

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 1=
k^s^i=mlpqdo^ar^qb=p`elli=

Approved for public release, distribution unlimited.

Prepared for: Naval Postgraduate School, Monterey, California 93943

NPS-AM-10-046

mol`bbafkdp==
lc=qeb==

pbsbkqe=^kkr^i=^`nrfpfqflk==

obpb^o`e=pvjmlpfrj==
tbakbpa^v=pbppflkp==

slirjb=f=

Acquisition Research

Creating Synergy for Informed Change
May 12 - 13, 2010

Published: 30 April 2010

bu`bomq=colj=qeb

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 2=
k^s^i=mlpqdo^ar^qb=p`elli=

The research presented at the symposium was supported by the Acquisition Chair of the
Graduate School of Business & Public Policy at the Naval Postgraduate School.

To request Defense Acquisition Research or to become a research sponsor, please
contact:

NPS Acquisition Research Program
Attn: James B. Greene, RADM, USN, (Ret.)
Acquisition Chair
Graduate School of Business and Public Policy
Naval Postgraduate School
555 Dyer Road, Room 332
Monterey, CA 93943-5103
Tel: (831) 656-2092
Fax: (831) 656-2253
E-mail: jbgreene@nps.edu

Copies of the Acquisition Sponsored Research Reports may be printed from our website
www.acquisitionresearch.net

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 91=
k^s^i=mlpqdo^ar^qb=p`elli=

The Challenge of Heterogeneously Licensed
Systems in Open Architecture Software
Ecosystems

Walt Scacchi—Walt Scacchi is a senior research scientist and research faculty member at the
Institute for Software Research, University of California, Irvine. He received a PhD in information and
computer science from UC Irvine in 1981. From 1981 to 1998, he was on the faculty at the University
of Southern California. In 1999, he joined the Institute for Software Research at UC Irvine. He has
published more than 150 research papers and has directed 45 externally funded research projects. In
2007, he served as General Chair of the 3rd IFIP International Conference on Open Source Systems
(OSS2007), Limerick, IE. In 2010, he chaired the Workshop on the Future of Research in Free and
Open Source Software, Newport Beach, CA, for the Computing Community Consortium and the
National Science Foundation. He also serves as Co-chair of the Doctoral Consortium at the 6th IFIP
International Conference on Open Source Systems (OSS2010), Notre Dame, IN.

Thomas Alspaugh—Thomas Alspaugh is adjunct professor of computer science at Georgetown
University and visiting researcher at the Institute for Software Research at UC Irvine. His research
interests are in software engineering and software requirements. Before completing his PhD, he
worked as a software developer, team lead, and manager in industry and as a computer scientist at
the Naval Research Laboratory on the Software Cost Reduction project, also known as the A-7E
project.

Hazel Asuncion—Hazel Asuncion is a postdoctoral scholar at the Institute for Software Research.
Starting Fall 2010, she will be an assistant professor in the Department of Computer Science at the
University of Washington, Bothell. Her research interests focus on traceability, process workflows,
software system architectures, and their interrelationships.

Abstract
The role of software ecosystems in the development and evolution of open

architecture systems has received insufficient consideration. Such systems are composed
of heterogeneously licensed components, open source or proprietary or both, in an
architecture in which evolution can occur by evolving existing components or by replacing
them. But this may result in possible license conflicts and organizational liability for failure to
fulfill license obligations. We have developed an approach for understanding and modeling
software licenses, as well as for analyzing conflicts among groups of licenses in realistic
system contexts and for guiding the acquisition, integration, or development of systems with
open-source components in such an environment. This work is based on empirical analysis
of representative software licenses and heterogeneously licensed systems, and
collaboration with researchers in the legal world. Our approach provides guidance for
achieving a “best-of-breed” component strategy while obtaining desired license rights in
exchange for acceptable obligations.

Introduction
A substantial number of development organizations are adopting a strategy in which

a software-intensive system is developed with an open architecture (OA) (Oreizy, 2000),
whose components may be open source software (OSS) or proprietary with open
application programming interfaces (APIs). Such systems evolve not only through the

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 92=
k^s^i=mlpqdo^ar^qb=p`elli=

evolution of their individual components, but also through replacement of one component by
another, possibly from a different producer or under a different license. With this approach,
the organization becomes an integrator of components largely produced elsewhere that are
interconnected through open APIs as necessary to achieve the desired result. An OA
development process results in an ecosystem in which the integrator is influenced from one
direction by the goals, interfaces, license choices, and release cycles of the component
producers, and in another direction by the needs of its consumers. As a result, the software
components are reused more widely, and the resulting OA systems can achieve reuse
benefits such as reduced costs, increased reliability, and potentially increased agility in
evolving to meet changing needs. An emerging challenge is to realize the benefits of this
approach when the individual components are heterogeneously licensed, each potentially
with a different license rather than a single OSS license as in uniformly licensed OSS
projects, or a single proprietary license when acquired from a vendor employing a
proprietary development scheme.

This challenge is inevitably entwined with the software ecosystems that arise for OA
systems. We find that an OA software ecosystem involves not only organizations and
individuals producing and consuming components, and supply paths from producer to
consumer, but also:

 the OA of the system(s) in question,

 the open interfaces met by the components,

 the degree of coupling in the evolution of related components, and

 the rights and obligations resulting from the software licenses under which
various components are released, that propagate from producers to consumers.

An example software ecosystem is portrayed in Figure 1.

In order to most effectively use an OA approach in developing and evolving a
system, it is essential to consider this OA ecosystem. An OA system draws on components
from proprietary vendors and open source projects. Its architecture is made possible by the
existing general ecosystem of producers, from which the initial components are chosen. The
choice of a specific OA begins a specialized software ecosystem involving components that
meet (or can be shimmed to meet) the open interfaces used in the architecture. We do not
claim this is the best or the only way to reuse components or produce systems, but it is an
ever more widespread way. In this paper, we build on previous work on heterogeneously
licensed systems (HLSs) (German & Hassan, 2009; Alspaugh & Scacchi, 2008; Alspaugh,
Asuncion & Scacchi, 2009a, May) by examining the role of component licenses in OA
software ecosystems and how OA development affects and is affected by software
ecosystems.

A motivating example of this approach is the Unity game development tool, produced
by Unity Technologies (Unity Technologies, 2008), which can be used to create game-
based virtual worlds for training applications. Its license agreement, which we quote below,
lists eleven distinct licenses and indicates the tool is produced, apparently using an OA
approach, using at least 18 externally produced components or groups of components:

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 93=
k^s^i=mlpqdo^ar^qb=p`elli=

Figure 1. An Example of a Software Ecosystem in which OA Systems Are Developed
1. The Mono Class Library, Copyright 2005-2008 Novell, Inc.

1. The Mono Runtime Libraries, Copyright 2005-2008 Novell, Inc.

2. Boo, Copyright 2003-2008 Rodrigo B. Oliveira.

3. UnityScript, Copyright 2005-2008 Rodrigo B. Oliveira.

4. OpenAL cross platform audio library, Copyright 1999-2006 by authors.

5. PhysX physics library. Copyright 2003-2008 by Ageia Technologies,
Inc.

6. libvorbis. Copyright (c) 2002-2007 Xiph.org Foundation.

7. libtheora. Copyright (c) 2002-2007 Xiph.org Foundation.

8. zlib general purpose compression library. Copyright (c) 1995-2005
Jean-loup Gailly and Mark Adler.

9. libpng PNG reference library.

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 94=
k^s^i=mlpqdo^ar^qb=p`elli=

10. jpeglib JPEG library. Copyright (C) 1991-1998, Thomas G. Lane.

11. Twilight Prophecy SDK, a multi-platform development system for
virtual reality and multimedia. Copyright 1997-2003 Twilight 3D
Finland Oy Ltd.

12. dynamic bitset, Copyright Chuck Allison and Jeremy Siek 2001-2002.

13. The Mono C# Compiler and Tools, Copyright 2005-2008 Novell, Inc.

14. libcurl. Copyright (c) 1996-2008, Daniel Stenberg <daniel@haxx.se>.

15. PostgreSQL Database Management System.

16. FreeType. Copyright (c) 2007 The FreeType Project
(www.freetype.org).

17. NVIDIA Cg. Copyright (c) 2002-2008 NVIDIA Corp.

An OA system can evolve by a number of distinct mechanisms, some of which are
common to all systems and others of which are a result of heterogeneous component
licenses in a single system.

By component evolution—One or more components can evolve, altering the overall
system’s characteristics (for example, upgrading and replacing the Firefox Web browser
from version 3.5 to 3.6).

By component replacement—One or more components may be replaced by others
with different behaviors but the same interface, or with a different interface and the addition
of shim code to make it match (for example, replacing the AbiWord word processor with
either Open Office or MS Word).

By architecture evolution—The OA can evolve, using the same components but in a
different configuration, altering the system characteristics. For example, as discussed in
Section 4, changing the configuration in which a component is connected can change how
its license affects the rights and obligations for the overall system. This could arise when
replacing email and word processing applications with web services like Google Mail and
Google Docs.

By component license evolution—The license under which a component is available
may change (for example, when the license for the Mozilla core components was changed
from the Mozilla Public License (MPL) to the current Mozilla Disjunctive Tri-License), or the
component may be made available under a new version of the same license (for example,
when the GNU General Public License (GPL) version 3 was released).

By a change to the desired rights or acceptable obligations—The OA system’s
integrator or consumers may desire additional license rights (for example, the right to
sublicense in addition to the right to distribute) or no longer desire specific rights or the set of
license obligations they find acceptable may change. In either case, the OA system evolves,
whether by changing components, evolving the architecture, or by other means, to provide
the desired rights within the scope of the acceptable obligations. For example, they may no
longer be willing or able to provide the source code for components within the reciprocality
scope of a GPL-licensed module.

The interdependence of integrators and producers results in a co-evolution of
software within an OA ecosystem. Closely coupled components from different producers
must evolve in parallel in order for each to provide its services, as evolution in one will

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 95=
k^s^i=mlpqdo^ar^qb=p`elli=

typically require a matching evolution in the other. Producers may manage their evolution
with a loose coordination among releases, for example like that between the Gnome and
Mozilla organizations. Each release of a producer component creates a tension through the
ecosystem relationships with consumers and their releases of OA systems using those
components, as integrators accommodate the choices of available, supported components
with their own goals and needs. As discussed in our previous work (Alspaugh et al., 2009a,
May), license rights and obligations are manifested at each component interface then
mediated through the OA of the system to entail the rights and corresponding obligations for
the system as a whole. As a result, integrators must frequently re-evaluate the OA system
rights and obligations. In contrast to homogeneously licensed systems, license change
across versions is a characteristic of OA ecosystems, and architects of OA systems require
tool support for managing the ongoing licensing changes.

We propose that such support must have several characteristics. It must rest on a
license structure of rights and obligations (section 5), focusing on obligations that are
enactable (it can be put into practice) and testable. For example, many OSS licenses
include an obligation to make a component’s modified code public, and whether a specific
version of the code is public at a specified Web address is both enactable and testable. In
contrast, the GPL v.3 provision “No covered work shall be deemed part of an effective
technological measure under any applicable law fulfilling obligations under article 11 of the
WIPO copyright treaty” is not enactable in any obvious way, nor is it testable—how can one
verify what others deem?

 It must take account of the distinctions between the design-time, build-time, and
distribution-time architectures (sections 4, 5, 6) and the rights and obligations
that come into play for each of them.

 It must distinguish the architectural constructs significant for software licenses
and embody their effects on rights and obligations (section 4).

 It must define license architectures (section 6).

 It must provide an automated environment for creating and managing license
architectures. We are developing a prototype that manages a license’s
architecture as a view of its system architecture (Alspaugh et al., 2009a, May).

 Finally, it must automate calculations on system rights and obligations so that
they may be done easily and frequently, whenever any of the factors affecting
rights and obligations may have changed (Section 7).

In the remainder of this paper, we survey some related work (section 2), provide an
overview of OSS licenses and projects (section 3), define and examine characteristics of
open architectures (section 4), introduce a structure for licenses (section 5), outline license
architectures (section 6), and sketch our approach for license analysis (section 7). We then
close with a discussion addressing how our software license and analysis scheme relates to
software products lines and to specification of software system security requirements
(section 8) before stating our conclusions (section 9).

Related Work
It has been typical until recently for each software or information system to be

designed, built, and distributed under the terms of a single proprietary or OSS license, with
all its components homogeneously covered by that same license. The system is distributed
with sources or executables bearing copyright and license notices, and the license gives

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 96=
k^s^i=mlpqdo^ar^qb=p`elli=

specific rights while imposing corresponding obligations that system consumers (whether
external developers or users) must honor, subject to the provisions of contract and
commercial law. Consequently, there has been some very interesting study of the choice of
OSS license for use in an OSS development project, and its consequences in determining
the likely success of such a project.

Brown and Booch (2002) discuss issues that arise in the reuse of OSS components,
such as interdependence (via component interconnection at design-time or linkage at build-
time or run-time) causing functional changes to propagate and versions of the components
evolving asynchronously, giving rise to co-evolution of interrelated code in the OSS-based
systems. If the components evolve, the OA system itself is evolving. The evolution can also
include changes to the licenses, and the licenses can change from component version to
version (cf. Footnote 1).

Legal scholars have examined OSS licenses and how they interact in the legal
domain but not in the context of HLSs (Fontana et al., 2008; Rosen, 2005; St. Laurent,
2004). For example, Rosen surveys eight OSS licenses and creates two new ones written to
professional legal standards. He examines interactions primarily in terms of the general
categories of reciprocal and non-reciprocal licenses, rather than in terms of specific licenses.
However, common to this legal scholarship is an approach that analyzes the interaction
among licenses on a pair-wise or interlinked components basis. This analysis scheme
means that if system A has OSS license of type X, system B has a licenses of type Y, and
system C has license of type Z, then license interaction (matching, subsumption, or
conflicting constraints) is determined by how A interacts with B, B with C, and A with C. This
follows from related legal scholarship (e.g., Burk, 1998) that brought attention to problems of
whether or not intellectual property rights apply depending on how the systems (or
components) are interlinked (cf., German and Hassan, 2009). We similarly adopt this
approach in our analysis efforts.

Stewart, Ammeter, and Maruping (2006) conducted an empirical study to examine
whether license choice is related to OSS project success, finding a positive association
following from the selection of business- friendly licenses. Sen, Subramaniam, and Nelson
in a series of studies (2007 & 2009) similarly find positive relationships between the choice
of a OSS license and the likelihood of both successful OSS development and adoption of
corresponding OSS systems within enterprises. These studies direct attention to OSS
projects that adopt and identify their development efforts through use of a single OSS
license. However, there has been little explicit guidance on how best to develop, deploy, and
sustain complex software systems when heterogeneously licensed components are
involved, and thus multiple OSS and proprietary licenses may be involved. Ven and
Mannaert (2008); Tuunanen, Koskinen, and Karkkainen (2009); and German and Hassan
(2009) are recent exceptions.

Ven and Mannaert discuss the challenges faced by independent software vendors
developing an HLS. They focus on the evolution and maintenance of modified OSS
components. Tuunanen, Koskinen, and Karkkainen exemplify most work to date on HLSs,
in that they focus on reverse engineering and recovery of individual component licenses on
existing systems, rather than on guiding HLS design to achieve and verify desired license
outcomes. Their approach does not support the calculation of HLS virtual licenses. German
and Hassan model a license as a set of grants, each of which has a set of conjoined
conditions necessary for the grant to be given. They analyze interactions between pairs of
licenses in the context of five types of component connection. They also identify twelve
patterns for avoiding license mismatches, found in an empirical study of a large group of

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 97=
k^s^i=mlpqdo^ar^qb=p`elli=

OSS projects, and characterize the patterns using their model. Our license model extends
German and Hassan’s to address semantic connections between obligations and rights we
find through a textual analysis of OSS licenses.

Other previous work examined how best to align acquisition, system requirements,
architectures, and OSS components across different software license regimes to achieve
the goal of combining OSS with proprietary software that provide open APIs when
developing a composite “system of systems” (Scacchi & Alspaugh, 2008). This is particularly
an issue for the US Federal Government in its acquisition of complex software systems
subject to Federal Acquisition Regulations (FARs) and military service- specific regulations.
HLSs give rise to new functional and non-functional requirements that further constrain what
kinds of systems can be built and deployed, as well as recognizing that acquisition policies
can effectively exclude certain OA configurations while accommodating others, based on
how different licensed components may be interconnected.

Open Source Software
Traditional proprietary licenses allow a company to retain control of software it

produces and to restrict the access and rights that outsiders can have. OSS licenses, on the
other hand, are designed to encourage sharing and reuse of software, and grant access and
as many rights as possible. OSS licenses are classified as academic or reciprocal.
Academic OSS licenses such as the Berkeley Software Distribution (BSD) license, the
Massachusetts Institute of Technology license, the Apache Software License, and the
Artistic License grant nearly all rights to components and their source code and impose few
obligations. Anyone can use the software, create derivative works from it, or include it in
proprietary projects. Typical academic obligations are simply to not remove the copyright
and license notices.

Reciprocal OSS licenses take a more active stance towards sharing and reusing
software by imposing the obligation that reciprocally licensed software not be combined (for
various definitions of “combined”) with any software that is not in turn also released under
the reciprocal license. The goals are to increase the domain of OSS by encouraging
developers to bring more components under its aegis and to prevent improvements to OSS
components from vanishing behind proprietary licenses. Example reciprocal licenses are
GPL, the Mozilla Public License (MPL), and the Common Public License.

Both proprietary and OSS licenses typically disclaim liability, assert no warranty is
implied, and obligate licensees to not use the licensor’s name or trademarks. Newer
licenses often cover patent issues as well, either giving a restricted patent license or
explicitly excluding patent rights.

The Mozilla Disjunctive Tri-License licenses the core Mozilla components under any
one of three licenses (MPL, GPL, or the GNU Lesser General Public License LGPL). OSS
developers can choose the one that best suits their needs for a particular project and
component.

The Open Source Initiative (OSI) maintains a widely respected definition of “open
source” and gives its approval to licenses that meet it (Open Source Initiative, 2008). OSI
maintains and publishes a repository of approximately 70 approved OSS licenses.

Common practice has been for an OSS project to choose a single license under
which all its products are released and to require developers to contribute their work only
under conditions compatible with that license. For example, the Apache Contributor License

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 98=
k^s^i=mlpqdo^ar^qb=p`elli=

Agreement grants enough of each author’s rights to the Apache Software Foundation for the
foundation to license the resulting systems under the Apache Software License. This sort of
rights regime, in which the rights to a system’s components are homogeneously granted and
the system has a single well-defined OSS license, was the norm in the early days of OSS
and continues to be practiced.

Open Architecture
Open architecture (OA) software is a customization technique introduced by Oreizy

(2000) that enables third parties to modify a software system through its exposed
architecture, evolving the system by replacing its components. Increasingly more software-
intensive systems are developed using an OA strategy, not only with OSS components but
also proprietary components with open APIs (Unity Technologies, 2008). Using this
approach can lower development costs and increase reliability and function (Scacchi &
Alspaugh, 2008). Composing a system with HLS components, however, increases the
likelihood of conflicts, liabilities, and no-rights stemming from incompatible licenses. Thus, in
our work we define an OA system as a software system consisting of components that are
either open source or proprietary with open API, whose overall system rights at a minimum
allow its use and redistribution in full or in part.

It may appear that using a system’s architecture that incorporate OSS components
and uses open APIs will result in an OA system. But not all such architectures will produce
an OA, since the (possibly empty) set of available license rights for an OA system depends
on (a) how and why OSS and open APIs are located within the system architecture, (b) how
OSS and open APIs are implemented, embedded, or interconnected, and (c) the degree to
which the licenses of different OSS components encumber all or part of a software system’s
architecture into which they are integrated (Alspaugh & Anton, n.d.; Scacchi & Alspaugh,
2008).

The following kinds of software elements appearing in common software
architectures can affect whether the resulting systems are open or closed (Bass, Clements
& Kazman, 2003).

Software source code components—These can be either (a) standalone programs,
(b) libraries, frameworks, or middleware, (c) inter-application script code such as C shell
scripts, or (d) intra-application script code, as for creating Rich Internet Applications using
domain-specific languages such as XUL for the Firefox Web browser (Feldt, 2007) or
“mashups” (Nelson & Churchill, 2006). Their source code is available and they can be
rebuilt. Each may have its own distinct license.

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 99=
k^s^i=mlpqdo^ar^qb=p`elli=

Executable components—These components are in binary form, and the source code may
not be open for access, review, modification, or possible redistribution (Rosen, 2005). If
proprietary, they often cannot be redistributed, and so such components will be present in
the design- and run-time architectures but not in the distribution-time architecture.

Software services—An appropriate software service can replace a source code or
executable component.

Figure 2. A Heterogeneously Licensed System Composed from Multiple
Systems

Application programming interfaces/APIs—Availability of externally visible and
accessible APIs is the minimum requirement for an open system (Meyers & Oberndorf,
2001). APIs are not and cannot be licensed and can limit the propagation of license
obligations.

Software connectors—Software whose intended purpose is to provide a standard or
reusable way of communication through common interfaces, e.g., High Level Architecture
(Kuhl, Weatherly & Dahmann, 1999), CORBA, MS.NET, Enterprise Java Beans, and GNU
Lesser General Public License (LGPL) libraries. Connectors can also limit the propagation
of license obligations.

Methods of connection—These include linking as part of a configured subsystem,
dynamic linking, and client-server connections. Methods of connection affect license
obligation propagation, with different methods affecting different licenses.

Configured system or subsystem architectures—These are software systems that
are used as atomic components of a larger system and whose internal architecture may

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 100=
k^s^i=mlpqdo^ar^qb=p`elli=

comprise components with different licenses, affecting the overall system license. To
minimize license interaction, a configured system or sub-architecture may be surrounded by
what we term a license firewall, namely a layer of dynamic links, client-server connections,
license shims, or other connectors that block the propagation of reciprocal obligations.

Figure 3 shows a high-level view of a reference architecture that includes all the
kinds of software elements listed above. This reference architecture has been instantiated in
a number of configured systems that combine OSS and closed source components. One
such system handles time sheets and payroll at our university; another implements the web
portal for a university computer game research laboratory (the updated version now at

http://cgvw.ics.uci.edu).

Figure 3. The Design-time Architecture of the System of Figure 2

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 101=
k^s^i=mlpqdo^ar^qb=p`elli=

Figure 4. A Build-time Architecture Describing the Version Running in
Figure 2

(Note: Components or connectors not visible in Figure 2 are shown in gray.)

Figure 5. Instantiated Build-time Architecture (Figure 4) within ArchStudio
The configured systems consist of software components such as a Mozilla Web

browser, Gnome Evolution email client, and AbiWord word processor (similar to MS Word),
all running on a RedHat Fedora Linux operating system accessing file, print, and other
remote networked servers such as an Apache Web server. Components are interconnected

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 102=
k^s^i=mlpqdo^ar^qb=p`elli=

through a set of software connectors that bridges the interfaces of components and
combines the provided functionality into the system’s services.

Software Licenses
Copyright law is the common basis for software licenses and gives the original

author of a work certain exclusive rights: the rights to use, copy, modify, merge, publish,
distribute, sub-license, and sell copies. The author may license these rights, individually or
in groups, to others; the license may give a right either exclusively or non-exclusively. After a
period of years, copyright rights enter the public domain. Until then, copyright may only be
obtained through licensing.

Licenses typically impose obligations that must be met in order for the licensee to
realize the assigned rights. Common obligations include the obligation to publish at no cost
any source code you modify (MPL) or the reciprocal obligation to publish all source code
included at build-time or statically linked (GPL). The obligations may conflict, as when a
GPL’d component’s reciprocal obligation to publish source code of other components is
combined with a proprietary component’s license prohibition of publishing its source code. In
this case, no rights may be available for the system as a whole, not even the right of use,
because the two obligations cannot simultaneously be met and thus neither component can
be used as part of the system.

The basic relationship between software license rights and obligations can be
summarized as follows: if the specified obligations are met, then the corresponding rights
are granted. For example, if you publish your modified source code and sub-licensed
derived works under MPL, then you get all the MPL rights for both the original and the
modified code. However, license details are complex, subtle, and difficult to comprehend
and track. So it is easy to become confused or make mistakes. The challenge is multiplied
when dealing with configured system architectures that compose a large number of
components with heterogeneous licenses, so the need for legal counsel begins to seem
inevitable (Rosen, 2005; Fontana et al., 2008).

We have developed an approach for expressing software licenses that is more
formal and less ambiguous than natural language and that allows us to calculate and
identify conflicts arising from the rights and obligations of two or more component’s licenses.
Our approach is based on Hohfeld’s classic group of eight fundamental jural relations
(1913), of which we use right, duty, no-right, and privilege. We start with a tuple <actor,
operation, action, object> for expressing a right or obligation. The actor is the “licensee”
for all the licenses we have examined. The operation is one of the following: “may,” “must,”
“must not,” or “need not,” with “may” and “need not” expressing rights and “must” and “must
not” expressing obligations. Because copyright rights are only available to entities that have
been granted a sublicense, only the listed rights are available, and the absence of a right
means that it is not available. The action is a verb or verb phrase describing what may,
must, must not, or need not be done, with the object completing the description. A license
may be expressed as a set of rights, with each right associated with zero or more
obligations that must be fulfilled in order to enjoy that right. Figures 6, 7, and 8 show the
meta-model we use to express licenses, with the allowed combinations of modality, object,
and license shown in Figure 6.

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 103=
k^s^i=mlpqdo^ar^qb=p`elli=

Figure 6. License Meta-model
HLS designers have developed a number heuristics to guide architectural design

while avoiding some license conflicts. First, it is possible to use a reciprocally licensed
component through a license firewall that limits the scope of reciprocal obligations. Rather
than connecting conflicting components directly through static or other build-time links, the
connection is made through a dynamic link, client-server protocol, license shim (such as a
Limited General Public License connector), or run-time plug-ins. A second approach used
by a number of large organizations is simply to avoid using any components with reciprocal
licenses. A third approach is to meet the license obligations (if that is possible) by for
example retaining copyright and license notices in the source and publishing the source
code. However, even using design heuristics such as these (and there are many), keeping
track of license rights and obligations across components that are interconnected in
complex OAs quickly becomes too cumbersome. Automated support is needed to manage
the multi-component, multi-license complexity.

Figure 7. Modality, Object, and License

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 104=
k^s^i=mlpqdo^ar^qb=p`elli=

Figure 8. The License Architecture Meta-model

License Architectures
Our license model forms a basis for effective reasoning about licenses in the context

of actual systems and calculating the resulting rights and obligations. In order to do so, we
need a certain amount of information about the system’s configuration at design-, build-,
distribution-, and run-time. The needed information comprises the license architecture, an
abstraction of the system architecture of its:

2. set of components of the system,

18. relation mapping each component to its license,

19. relation mapping each component to its set of sources, and

20. relation from each component to the set of components in the same
license scope, for each license for which “scope” is defined (e.g.,
GPL) and from each source to the set of sources of components in
the scope of its component.

With this information and definitions of the licenses involved, for example, as seen in
Figure 9, we calculate rights and obligations for individual components or the entire system
and guide heterogeneous license matching across components, as shown in Figure 10.

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 105=
k^s^i=mlpqdo^ar^qb=p`elli=

Figure 9. License Annotation of Gnome Evolution Component

Figure 10. License Analysis Reports Before (left) and After (right) Replacing a
Component System

License Analysis
Given a specification of a software system’s architecture, we can associate software

license attributes with the system’s components, connectors, and sub-system architectures,
resulting in a license architecture for the system, and calculate the copyright rights and
obligations for the system’s configuration. Due to the complexity of license architecture
analysis and the need to re-analyze every time a component evolves, a component’s license
changes, a component is substituted, or the system architecture changes, OA integrators
really need an automated license architecture analysis environment. We are developing a
prototype of such an environment (Alspaugh et al., 2009a, May).

We use an architectural description language specified in xADL (Institute for
Software Research, 2009) to describe OAs that can be designed and analyzed with a

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 106=
k^s^i=mlpqdo^ar^qb=p`elli=

software architecture design environment (Medvidovic, Rosenblum & Taylor, 1999), such as
ArchStudio4 (Institute for Software Research, 2006). We have built the Software
Architecture License Analysis module on top of ArchStudio’s Traceability View (Asuncion &
Taylor, 2009). This allows for the specification of licenses as a list of attributes (license
tuples) using a form-based user interface in ArchStudio4 (Medvidovic, et al., 1999; Institute
for Software Research, 2006). We analyze rights and obligations as described below
(Alspaugh et al., 2009a, May) and as shown above in Figures 9 and 10.

Propagation of Reciprocal Obligations

We follow the widely accepted interpretation that build-time static linkages propagate
the reciprocal obligations, but appropriate license firewalls do not. Analysis begins,
therefore, by propagating these obligations along all connectors that are not license
firewalls.

Obligation Conflicts

An obligation can conflict with another obligation or with the set of available rights by
requiring a copyright right that has not been granted. For instance, a proprietary license may
require that a licensee must not redistribute source code, but GPL states that a licensee
must redistribute source code. Thus, the conflict appears in the modality of the two
otherwise identical obligations, “must not” in the proprietary license and “must” in GPL.

Rights and Obligations Calculations

The rights available for the entire system (use, copy, modify, etc.) are calculated as
the intersection of the sets of rights available for each component of the system. If a conflict
is found involving the obligations and rights of linked components, it is possible for the
system architect to consider an alternative linking scheme, e.g., using one or more
connectors along the paths between the components that act as a license firewall. This
means that the architecture and the automated environment together can determine what
OA design best meets the problem at hand with available software components.
Components with conflicting licenses do not need to be arbitrarily excluded but instead may
expand the range of possible architectural alternatives if the architect seeks such flexibility
and choice.

Discussion
At least two topics merit discussion following from our approach to semantically

modeling and analyzing OA systems that are subject to heterogeneous software licenses.
One is how our results might shed light on software systems whose architectures articulate
a software product line, while the other is how our approach might be extended to also
address the semantic modeling and analysis of software system security requirements.

First, organizing and developing software product lines (SPLs) relies on the
development and use of explicit software architectures (Bosch, 2000; Clements & Northrop,
2001). However, the architecture of a SPL is not necessarily an OA—there is no
requirement for it to be so. Thus, we are interested in discussing what happens when SPLs
may conform to an OA, and to an OA that may be subject to heterogeneously licensed SPL
components. Three considerations come to mind. If the SPL is subject to a single
homogeneous software license, which may often be the case when a single vendor or

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 107=
k^s^i=mlpqdo^ar^qb=p`elli=

government contractor has developed the SPL, then the license may act to reinforce a
vendor lock-in situation with its customers. One of the motivating factors for OA is the desire
to avoid such lock-in, whether or not the SPL components have open or standards-
compliant APIs. Alternatively, if an OA system employs a reference architecture much like
we have in the design-time architecture depicted in Figure 3, which is then instantiated into
a specific software product configuration, as suggested in the build-time architecture (shown
in Figure 4), then such a reference or design-time architecture as we have presented it here
effectively defines a SPL consisting of possible different system instantiations composed
from similar components instances (e.g., different but equivalent Web browsers, word
processors, email, calendaring applications, and relational database management systems).
Finally, if the SPL is based on an OA that integrates software components from multiple
vendors or OSS components that are subject to heterogeneous licenses, then we have the
situation analogous to what we have presented in this paper. So SPL concepts are
compatible with OA systems that are composed from heterogeneously licensed
components.

Second, as already noted, software licenses represent a collection of rights and
obligations for what can or cannot be done with a licensed software component. Licenses
thus denote non-functional requirements that apply to a software systems or system
components as intellectual property (IP) during their development and deployment. But
rights and obligations are not limited to concerns or constraints applicable only to software
as IP. Instead, they can be written in ways that stipulate non-functional requirements of
different kinds. Consider, for example, that desired or necessary software system security
properties can also be expressed as rights and obligations addressing system
confidentiality, integrity, accountability, system availability, and assurance (Breaux & Anton,
2005; 2008).

Traditionally, developing robust specifications for non-functional software system
security properties in natural language often produces specifications that are ambiguous,
misleading, inconsistent across system components, and lacking sufficient details (Yau &
Chen, 2006). Using a semantic model to formally specify the rights and obligations required
for a software system or component to be secure (Breaux & Anton, 2005; 2008; Yau &
Chen, 2006) means that it may be possible to develop both a “security architecture” notation
and model specification that associates given security rights and obligations across a
software system or system of systems. Similarly, it suggests the possibility of developing
computational tools or interactive architecture development environments that can be used
to specify, model, and analyze a software system’s security architecture at different times in
its development—design-time, build-time, and run-time.

The approach we have been developing for the past few years for modeling and
analyzing software system license architectures for OA systems (Alspaugh et al., 2009,
August/September; Alspaugh et al., 2009b, May; Scacchi & Alspaugh, 2008), may therefore
be extendable to also being able to address OA systems with heterogeneous “software
security license” rights and obligations. Furthermore, the idea of common or reusable
software security licenses may be analogous to the reusable security requirements
templates proposed by Firesmith (2004) at the Software Engineering Institute.
Consequently, such an exploration and extension of the semantic software license
modeling, meta-modeling, and computational analysis tools to also support software system
security can be recognized as a promising next stage of our research studies.

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 108=
k^s^i=mlpqdo^ar^qb=p`elli=

Conclusion
This paper discusses the role of software ecosystems with heterogeneously licensed

components in the development and evolution of OA systems. License rights and
obligations play a key role in how and why an OA system evolves in its ecosystem. We note
that license changes across versions of components are a characteristic of OA systems and
software ecosystems with heterogeneously licensed components. A structure for modeling
software licenses and the license architecture of a system and automated support for
calculating its rights and obligations are needed in order to manage a system’s evolution in
the context of its ecosystem. We have outlined an approach for achieving these and
sketched how they further the goal of reusing components in developing software-intensive
systems. Much more work remains to be done, but we believe this approach turns a vexing
problem into one for which workable solutions can be obtained.

Acknowledgments
This research is supported by grant #N00244-10-1-0038 from the Acquisition

Research Program at the Naval Postgraduate School and by grant #0808783 from the
National Science Foundation. No endorsement implied.

References
Alspaugh, T.A., & Anton, A.I. (2008, February). Scenario support for effective requirements.

Information and Software Technology, 50(3), 198–220.

Alspaugh, T.A., Asuncion, H.U., & Scacchi, W. (2009, May). Analyzing software licenses in
open architecture software systems. In Proceedings of the 2nd International
Workshop on Emerging Trends in FLOSS Research and Development (FLOSS).

Alspaugh, T.A. , Asuncion, H.U., & Scacchi, W. (2009, August/September). Intellectual
property rights requirements for heterogeneously-licensed systems. In Proceedings
of the 17th IEEE International Requirements Engineering Conference (RE’09).

Alspaugh, T.A., Asuncion, H.U., & Scacchi, W. (2009, May). Software licenses, open source
components, and open architectures. In Proceedings of the Sixth Annual Acquisition
Research Symposium. Monterey, CA: Naval Postgraduate School.

Asuncion, H., & Taylor, R.N. (2009, May). Capturing custom link semantics among
heterogeneous artifacts and tools. In Proceedings of the 5th International Workshop
on Traceability in Emerging Forms of Software Engineering (TEFSE).

Bass, L., Clements, P., & Kazman, R. (2003). Software architecture in practice. Boston:
Addison-Wesley Longman.

Bosch, J. (2000). Design and use of software architectures: Adopting and evolving a
product-line approach. New York: Addison-Wesley Professional.

Breaux, T.D., & Anton, A.I. (2005). Analyzing goal semantics for rights, permissions, and
obligations. In Proceedings of the 13th IEEE International Conference on
Requirements Engineering (RE'05) (pp. 177–188).

Breaux, T.D., & Anton, A.I. (2008). Analyzing regulatory rules for privacy and security
requirements. IEEE Transactions on Software Engineering, 34(1), 5–20.

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 109=
k^s^i=mlpqdo^ar^qb=p`elli=

Brown, A.W., & Booch, G. (2002, April). Reusing open-source software and practices: The
impact of open-source on commercial vendors. In Proceedings of the International
Conference on Software Reuse: Methods, Techniques, and Tools (ICSR-7).

Burk, D.L. (1998). Proprietary rights in hypertext linkages. Journal of Information, Law and
Technology, 2.

Clements, P., & Northrop, L. (2001). Software product lines: Practices and patterns. New
York: Addison-Wesley Professional.

Feldt, K. (2007). Programming Firefox: Building rich internet applications with XUL.
Sebastopol, CA: O’Reilly Media.

Firesmith, D. (2004). Specifying reusable security requirements. Journal of Object
Technology, 3(1), 61–75.

Fontana, R., Kuhn, B.M., Moglen, E., Norwood, M., Ravicher, D.B., Sandler, K., et al.
(2008). A legal issues primer for open source and free software projects. New York:
Software Freedom Law Center.

German, D.M., & Hassan, A.E. (2009, May). License integration patterns: Dealing with
licenses mis-matches in component-based development. In Proceedings of the 28th
International Conference on Software Engineering (ICSE’09).

Hohfeld, W.N. (1913). Some fundamental legal conceptions as applied in judicial reasoning.
Yale Law Journal, 23(1), 16–59.

Institute for Software Research. (2006). ArchStudio 4. Retrieved from
http://www.isr.uci.edu/projects/archstudio/

Institute for Software Research. (2009). xADL 2.0. Retrieved from
http://www.isr.uci.edu/projects/xarchuci/

Kuhl, F., Weatherly, R., & Dahmann, J. (1999). Creating computer simulation systems: An
introduction to the high level architecture. Englewood Cliffs, NJ: Prentice Hall.

Medvidovic, N., Rosenblum, D.S., & Taylor, R.N. (1999). A language and environment for
architecture-based software development and evolution. In Proceedings of the 21st
International Conference on Software Engineering (ICSE'21), 44–53.

Meyers, B.C., & Oberndorf, P. (2001). Managing Software Acquisition: Open Systems and
COTS Products. New York: Addison-Wesley Professional.

Nelson, L., & Churchill, E.F. (2006). Repurposing: Techniques for reuse and integration of
interactive systems. In Proceedings of the International Conference on Information
Reuse and Integration (IRI-08), 490–495.

Open Source Initiative. (2008). Open Source Initiative. http://www.opensource.org/

Oreizy, P. (2000). Open architecture software: A flexible approach to decentralized software
evolution. Unpublished doctoral dissertation, University of California, Irvine.

Rosen, L. (2005). Open source licensing: Software freedom and intellectual property law.
Englewood Cliffs, NJ: Prentice Hall.

Scacchi, W., & Alspaugh, T.A. (2008, May). Emerging issues in the acquisition of open
source software within the U.S. Department of Defense. In Proceedings of the 5th
Annual Acquisition Research Symposium. Monterey, CA: Naval Postgraduate
School.

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 110=
k^s^i=mlpqdo^ar^qb=p`elli=

Sen, R. (2007). A strategic analysis of competition between open source and proprietary
software. Journal of Management Information Systems, 24(1), 233–257.

Sen, R., Subramaniam, C., & Nelson, M.L. (2009). Determinants of the choice of open
source software license. Journal of Management Information Systems, 25(3), 207–
240.

St. Laurent, A.M. (2004). Understanding open source and free software licensing.
Sebastopol, CA: O’Reilly Media.

Stewart, K.J., Ammeter, A.P., & Maruping, L.M. (2006). Impacts of license choice and
organizational sponsorship on user interest and development activity in open source
software projects. Information Systems Research, 17(2), 126–144.

Subramaniam, C., Sen, R., & Nelson, M.L. (2009). Determinants of open source software
project success: A longitudinal study. Decision Support Systems, 46(2), 576–585.

Tuunanen, T., Koskinen, J., & Karkkainen, T. (2009). Automated software license analysis.
Automated Software Engineering, 16(3-4), 455–490.

Unity Technologies. (2008). End user license agreement. Retrieved December 2008, from
http://unity3d.com/unity/unity-end-user-license-2.x.html

Ven, K., & Mannaert, H. (2008). Challenges and strategies in the use of open source
software by independent software vendors. Information and Software Technology,
50(9-10), 991–1002.

Yau, S.S., & Chen, Z. (2006). A framework for specifying and managing security
requirements in collaborative systems. In Proceedings of the Third International
Conference on Autonomic and Trusted Computing (ATC 2006) (pp. 500–510)

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 111=
k^s^i=mlpqdo^ar^qb=p`elli=

2003 - 2010 Sponsored Research Topics

Acquisition Management
 Acquiring Combat Capability via Public-Private Partnerships (PPPs)

 BCA: Contractor vs. Organic Growth

 Defense Industry Consolidation

 EU-US Defense Industrial Relationships

 Knowledge Value Added (KVA) + Real Options (RO) Applied to Shipyard
Planning Processes

 Managing the Services Supply Chain

 MOSA Contracting Implications

 Portfolio Optimization via KVA + RO

 Private Military Sector

 Software Requirements for OA

 Spiral Development

 Strategy for Defense Acquisition Research

 The Software, Hardware Asset Reuse Enterprise (SHARE) repository

Contract Management
 Commodity Sourcing Strategies

 Contracting Government Procurement Functions

 Contractors in 21st-century Combat Zone

 Joint Contingency Contracting

 Model for Optimizing Contingency Contracting, Planning and Execution

 Navy Contract Writing Guide

 Past Performance in Source Selection

 Strategic Contingency Contracting

 Transforming DoD Contract Closeout

 USAF Energy Savings Performance Contracts

 USAF IT Commodity Council

 USMC Contingency Contracting

Financial Management
 Acquisitions via Leasing: MPS case

 Budget Scoring

 Budgeting for Capabilities-based Planning

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 112=
k^s^i=mlpqdo^ar^qb=p`elli=

 Capital Budgeting for the DoD

 Energy Saving Contracts/DoD Mobile Assets

 Financing DoD Budget via PPPs

 Lessons from Private Sector Capital Budgeting for DoD Acquisition Budgeting
Reform

 PPPs and Government Financing

 ROI of Information Warfare Systems

 Special Termination Liability in MDAPs

 Strategic Sourcing

 Transaction Cost Economics (TCE) to Improve Cost Estimates

Human Resources
 Indefinite Reenlistment

 Individual Augmentation

 Learning Management Systems

 Moral Conduct Waivers and First-tem Attrition

 Retention

 The Navy’s Selective Reenlistment Bonus (SRB) Management System

 Tuition Assistance

Logistics Management
 Analysis of LAV Depot Maintenance

 Army LOG MOD

 ASDS Product Support Analysis

 Cold-chain Logistics

 Contractors Supporting Military Operations

 Diffusion/Variability on Vendor Performance Evaluation

 Evolutionary Acquisition

 Lean Six Sigma to Reduce Costs and Improve Readiness

 Naval Aviation Maintenance and Process Improvement (2)

 Optimizing CIWS Lifecycle Support (LCS)

 Outsourcing the Pearl Harbor MK-48 Intermediate Maintenance Activity

 Pallet Management System

 PBL (4)

 Privatization-NOSL/NAWCI

 RFID (6)

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 113=
k^s^i=mlpqdo^ar^qb=p`elli=

 Risk Analysis for Performance-based Logistics

 R-TOC AEGIS Microwave Power Tubes

 Sense-and-Respond Logistics Network

 Strategic Sourcing

Program Management
 Building Collaborative Capacity

 Business Process Reengineering (BPR) for LCS Mission Module Acquisition

 Collaborative IT Tools Leveraging Competence

 Contractor vs. Organic Support

 Knowledge, Responsibilities and Decision Rights in MDAPs

 KVA Applied to AEGIS and SSDS

 Managing the Service Supply Chain

 Measuring Uncertainty in Earned Value

 Organizational Modeling and Simulation

 Public-Private Partnership

 Terminating Your Own Program

 Utilizing Collaborative and Three-dimensional Imaging Technology

A complete listing and electronic copies of published research are available on our website:
www.acquisitionresearch.org

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 114=
k^s^i=mlpqdo^ar^qb=p`elli=

THIS PAGE INTENTIONALLY LEFT BLANK

^Åèìáëáíáçå=êÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=ëÅÜççä=çÑ=ÄìëáåÉëë=C=éìÄäáÅ=éçäáÅó=
k~î~ä=éçëíÖê~Çì~íÉ=ëÅÜççä=
RRR=avbo=ol^aI=fkdboplii=e^ii=
jlkqbobvI=`^ifclokf^=VPVQP=

www.acquisitionresearch.org

