
NPS-AM-14-194

ACQUISITION RESEARCH PROGRAM
SPONSORED REPORT SERIES

Gaining Control and Predictability of Software-Intensive Systems
Development and Sustainment

4 February 2015

Brad Naegle, Senior Lecturer

Graduate School of Business & Public Policy

Naval Postgraduate School

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

Acquisition Research Program
Graduate School of Business & Public Policy
Naval Postgraduate School

The research presented in this report was supported by the Acquisition Research
Program of the Graduate School of Business & Public Policy at the Naval
Postgraduate School.

To request defense acquisition research, to become a research sponsor, or to print
additional copies of reports, please contact any of the staff listed on the Acquisition
Research Program website (www.acquisitionresearch.net).

Acquisition Research Program
Graduate School of Business & Public Policy
Naval Postgraduate School

http://www.acquisitionresearch.net/

Abstract

The Department of Defense (DOD) has faced significant challenges
managing the total ownership cost (TOC), schedule, and technical performance of
software-intensive systems. These challenges will continue to grow as proposed,
and future systems will depend on software for an ever-increasing portion of system
functionality, requiring the development of larger and more complex software
applications. In addition, the development of the envisioned tactical and strategic
net-centric warfighting systems will require unprecedented software development
efforts.

This research is a continuation and consolidation of previous research
projects conducted for the US Navy Open Architecture Task Force. That previous
research is identified and cited where appropriate.

The purpose of this research is to analyze numerous tools, techniques, and
processes combined in a unique way to provide more predictability and control to the
software development within the restrictive DOD Acquisition Management System.
The tools and analyses include the Software Engineering Institute’s Quality
Attribution Workshop (QAW), the MUIRS (maintainability, upgradability,
interoperability, reliability, and safety/security) analysis methodology, SEI’s
Architectural Tradeoff Analysis Methodologysm (ATAMsm), Logistics Supportability
Analysis (LSA), and the Failure Modes and Effects Criticality Analysis (FMECA). In
addition, the concept of software Management Readiness Levels (MgtRLs) are
introduced as a more useful risk reduction technique as compared to the software
Technology Readiness Levels (TRLs) currently used.

This research demonstrates how the combined tools, analyses, and
processes address the most common DOD software-intensive system
developmental issues in a unique and holistic way. Although each tool, analysis
technique, and process has individual utility and is value-added, this research
demonstrates how the combined use produces a synergistic solution to the software
component development control and produces significantly more predictability in the
program management realm.

The research conclusions and recommendations are designed to provide
current and future DOD Program Managers with the combined tools, analyses, and
processes within a conceptual implementation scheme that will provide more control
and predictability to software-intensive systems development. Due to the TOC and
architectural design focus, system sustainability costs are thoroughly addressed and
actively managed.

Acquisition Research Program
Graduate School of Business & Public Policy - i -
Naval Postgraduate School

Keywords: Software-intensive system acquisition, system acquisition control
and predictability, software system sustainability, software system management,
Quality Attribute Workshop (QAW), Architecture Trade-off Analysis Methodology
(ATAM), Failure Modes and Effects Criticality Analysis (FMECA), MUIRS, software
architecture, system software design, metrics, Joint Capabilities Integration and
Development System (JCIDS), Systems Engineering Process (SEP), DOD
Acquisition System.

Acquisition Research Program
Graduate School of Business & Public Policy - ii -
Naval Postgraduate School

Acknowledgments

The author would like to thank Rear Admiral (Ret.) James Greene for his
remarkable contribution to the DOD acquisition community as the Acquisition Chair
for the Naval Postgraduate School. His efforts have enabled these research efforts
that address current and future problems, and vastly improve the education product
that NPS delivers.

Acquisition Research Program
Graduate School of Business & Public Policy - iii -
Naval Postgraduate School

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
Graduate School of Business & Public Policy - iv -
Naval Postgraduate School

About the Author

Brad R. Naegle, Lieutenant Colonel, U.S. Army (Ret.), is a Senior Lecturer
and Academic Associate for Program Management Curricula at the Naval
Postgraduate School, Monterey, CA. In addition to acquisition course development
and delivery, he is the Academic Associate for the Master of Science in Program
Management curriculum, which is a Distance Learning Master’s program, serving
students around the world. While on active duty, LTC (Ret.) Naegle was assigned as
the Product Manager for the 2½-ton Extended Service Program (ESP) and USMC
Medium Tactical Vehicle Replacement (MTVR) from 1994 to 1996 and served as the
Deputy Project Manager for Light Tactical Vehicles from 1996 to 1997. He was the
7th Infantry Division (Light) Division Materiel Officer from 1990 to 1993 and the 34th
Support Group Director of Security, Plans, and Operations from 1986 to 1987. Prior
to that, LTC (Ret.) Naegle held positions in test and evaluations and logistics fields.
He earned a Master of Science degree in systems acquisition management (with
Distinction) from the Naval Postgraduate School and an undergraduate degree in
economics from Weber State University. He is a graduate of the Command and
General Staff College, Combined Arms and Services Staff School, and Ordnance
Corps Advanced and Basic Courses.

Brad Naegle
Senior Lecturer
Graduate School of Business & Public Policy
Naval Postgraduate School
Monterey, CA 93943
Tel: (831) 656-3620
E-mail: bnaegle@nps.edu

Acquisition Research Program
Graduate School of Business & Public Policy - v -
Naval Postgraduate School

mailto:bnaegle@nps.edu

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
Graduate School of Business & Public Policy - vi -
Naval Postgraduate School

NPS-AM-14-194

Acquisition Research Program
Sponsored Report Series

Gaining Control and Predictability of Software-Intensive Systems
Development and Sustainment

4 February 2015

Brad Naegle, Senior Lecturer

Graduate School of Business & Public Policy

Naval Postgraduate School

Disclaimer: The views represented in this report are those of the author and do not reflect the official policy
position of the Navy, the Department of Defense, or the federal government.

Acquisition Research Program
Graduate School of Business & Public Policy - vii -
Naval Postgraduate School

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
Graduate School of Business & Public Policy - viii -
Naval Postgraduate School

Table of Contents

Executive Summary ... xiii

Introduction .. 1

The DOD Software-Intensive System Development Problem and Research
Technique .. 3

Problem .. 3

Primary Research Question ... 3

Secondary Research Questions ... 4

DOD Acquisition Environment ... 4

Requirements Generation .. 5

The Defense Acquisition System .. 6

Performance Specifications and the Work Breakdown Structure 7

Technology Readiness Assessment and Risk Management 8

Findings Summary ... 10

DOD Acquisition Environment Analysis .. 10

Software Engineering Environment .. 11

Software Engineering ... 11

Comparison to Mature Engineering .. 12

Findings Summary ... 13

Software Engineering Environment Analysis .. 13

DOD Acquisition Environment: Impact on Software Development and Quality
Attributes .. 14

DOD Requirements Generation Process ... 14

Systems Engineering Process.. 14

Work Breakdown Structure .. 15

Software Engineering Maturity Impact on Requirements Generation 16

System Operational Context... 17

Impact on Software and Quality Attributes Analysis ... 19

Software-Intensive System Architecture Development Analysis 20

Conclusions ... 21

Acquisition Research Program
Graduate School of Business & Public Policy - ix -
Naval Postgraduate School

Recommendations ... 23

General .. 23

Tools, Techniques, and Processes .. 23

Quality Attribute Workshop ... 24

Maintainability, Upgradability, Interoperability/Interfaces, Reliability, and
Safety/Security Analytic Technique .. 24

Architectural Tradeoff Analysis Methodologysm... 25

Failure Modes and Effects Criticality Analysis .. 28

Integrating the Recommended Tools, Techniques, and Processes into the
Defense Acquisition System ... 29

Program Management Risk Reduction ... 31

References .. 34

Acquisition Research Program
Graduate School of Business & Public Policy - x -
Naval Postgraduate School

List of Figures

Figure 1. Systems Engineering Process ... 3

Figure 2. DOD Decision Support Systems .. 4

Figure 3. Defense Acquisition Management System 7

Figure 4. Quality Attribution Workshop and Architectural Tradeoff Analysis
Methodology Integration into Software Life-Cycle Management 27

Figure 5. Quality Attribution Workshop and Architectural Tradeoff Analysis
Methodology Integration into Software Lifecycle Management 30

Acquisition Research Program
Graduate School of Business & Public Policy - xi -
Naval Postgraduate School

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
Graduate School of Business & Public Policy - xii -
Naval Postgraduate School

Executive Summary

The Department of Defense (DOD) has faced significant challenges
managing the total ownership cost (TOC), schedule, and technical performance of
software intensive systems. These challenges will continue to grow as proposed,
and future systems will depend on software for an ever-increasing portion of system
functionality, requiring the development of larger and more complex software
applications. In addition, the development of the envisioned tactical and strategic
net-centric warfighting systems will require unprecedented software development
efforts.

This research is a continuation and consolidation of previous research
projects conducted for the US Navy Open Architecture Task Force. That previous
research is identified and cited where appropriate.

The purpose of this research is to analyze numerous tools, techniques, and
processes combined in a unique way to provide more predictability and control to the
software development within the restrictive DOD Acquisition Management System.
The tools and analyses include the Software Engineering Institute’s Quality
Attribution Workshop (QAW), the MUIRS (maintainability, upgradability,
interoperability, reliability, and safety/security) analysis methodology, SEI’s
Architectural Tradeoff Analysis Methodologysm (ATAMsm), Logistics Supportability
Analysis (LSA), and the Failure Modes and Effects Criticality Analysis (FMECA). In
addition, the concept of software Management Readiness Levels (MgtRLs) are
introduced as a more useful risk reduction technique as compared to the software
Technology Readiness Levels (TRLs) currently used.

This research demonstrates how the combined tools, analyses, and
processes integrate with the Defense Acquisition System (DAS) and address the
most common DOD software-intensive system developmental issues in a unique
and holistic way. Although each tool, analysis technique, and process has individual
utility and is value-added, this research demonstrates how the combined use
produces a synergistic solution to the software component development control and
produces significantly more predictability in the program management realm.

The research conclusions and recommendations are designed to provide
current and future DOD Program Managers with the combined tools, analyses, and
processes within a conceptual implementation scheme that will provide more control
and predictability to software-intensive systems development. Due to the TOC and
architectural design focus, system sustainability costs are thoroughly addressed and
actively managed.

Acquisition Research Program
Graduate School of Business & Public Policy - xiii -
Naval Postgraduate School

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
Graduate School of Business & Public Policy - xiv -
Naval Postgraduate School

Introduction
From remotely piloted aircraft and smart bombs to autonomous
vehicles and advanced fighter jets, software is crucial to the success of
today’s weapon systems. Focusing solely on developing and
maintaining military hardware is no longer an option. With shrinking
defense budgets and increasingly complex systems, the defense
industry and services must fight to deliver on this ambitious objective,
the military must drastically transform its approach to software. New
organizational structures, operating models, and tools will be essential
to modernizing and sustaining the U.S. weapon systems. (Hagen, Hurt,
& Sorenson, 2013, p. 31)

Although the Department of Defense (DOD) has developed some very
successful software-intensive systems, such as the Aegis, Tomahawk Missile, and
F/A-18 Hornet, we continue to struggle with successfully developing like systems.
The software development in the F-35 Joint Strike Fighter (JSF) continues to be
problematic. The Government Accountability Office (GAO; 2012) stated that

JSF software development is one of the largest and most complex
projects in DoD history, providing essential capability, but software has
grown in size and complexity, and is taking longer to complete than
expected. Developing, testing, and integrating software, mission
systems, and logistics systems are critical for demonstrating the
operational effectiveness and suitability of a fully integrated, capable
aircraft and pose significant technical risks moving forward. (p. 7)

The report goes on to state, “This program [JSF] has modified the software
development and integration schedule several times, in each instance lengthening
the time needed to complete work” (GAO, 2012, p. 11) The results of the software
development problems have contributed to a two-year delay and increased costs of
about one billion dollars.

When software-intensive systems encounter developmental problems, it is
easy to see the symptoms: schedule overruns, acquisition cost overruns, systems
delivered with less capability than desired, and unaffordable software sustainment
costs. The actual causes of the visible symptoms are often much more difficult to
determine.

Cost and schedule overruns in software development are often the result of
poor initial software size estimates and unforeseen software redesign. In the case of
the JSF,

The lines of code necessary for the JSF’s capabilities have now grown
to over 24 million—9.5 million on board the aircraft. By comparison,

Acquisition Research Program
Graduate School of Business & Public Policy - 1 -
Naval Postgraduate School

JSF has about 3 times more on-board software lines of code than the
F-22A Raptor and 6 times more than the F/A-18 E/F Super Hornet.
This has added work and increased the overall complexity of the effort.
The software on-board the aircraft and needed for operations has
grown 37 percent since the critical design review in 2005 … almost half
of the on-board software has yet to complete integration and test –
typically the most challenging phase of software development. (GAO,
2012, p. 11)

The report goes on to state that typical software size growth in DoD systems
development ranges from 30% to 100%.

JSF design changes were originally supposed to taper off and be completed
by January 2014. Actual design changes through September 2011 failed to taper off
and continue at a significantly high rate. The projections in the GAO (2012) report
indicated that the revised design change projections will continue, and actually grow
in number, until January 2019 (p. 16). Given this level of redesign, the software and
system complexity growth are likely to continue.

Software engineers typically spend 50% or more of their total software
development time designing software architecture, and that architecture may provide
up to 80% of a modern weapon system’s functionality. Increasingly, these systems
operate within a network or other system-of-systems’ architecture. Obviously, the
requirements driving that architectural design effort are critical for achieving the
warfighter capability sought. Managing the architectural design process (including
tracing requirement to functions), insight into the design process, and control of the
design effort are equally critical for the successful development of the capability
needed by the warfighter.

The DOD monitors and controls system technical development through
implementation of the baselines, audits, and technical reviews within an overarching
systems engineering process (SEP; Defense Acquisition University [DAU], 2004).
Because of the relatively immature software engineering environment, significantly
more analyses and development of the requirements are required. In addition, the
software architectural design effort depends on in-depth requirements analysis, is
resource intensive, and must occur very early in the developmental process.
Effective management and implementation of design metrics are essential in
developing software that meets the warfighters’ needs. This management and
metrics effort supplements and supports the system’s technical development
through the baselines, audits and technical reviews.

There are numerous variations and models of the SEP. This research uses
the model depicted in Figure 1, which illustrates the systems engineering functions

Acquisition Research Program
Graduate School of Business & Public Policy - 2 -
Naval Postgraduate School

described throughout this paper. The concepts are transferable to the SEP “V”
model that the DOD currently uses.

Figure 1. Systems Engineering Process

The DOD Software-Intensive System Development
Problem and Research Technique
Problem

From a systems management perspective, the overarching problem is that
the DOD Acquisition Management System produces both successful and
unsuccessful software-intensive systems. The management oversight, structure, and
discipline offered do not produce repeatable success in complex, software-intensive
systems development.

Primary Research Question
The problem identified above drives this primary research question: Why

does the DOD Acquisition Management System produce both successful and
unsuccessful software-intensive systems?

Acquisition Research Program
Graduate School of Business & Public Policy - 3 -
Naval Postgraduate School

Secondary Research Questions
I analyze the DOD software-intensive system development challenge by

addressing these secondary research questions:

• Does the DOD acquisition environment provide opportunity for variable
results in software-intensive system development?

• How does the software engineering environment impact DOD software
intensive system development?

• Is the DOD requirements development and communication process
sufficient for potential software developers?

• How is the software-intensive system architecture developed to ensure
warfighter capabilities are designed and prioritized?

DOD Acquisition Environment
At the top level, there are the three primary decision support systems used

within the DOD, and the interaction within these systems significantly decides the
acquisition of products or services (DOD, 2013b). The three systems are the Joint
Capabilities Integration and Development System (JCIDS), which provides the
acquisition requirements documents; the Defense Acquisition System (DAS), which
provides the processes to develop and acquire the needed products to fulfill the
requirement; and the Planning, Programming, Budgeting, and Execution (PPBE)
process, which is the funding resource management. Figure 2 depicts the three
support systems.

Figure 2. DOD Decision Support Systems

(from DOD, 2013b)

Acquisition Research Program
Graduate School of Business & Public Policy - 4 -
Naval Postgraduate School

Software-intensive systems are most impacted by the JCIDS and the DAS
Decision Support Systems, and the PPBE process has no particularly unique impact
on software intensive systems development. This research, therefore, focuses on
elements of the JCIDS and DAS systems.

Requirements Generation
The Joint Capabilities Integration and Development System (JCIDS) was

designed to assess capability requirements and associated capability gaps and risks
(Chairman of the Joint Chiefs of Staff [CJCS], 2012, p. A-1). Capability gaps may be
identified in one or more of the following areas: Doctrine, Organization, Training,
Materiel, Leadership Policy and Education, Personnel, Facilities, and Policy
(DOTMLPF-P). Materiel-related capability gaps become the basis for the
requirements process that drives the acquisition community to develop and acquire
platforms designed to bridge all or part of the identified gap. JCIDS is designed to be
an iterative process, beginning with a validated Initial capabilities Document (ICD),
triggering the acquisition community to begin an Analysis of Alternatives (AoA) on
candidate systems that potentially address the capability need. The Capabilities
Design Document (CDD) refines and adds necessary detail to support the technical
design of the system sought. The final document in the series is the Capabilities
Production Document (CPD), which further refines the user requirements and adds
detail supporting the production planning for the system. Although JCIDS is
designed to refine well-defined requirements, there is clearly an opportunity for
requirements creep with this iterative user requirements process.

After the user community completes each JCIDS iteration, the
program/project/product manager (PM) or materiel developer is prompted into
action. As stated, the ICD prompts an AoA identifying the possible systems that
could be procured or developed to meet the capability need. The CDD is a key
document in the requirements generation cycle and is the user community’s primary
input for the PM’s development of the performance specification for the Request for
Proposal (RFP). The CPD is the user’s key document for driving production
decisions, and the PM’s production strategy is significantly influenced by the CPD.

One of the PM’s most critical functions is developing the performance
specification for inclusion in the RFP. This requires the PM team to translate the
user-stated needs from capabilities-based language to performance-based language
that is used to drive the design efforts of potential system developers, usually
contractors. This is critical because the RFP is the basis for the potential contractors’
proposals containing the estimated cost, schedule, and technical performance they
plan to achieve. The submitted proposals are evaluated and compared during the
labor-intensive source selection process, resulting in a contract award based on
proposal merit. If the performance specification is incomplete, vaguely stated, or

Acquisition Research Program
Graduate School of Business & Public Policy - 5 -
Naval Postgraduate School

misunderstood, then the source selection process and contract award is based on
incorrect proposals and the effort is significantly wasted.
The selected contractor accepts the terms of the contract based on the assumptions
and estimates contained in the proposal. To develop the proposal, the contractor
translates the PM’s performance specification into a basic detailed specification so
that the scope of work can be estimated for the proposed cost and schedule.
Correcting these performance specification deficiencies later puts the Government at
a significant disadvantage as the contract has been awarded and necessary
changes to the contract are negotiated without competition. Changes, additions, or
even clarifications to the performance specification after contract award are likely to
impact the terms of the contract, resulting in a negative impact to the cost, schedule,
or performance of the desired system.

The Defense Acquisition System
The DOD Acquisition, Technology, and Logistics Life Cycle Management

System (known as the Horse Blanket) is the framework for control and management
of DOD systems development, based on the SEP. As partially depicted in Figure 3,
the model depicted features development phases that define activities, and
milestones that serve as control and decision points. These phases and milestones
are established very early in the development cycle using the information available
during early Materiel Solution Analysis (MSA), which is obviously very limited.
Overwhelmingly, the PM responsible for establishing this strategy is not the
individual responsible for executing it. Funding requirements, including amount, type,
and period of execution, are established in the Program Objective Memorandum
(POM) submission and a Congressionally-approved funding profile is established for
the entire acquisition strategy within the PPBE process. At this point, the schedule
becomes very rigid as Congress must approve significant changes to the funding
profile, including when the funding is to be executed. Although there are obviously
known and unknown risks associated with an acquisition strategy formulated this
early, there is no provision for a management reserve of funding to address these
risks.

Acquisition Research Program
Graduate School of Business & Public Policy - 6 -
Naval Postgraduate School

Figure 3. Defense Acquisition Management System

(from DOD, 2013b, p. 9)

The Interim DOD Instruction 5000.02, dated November 26, 2013, shows
alternate versions of the DAS phases and milestones (see Figure 3) that attempt to
address the impact that software imparts on the development process. The interim
instruction depicts the following variants of the model: Defense Unique Software
Intensive Program; Incrementally Fielded Software Intensive Program; Hybrid
Program A (Hardware dominant); and Hybrid Program B (Software Dominant)
models (DOD, 2013b, pp. 10–14). The new models indicate an understanding that
software impacts the system development process differently than typical hardware
systems do. As these are all newly developed, their impact on future development is
unknown.

Performance Specifications and the Work Breakdown
Structure

Since the implementation of acquisition reform in the nineties, detailed
specifications have been replaced with performance specifications in order to
leverage the considerable experience and expertise available in the defense
contractor base. In most hardware-centric engineering disciplines, the expertise that
the DOD seeks to leverage includes a mature engineering environment in which
materials, standards, tools, techniques, and processes are widely accepted and
implemented by industry leaders. This engineering maturity helps to account for
derived and implied requirements not explicitly stated in the performance
specification. Three levels of the work breakdown structure (WBS) may provide
sufficient detail for vendors to develop a desired system in a mature engineering

Acquisition Research Program
Graduate School of Business & Public Policy - 7 -
Naval Postgraduate School

environment, such as the automotive field. For example, an automotive design that
provides for easy replacement of wear-out items such as tires, filters, belts, and
batteries obviously provides sustainability performance that is absolutely required.
Most performance specifications do not explicitly address this capability as they
would be automatically considered by any competent provider within the mature
automotive engineering environment.

The Department of Defense Handbook: Work Breakdown Structures for
Defense Materiel Items (MIL-HDBK-881A), recommends a minimum of three levels
be developed before handoff to a contractor (DOD, 2005). If a program is expected
to be high-cost or high-risk, it is critical to define the system at a lower level of the
WBS (DOD, 2005, p. 3). Complex weapon systems are nearly always high-cost, and
the complex software development that these systems require almost always means
that the development effort is high-risk as well. The WBS and performance
specification must, consequently, be significantly more developed to provide the
software engineer enough information and insight to accurately estimate the level of
effort needed—cost and schedule—and to actually produce the capabilities needed
by the warfighter. Contracts resulting from proposals that are based on
underdeveloped, vague, or missing requirements typically result in catastrophic cost
and schedule growth as the true demands of the software development effort are
discovered only after contract award.

The WBS provides the basis for the vendors’ performance specification. It is
also a powerful communications medium with potential contractors, as its upper
levels provide a functional system breakdown structure from the DOD’s perspective.
The same WBS continues to be developed by the contractor, eventually providing
the detailed breakdown structure: the basis for the cost and scheduling estimates
provided in the proposals and used in the Earned Value Management (EVM) metrics
during execution.

Technology Readiness Assessment and Risk Management
Another important management aspect is addressing the readiness of the key

technologies for successful development and deployment. A Technology Readiness
Assessment (TRA) is required for most Major DOD Acquisition Programs (MDAPs;
DOD, 2011, p. 1-1) The purpose for conducting a TRA is to address the risk of
attempting to develop a system with a key technology that is too immature to
successfully deploy the system when needed by the warfighter. To benchmark the
assessment, Technology Readiness Levels (TRLs) have been developed in a nine-
level model, with a goal of ensuring that a system’s key technologies achieve at
least a TRL level 6 to reduce risk to an acceptable level.

Acquisition Research Program
Graduate School of Business & Public Policy - 8 -
Naval Postgraduate School

There are software TRLs established, and level 6 is defined as “Module
and/or subsystem validation in a relevant end-to-end environment.” The level 6
description specifies the “level at which the engineering feasibility of a software
technology is demonstrated. This level extends the laboratory prototype
implementations on full-scale realistic problems in which the software technology is
partially integrated with existing hardware/software systems” (Blanchette, Albert, &
Garcia-Miller, 2010, p. 35).

The software TRL level 6 description presents several problems in performing
the TRA on a software-intensive system. Weapon system software is typically
engineered from scratch with few reused elements, which means that there is very
little to nothing on which to perform the assessment. There will likely be software
developed for similar systems that would meet the level 6 description, but assessing
like-software built for another system will not significantly reduce the software
technology risk of the proposed system. For example, the F-35 is built by the same
manufacturer as the F-22, and they are both high-performance military aircraft with
different but overlapping missions. Yet the F-35 is experiencing more software
development problems than its predecessor and already has three times more
software than the F-22 (Hagan et al., 2013, p. 26).

Software TRLs do not appear to be providing the same type readiness
indicator as hardware-related TRLs, leaving software technology risks substantially
unknown. In a 2010 U.S. Army workshop report from the Software Engineering
Institute (SEI), the participants noted that “though marginally useful, these efforts
have only confirmed for the participants the futility of continuing to base [technology]
readiness decisions for software aspects of systems on the DoD software TRLs”
(Blanchette et al., 2010, p. 2). The software TRLs clearly do not seem to be effective
at reducing risk for the TRA.

To help with early risk management in lieu of effective software TRLs, a
software developer maturity assessment is mandated for most software-intensive
systems, through attaining level 3 in the SEI’s Capability Maturity Model Integrated
(CMMI), or equivalent, assessment methodology (DOD, 2013a, p. 92) The concept
recognizes that the software build is a product of the process, and more mature
organizations—those with successful past performance, demonstrated engineering
discipline, stable development staffs, and effective management structures—reduce
system development risk.

SEI also has the Software Acquisition Capability Maturity Model® (SA-CMM),
which is designed to evaluate the maturity of software acquiring organizations such
as the DOD’s software-intensive system PM offices (Cooper & Fisher, 2002). The
SA-CMM is also a five-level model, similar to the CMMI. The DOD currently has no
requirement for PM offices to undergo an evaluation or achieve any SA-CMM level,

Acquisition Research Program
Graduate School of Business & Public Policy - 9 -
Naval Postgraduate School

but the maturity of the team responsible for communicating the system requirements
and managing the development has an impact on risk.

Findings Summary
In summary, the DOD acquisition environment features a requirements flow-

down process that involves user-stated capabilities-based requirements translated to
performance-based requirements, then translated to the detailed design
specifications. This requirements translation process is the basis for the resource-
intensive source selection and binding contracting processes, which are critical for
accurate cost and schedule estimates. Although DOD acquisition is based on the
event-driven SEP, the schedule becomes rigid very early in the process when time-
specific funding is attached. The subsequent system PMs are charged with
managing the cost, schedule, and performance set by the initial PM with no funding
provided for managing the associated risk. To reduce risk, PMs are directed to
perform TRAs early in the process, with a goal of achieving at least TRL 6 on key
technologies. Software TRLs do not appear to be effective, and software developer
maturity assessments are conducted to help reduce system development risk. The
latest Interim DOD Instruction 5000.02 (DOD, 2013a) depicts newer phases and
milestone models that attempt to address the differences that software development
causes in the management of the DAS.

DOD Acquisition Environment Analysis
Does the DOD acquisition environment provide opportunity for variable

results in software-intensive system development?

The DOD acquisition environment appears to remain vulnerable to significant
variability when developing software-intensive systems, similar to the problems
currently plaguing the F-35 JSF program. Although the new phases and milestones
models address the software component development, other critical management
functions remain unchanged. Requirements generation, performance specification
development, RFP, source selection, and contracting processes have yet to adapt to
the unique challenges presented when managing software-intensive system
development. Early program risk management assesses key technology readiness,
but the software TRLs are ineffective for predicting software development risk.
Evaluating the software developer’s maturity helps reduce some risk but fails to
include the critical DOD entities in any maturity assessment.

The challenges software components present within a DOD system
development effort are being recognized, and the software-oriented phases and
milestone models appearing in the interim DODI 5000.02 represent a beginning to
addressing those challenges. The new models depict the iterative nature of the
software builds and how the phases and milestones may adapt depending on how

Acquisition Research Program
Graduate School of Business & Public Policy - 10 -
Naval Postgraduate School

software intensive the system may be. The other critical functions and processes
within the Defense Acquisition Management System do not appear to be adapting to
the software challenges. The requirements generation system is key and will be
addressed in detail later in this research, but it doesn’t appear to have changed
significantly. As discussed earlier, those requirements generated through the system
are the drivers and the basis for other critical, early systems analysis and
communication. The performance specification, RFP, contractor proposal
generation, source selection, and contracting processes remain essentially
unchanged.

Early risk management through the TRA and achieving a desired TRL is
ineffective for the software component. Assessing the contractor (software
developer) maturity through CMMI or equivalent evaluation appears to be effective in
reducing the developer risk but does not address the DOD acquisition community
maturity. As the software developer is significantly dependent on the Government’s
ability to effectively generate and clearly communicate a comprehensive set of
requirements, quality attributes, and critical design elements, assessing just the
developer’s maturity addresses only part of the risk.

Software Engineering Environment
Software Engineering

The software engineering environment is not mature, especially when
compared to hardware-centric engineering environments. Dr. Philippe Kruchten
(2005) of the University of British Columbia remarks, “We haven’t found the
fundamental laws of software that would play the role that the fundamental laws of
physics play for other engineering disciplines” (p. 17). Software engineering is
significantly unbounded because there are no physical laws that help define
environments. There is significant evidence for software engineering immaturity, and
it is nearly impossible to find widely accepted, industry-wide development standards,
protocols, architectures, or formats. There is no dominant programming language,
design and development process, standard architectures, or software engineering
tools, which means that reusable modules and components rapidly become
obsolete. All of these combine to make it nearly impossible to institute a widely
accepted software reuse repository. Without significant software architecture and
code reuse in developing software-intensive weapon systems, each development
process essentially starts from scratch. This fact is one of the main reasons that the
TRA and the software TRLs are ineffective in predicting software development risk
(Naegle & Petross, 2007).

The software engineering state-of-the-practice currently is wholly dependent
on the requirements that are passed to the software development team. From the

Acquisition Research Program
Graduate School of Business & Public Policy - 11 -
Naval Postgraduate School

requirements, a software architecture is designed, and the requirements “flow down”
through that architecture to the individual modules and computer software units that
are to be constructed. The software build focuses on the requirements that flowed
down to that level and the integration required for functionality. The standards,
protocols, formats, languages, and tools used for the build will likely be unique to the
contractor developing the software, and will most certainly not be universally
accepted or recognized across the software industry.

The software architectural design is the basis for all of the current and future
system performance that the system will achieve, and the current state-of-the-
practice in software engineering has each project design a unique architecture. Like
hardware, the software design will significantly impact system attributes that are
important to the warfighter, including maintainability, upgradability, interoperability,
reliability, safety, and security. Most hardware-oriented engineering environments
address these critical areas through widely accepted industry standards. For
example, all DOD ground combat vehicles use a 24 volt, direct current, negative
ground electrical system. Any current or future subsystem requiring vehicle power
will automatically be designed to operate using those industry-wide electrical power
standards.

Comparison to Mature Engineering
The software engineering environment is in stark contrast to even our most

advanced hardware-centric engineering environments. For example, in the
automotive engineering field, a design that provides for easy replacement of wear-
out items such as tires, filters, belts, and batteries obviously provides sustainability
performance that is absolutely required. This engineering maturity helps account for
derived and implied requirements not explicitly stated in the performance
specification. Most performance specifications do not explicitly address this
capability because they would be automatically considered by any competent
provider within the mature automotive engineering environment. A mature
engineering environment includes design elements and industry-wide standards,
processes, materials, and techniques to which we have grown to expect. A
significant problem will exist if we expect the software engineering environment to
perform the same way as other, more mature engineering fields (Naegle & Petross,
2007).

As the example above illustrates, system sustainability elements are often
standardized across hardware-oriented engineering environments. Without the
engineering maturity, software sustainability performance and expectations must be
specified as part of the requirements generation process. The capabilities-based
user requirements and performance-based acquisition requirements are specifically
not designed to provide that level of specificity.

Acquisition Research Program
Graduate School of Business & Public Policy - 12 -
Naval Postgraduate School

Findings Summary
With software, virtually all of the performance and quality attributes developed

come directly from the requirements received, and the immature software
engineering environment will likely not compensate for any desired performance,
such as system sustainability, that is not clearly specified in a requirement. Unlike
hardware-oriented engineering environments, where the widely accepted industry
standards will be employed whether or not they are specified, with software, you get
what you specify and very little else.

The software architectural designs suffer from the immature engineering
environment as well. Each software design is unique and driven by the requirements
received with no industry-standard architectures available. All current and future
system attributes impacted by the architecture must be communicated to the
software design staff to ensure they are considered in the design process.

Software Engineering Environment Analysis
How does the software engineering environment impact DOD software-

intensive system development?

As illustrated in the previous section, the lack of software engineering maturity
impacts both requirements development and design of the architecture. To
compensate for the relative immaturity of the software engineering environment, the
DOD must conduct significantly more in-depth requirements analysis and provide
potential software developers detailed performance specifications in all areas of
software performance and sustainability. This is a significantly different mind-set
than the hardware-dominated systems acquisition of the past.

In addition to the performance requirements, software architectures must be
similarly shaped to include system attributes expected by the warfighter. Many DOD
user representatives and acquisition professionals have grown accustom to the
engineering maturity levels offered by the hardware-oriented systems that
dominated past acquisitions. Providing the system requirements in the same fashion
may not drive the architecture for needed attributes. As demonstrated by the F-35
JSF redesign problems, changing software architectures during the development
cycle will likely be costly in terms of schedule and funding.

Acquisition Research Program
Graduate School of Business & Public Policy - 13 -
Naval Postgraduate School

DOD Acquisition Environment: Impact on Software
Development and Quality Attributes
DOD Requirements Generation Process

The DOD requirements generation process was described earlier as part of
the DOD acquisition environment and consists of three major processes: user-
generated requirements in the form of capability needs using the JCIDS; PM-
generated requirements in the form of performance specifications; and finally,
contractor-generated detailed specifications, developed generally in that order. Two
major requirements language interpretations are required to get from the warfighters’
needs to the system built to meet those needs, leaving significant opportunity for
misinterpretation, omission, and misunderstanding of weakly articulated and vaguely
stated language. To do this effectively, the PM must accurately interpret user
capability language (as an example, warfighter requires the capability to … in all
mission environments) and translate that into performance language (system shall
achieve xxx performance … in these specific conditions, for example). The
contractor then translates the performance language into the system build-details
that meet or exceed the performance specified.

The importance of system software requirements development to the
potential success of software-intensive systems development cannot be overstated.
Underdeveloped, vaguely articulated, ill-defined software requirements elicitation
has been linked to poor cost and schedule estimations, resulting in disastrous cost
and schedule overruns such as what the F-35 JSF is currently experiencing. In
addition, the resulting products have been lacking important functionality, are
unreliable, and have been costly and difficult to effectively sustain (Naegle, 2006).

Systems Engineering Process
Using the SEP approach, the explicit user capabilities requirements specified

in the Joint Capabilities Integration and Development System (JCIDS) provides the
input for system requirements analyses. These analyses are intended to illuminate
all system-stated, -derived, and -implied requirements and quality attributes
necessary to achieve the capabilities needed by the warfighter. The WBS is a
methodology for defining ever-increasing levels of performance specificity using the
SEP to guide the development of each successive layer (DOD, 2005, pp. 1–5).

Just as it supports hardware development, the Systems Engineering
Process (SEP) is essential in the development of software design. In
software development, good quality and predictable results are
paramount goals in creating the specified warfighter capabilities within
cost and schedule constraints. To accomplish those goals, we examine
the methods, tools and processes the software developer uses in

Acquisition Research Program
Graduate School of Business & Public Policy - 14 -
Naval Postgraduate School

building the software with the intent of attaining a product that provides
all of the necessary functionality and is supportable, efficient, reliable
and easy to upgrade. (Naegle & Petross, 2007, pp. 14, 15)

Work Breakdown Structure
In previous research conducted by Ms. Diana Petross and me, we addressed

the WBS in detail:

The Government’s requirements and specifications for a new weapon
system are detailed in the RFP; this includes a Government-produced
Work Breakdown Structure (WBS) (composed of at least three levels).
This is known as the Program WBS and is handed off to the contractor
to develop a WBS that defines the level of detail required for product
development. This contractor-generated product will ensure the system
developer understands the program objectives and the products to be
delivered in performance of the contract. The WBS details the
functionality and performance of the system and provides a baseline to
track performance against cost and schedule. For most hardware-
centric programs, a WBS for the top three levels of the system under
development is usually enough detail to manage the program.
Because of the volatile nature of software development, immature
software engineering environment, and the potential impact to cost,
schedule and risk, the WBS for software-intensive programs needs to
be developed down to Level 5 or lower—including system-of-systems
(SOS) and net-centric systems development.
Level 1 of the WBS describes the entire project. If the program is a
systems-of-systems (SOS) project, Level I becomes that overarching
system. For instance, the Army Future Combat System (FCS) had a
number of platforms that were segments of the total system. Each
platform becomes a major segment of that product (Level 2); the
software development would then be broken down to Level 6, which
identifies software-configuration items.
 Using the FCS as an example, Level 1 describes the overall FCS
concept and environment. Level 2 details the major product segments
of the SOS. In our example of the FCS, the Level 2 would be the
platforms, i.e., infantry-carrier vehicles, command vehicles, mounted
combat systems, etc.
Level 3 defines the major components (or subsets) of Level 2. For
software development, decomposition of the software WBS to the
lowest component is critical for the developer to fully comprehend the
detailed level of effort required to design and develop effective
systems. Under the FCS scenario, Level 3 would be one of the
subsystems onboard the manned systems, e.g., the fire-control
systems and environmental-control systems. It is clear that WBS
definition to this level provides only a very top-level insight to the

Acquisition Research Program
Graduate School of Business & Public Policy - 15 -
Naval Postgraduate School

system being developed; thus, for the software-intensive system, the
WBS fails to convey enough information for the contractor to propose a
realistic cost and schedule estimate. Too much of the software
development work is hidden at this level.
Level 4 becomes a breakout of the component parts of the subsystem.
Using a manned vehicle in the FCS program, Level 5 of the WBS
would identify the component functions for the fire-control system: for
example, detect the target, aim at the target and fire the munitions. The
software build-set would support the functionality of that component
within the subsystem. Again, using the FCS as the overarching
program, Level 6 is a sum of software items (SI’s) which satisfy a
required function and are designated for configuration management. If
the software requirements or attributes are well defined, the result is a
product that is properly designed to functionally perform to the users’
requirements. Further development below Level 6 may be necessary
to adequately convey the derived and implied requirements to the
software developer. (Naegle & Petross, 2007, pp. 13, 14)

Software Engineering Maturity Impact on Requirements
Generation

The immature software engineering environment, discussed earlier, can be
compensated for only by a requirements generation system that does not leave any
gaps in performance or quality attributes needed. Having all of the requirements
clearly communicated is critical, but the software engineer must also understand the
requirements in context. For example, the M1A2 Abrams main battle tank uses
numerous inputs for precisely engaging threat targets. Several such inputs are
essential for any acceptable probability of hitting the desired target, including target
acquisition (finding the target), location (azimuth and range), aiming/tracking, and
firing the projectile. To increase accuracy, several other systems are employed that
enhance one or more of the essential functions, including cross-wind sensor,
temperature sensor, muzzle-reference system, and others (Naegle, 2007, p. 18).
Both essential and enhancing features are communicated to the system and
software developers as requirements and, as such, appear to have equal weight.
The critical difference between “essential” and “enhancing” may not be clear to the
software development team, which may result in a poorly performing and possibly
dangerous design. For example, as actually happened in M1 Abrams testing, the
temperature sensor malfunctioned and was reporting a temperature of 2,000
degrees Fahrenheit, well outside of the expected range, creating an “exception.” The
software engineers had designed the software to abort firing in the event of any
exception and, of course, the warfighter needs the system to have the ability to fight
if any or all of the enhancing functions fail. The distinction needs to be made clear,

Acquisition Research Program
Graduate School of Business & Public Policy - 16 -
Naval Postgraduate School

but there is no definitive method for identifying requirements as system “essential” or
“enhancing.”

System Operational Context
To gain some insight into the operational environments that the system is

expected to operate within, the DOD provides an Operational Mode
Summary/Mission Profile (OMS/MP). The OMS/MP provides some basic insight into
the operational profile, threat profile, environmental profile, and the terrain/sea
state/undersea/air environment profile, which adds some context to the
requirements, but is not usually scenario based. It typically lacks sustainability
activities, interoperability profiles, system life-cycle profiles, planned or anticipated
upgrades, or operation in stressful, degraded, or emergency situations.

The Joint Light Tactical Vehicle (JLTV), replacing the High Mobility Multi-
purpose Wheeled Vehicle (HMMWV) family of vehicles, is a multi-mission platform.
The JLTV program OMS/MP (version 3.3) dated January 12, 2012. Under paragraph
1.2, Document Overview, it explains what the JLTV OMS/MP defines, including

• Expected operational modes

• Full spectrum operations, operational themes, and elements of the
operational terms (offense, defense, and stability)

• Joint mission profiles and operational elements

• Terrain conditions in terms of mileage, speed, and roughness

• Environmental conditions (DOD, 2012, p. 3)

Obviously, a significant amount of mission and system information is omitted.
The details regarding the following items are not provided:

• System mission configuration (JLTV is a multi-mission platform)

• Number of personnel

• Personnel equipment and supplies required

• Cargo/hauling capacity

• Interoperability requirements

o Communications and network equipment

o Situational awareness systems

o Weapons

o Trailers/towed systems

o Special missions equipment (e.g., chemical weapons detection)

Acquisition Research Program
Graduate School of Business & Public Policy - 17 -
Naval Postgraduate School

o Electric power requirements for integrated equipment

• Crew maintenance tasks and frequency

• Survivability considerations

As with this JLTV OMS/MP, the documents typically do not provide much
information on operations under stressful, degraded, or unusual conditions, which
would provide critical design cues for the software engineers. There is no
prioritization of the operational modes or configurations, nor identification of critical
and non-critical systems.

The software development team would likely continue to be missing important
information that they need to adequately design the software and to predict the
funding and schedule resources necessary to build the software the warfighter
expects. The JLTV OMS/MP was specifically created for the Engineering and
Manufacturing Development (EMD) phase. In paragraph 1.1, Purpose, it states,

This OMS/MP describes system modes, mission profiles, and usage
conditions for the JLTV during its operating life. When approved, it
supersedes the OMS/MP published with the JLTV Request for
Proposal (RFP) in February 2008, but will not take effect until JLTV
EMD phase activities. The OMS/MP supports the basis for essential
capabilities described in the JLTV Capability Development Document
(CDD) documenting key usage factors directly applicable to design
study, logistical analyses, O&S [operations and support] estimation,
and reliability, availability, and maintainability (RAM) testing and
analyses. (DOD, 2012 p. 3)

The OMS/MP documents do not typically provide any information regarding
system life-cycle changes such as pre-planned product improvement (P3I)
programs, planned upgrades and technology refreshments, future interoperability
requirements, or plans for future integration into tactical and logistical networks.
These life-cycle events, while known or anticipated, are not effectively
communicated to potential developers for inclusion in the proposal process and are
often omitted from the software system design.

The JLTV OMS/MP was selected because the JLTV (a HMMWV
replacement) is a system that is easy for nearly all readers to comprehend, and it is
obviously not a software-intensive system. The analysis of this system is intended to
illustrate that the typical OMS/MP provides only the basic insight into even the most
basic system to be developed, and relies heavily on DOD acquisition professionals
to ensure that the contractor has a sufficient understanding of the operational role,
quality attributes, system life-cycle changes, and expected operation in stressful or
degraded modes to adequately design and produce to the warfighter’s expectations.

Acquisition Research Program
Graduate School of Business & Public Policy - 18 -
Naval Postgraduate School

Impact on Software and Quality Attributes Analysis
Is the DOD requirements development and communication process sufficient

for potential software developers?

The DOD requirements generation process that was purposefully designed to
garner the maximum contractor innovation and flexibility appears to provide too little
information for the software developer to adequately predict the resources
necessary to develop the system software. It is clear that the current state of the
software engineering environment is mostly incapable of compensating for missing,
vaguely stated, or weakly articulated requirements. At the same time, the current
DOD requirements generation system provides ample opportunity to inadvertently
omit requirements and to provide vaguely stated or weakly articulated requirements
through the capabilities-oriented JCIDS documents and the performance-based
specifications derived from them.

Without fully understanding the requirements in a detailed operational
context, the software design and development effort and resources remain
significantly unknown. The typical OMS/MP provides some operational context to the
requirements, but is not sufficiently detailed to provide the design drivers needed by
the software engineers. Developing a proposal with this limited information will likely
result in a significantly underestimated software development effort. After contract
award, more operational details are typically provided through program and design
reviews, and the cost and schedule for the software effort are likely to inflate
significantly to accommodate the new understanding of the requirement in a non-
competitive environment.
The lack of operational context typically provided by the Government during the RFP
process appears to have significant negative impacts on the software design for
reliability and maintainability. The OMS/MP documents’ lack of information regarding
significant planned and anticipated life-cycle changes, system sustainment activities
and burden, and operations under unusual conditions will likely mean that the
system software design will not easily accommodate known changes. There is no
prioritization of the operational modes or configurations that would impact system
design considerations. This information would also help differentiate critical systems
from enhancing (non-critical) systems, providing a priority in the software design
effort.

Acquisition Research Program
Graduate School of Business & Public Policy - 19 -
Naval Postgraduate School

Software-Intensive System Architecture Development
Analysis

How is the software-intensive system architecture developed to ensure
warfighter capabilities are designed and prioritized?

The DOD system architectural process, with all of its tools, techniques, and
discipline, appears to be ineffective in driving repeatable, successful software
designs. Within the SEP, there are three DOD processes that drive the system
architecture: the requirements generations system, the WBS, and the OMS/MP.

This research has previously analyzed how that process is not effective in
providing repeatable, effective software-related requirements detail. The DOD
requirements generation process develops system requirements within the SEP,
culminating in the system performance specification and included in the RFP. There
appears to be significant opportunity to omit requirements, or to provide vague or
weakly articulated requirements through the translation process from the user
capability-based requirements, to the PM’s performance specification, and finally to
the contractor’s detailed specification. This problem is exacerbated by the immature
software engineering environment described earlier, which is solely focused on
requirements as provided.

The process of developing the WBS appears to be similarly flawed in
effectively communicating the functional architecture to a sufficient level for the
software developers. The requirements are developed in concert with the system
WBS, which is a primary tool for communicating functional architecture from the
DOD perspective. After the DOD has completed its portion of the WBS, it is handed
off to the contractor to complete the effort by developing the detailed WBS to the
lowest level deemed necessary to code and build the software units. The
overarching philosophy for both requirements generation and the WBS, in order to
garner the maximum flexibility and innovation, is purposely not to be specific. Due to
the immature engineering environment, the software components need significantly
more specificity than the hardware counterparts to produce realism in the cost and
schedule provided in the contractor’s proposal.

The operational context information that the Government provides appears to
be insufficient for the potential software developers to have an understanding of the
requirements within the context of the operational environment, constraints, and life-
cycle events of the proposed system. The OMS/MP typically provides only a vague
understanding of the operational environment and significantly more information is
required to design and build the system actually needed by the warfighter. This
additional information is likely to be added in program and design reviews conducted
after the contract is awarded, so resulting changes impacting the software

Acquisition Research Program
Graduate School of Business & Public Policy - 20 -
Naval Postgraduate School

development can cause significant increases in the cost and schedule, all negotiated
without the advantages of a competitive environment.

Conclusions
The DOD acquisition process provides the environment for both successful

and unsuccessful software-intensive systems development. Specific elements of the
DOD acquisition process that contribute to the variable environment include the
following:

• The DOD Requirements Generation Process. The translation
process from JCIDS capabilities-based language to the RFP/contract
performance-based language, and finally to the specification-based
detailed language creates ample opportunity for misinterpreted
requirements to be communicated. This process was designed to
garner innovation from mature engineering fields that leverage widely
accepted materials, processes, and standards—attributes that the
software engineering field does not yet have.

• Communicating Operational Context. The Operational Mode
Summary/ Mission Profile (OMS/MP) provides some insight into a
system’s intended operational context but provides far too little
information for the complex software design process. This lack of
detail, again, cannot be compensated by the immature software
engineering environment and so impacts software-intensive systems
more than hardware-centric ones.

• Failure to Compensate for the Immature Software Engineering
Environment.

o As demonstrated by the first two bullets, one of the major
differences between successful and unsuccessful software-
intensive systems development is recognizing and
compensating for the immature software environment. The DOD
Acquisition System policies, guidelines, and controls do not
provide a framework to ensure that essential software attributes
are sufficiently revealed and effectively communicated to the
contractors that will design and build the software systems.

• The DOD Acquisition System.

o The DAS is designed to leverage industry innovation by
providing performance specifications that are designed to allow
mature industrial engineering environments to develop the best-

Acquisition Research Program
Graduate School of Business & Public Policy - 21 -
Naval Postgraduate School

value technologies that meet the performance specifications.
This is effective when the engineering environments are mature
and can offer viable, mature technology alternatives that are
considered industry-standard. There are insufficient DAS
processes for recognizing and compensating for immature
engineering environments, such as exists in the software field.

o The schedule and funding profile are initially set by the first
system PM, and the program depends significantly on how well
the requirements generation process accurately identified the
bulk of the requirements. Once funding is linked to milestones,
the program cost and schedule become very rigid, which
exacerbates problems with software-intensive system
developments that have late requirements creep due to
insufficient understanding of the effort in the proposal
preparation.

o Software Technology Readiness Levels (TRLs) are ineffective in
reducing risks associated with the system software
development. Because there are few reusable software
components, limited industry-wide standards for architecture
and supportability, and rapidly emerging languages, protocols
and tools, the software TRLs, based on past efforts, are not
reliable predictors of software readiness.

o Software development significantly adds to the system
development risk. The DAS is designed to reduce development
risk, but cannot eliminate all associated risks. Some risk is
accepted with the expectation that the PM team will effectively
manage those risks, yet there is no funding management
reserve provided to do so. Any risk management mitigation
effort that involves funding has the opportunity to create a
cascade of management actions resulting from funding
reductions in other planned and necessary activities.

Acquisition Research Program
Graduate School of Business & Public Policy - 22 -
Naval Postgraduate School

 Recommendations
 General

As part of this research, I searched for tools, techniques, and procedures that
would address the software-intensive system development problems and integrate
well with the Defense Acquisition System (DAS) while supporting the Systems
Engineering Process (SEP). The tools, techniques, and procedures recommended in
this section are not particularly new and many programs may have used some,
most, or all of these in the development of their systems. The major
recommendation is that DOD formalize and institute the use of these tools,
techniques, and procedures (or similar ones) for the development of software-
intensive systems. There would almost certainly be a benefit when applied to
hardware-centric system development, too, and certainly there would be no
detriment in using them for all complex system development.

One of the findings of this research was the lack of a PM management
reserve fund to address accepted development risks, but a significant policy and
political change would be required to provide a management reserve in program
funding. I believe this course of action to be unlikely, but the implementation of the
recommendations would significantly reduce software-intensive system
developmental volatility and risk, and reduce the need for the management reserve.

Each of the tools, techniques, and procedures are valuable in assisting the
systems development process, but when used together, provide a synergistic effect
to the vital front-end analyses that directly impact the shortcomings revealed in this
research. Implementing these tools does not require any major adjustments to the
DAS or the SEP, and in fact become major enablers for both.

Tools, Techniques, and Processes
The tools, techniques, and processes are briefly described below.

• The Software Engineering Institute’s (SEI’s) Quality Attribute
Workshop (QAW)

• The Maintainability, Upgradability, Interoperability, Reliability, & Safety
and Security (MUIRS) analytic technique

• The Software Engineering Institute’s Architectural Tradeoff Analysis
Methodology (ATAMsm)

• The Failure Modes and Effects Criticality Analysis (FMECA)

Acquisition Research Program
Graduate School of Business & Public Policy - 23 -
Naval Postgraduate School

• Software Management Readiness Levels (MgtRL)

Quality Attribute Workshop

The QAW is primarily a method for more fully developing system software
requirements and is intended to provide stakeholders’ input about their needs and
expectations from the software (Barbacci et al., 2003, p. 1). As the system
requirements are developed, software quality attributes are identified and become
the basis for designing the software architecture.

The SEI’s QAW is implemented before the software architecture has been
created and is intended to provide stakeholder input about the needs and
expectations from the software (Naegle, 2007). The QAW process provides a
vehicle for keeping the combat developer and user community involved in the DOD
acquisition process, which is a key goal of that process. In addition, the QAW
includes scenario-building processes that are essential for the software developer to
design the software system architecture (Barbacci et al., 2003, pp. 9–11). These
scenarios will continue to be developed and prioritized after contract award to
provide context to the quality attribute identified for the system.

Although the QAW would certainly be useful after contract award, conducting
the workshop between combat developers/users and the program management
office before issuance of the Request for Proposal (RFP) would provide an improved
understanding of the requirements, enhance the performance-specification
preparation, and improve the ability of the prospective contractors to accurately
propose the cost and schedule. This approach would support the goals of the
System Requirements Review (SRR), which is designed to ascertain whether all
derived and implied requirements have been sufficiently defined (Naegle & Petross,
2007, pp. 5, 6).

Primary Software Acquisition Problem Area Addressed
The QAW process is primarily designed to more fully develop system

software requirements so that the Government RFP is clearer to potential
contractors. In turn, the resulting proposals should be more accurate and realistic,
reducing requirements and project scope creep.

Maintainability, Upgradability, Interoperability/Interfaces,
Reliability, and Safety/Security Analytic Technique

The MUIRS analytic technique is designed to provide a framework for better
understanding of essential supportability and safety/security aspects that the
warfighter needs and expects but often doesn’t communicate clearly with the
capabilities-based JCIDS documents. This analytic technique helps compensate for

Acquisition Research Program
Graduate School of Business & Public Policy - 24 -
Naval Postgraduate School

the immature software engineering environment as the MUIRS analysis illuminates
the derived and implied requirements that the immature environment cannot.

Much of the software supportability and safety/security performance that
typically lacks consideration and is not routinely addressed in the software
engineering environment can be captured through development and analysis of the
MUIRS elements. Analyzing the warfighter requirements in a QAW framework for
performance in each MUIRS area will help stakeholders identify software quality
attributes that need to be communicated to potential software contractors (Naegle,
2006, pp. 17–24).

The MUIRS analysis assists the QAW process by focusing on those elements
that are too often typically overlooked during the requirements generation process.
The QAW and MUIRS analysis are critical to the software design process, discussed
in the next section.

Primary Software Acquisition Problem Area Addressed
MUIRS primarily addresses the immature software engineering environment

as it provides an analytic approach for critical sustainment and safety/security
attributes often missing, weakly articulated, or vaguely stated in the requirements
produced. With its capabilities and performance based requirements processes, the
DOD significantly depends on mature engineering environments to fill the gaps left
from the requirements generation and communication processes, but the software
engineering environment is unable to do so. The MUIRS analysis is also an enabler
for the QAW and ATAMsm architectural processes discussed next.

Architectural Tradeoff Analysis Methodologysm

The SEI’s ATAMSM is an architectural analysis tool designed to evaluate
design decisions based on the quality attribute requirements of the system being
developed. The methodology is a process for determining whether the quality
attributes are achievable by the architecture as it has been conceived before
enormous resources have been committed to that design. One of the main goals is
to gain insight into how the quality attributes trade-off against each other (Kazman,
Kleim, & Clements, 2000, p. 1).

Within the SEP, the ATAM provides the critical Requirements Loop process,
tracing each requirement or quality attribute to corresponding functions reflected in
the software architectural design. Whether ATAM or another analysis technique is
used, this critical SEP process must be performed to ensure that functional- or
object-oriented designs meet all stated, derived, and implied warfighter
requirements. In complex systems development such as weapon systems, half or
more than half of the total software development effort is expended in the
architectural design process. Therefore, the DOD PMs must ensure that the design

Acquisition Research Program
Graduate School of Business & Public Policy - 25 -
Naval Postgraduate School

is addressing requirements in context and that the resulting architecture has a high
probability of producing the specified warfighters’ capabilities described in the JCIDS
documents.

The ATAM focuses on quality attribute requirements, so it is critical to have
precise characterizations for each. To characterize a quality attribute, the following
questions must be answered:

• What are the stimuli to which the architecture must respond?

• What is the measurable or observable manifestation of the quality
attribute by which its achievement is judged?

• What are the key architectural decisions that impact achieving the
attribute requirement? (Kazman et al., 2000, p. 5)

The ATAM is designed to elicit the data and information needed to adequately
address the three questions above. These questions, focused on requirements and
quality attributes, are user-centric, and so the ATAM scenarios must be constructed
by the user community (Naegle & Petross, 2007, p. 25). The methodology keys on
scenario development in three main areas:

• Use Case Scenarios. As the name suggests, these scenarios
describe how the system will be used and sustained in the harshest
environments envisioned. It includes all interoperability requirements
and duty cycles as well.

• Growth Scenarios. Growth scenarios focus on known and anticipated
system change requirements over the intended life cycle. These
scenarios include upgrades and technology refreshments planned;
interoperability requirements, such as inclusion in future warfighting
networks; changes in sustainment concepts, and other system
changes expected to occur over time.

• Exploratory Scenarios. Exploratory scenarios focus on operations in
unusual or stressful situations. These address user expectations when
the system is degraded or operated beyond normal limitations due to
emergency created by combat environments. These scenarios include
Failure Modes and Effects Criticality Analyses (FMECA) to identify the
essential functions that must not fail. As important to the software
engineers, FMECA also identifies those enhancing functions that
should not preclude the system from functioning when that enhancing
function is degraded or non-operational. For example, the M1 Abrams
tank uses the ambient temperature as an enhancer to the main gun
accuracy, but needs the ability to be fully operational in the case where

Acquisition Research Program
Graduate School of Business & Public Policy - 26 -
Naval Postgraduate School

the ambient temperature sensor is malfunctioning. The software
engineers need that information to properly design the software.

Test cases are developed out of the scenarios, which firmly link the test
program with the user requirements in the context of the scenarios. This
methodology also helps to ensure that there are verification events for software and
sustainment requirements, which are too often missing from the testing program.

As you can see from Figure 4, the ATAM is an integrating function for many of
the tools and techniques discussed here. It is designed to be an iterative process
and would be most effective when started in early concept development, then
continued through contract award, prototyping, and into the design review process.

Figure 4. Quality Attribution Workshop and Architectural Tradeoff Analysis

Methodology Integration into Software Life-Cycle Management
(Naegle & Petross, 2007, p. 25)

Primary Software Acquisition Problem Areas Addressed
The ATAM process addresses four primary problem areas:

• The scenario development provides much more operational context
than the typical OMS/MP provides. This level of detail helps to
compensate for the immature software engineering environment and is
critical for the proper design of the software architecture.

QAW

Acquisition Research Program
Graduate School of Business & Public Policy - 27 -
Naval Postgraduate School

• The ATAM serves as a very effective software design metric function.
With the software development team using 50% or more of the
available resources for requirements analysis and software design
before the Preliminary Design Review (PDR), it is critical to have an
effective software design metrics function. Traditional software design
metrics focus on the design complexity and do not address whether
the design is adequate or not. ATAM directly links the user
requirements to the system architectural design.

• As the testing program is developed from the scenarios, it becomes
difficult to omit any critical testing event. In addition, the software
developer understands the tests or verification events that must be
passed for user acceptance.

• By integrating the MUIRS analyses into the ATAM scenario
development, sustainability and safety/security aspects cannot easily
be omitted from the system design. As the testing plan flows from the
scenarios, the MUIRS design elements will have corresponding test or
verification events identified in the test plan.

Failure Modes and Effects Criticality Analysis

As the title indicates, this analysis methodology is designed to identify system
failure modes and those failures effects on the system, and ascertain the relative
criticality of that type of failure. In his book titled Logistics Engineering and
Management, Benjamin S. Blanchard (2004) describes FMECA as follows:

Given a description, both in functional and physical terms, the designer
needs to be able to evaluate a system relative to possible failures, the
anticipated modes and expected frequency of failure, their causes,
their consequences and impact(s) on the system overall, and areas
where preventative measures can be initiated to preclude such failures
in the future. (p. 275)

He goes on to state, “The FMECA is an excellent design tool, and it can be
applied in the development or assessment of any product or process” (Blanchard,
2004, p. 276).

Including FMECA scenarios with the software systems and subsystems
provides architectural design cues to software engineers. These scenarios provide
analysis for designing redundant systems for mission-critical elements, “safe mode”
operations for survivability- and safety-related systems, and drive the software
engineer to conduct “what if” analyses with a superior understanding of failure-mode
scenarios. For example, nearly all military aircraft are “fly-by-wire,” with no physical
connection between the pilot controls and the aircraft-control surfaces, so basic

Acquisition Research Program
Graduate School of Business & Public Policy - 28 -
Naval Postgraduate School

software avionic functions must be provided in the event of damage or power-loss
situations to give the pilot the ability to perform basic flight and navigation functions.
Obviously, this would be a major design driver for the software architect (Naegle &
Petross, 2007).

Primary Software Acquisition Problem Areas Addressed
The primary problem areas addressed by FMECA include requirements

clarification and prioritization, and helping to ensure a sound software architecture
design. This analysis also ensures that the most critical software systems are
designed with the requisite reliability and will continue to function in degraded
modes.

As previously stated, one of the main functions of performing FMECA is to
identify those software functions that are not critical, and ensuring that failures or
anomalies in those non-critical functions do not preclude or negatively affect system
capabilities. Today’s systems typically have numerous enhancing functions that
improve performance but are not critical and the software developers have no way to
discern the difference between a critical system and an enhancing one without
employing FMECA.

Integrating the Recommended Tools, Techniques, and
Processes into the Defense Acquisition System

The tools, techniques, and processes were specifically selected for both their
ability to address software-intensive systems development problems, and their ability
to integrate with the DAS. They are all SEP enablers designed to improve the critical
DAS front-end processes, which are primarily the Government’s responsibility.

The depiction in Figure 5 shows the processes applied at the latest possible
developmental time to be effective. The earlier these tools, techniques, and
processes occur, the more effective they become. This representation also does not
show the iterative cycles of QAW and ATAM or their overlapping nature.

Acquisition Research Program
Graduate School of Business & Public Policy - 29 -
Naval Postgraduate School

Figure 5. Quality Attribution Workshop and Architectural Tradeoff Analysis

Methodology Integration into Software Lifecycle Management
(Naegle & Petross, 2007)

As depicted in Figure 5 the QAW and ATAM are designed to address critical
requirements and design front-end processes, where the Government is primarily
responsible for the process. The blue arrow shows how the warfighters and user
community are continuously involved throughout the process, and are active
participants in the QAW and ATAM processes. This is distinctly different than the
traditional DAS where there is little formal user interaction between preparation of
the JCIDS documents and the prototype limited user tests (LUT)/early user test and
evaluation (EUT&E).

The user communities have a very significant role in driving the QAW and
ATAM processes, which requires more user resources to support the system
development. This user investment in the DAS is becoming more critical with the
development of more software-intensive and complex systems of all kinds. This
investment is absolutely necessary to avoid Government to contractor
misunderstanding of the system requirements and warfighter expectations, and
would significantly reduce the cost and schedule delays associated with user
dissatisfaction, user-test failure, and unnecessary system redesign.

Acquisition Research Program
Graduate School of Business & Public Policy - 30 -
Naval Postgraduate School

Program Management Risk Reduction
These tools, techniques, and processes will not, of themselves, produce or

guarantee anything. “An architecture analysis method, any architecture analysis
method, is a garbage-in-garbage-out process. The ATAM is no different. It crucially
relies on the active and willing participation of the stakeholders” (Kazman et al.,
2000, p. 63). All of the tools and techniques described and recommended in this
research are dependent on the team of professional stakeholders conscientiously
performing their critical function in the development of the software-intensive system.

To effectively implement the recommended tools, techniques, and processes,
the program management team must be professional, disciplined in their application
of the SEP and skilled in integrating the tools into the DAS. In a word used by the
SEI, the team must be mature. The Defense Acquisition Workforce Improvement Act
(DAWIA) mandates certain education and training levels for the professional
workforce performing at various levels. The DOD invests significant resources in
both education and training to help ensure the acquisition workforce competencies
and comply with the DAWIA.

The DOD also evaluates the maturity of potential software developers by
requiring an evaluation using SEI’s Capability Maturity Model–Integrated (CMMI; or
equivalent) for most software-intensive system acquisitions. The CMMI is a five-level
model, and the software developer organization under evaluation must achieve at
least a level three by an independent evaluation team to be eligible to be awarded
the DOD contract.

As mentioned previously, the DOD does not currently require the PM offices
managing software-intensive systems to achieve any maturity level on the Software
Acquisition Capability Maturity Model (SA-CMM). The team effort between the
Government and the software developer strongly suggests that both the PM office
and the software developer would reduce developmental risk by demonstrating an
appropriate level of maturity.

Due in large part to the immature software engineering environment, each
major DOD software design and build tends to be unique. That means that the
software development in complex systems will act the same way as integrating a
new technology would, and the resulting program risk is very high. The software
TRLs have little meaning in this type of environment, so risk management is highly
dependent on the Government and software development teams’ abilities to manage
the system software development as a new technology with a low TRL.

Acquisition Research Program
Graduate School of Business & Public Policy - 31 -
Naval Postgraduate School

A significant portion of the risk management is focused on the Government
and software development teams. As the software TRLs are mostly ineffective, I
would recommend the further development of software Management Readiness
Levels (MgtRLs) to mitigate the risks. Part of the management risk reduction is
already in place with the DAWIA requirements and the software developer maturity
levels that must be achieved. Taking this further by including the PM office team
maturity and integrating the tools, techniques, and processes recommended in this
research, I have outlined the basic nine-tier software MgtRLs:

• Level 1: PM team and software developers meet all professional
certifications and adhere to DOD policy for achieving maturity levels.

• Level 2: PM team has fully developed derived and implied
requirements using a QAW approach.

• Level 3: PM team has conducted a self-evaluation and meets the SA-
CMM level 2 criteria.

• Level 4: Post contract award, the PM team conducted at least one
iteration of ATAM.

• Level 5: PM team conducts pre and post contract award ATAM
iterations, and continues ATAM through the initial program design
reviews.

• Level 6: PM team has achieved level 2 in an externally conducted SA-
CMM evaluation. Software developer has achieved level 3 (or higher)
in an externally conducted CMMI evaluation.

• Level 7: PM team has achieved level 3 in an externally conducted SA-
CMM evaluation. Software developer has achieved level 3 (or higher)
in an externally conducted CMMI evaluation.

• Level 8: PM team has achieved level 4 in an externally conducted SA-
CMM evaluation. Software developer has achieved level 4 (or 5) in an
externally conducted CMMI evaluation.

• Level 9: PM team has achieved level 5 in an externally conducted SA-
CMM evaluation. Software developer has achieved level 5 in an
externally conducted CMMI evaluation.

Acquisition Research Program
Graduate School of Business & Public Policy - 32 -
Naval Postgraduate School

As with the TRLs, I would recommend that the target MgtRL for any PM office
managing a software-intensive or complex system would be level 6 to help reduce
management risk to an acceptable level. This is significantly more overall
management maturity than what DOD prescribes today, but this research strongly
indicates that this level would reduce the software-intensive system development
risk.

The MgtRLs suggested focus on the tools, techniques, and processes
researched, but there is likely many other areas that could be researched and added
into the nine-tier model. Areas including software metrics, quality assurance,
software-oriented Integrated Product Teams (IPTs), contracting plans, and others
could be researched and included in the appropriate MgtRL level.

Acquisition Research Program
Graduate School of Business & Public Policy - 33 -
Naval Postgraduate School

References

Barbacci, M., Ellison, R., Lattanze, A., Stafford, J., Weinstock, C., & Wood, W.
(2003, August). Quality attribute workshops (QAWs) (3rd ed.) (CMU/SEI-
2003-TR-016). Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University.

Blanchard, B. S. (2004). Logistics engineering and management (6th ed.). Upper
Saddle River, NJ: Pearson Prentice Hall.

Blanchette, S., Albert, C., & Garcia-Miller, S. (2010, December). Beyond technology
readiness levels for software: U.S. Army workshop report (CMU/SEI-2010-
TR-044). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University.

Chairman of the Joint Chiefs of Staff (CJCS). (2012, January 10). Joint capabilities
integration and development system (Chairman of the Joint Chiefs of Staff
Instruction [CJCSI] 3170.01H). Washington, DC: Author.

Cooper, J., & Fisher, M. (2002, March). Software Acquisition Capability Maturity
Model® (SA-CMM®) version 1.03 (CMU/SEI-2002-TR-010). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University.

Department of Defense (DOD). (2005, July). Work breakdown structures for defense
materiel items (MIL-HDBK-881A). Department of Defense Handbook.
Washington, DC: Author.

Department of Defense (DOD). (2011, April). Technology Readiness Assessment
(TRA) guidance. Washington, DC: Author.

Department of Defense (DOD). (2012, January 12). Operation Mode Summary &
Mission Profile (OMS/MP) for the Joint Light Tactical Wheeled Vehicle,
version 3.3. Washington, DC: Author.

Department of Defense (DOD). (2013a, November). Operation of the Defense
Acquisition System (DOD Instruction 5000.02). Washington, DC:
Author.Department of Defense (DOD). (2013b, December 3). Defense
acquisition guidebook. Retrieved from https://dag.dau.mil

Government Accountability Office (GAO). (2012, March 20). Joint Strike Fighter:
Restructuring added resources and reduced risk, but concurrency is still a
major concern (GAO-12-525T). Retrieved from http://www.gao.gov

Acquisition Research Program
Graduate School of Business & Public Policy - 34 -
Naval Postgraduate School

https://dag.dau.mil/
http://www.gao.gov/

Hagan, C., Hurt, S., & Sorenson, J. (2013, November/December). Effective
approaches for delivering affordable military software. Crosstalk Magazine,
26–32.

Humphrey, W. (1990, August). Managing the software process. Reading, MA:
Addison-Wesley.

Kazman, R., Klein, M., & Clements, P. (2000, August). ATAMSM: Method for
architecture evaluation (CMU/SEI-2000-TR-004). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University.

Kruchten, P. (2005, March/April). Software design in a postmodern era. IEEE
Software, 18(2), 17.

Naegle, B. R. (2006, September). Developing software requirements supporting
open architecture performance goals in critical DoD system-of-systems
(Acquisition Research Program Sponsored Report Series [NPS-AM-06-035]).
Monterey, CA: Naval Postgraduate School.

Naegle, B. R., & Petross, D. (2007, September). Software architecture: Managing
design for achieving warfighter capability (Acquisition Research Program
Sponsored Report Series [NPS-AM-07-104]). Monterey, CA: Naval
Postgraduate School.

Office of the Under Secretary of Defense for Acquisition, Technology, & Logistics
(USD[AT&L]). (2013b).

Pietrasanta, A. M. (1998). Current methodological research. In ACM National
Conference (USA) (pp. 341 –346). New York, NY: ACM Press.

Software Engineering Institute/Carnegie Mellon Software Architecture. (2007). The
importance of software architecture. Retrieved March 1, 2007, from
http://www.sei.cmu.edu/architecture/index.html

Acquisition Research Program
Graduate School of Business & Public Policy - 35 -
Naval Postgraduate School

http://www.sei.cmu.edu/architecture/index.html

Acquisition Research Program
Graduate School of Business & Public Policy
Naval Postgraduate School
555 Dyer Road, Ingersoll Hall
Monterey, CA 93943

www.acquisitionresearch.net

	Abstract
	Acknowledgments
	About the Author
	Table of Contents
	List of Figures
	Executive Summary
	References

