to quickly identify 
that subcontractor labor resulting from NW caused a trend of higher costs. 

Better understanding of the problem space is also provided by the 
visualization of big data.  Before decision-makers can make choices about the future 
of U.S. Navy ship maintenance, they must be able to understand the characteristics 
of the problem as a whole.  Charts, diagrams, and solar graphs enable executives to 
visualize how all the data points relate to each other, to define which categories of 
data are of particular interest, and to forecast the impact of policy changes.  Through 
the manipulation of big data visualization tools, decision-makers can develop a 
better understanding of their specific problem space. 

Continued collection of ship maintenance big data would provide for the 
creation of defensible cost and schedule performance baselines.  The sample data 
analyzed in this project represented a limited number of availabilities and is therefore 
limited in its ability to represent U.S. Navy ship maintenance as an industry.  
However, expanded and continued collection of ship maintenance big data would 
provide data that more accurately reflect the industry.  If the collection of data were 
expanded to include all types of ships and continued to provide for the analysis of 
many years of data, then the visualization software could be used to create 
defensible cost and schedule baselines. 

Executive-level decision-makers are often concerned with the future impact of 
their current policy change choices.  Historically, executives relied upon the advice 
of experts and instincts developed over several years of personal experience to 
select which policy changes would create the effects desired.  Through big data 
visualization software, manipulation of the data is possible to allow for forecasting.  
In the simulations, which examined the implementation of either 3DP technology 
only or the combination of multiple technologies (3DP, 3D LST, and CPLM), cost-
savings trends, derived from previous research of those technologies, were applied 
to historical ship maintenance data.  The results were then presented, as 
screenshots from visualization software, in a manner that allowed a decision-maker 
to intuitively understand the forecasted effect without the need for expensive test 
cases or extensive research by experts. 

Metrics provide an indication of performance as long as they represent a 
causal relationship.  LODs have long been a metric used to indicate ship 
maintenance performance, but their validity was questioned.  Availability density was 
offered as an alternative metric, but proof of its validity was necessary before being 
considered as a real substitute for the LOD metric.  Through the use of bubble 
charts, the visualization software created a visually intuitive display that 
demonstrated the correlation to expense of each of the metrics.  The LOD metric 
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was shown to be a poor indicator of cost, and the availability density metric was 
shown to be a good indicator of cost.   

Through the use of big data visualization tools, executive-level decision-
makers can identify trends quickly, develop a better understanding of the problem 
space, establish defensible baselines for monitoring activities, perform forecasting, 
and determine the usefulness of metrics. 

Recommendations 
Big data visualization tools are beneficial to executive-level decision-makers 

responsible for implementing policy throughout their enterprise.  For U.S. Navy ship 
maintenance decision-makers considering the use of visualization software in their 
industry, the following recommendations are made: 

 Continue collection of data.  Data that reflect ship maintenance over 
time will provide greater value and more defensible baselines. 

 Expand collection of data.  Data that reflect all types of ships in the 
U.S. Navy would better reflect the industry and better characterize the 
problem space. 

 Identify performance accounting software for tracking.  Software 
packages are available that would provide for a systematic, common, 
and seamless method for collecting, storing, and analyzing 
performance data. 

 Begin forecasting once performance baselines are established.  
Forecasting the effects of policy decisions is only as accurate, and 
therefore valuable, as the baselines used to derive the forecast.  
Continued and expanded collection of data in a common software 
package over a period of time must be accomplished before value can 
be obtained through forecasting. 

 Develop a meaningful numerator for evaluating ship maintenance 
performance.  Return on investment (ROI) is calculated by dividing the 
output by the input.  U.S. Navy ship maintenance collects troves of 
data on the input, the denominator, in the form of dollars of cost.  
However, there is no output, or benefit, derived from ship maintenance, 
which is collected as a metric and represented in generic units of 
output.  Without a numerator, the ROI of U.S. Navy ship maintenance 
cannot be determined. 

Through the implementation of these recommendations, U.S. Navy ship 
maintenance executive-level decision-makers would be well on their way to deriving 
the benefits of big data visualization.  Those benefits include the ability to identify 
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trends quickly, develop a better understanding of the problem space, establish 
defensible baselines for monitoring activities, perform forecasting, and determine the 
usefulness of metrics.  
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Appendix:  Big Data Implications for Enterprise 
Architecture  
(Donaldson, 2013) 

Introduction 

By April, 2011, the United States (U.S.) Library of Congress had collected 235 
terabytes of data.  However, of the 17 U.S. business sectors, 15 of them had more 
data stored than the Library of Congress, per company [McKinsey Global Institute 
(MGI), 2011].  MGI’s report on big data (2011) estimated that a 60% increase in the 
operating margins of retailers would be possible if big data collection, storage, and 
analysis techniques were properly utilized.  So, how does an enterprise derive value 
from big data? 

Big data spawns from many sources and possesses characteristics which are 
pertinent to the practitioner of enterprise architecture (EA).  The needs of the 
enterprise and how the data is to be processed determines how an EA should be 
designed to ensure the enterprise can derive value from big data.  The impact of big 
data results from the volume, variety,  velocity, and value traits of the data and 
influences both the network and capacity considerations of the EA.  However, 
obstacles to implementation exist and are either technical or human, each of which 
requires a different approach.  Should an architect carefully consider, plan, and 
implement an EA designed to accommodate big data, an enterprise could derive 
value that affects the bottom line. 

Big Data 

Big data is generated by a variety of sources.  The sources from which big 
data originate include industry specific transactions, machine/sensor indications, 
web applications, and text (Ferguson, 2013).  Industry specific transactions can 
include call records and geographic location data.  Machines generate extremely 
large volumes of information everyday and can range in complexity from simple 
temperature readings to the performance parameters of a gas-turbine engine.  Big 
data on the web also ranges in format from machine language to customer 
comments on social networks and also is produced in considerably sizeable 
portions.  Text sources can include archived documents, external reports, or 
customer account information (Ferguson, 2013).   

Because big data comes from a variety of sources, it also possesses 
characteristics which distinguish it from data in the traditional context.  Common 
terms used to define the qualities of big data include volume, variety, velocity, and 
value (Dijcks, 2013).  From the listing of sources above, one can understand that the 
volume of data generated on a daily basis is enormous.  For example, Dijcks (2013) 
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stated that just a single jet engine produces 10 terabytes of data in 30 minutes.  
Extrapolate that example to include all the aircraft currently airborne, then include all 
the factory infrastructure around the globe collecting data on production, service life, 
and maintenance requirements, and the enormity of big data volumes begins to 
emerge.  Another characteristic of big data, variety, can be directly translated from 
the various sources into the variety of data formats.  In the context of EA, various 
data formats requires additional consideration to ensure the ability of all systems to 
share data.  Velocity, which is related to volume, is the frequency with which big data 
is created.  To illustrate velocity, consider the relative size of a single Twitter feed 
(140 characters) to the large number of feeds generated in a given time period 
(Dijcks, 2013).  Finally, value is the feature of big data which is important to the 
enterprise.   

Big Data is Valuable to the Enterprise 

Big data can provide value to an enterprise through various means.  
Processing and then analyzing big data can help an enterprise better understand its 
business, the environment in which it operates, and its customers (Dijcks, 2013).  
Having developed an enhanced perception of itself and the marketplace, an 
enterprise could stand poised to improve productivity, increase competitive 
advantage, or develop superior product innovation processes (Dijcks, 2013).  All 
these benefits can translate into significant impacts on the bottom line.  The benefits 
which can be derived from big data are unique to the specific enterprise and, 
therefore, the manner in which  EA design is approached is also unique.  However, 
in general, the proper collection, storage, and analysis of big data is instrumental in 
the ability of the enterprise to reap value from it.   

Impact of Big Data on EA 

An EA must be designed properly to provide the capability to an enterprise to 
derive value from big data.  The characteristics of big data - volume, variety, velocity, 
and value – must all be considered and planned for during the design or update of 
an EA if the enterprise wishes to use big data to generate value.  Bakshi (2012) 
breaks down the EA considerations into two major groups, network and capacity. 

Network considerations include data paths, scalability, buffering, and latency 
(Bakshi, 2012).  Regarding the data paths, redundancy provides strength to an EA 
designed for big data.  Data is often located in multiple locations on an enterprise’s 
network.  Providing multiple paths among the data locations improves the EA’s 
ability to share data.  Should data collection, storage, and processing needs 
increase, designing an EA to be scalable would allow an enterprise the capability to 
expand or contract as necessary.  Considering the volumes with which data will be 
transmitted, an EA with sufficient buffers and queues would be beneficial.  Without 
those buffers, a network may become overloaded with data and slow down or even 
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crash.  The final point Bakshi (2012) made regarding network considerations was 
that consistent and predictably low latency must be a trait of an EA designed to 
handle big data. 

Capacity considerations involve dispersed computing and data locations, 
distributions, and volumes (Bakshi, 2012).  The last three aspects are actually all 
symptoms of the well planned, dispersed computing EA.  The main idea of dispersed 
computing is to spread out the data amongst the nodes within the enterprise, 
possibly within a separate big data warehouse, but more likely throughout the 
enterprise.  With the data distributed throughout the EA, the processing power 
requirements for big data analysis can be shared across the network.  Each location 
where data is stored must be able to dependably and reliably collect, store, and 
analyze volumes of information.  Therefore, high speed, low latency connections are 
key throughout the enterprise (Bakshi, 2012).  Knowing the implications of big data 
upon an EA are one thing.  Integrating big data into EA is another.  Many obstacles 
exist which ensure the implementation of big data-minded EA is a challenge. 

Major Obstacles to Proper Implementation of Big Data into EA 

The shift from traditional EA to an EA which is designed for big data is both a 
technological challenge and a human challenge (M2 Presswire, 2012).  The 
technology aspect involves an architect selecting and introducing IT into an EA 
which may not have been originally designed to accommodate change or expansion.  
Obstacles may include incompatible technologies, big data tools which do not 
address the particular needs of the enterprise, and hidden technology gaps.  Careful 
consideration, planning, and implementation of the data and application 
architectures into the existing EA is necessary to remedy the existing (and avoid the 
creation of new) dysfunctionalities and/or technology gaps (M2 Presswire, 2012).  
Should the technology aspect of EA redesign be executed smoothly and 
successfully, the human facet must still be addressed. 

The stakeholders, both those who finance the EA project and those who are 
the end-users, represent the human aspect.  Among the decision makers, there may 
exist a lack of awareness regarding the capabilities and risks associated with 
embarking upon an EA project (M2 Presswire, 2012).  There also may exist a 
resistance by the end-users to change systems already in place.  Both of these 
obstacles can be overcome through gaining stakeholder buy-in.  Through education 
and the inclusion in planning, both decision makers and end-users can be 
persuaded to support big data changes in EA (M2 Presswire, 2012).  One other 
possible obstacle will be that it might be necessary to change technology interfaces 
or processes to facilitate the integration of big data into business units.  However, 
skill gap analysis can identify where disconnects between humans and technology 
exist and training provides the bridge to cross those gaps. 
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Conclusion 

Big data exhibits characteristics which require special consideration when 
designing an EA.  The volume, variety, velocity, and value of big data must be 
understood by the EA practitioner before embarking upon a project so complex and 
risky.  When compared to traditional methods of designing EA, big data requires 
networks have redundant data paths, offer scalability, provide sufficient buffering, 
and exhibit consistent, reliably low latency.  As for capacity considerations, 
successfully implemented dispersed computing environments deliver the necessary 
data locations, distribution, and volume handling capability required by big data 
collection, storage, and analysis.  When technical or human obstacles arise, an 
architect which carefully plans, conducts gap analysis, acquires stakeholder buy-in, 
and provides necessary training will overcome those hurdles.  Should an architect 
follow these guidelines, an EA capable of handling big data could produce improved 
productivity, increased competitive advantage, and superior product innovation 
processes for its enterprise. 
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