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RESEARCH SUMMARY 

Availability of aging DoD weapons systems is of significant concern, particularly as budgets 

tighten and system replacement is infeasible. This work developed availability-based importance 

measures to (i) focus on critical components and (ii) identify appropriate suppliers for acquisition 

related to system sustainment.  

Task 1. Availability-Based Importance Measures. An effective defense strategy requires 

aircraft, among other weapons systems, to be available and ready for use when circumstances 

deem necessary. The same is true for a competitive strategy in a manufacturing environment 

(i.e., available equipment for production), among other environments. This task offers a set of 

importance measures to identify the critical components in a system from their influence on 

system achieved availability, a common availability calculation that is a ratio of mean time 

between maintenance and total system time, including mean maintenance time. With these 

measures, more effective maintenance plans, including inspection and supply inventory, can 

focus on those components that more significantly impact achieved availability. The ability to 

prioritize components based on their importance to system availability will ultimately facilitate 

the MRO acquisition process through effective maintenance triggers and supplier selection 

Task 2. Stochastic Availability Importance Measures. The availability importance measure 

developed in Task 1 makes use of point estimates representing mean time between maintenance 

and mean maintenance time. However, expected values are merely point estimates that ignore 

valuable information about the entirety of the distribution. This task explored the treatment of the 

point estimate parameters of availability with probability distributions and proposed a novel 

multicrtieria decision analysis technique to compare the distributions to determine a ranking of 

component importance.  

Task 3. Improving Inspections and Comparing Suppliers. The availability of aging systems, 

particularly weapons systems within the Department of Defense, is of significant concern as 

budgets tighten and system replacement is infeasible. This work addresses the selection of sole 

suppliers according to their ability to provide component parts that strengthen availability of the 

system. We extend a popular multi-criteria decision making approach, TOPSIS, by (i) 



considering the availability of individual components as the criteria in the decision problem and 

(ii) weighting those criteria according to the value of component importance measures while (iii) 

accounting for uncertainty in underlying reliability and maintainability parameters with interval 

numbers. An aircraft example illustrates the approach. 

Task 4. Illustrative Examples. Illustrative examples for all three tasks have been inspired by 

conversations with employees at Tinker Air Force Base, though due to the sensitive nature of 

such systems, no real data could be used. 

RESEARCH OUTPUT 

The remainder of this report provides the primary methodological developments and research 

findings of the funded work, provided in the form of scholarly journal manuscripts. Complete 

references across all tasks are provided at the end. 

In total, the following papers and presentations were submitted or are still in progress (with 

support acknowledged). 

1. Gravette, M.A. and K. Barker. 2014. Achieved Availability Importance Measures for

Enhancing Reliability Centered Maintenance Decisions. Journal of Risk and Reliability,

229(1): 62-72.

2. Hague, R.K., K. Barker, and J.E. Ramirez-Marquez. 2015. Interval-valued Availability

Framework for Supplier Selection Based on Component Importance. Accepted in

International Journal of Production Research.

3. Shaffer, R.D., K. Barker, and C.M. Rocco. 2015. Stochastic Availability Importance

Measures. In progress.

4. Barker, K. and J.E. Ramirez-Marquez. 2015. Availability-Based Importance Framework for

Supplier Selection. Proceedings of the Naval Postgraduate School Acquisition Research

Symposium, Monterrey, CA, May 2015.

Also, the following two theses were completed as a result of this work. 

1. Robert D. Shaffer, Spring 2014, Stochastic Modeling of Availability Importance Measures

Using Monte Carlo Simulation, MS Thesis, University of Oklahoma. Currently employed by

OG&E.

2. Robert K. Hague, Spring 2014, Interval-Valued Availability Framework for Supplier

Selection, MS Thesis, University of Oklahoma. Currently employed by Tinker Air Force

Base.

TASK 1. AVAILABILITY-BASED IMPORTANCE MEASURES 

This section is based on the following: 

Gravette, M.A. and K. Barker. 2014. Achieved Availability Importance Measures for Enhancing 

Reliability Centered Maintenance Decisions. Journal of Risk and Reliability, 229(1): 62-72. 



1. Introduction and Motivation

The Department of Defense (DoD) uses three main metrics to measure the quality of one of its 

systems: reliability, maintainability, and availability [DoD 2005]. Particularly within the US Air 

Force, high quality aircraft equipment requires high performance values for all three metrics: 

reliable (ability to last as long as intended) and maintainable (ability to be fixed with minimum 

effort and time) to make the aircraft equipment available (accessible when needed). Availability, 

or the probability that a system is performing its required function at a given point in time when 

operated and maintained in a prescribed manner [Ebeling 2010], is perhaps the key metric of the 

three. 

The availability of DoD systems is threatened by obsolescence. For example in the US Air 

Force, the cost to replace over 500 KC-135s, which debuted in the mid-1950s, has been 

estimated in the tens of billions of dollars with a replacement plan lasting for several decades 

[GAO 2004]. A budget reduction of about 29 percent since 1990 has “forced the branches of the 

military to extend the life of current legacy systems with significant reductions in new 

acquisitions of replacement systems” [Maithaisel 2008]. Such new purchases are usually 

restricted due to funding limitations, making redesigning or generating redundancy for improved 

reliability not an option [Kuo and Prasad 2000, Misra and Sharma 1973]. As such, the only 

remaining option to improve system availability is to enhance the maintenance methods during 

sustainment of the system. This leads to the need for an optimal maintenance policy to have the 

maximum positive impact on availability [Lie and Chun 1986, DoD 2011]. 

Recent DoD focus has been directed toward improving the decision making process for system 

sustainment, including maintenance, repair, and overhaul (MRO) operations and the acquisition 

of MRO parts. MRO depot resources must be dynamically assigned to reflect changes in priority 

driven by critical supply needs and internal parts shortages with the goal of reducing cost and 

lead times, meeting due dates, and maximizing availability of DoD weapon systems. Streamlined 

MRO activities, including the scheduling of system maintenance, the acquisition of parts (e.g., 

spare part shortages have been a concern in the DoD [Kuo and Zhu 2012]), and the optimal 

performance of supply chain operations, is key to keeping these aging systems available. 

One means to tighten MRO costs is to focus on a primary set of components that most affect 

system performance. The analysis of systems, regardless of domain, often includes determining 

which system components are most influential on the performance of the system. Given the 

context above, the task of detecting the system, subsystem, or component on which to focus 

efforts (e.g., MRO activities) to gain the most improvement (e.g., improved availability) for the 

least cost is an important one. Component importance measures, a well-studied topic in 

reliability engineering [Kuo and Zhu 2012], measure the influence of particular components on 

the reliability of an overall system. 

In a couple of recent theoretical exercises, importance measures have been developed to focus on 

availability metrics to determine the component in a system that most influences overall system 

availability [Cassady 2004, Barabady and Kumar 2007]. This paper extends this recent work by 

(i) analyzing availability-based component importance for some specific reliability and 

maintainability metrics that comprise achieved availability, an important DoD metric, and (ii) 



proposing a simple decision making formulation to highlight how inspections can impact 

availability for those components found to be most impactful to the system. Section 2 provides 

some methodological background to the availability-based importance measures described here. 

Section 3 describes the importance measure for achieved availability, and Section 4 provides a 

DoD-inspired illustrative example. Section 5 closes with concluding remarks. 

2. Methodological Background

Advancing technology and tighter budgets have prompted the desire to avoid failures before they 

occur, broadly referred to as preventative maintenance. There remained a desire to do more for 

less – more availability and reliability with focus on safety and environmental impacts while 

keeping budgets to a minimum – ultimately leading to the philosophy of Reliability-Centered 

Maintenance (RCM) [Moubray 1997]. Those who plan on using RCM do so because they expect 

to gain longer availability times, lower costs, and better control and decisions [Endrenyi et al. 

2001]. With the idea of RCM in mind, we review background on calculations for component and 

system availability, as well as importance measures. 

2.1. Availability Classification and Quantification 

The reliability, availability, and maintainability performance metrics of a system have 

fundamental relationships. Given our interests in DoD weapons system in particular, we examine 

the similarity and differences among the DoD definitions of these system performance metrics 

[DoD 2005]: 

 Reliability is the probability that an item can perform its intended function(s) without

failure for a specified time under stated conditions.

 Availability is a measure of the degree to which an item is in an operable state and can be

committed at the start of a mission when the mission is called for at an unknown

(random) point in time.

 Maintainability is the probability that an item can be retained in, or restored to, a

specified condition in a given time when maintenance is performed by personnel having

specified skill levels, using prescribed procedures and resources, at each prescribed level

of maintenance and repair.

Reliability is a metric that is often optimized during a system’s design phase, where system 

configurations and component redundancies are considered to maximize system reliability or 

related mean time to failure metrics. However, after the design phase is completed, there is often 

no further action possible with the existing components to improve their reliability. As reliability 

as a metric does not account for maintenance considerations, availability is a more suitable 

metric to measure the effectiveness of an existing system.  Furthermore, availability can be 

improved in an existing system through improved maintainability when the reliability values are 

not realized according to the manufacturer‘s specifications [Kuo and Wan 2006]. 

There are several definitions of availability depending on the user’s point of view. All such 

definitions use Eq. (1) as a baseline, which essentially provides a probability of the system being 

operational. The various availability definitions differ is in how they define what is included in 

the uptime and downtime parameters.  The three most common categories of availability are 

inherent availability, achieved availability, and operational availability [Lie et al. 1977].   



availability =
uptime

uptime + downtime
(1) 

Inherent availability (𝐴i) is the most commonly used availability measurement.  Inherent 

availability uses the component’s or system’s Mean Time Between Failures (MTBF) as the 

uptime measure and Mean Time To Repair (MTTR) the downtime measure. MTTR includes 

only corrective maintenance downtime. The 𝐴i parameters initially come from the specifications 

in the manufacturer’s report on how long the system is projected to operate before failure and 

how long it takes a normal maintenance team to repair a failed unit.  

Operational Availability (𝐴o) is the best measure of the “realistic” availability a user of a system 

actually experiences over a period of time. This is because 𝐴o is based on the collection of all of

the actual events that occur to the system during any system downtime until the system is once 

again fully restored.  It includes uptime as the Mean Time Between Maintenance (MTBM) 

actions and an additional term for ready time (RT), assuming the system is operational even if it 

is offline. The operational cycle is the total time being considered for the system. For the 

downtime parameter, 𝐴o defines Mean Down Time (MDT) with an expanded definition of the 

time to repair the system plus the Delay Time (DT). The significant aspect of the MDT is that it 

includes administrative and logistic delays, while the system is down, and the system’s Mean 

Maintenance Time (M) [Lie et al. 1977]. 

Achieved Availability (𝐴a) is the measure that the maintenance department would most often be 

tracking as a department performance measure of both the systems they maintain and the 

department capacity to maintain them, as it is based on both the actual maintenance touch time 

and the equipment’s failure activity. The 𝐴a definition and equation uses MTBM and M as its 

parameters.  Achieved availability for a system with n components is calculated in Eq. (2) [Lie et 

al. 1977]. 

𝐴a = 
MTBM

MTBM +M
(2) 

𝐴a includes both corrective maintenance actions, in the form of system failures, and preventative 

maintenance actions that take the system offline, in the form of system downing PMs.   

MTBM =
Total uptime 

# of system failures + # of system downing PMs
(3) 

M =
CM downtime + PM downtime 

# of system failures + # of system downing PMs
(4) 

The weakness of 𝐴i is that it does not include the PM parameter incorporated into the 

calculation. The weakness of 𝐴o is that it is convoluted with many other logistics and 

administrative parameters and delays. The conclusion is that neither of these first two availability 

calculations are well suited for focusing on maintenance impacts to availability. It is the most 



appropriate for this study as 𝐴a incorporates PM and inspections can be split out of PM to

analyze their core impact on 𝐴a.   

2.2. Importance Measures 

It is very rare that systems are simplistic enough to have a minimum amount of components that 

would allow equal attention or worth to be given to all components. This is particularly true in 

the case of DoD weapons systems, which are often highly complex. Such systems lend 

themselves to allocate resources by dividing the system up into subsystems or collections of 

subsystems based on how important that subsystem is to the overall system.  Then each 

subsystem can be more easily analyzed at the component level.  The importance of each 

component is to the subsystem can better be measured, which then relates the component’s 

importance to the overall aircraft. 

Many component importance measures (CIMs) have been developed to determine the criticality 

of individual components to system performance [Miman and Pohl 2006]. Primarily, importance 

measures have been introduced to measure the influence of particular components on the overall 

reliability of the system [Kuo and Zuo 2003, Modarres et al. 2010]. Specific CIMs include risk 

reduction worth (RRW), an index that quantifies the potential damage to a system caused by a 

particular component, and the reliability achievement worth (RAW) of a component, or the 

maximum proportion increase in system reliability generated by that component [Ramirez-

Marquez et al. 2006]. 

This work will focus on the Birnbaum importance measure, among the most widely used 

importance measures in reliability engineering [Fricks and Trivedi 2003]. For a system of n 

components, the Birnbaum importance measure [Birnbaum 1969] has historically measured how 

the change in reliability of component i influences a change in the reliability of the system, or 

𝐼𝑖
𝐵 = 𝜕𝑅𝑠 𝜕𝑅𝑖⁄ . After the 𝐼𝑖

𝐵 factor for each component is computed, the component with the

largest 𝐼𝑖
𝐵 value is the component that will offer the greatest improvement in system reliability

when its reliability is improved.   

Both Cassady et al. [2004] and Barabady and Kumar [2012] adapted the 𝐼𝑖
𝐵 concept to propose

an availability importance measure based on inherent availability. Their availability importance, 

in Eq. (5), measures demonstrate how the inherent availability of the system is influenced by the 

inherent availability of a subsystem or component. In their equations, As is the system 

availability and Ai is the component availability for component i.   

𝐼𝑖
𝐴 =

𝜕𝐴𝑠
𝜕𝐴𝑖

(5) 

Similar to Birnbaum reliability importance, the change in the component availability that will 

have the greatest impact on the reliability of the system is from the 𝐼𝑖
𝐴 with the largest value.

This paper also extends the Birnbaum reliability importance measures to availability, but in this 

paper it is based on 𝐴a, considered to be a much more appropriate maintenance centered 

availability measure. Further, we focus on importance relative to MTBM and M measures. 



2.3. System Configurations and their Availability Measures 

This paper addresses the four primary system configurations depicted in Figure 1: series, 

parallel, series-parallel, and parallel-series.  And for these four system configurations, the 

notation for achieved availability is: 𝐴a
S for series systems, 𝐴a

P for parallel system, 𝐴a
SP for series-

parallel, and 𝐴a
PS for parallel-series. For a series only combination of components, the subscript i

represents any one of the n individual components in the series system. For parallel 

configurations, the subscript j refers to any one of the m individual parallel components of the 

parallel system or subsystem.  For the series-parallel and parallel series combination, the 

achieved availability notation includes either “ij” or “ji” to represent the individual components 

of the respective systems. The achieved availability calculations for particular system 

configurations are variants of the general form in Eq. (2). 

1 2 n. . . . . .1 2 m

(a) series (b) parallel 

11

12

1m

. .
 .

21

22

2m

. .
 .

. . .

n1

n2

nm

. .
 .

11 12 . . . 1n

21 22 . . . 2n

m1 m2 . . . mn

. .
 .

(c) series-parallel (d) parallel-series 

Figure 1. Four primary configurations that describe the structure of most systems. 

2.4.1. Series Systems 

Figure 1a depicts a system comprised of n independent components in series. For this system to 

be available, each independent component must be operable. The steady-state availability for a 

series system is the product of the independent component availabilities.  Therefore, the system 

availability, 𝐴a
𝑆 found in Eq. (6), will be smaller than the smallest component’s availability

[Ebeling 2010].  

𝐴a
S =∏𝐴a𝑖

𝑛

𝑖=1

=∏
MTBM𝑖

MTBM𝑖 +M𝑖

𝑛

𝑖=1

(6) 

2.4.2. Parallel Systems 

Figure 1b depicts a system comprised of m independent components connected in parallel. In 

order for this system to be unavailable, every independent component must be inoperable. This 

configuration can often be found when a system is critical to the operation of a weapons system 



(e.g., safety of flight for an aircraft).  The 𝐴a
𝑃 is found in Eq. (7) as the probability that at least 

one component is not unavailable [Ebeling 2010].   

 

𝐴a
P =∐𝐴a𝑗

𝑚

𝑗=1

=∐
MTBM𝑗

MTBM𝑗 +M𝑗
=

𝑚

𝑗=1

1 −∏(1 −
MTBM𝑗

MTBM𝑗 +M𝑗
)

𝑚

𝑗=1

 (7) 

 

2.4.3. Series-Parallel Systems 

A series-parallel system, depicted in Figure 1c, is comprised of n independent subsystems 

connected in series, where each subsystem consists of m components in parallel. This is one of 

the more complicated systems but is also among the more common situations for a high risk 

system (e.g., DoD aircraft).  The redundancy allows some of the individual components to not be 

available and the system to still be available as long as at least one component in every 

subsystem is available. The achieved availability for this configuration is provided in Eq. (8). 

 

𝐴a
SP =∏[∐𝐴a𝑖𝑗

𝑚

𝑗=1

]

𝑛

𝑖=1

=∏[1 −∏(1 −
MTBM𝑖𝑗

MTBM𝑖𝑗 +M𝑖𝑗
)

𝑚

𝑗=1

]

𝑛

𝑖=1

 (8) 

 

2.4.4. Parallel-Series Systems 

A parallel-series system, shown in Figure 1d, is a system comprised of m independent 

subsystems connected in parallel, where each subsystem consists of n components in a series 

configuration. A parallel-series system configuration allows for multiple components to not be 

available, as long as all the components in one of the subsystems are still available. Such a 

system configuration is especially useful in describing the subsystems of an aircraft system, 

illustrated subsequently in Section 4. The achieved availability in terms of the MTBM and M 

metrics of individual components is found in Eq. (9). 

 

𝐴a
PS =∐(∏𝐴a𝑗𝑖

𝑛

𝑖=1

)

𝑚

𝑗=1

= 1 −∏(1−∏
MTBM𝑗𝑖

MTBM𝑗𝑖 +M𝑗𝑖

𝑛

𝑖=1

)

𝑚

𝑗=1

 (9) 

 

3. Achieved Availability Importance Measures  

Throughout this paper, independence is assumed for all the components of a system, suggesting 

that the failure of one component does not have an effect on the other components.  However, 

depending on the configuration of the system, the system may be either in a failed or working 

state.  Assumptions for all systems are as follows, adapted from [Cassady et al. 2004, Barabady 

and Kumar 2007]: 

 The system is in steady state. 

 Each system is comprised of independently and identically distributed (IID) components.  

 All components are repairable, which returns the component to an as good as new state. 

 Each component and system has two states: working or down, where down includes 

failures and down for maintenance. 

 Components were designed to be easily accessible for maintenance. 



 

This section extends the Birnbaum importance measure with three importance measures, 

motivated by the approaches of Cassady et al. [2004] and Barabady and Kumar [2012] but 

specifically (i) adapting achieved availability and (ii) constructing two new improvement 

measures based on MTBM and M.  The first importance measure is the achieved availability 

importance measure for the component and can be calculated when i can equal j, ij, or ji, 

depending on the system configuration.  Where 𝐴a is the system achieved availability and 𝐴a𝑖 is 

the ith component’s achieved availability, the achieved availability importance measure 𝐼a𝑖 is 

found in Eq. (10). 

 

𝐼a𝑖 = 
𝜕𝐴a
𝜕𝐴a𝑖

 (10) 

 

The other two importance measures are based on the availability of the system, with respect to 

the MTBM and M parameters.  These two importance measures are referred to here as MTBM 

importance and M importance. 

 

The achieved availability importance measure with respect to the MTBM highlights how the 

mean time between maintenance, or a surrogate measure of reliability, of component i impacts 

the availability of the system. Provided in Eq. (11), the component with the largest value of 

𝐼a,MTBM𝑖
 indicates that it has the largest effect on the availability for the system.  

 

𝐼a,MTBM𝑖
= 

𝜕𝐴a
𝜕MTBM𝑖

= 
𝜕𝐴a
𝜕𝐴a𝑖

×
𝜕𝐴a𝑖

𝜕MTBM𝑖
 (11) 

 

The M importance measure highlights how the mean maintenance time of component, i, impacts 

the availability of the entire system. The M of a component is a surrogate measures describing its 

maintainability. When evaluating Eq. (12), the 𝐼a,M𝑖
 resulting values are negative (as smaller 

values of M result in larger values of system availability). Since the goal of the importance 

component process is to find the component that has the largest 𝐼a,M𝑖
 magnitude to determine the 

speed of which it changes, the negative sign of the results will be ignored and all of the results 

are provided as absolute values to enhance chart and graph comparisons of values. 

 

𝐼a,M𝑖
= 
𝜕𝐴a
𝜕M𝑖

= 
𝜕𝐴a
𝜕𝐴a𝑖

×
𝜕𝐴a𝑖
𝜕M𝑖

 (12) 

 

Explicitly highlighting the contributions of MTBM and M in Eq. (5) allows us to pinpoint which 

component of availability to concentrate on for the most important components: improve 

reliability (e.g., through supplier selection) or improve maintainability (e.g., through MRO on-

hand inventory).  

 

Characteristically, the MTBM is a much greater value than the M.  When that is the case, 𝐼a,M𝑖
 

will be much greater than 𝐼a,MTBM𝑖  
 suggesting that finding ways to decrease the component’s M 

offers a greater benefit to the system availability then working on the component’s MTBM.  

However, the cost and effort required to decrease M may be more significant than it is required 



to increase the MTBM value.  Depending on the MTBM and M values, the reverse situation 

could also be possible as well.  To be certain the initial maintenance focus is on the correct 

parameter as determined by these additional importance measures both the 𝐼a,MTBM𝑖
 and the 𝐼a,M𝑖

 

should always be calculated. 

 

3.1. Aa Importance Measures for a Series System 

From Eq. (6), the achieved availability importance measure is found in Eq. (13) for a series 

system. 

 

𝐼a𝑖
S = 

𝜕𝐴a
S

𝜕𝐴a𝑖
=∏𝐴a𝑘

𝑛

𝑘≠𝑖

 (13) 

 

The MTBM importance and M importance are computed for the target component in the series 

system, shown in Eqs. (14) and (15), respectively. 

 

𝐼a,MTBM𝑖

S =
𝜕𝐴a

S

𝜕𝐴a𝑖
×

𝜕𝐴a𝑖
𝜕MTBM𝑖

= 𝐼a𝑖
S ×

𝜕𝐴a𝑖
𝜕MTBM𝑖

= 𝐴a
S ×

M𝑖

MTBM𝑖(MTBM𝑖 +M𝑖)
 (14) 

 

𝐼a,M𝑖

S = 𝐼a𝑖
S ×

𝜕𝐴a𝑖
𝜕M𝑖

=
𝜕𝐴a

S

𝜕𝐴a𝑖
×
𝜕𝐴a𝑖
𝜕M𝑖

= 𝐴a
S ×

1

(MTBM𝑖 +M𝑖)
 (15) 

 

3.2. Aa Importance Measures for a Parallel System 

From the definition of parallel system achieved availability in Eq. (7), the associated importance 

measure, 𝐼a𝑗
P , is provided in Eq. (16). 

 

𝐼a𝑗
P = 

𝜕𝐴a
P

𝜕𝐴a𝑗
= 1 −∏(1 − 𝐴a,𝑙)

𝑚

𝑙≠𝑗

 (16) 

 

With Eqs. (17) and (18) respectively, the MTBM and M importance measures can be further 

computed for the target component in a parallel system.   

 

𝐼a,MTBM𝑗

P = 
𝜕𝐴a

P

𝜕𝐴a𝑗
×

𝜕𝐴a𝑗
𝜕MTBM𝑗

= [1 −∏(1 − 𝐴a𝑙)

𝑚

𝑙≠𝑗

] ×
M𝑗

MTBM𝑗(MTBMj +M𝑗)
× 𝐴a𝑗  (17) 

 

𝐼a,M𝑗

P = 
𝜕𝐴a

P

𝜕𝐴a𝑗
×
𝜕𝐴a𝑗
𝜕M𝑗

= [1 −∏(1 − 𝐴a𝑙)

𝑚

𝑙≠𝑗

] ×
1

(MTBM𝑗 +M𝑗)
× 𝐴a𝑗 (18) 

 



3.3. Aa Importance Measures for a Series-Parallel System 

Eq. (19) illustrates the impact of the achieved availability ijth component on the system achieved 

availability for a series-parallel system.  Priority of ranking of which component to start with, in 

terms of best choice for increasing the system availability, should be assigned to component ij 

with the maximum 𝐼a𝑖𝑗
SP.  Focus is given to the impact of MTBM and M to system achieved 

availability with Eqs. (20) and (21). 

 

𝐼a𝑖𝑗
SP = 

𝜕𝐴a
SP

𝜕𝐴a𝑖𝑗
= ∏[1 −∏(1 − 𝐴a𝑘𝑙)

𝑚

𝑙=1

]

𝑛

𝑘≠𝑖

×∏(1 − 𝐴a𝑖𝑙)

𝑚

𝑙≠𝑗

 (19) 

 

𝐼a,MTBM𝑖𝑗

SP = 
𝜕𝐴a

SP

𝜕𝐴a𝑖𝑗
×

𝜕𝐴a𝑖𝑗
𝜕MTBMij

= 𝐼a𝑖𝑗
SP ×

M𝑖𝑗

MTBM𝑖𝑗(MTBM𝑖𝑗 +M𝑖𝑗)
× 𝐴a𝑖𝑗  (20) 

 

𝐼a,M𝑖𝑗

SP =  
𝜕𝐴a

SP

𝜕𝐴a𝑖𝑗
×
𝜕𝐴a𝑖𝑗
𝜕M𝑖𝑗

= 𝐼a𝑖𝑗
SP ×

1

(MTBM𝑖𝑗 +M𝑖𝑗)
× 𝐴a𝑖𝑗  (21) 

 

3.4. Aa Importance Measures for a Parallel-Series System 

From the achieved availability calculation for a parallel-series system in Eq. (9), the importance 

measure for component ji achieved availability is provided in Eq. (22). is used to compute the 

achieved availability importance measures for a parallel-series system. 

 

𝐼a𝑗𝑖
PS = 

𝜕𝐴a
PS

𝜕𝐴a𝑗𝑖
= ∏[1 −∏𝐴a𝑙𝑘

𝑛

𝑘=𝑗

]

𝑚

𝑙≠𝑖

×∏𝐴a𝑗𝑘

𝑛

𝑘≠𝑗

 (22) 

 

The MTBM and M importance measures are computed for the target component in a parallel-

series system in Eqs. (23) and (24).   

  

𝐼a,MTBM𝑗𝑖

PS = 
𝜕𝐴a

PS

𝜕𝐴a𝑗𝑖
×

𝜕𝐴a𝑗𝑖
𝜕MTBM𝑗𝑖

= 𝐼a𝑗𝑖
PS ×

M𝑗𝑖

MTBM𝑗𝑖(MTBM𝑗𝑖 +M𝑗𝑖)
× 𝐴a𝑗𝑖 (23) 

 

𝐼a,M𝑗𝑖

PS =  
𝜕Aa

PS

𝜕𝐴a𝑗𝑖
×
𝜕𝐴a𝑗𝑖
𝜕M𝑗𝑖

= 𝐼a𝑗𝑖
PS ×

1

(MTBM𝑗𝑖 +M𝑗𝑖)
× 𝐴a𝑗𝑖 (24) 

 

4. Illustrative Examples: Modeling the Impact of Inspections  

An inspection decision making framework motivated by achieved availability importance 

measures is provided in this section, wherein we identify the components that have the largest 

magnitude importance measure and also maximize the system achieved availability for each 

system by allowing the adjustment of the number of inspections for each component. The four 

system configurations are illustrated with an example inspired by the components of an aircraft.  

 



4.1. Aa Importance Measure Decision Making Framework  

Often MTBM and M measures do not differentiate between preventive maintenance actions (the 

physical activity required to performance PM) and inspection actions (which may or may not 

result in PM actions depending on the result of the inspection). As a primary objective of this 

IM-inspired framework is to assist in determining the frequency of inspections, the difference 

between PM and inspection should be explicit. As such, the calculations of MTBM in Eq. (3) 

and M in Eq. (4) are modified with Eqs. (25) and (26) by separating out the parameter “# of 

Inspections” in the denominators of both equations and the parameter “Inspection Time” in the 

numerator of Eq. (26). 

 

MTBM =
Total uptime 

# of CMs + # of PMs + # of Inspections
 (25) 

 

M =
CM downtime + PM downtime + Inspection time

# of CMs + # of PMs + # of Inspections
 (26) 

 

Recall the basic availability formula in Eq. (1), the ratio of uptime to uptime + downtime. To 

maximize availability, either uptime has to be maximized or downtime has to be minimized. 

Downtime, the numerator in Eq. (26), can be expressed with Eq. (27), where 𝑛CM, 𝑛PM, and 𝑛I 
refer to the numbers of CM, PM, and inspection actions, respectively, and 𝑦CM, 𝑦PM, and 𝑦I refer 

to the mean downtime for those actions. The total downtime for CM is 𝑛CM𝑦CM, the total 

downtime for PM is 𝑛PM𝑦PM, and the total downtime for the inspection is 𝑛I𝑦I.   
 

downtime = 𝑛CM𝑦CM + 𝑛PM𝑦PM + 𝑛I𝑦I (27) 

 

For those components deemed important to availability by the importance measures above, 

particularly those important to the mean downtime metric, M, the optimal number of inspections 

to improve availability is determined with the conceptual optimization problem found in Eq. (28) 

for component i. To accommodate for inspection-related decisions, the CM downtime and PM 

downtime calculations are modified. Two new parameters are introduced: 𝑃 is the number of 

inspections before a replacement is done, and 𝐶 is a proportional multiplier to be applied to the 

repair time to determine the replacement time.  In typical maintenance environments, all 

variables would be set values for Eq. (28) and assumed for a steady state system.   

 

min
𝑛I𝑖

(𝑛CM𝑖 −
𝑛I𝑖
𝑃
) 𝑦CM𝑖 + (𝐶𝑦CM𝑖 −

𝑛I𝑖
𝑃
) + (𝑛PM𝑖 −

𝑛I𝑖
𝑃
)𝑦PM𝑖 + (𝑛I𝑖𝑦I𝑖)  

s. t.  𝑛I𝑖 ≥ 0 

 

all other parameters 𝑛CM𝑖, 𝑛PM𝑖, 𝑦CM𝑖, 𝑦PM𝑖, 𝑦I𝑖 ≥ 0, 0 ≤ 𝐶 ≤ 1, 0 ≤ 𝑃 ≤ 1 

(28) 

 

The ranking of components according to their availability importance measures produces a 

lexicographically ordered maximum value set, of which i is a member. The optimization problem 

in Eq. (28) could be performed for multiple components in this set, or an optimization problem 

could be designed to account for the inspection of multiple components simultaneously if 

applicable. 



 

4.2. Illustrative Example Background: Aircraft Maintenance 

Field aircraft maintenance data were acquired to illustrate the application of all of the different 

example systems by applying the data in the decision making framework for the different 

achieved availability importance measures to each appropriate system. Note that a random factor 

was applied to the raw data to mask the aircraft from which the data were derived and also the 

component names are not used. However, proportional relationships among components and the 

overall performance parameters are still reasonably characteristic in the resulting component 

priority predictions made by the component importance measure determinations. 

 

The data were collected for a parallel-series system that is comprised of a parallel system made 

up of four subsystems, with each subsystem a series configuration with three components. The 

individual component names are referred to as Component 11, Component 12,…, Component ji 

because the actual configuration is in parallel-series. This scenario is depicted in Figure 2. 

 

 

Figure 2. Diagram of the parallel-series aircraft system configuration. 

 

Data were collected for a one year period (potential maximum total uptime time of 8,760 hours) 

from field aircraft and is used for the illustrating and analysis sections of this paper.  The data 

representing the variables in Eq. (28), shown in Table 1, include the number of and downtime 

length for CM actions, the number of and downtime length for PM actions, and the number of 

and downtime length for inspections.  

 

Table 1. CM, PM, and inspection data for the aircraft system. 

Componen

t 

# of CM 

down 

Time per 

CM 

# of PM 

down 

Time per 

PM 

# of 

inspections 

Time per 

inspectio

n 

ji 𝑛CM 𝑦CM 𝑛PM 𝑦PM 𝑛I 𝑦I 

11 10 1.59 46 3.66 7 9.78 

12 12 13.31 41 4.03 7 9.78 

13 19 2.81 53 4.09 7 9.78 

21 22 2.88 60 5.58 9 8.16 

22 15 4.63 80 6.76 5 1.47 



23 20 5.27 66 9.67 5 1.70 

31 20 5.74 75 6.60 7 3.95 

32 10 5.10 73 5.94 7 2.13 

33 15 43.01 29 15.13 3 24.14 

41 10 37.74 19 15.04 3 8.93 

42 14 47.47 26 14.59 5 19.04 

43 10 53.47 19 16.91 3 24.14 

 

The inspection that provides the insight to replace the component before it fails is called the 

“critical” inspection.  The actual number of inspections needed before the critical inspection 

occurs would be determined by the historical inspection data and communicating with 

maintenance analysts. It is assumed that the number of inspections added before the critical 

inspection yields an accurate failure prediction is a fully adjustable parameter for each 

component.   

 

The amount of time that a replacement takes is also a parameter in the decision making 

framework to allow variation of different component experiences. When a component is 

replaced, as determined by the critical inspection, the mean replacement time is used in place of 

the mean failure time and the CM and PM counts are reduced by one event.  This assumption is 

realistic because after the replacement of a component, CM and PM would not be performed on 

the brand new equipment.   

 

Subsets of this aircraft illustrative example will be used to illustrate a series subsystem 

configuration and the actual parallel-series configuration of Figure 2. 

 

4.3. Aa Framework Example: Series System 

The data chosen from Table 1 for the series system describe components 11, 12, and 13, 

comprising the first of four series subsystem.   

 

Figure 3 depicts each of the individual component availabilities and the system availability, all 

shaded in gray.  The 𝐼a𝑖
𝑆  for each component shown in black. Note the different vertical axes: the 

trend of the relationship between the two calculations is of greater interest. As expected for a 

series system, the component with the least availability is the component with the largest system 

importance measures. From the calculation of the importance measures, it is seen that 

Component 13 becomes the clear choice with the highest priority component to focus 

improvement efforts: the more available Component 13 becomes, the more available the system 

becomes. 

 



 

Figure 3. Availability and Aa importance for components in the series subsystem. 

 

Now that Component 13 has been identified, the next step is to make a comparison between 

𝐼a,MTBM𝑖

𝑆  and 𝐼a,M𝑖

𝑆  for Component 13 to further determine which of these parameters can provide 

the greatest positive impact on the system availability. This comparison is shown in Figure 4, 

which depicts that the 𝐼a,M𝑖

𝑆  is greater compared to 𝐼a,MTBM𝑖

𝑆 . This suggests that improving M, or 

improving the maintainability of the component, for Component 13 provides most improvement 

for system availability.  

 

 

Figure 4. Comparing MTBM and M importance for Component 13. 

 

Given that Component 13 and the MTBM parameter have been identified as having most impact 

on system availability, Eq. (28) is deployed in a discrete form to determine the number of 

inspections for each component (taken individually) to further influence system availability. 

Figure 5 provides something of a sensitivity analysis, varying each component individually while 

increasing the number of inspections to visualize the impact to the system availability. Figure 5 
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shows that, indeed, Component 13 has the largest, fastest, and greatest impact on the system.  

When the inspections are increased for Component 13, it provides the greatest opportunity to 

increase system availability up to 14 inspections. After that, the downtime attributed to 

inspections outweighs the downtime due to potential corrective maintenance actions. 

 

 

Figure 5. Series subsystem Aa sensitivity analysis. 

 

Notice, Component 11 actually shows a negative impact on the system availability while 

increasing inspections. This is due to the inspection time for Component 11 being significantly 

longer than the replace or repair time.  This points out an area for a maintenance process 

improvement, as an inspection likely should not take such an amount of time that the system 

cannot benefit from an inspection. 

 

All of these steps and analysis can now be repeated for the remainder of the system 

configurations.  What was intuitively predictable for a series system without the use of 

importance measure computations becomes untenable for the more complex configurations, only 

with the computations, charts, and graphs does it become immediately possible to make the same 

type of results and optimal predictions for the systems. 

 

4.4. Aa Framework Example: Parallel-Series System  

A series-parallel illustration is not provided, as the example in Figure 2 does not readily lend 

itself to such an application. Focus is given to the actual configuration in Figure 2, the parallel-

series system, which is not featured in the work of Barabady and Kumar [2012]. No changes to 

the structure of the data in Table 1 were made for this illustration.   

 

Figure 6 shows the individual component availabilities and system availability in gray, with the  

𝐼a𝑗𝑖
PS measures for each component in black. The component with the largest 𝐼a𝑗𝑖

PS, is shown as 

Component 13, which is prioritized as the first to focus improvement efforts. However, there are 

other components with 𝐼a𝑗𝑖
PS values that are nearly the same magnitude and could also be under 

consideration for improvement, including Components 43 and 33. These components should be 

ranked in priority, and other extraneous factors not chosen in this analysis could change the 
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lexicographic order of these highly ranked components.  The following analysis will focus on the 

highest ranked, Component 13. 

 

  

Figure 6. Availability and Aa importance for components in the entire parallel-series system. 

 

 

A comparison for Component 13 between 𝐼a,MTBM𝑗𝑖

PS  and 𝐼a,M𝑗𝑖

PS  further determines which 

parameter can have the greatest impact on the system. This comparison is done in the chart in 

Figure 7, which suggests Component 13 shows the 𝐼a,MTBM𝑗𝑖

PS  is the one with the larger 

magnitude.  Thus, an improvement on the MTBM for Component 13 would be expected to yield 

a greater impact on the system availability with the less effort. This implies that the system is 

down more them than it is up.  Consider looking into a potential issue with the reliability causing 

extremely high failures or the maintenance techniques are taking an excessive amount of time. 

 

 

Figure 7. Comparing MTBM and M importance for Component 13. 
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Figure 8 provides the sensitivity implementation of Eq. (28) examining each component 

individually while increasing the inspections to see the impact to system availability. 

 

 

Figure 8. Parallel-series system Aa sensitivity analysis. 

 

Figure 8 shows that Component 33 reaches the highest system achieved availability with critical 

inspections at inspection 14. Component 23 is the second highest, but takes fewer added 

inspections to reach its maximum impact to the system. Figure 8 indicates the third component 

for each subsystem (Component 13, 23, 33, and 43) as the components that can impact the 

system achieved availability the greatest with critical inspections added. This has implications 

for the particular aircraft example. 

 

5. Concluding Remarks  

This paper a means to (i) extend existing availability importance measures to include the effects 

of maintenance activity, (ii) determine the number of inspections to obtain the maximum system 

achieved availability, and (iii) apply this new availability importance measure tied to the optimal 

inspection frequency within an RCM decision making framework. 

 

The availability-based framework has proven to be very useful to allow data to drive decisions 

when improving the achieved availability of a sample system. The importance measure is a 

deterministic objective measure that reports the status of the component, in particular, using 

achieved availability as its basis measure. It then points to the component that has the most 

opportunity for improvement, further identifying whether the MTBM or M parameter needs the 

most work for the system availability to improve. Each result is dependent upon the status of all 
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the components in the system and identifies directly to the one that needs improvement. 

Otherwise, time and money can easily be wasted by putting efforts into something that could 

result with a reduced system achieved availability. 

 

An ideal realm to execute the findings of the decision making framework is RCM.  The main 

objective of RCM is to be used for determining optimal failure management tactics, to include 

maintenance policies and provide proof for results from maintenance tasks. The illustrative 

decision making framework results assist by allowing data to efficiently and effectively drive 

decisions to accomplish the RCM objective. 

 

Further work lies in applying a simulation-based approach to determining the availability-based 

importance of the components in more complex structures, paralleling the analytical approach in 

this paper. 

 

  



TASK 2. STOCHASTIC AVAILABILITY IMPORTANCE MEASURES 

 

This section is based on the following: 

Shaffer, R.D., K. Barker, and C.M. Rocco. 2015. Stochastic Availability Importance Measures. 

In progress. 

 

 

1. Introduction   

In any organization, a system of systems exists in order to produce a product from various 

material and mental inputs.  These systems can be broken down into sub components all the way 

to where the actual machines perform the work.  At the machine and component level, various 

techniques are applied to optimize machine effectiveness.  One technique used to optimize a 

system is the availability importance measure of a component within a system. 

 

As defined by Cassady, Pohl and Song [2004] “a repairable system is defined as a system which, 

after failure, can be restored to an operating (functioning) condition by some maintenance action 

other than replacing the entire system.” Replacing an entire system is a possibility, but not 

always in the best interests of the organization intent on proper resource allocation.  The intent of 

the maintenance organization is to provide the production group (the customer or user of the 

equipment) with an asset that is available when needed in a cost effective manner [Gulati 2009]. 

 

In performing maintenance on equipment, several methods exist in which an organization can 

expend resources to restore functionality to faulty equipment.  Usually the maintenance action is 

meant to restore the equipment back to a state defined as “good as new.”  A complete accurate 

repair provides the equipment the ability to perform its intended function as needed on a 

customer’s schedule. This requires high availability and reliability of the systems [Gulati 2009].   

Equipment that receives maintenance can expect to have several categories of maintenance 

performed on it.  These are Corrective Maintenance (CM), Preventative Maintenance (PM) or 

inspections, Predictive Maintenance (PdM) and Condition Based Maintenance (CBM) which are 

all aspects of a reliability centered maintenance paradigm.  Sometimes the maintenance involves 

a rebuild of a component or a complete sub-system replacement.  Fortunately, today’s 

manufacturing designs have created equipment as a system of components with items that can be 

replaced as they fail or approaching a state of failure. 

 

It is unfortunate when highly critical assets experience a failure, but it is disastrous when these 

equipment failures cause some of the worst accidents and environmental damages in human 

history such as the March 2011 Fukushima Nuclear Power Plant Explosions to aviation disasters.  

In response to these types of events, there has existed for 40 years, a strategic framework for 

ensuring that equipment continues to perform as required [Moubray 1997].  This framework is 

known as Reliability Centered Maintenance (RCM) and contains the basis for measuring and 

using availability, a mathematical result of both uptime and downtime. 

 

The motivation of this article is to explore the use of Availability Importance Measures (AIM) 

given as a function of random variables and using a stochastic approach such as Monte Carlo 

Simulation (MCS) to better determine a system(s) or component’s importance ranking within the 



system.  Furthermore, a comparison between the Traditional Point Estimate (TPE) approach in 

common use today along with the Monte Carlo Simulation (MCS) methodology of using random 

variable probability distributions to determine if there is a difference with the chosen component 

or system importance. 

 

Understanding the correct system or component to target for further availability improvement 

may ensure the organization focuses its resources efficiently and achieves its goals of higher 

productivity, higher quality production and assets that are ready and available as required. 

 

2. Methodological Background 

 

2.1. Appropriate Measure for Effectiveness, Availability 

Availability is used as a measure of a system’s reliability as well as inherent ability to account 

for the maintainability of an asset [Lie 1977] and is defined mathematically as: 

 

Availability =
Uptime

Uptime + Downtime
 (29) 

 

Where uptime is the amount of time a piece of equipment, system or component is ready to 

perform work and downtime is the amount of time required to maintain that system or 

component.  The summation of uptime and downtime is usually the total time the system is 

possibly available but this is not necessarily equal to calendar time.  For instance, a two shift 

production shift operating for eight hours in each day for five days a week will consume eighty 

hours of the available 168 hours in a calendar week.  This can have serious implications for 

determining availability’s component of downtime if a proactive maintenance action is 

performed on a non-production portion of the day, i.e. the remaining 8 hours in a day.  So for 

simplicity, downtime will only include the unscheduled maintenance of a component and the 

uptime will include only as much as the associated shift time scheduled.  This will closely 

resemble what is known as inherent availability, Ai, as defined as: 

 

𝐴vailability =  
MTBF

MTBF + MTTR
 (30) 

 

Where MTBF is the Mean Time Between Failure and MTTR is the Mean Time To Repair as 

defined below: 

 

MTBF = 
Uptime

Number of System or Component Failures
 (31) 

 
 

MTTR = 
Corrective Maintenance Downtime

Number of System or Component Failures
 (32) 

 

Using availability as defined in any of the above equations, a component or system can be 

improved through either affecting the uptime or design of the component or through the 



downtime or the maintainability of the component via proactive maintenance practices and 

precision installation practices that improve upon the time involved in repair [Kuo et al. 2006].  

For simplicity, focus will be on availability simply as the relationship between uptime and 

downtime. 

 

To define the overall importance of a component, a derivation of Birnbaum’s Reliability 

importance measure used and is defined as: 

 

I𝑖
𝐵 =

∂𝑅𝑠(𝑡)

∂𝑅𝑖(𝑡)
 (33) 

 

Where  I𝑖
𝐵 = Birnbaum importance of the ith component 

 𝑅𝑠(𝑡) = System Reliability at time t 

 𝑅𝑖(𝑡) = Component i reliability at time t 

For i = 1, 2… n  

For n components 

 

The component with the largest Birnbaum Reliability signifies that component will have the 

greatest overall system improvement when its reliability is re-engineered. 

 

2.2. Derived Availability Importance 

As referenced in Barabady and Kumar [2012]: 

“Availability and reliability are good evaluations of a system’s performance.  Their 

values depend on the system structure as well as the component availability and 

reliability.  These values decrease as the component ages increase; i.e. their serving 

times are influenced by their interactions with each other, the applied maintenance policy 

and their environments [Samrout et al. 2005].  The main requirements for the operation 

of complex systems are usually specified in terms of cost and availability and/or 

reliability, or equivalently in terms of mean time between failures and/or mean time to 

repair under a cost constraint.” 

Transforming the reliability importance measure to the concept of availability importance 

measures, allows for the inclusion of maintenance actions and the idea that some of the 

components could be more important than other.  This is then used this to quantify the key 

components as most sensitive to the system’s overall availability.  This enables the weakest areas 

of a system to be identified in both terms of maintainability and reliability [Beeson and Andrews 

2003].  Understanding the availability importance, resources can be best allocated to the correct 

system or component of the system that rank highest in importance. 

 

The work done by Cassady et al. [2004] and Barabady and Kumar [2012] successfully derived 

the availability importance measure from the Birnbaum Reliability importance measure.  

Creating the availability importance measure acknowledges the role uptime and downtime 

perform in a system or component.  Final derivation of the availability importance measure for 

the ith component is shown below: 

 



𝐼𝑖
𝐴 = 

𝜕𝐴𝑠(𝑡)

𝜕𝐴𝑖(𝑡)
 (34) 

 

Where 𝐼𝑖
𝐴 = Availability importance of the ith component 

 𝐴𝑠(𝑡) = System availability at time t 

 𝐴𝑖(𝑡) = Component availability at time t 

 For all i = 1, 2… n 

 For n components 

 

The availability importance component that has the largest value signifies the component that 

has the greatest positive effect on system availability when it is properly re-engineered. 

To use the availability importance measure, an understanding of the system configuration and 

design are required.  Systems can be arranged in a combinatorial effect of series and or parallel 

components with a specific equation to describe therein. 

 

Systems can be designed various ways from a simple series (S) or parallel (P) configuration to a 

combination of parallel-series (PS) or series-parallel (SP) each with their own unique effects on 

overall system availability and reliability.  Understanding the configuration of the system or 

components has a large impact on how the systems availability resolves and how the availability 

importance measure of each component affects that system. 

 

2.3.1. Series System 

For a simple series system, as shown in Figure 9. Series System, each component must be 

functional in order for the entire system to perform.  Therefore, the system as a whole is 

dependent on its lowest availability component.   

 

 

Figure 9. Series System 

 

The availability importance measure for a Series System is shown below. 

 

𝐼 𝑖
S = 

𝜕𝐴 
S

𝜕𝐴 𝑖
=∏𝐴 𝑘

𝑛

𝑘≠𝑖

 (35) 

 

2.3.2. Parallel System 

For a simple parallel system, as shown in Figure 10. Parallel System, only one component must 

be functional for the system to perform.  This is known as a redundant system.  Therefore, the 

system availability as whole is equal to the component with the highest availability. 



 

Figure 10. Parallel System 

 

The availability importance measure for a Parallel System is as follows. 

 

𝐼 𝑗
P = 

𝜕𝐴 
P

𝜕𝐴 𝑗
= 1 −∏(1 − 𝐴𝑙)

𝑚

𝑙≠𝑗

 (36) 

 

2.3.3. Series Parallel System 

For a system such as Series Parallel, as shown in Figure 11, there are n sub components in 

parallel with m sub-systems in series.  This type of overall system allows for built in redundancy 

at the n sub-system level, however, determination of the most important component becomes 

fairly complicated.   

 

Figure 11. Series Parallel (SP) System 

 

The derived availability importance of a Series Parallel (SP) system is shown as follows 

[Gravette and Barker 2014]. 

 

I𝑖𝑗
𝑆𝑃 = 

𝜕A𝑖𝑗
𝑆𝑃

𝜕A𝑖𝑗
= ∏[1 −∏(1 − A𝑘𝑙)

𝑚

𝑙=1

]

𝑛

𝑘≠𝑖

×∏(1 − A𝑖𝑙)

𝑚

𝑙≠𝑗

 (37) 

 

In examination of SP system it was noted that if a component I𝑖𝑗
𝑆𝑃 was ranked as the most 

important in terms of availability to the overall system, it would remain the dominant path and 

hence keep its designation as most important component even after substantial improvement!  

This is curious and leads to a possible conundrum when faced with resource constraints that only 

allow one component for redesign.  It is therefore crucial to understand that the components in 



the same sub group n as the most important component should also be considered for redesign.  

This is due to the parallel nature of the subsystem n and since it exists as a parallel subsystem 

from the original design, the requirement for overall system redundancy is continued to be 

assumed. 

 

2.3.4. Parallel Series System 

For a combination system, such as Parallel Series (PS), as shown in Figure 12. Parallel Series 

(PS) System, there are m sub components in parallel with n sub-systems in series.  This type of 

overall system allows for built in redundancy at the m subsystem level, however, determination 

of the most important component also becomes somewhat complicated. 

 

 

Figure 12. Parallel Series (PS) System 

 

The derived availability importance of a Parallel Series (PS) system is as follows [Gravette and 

Barker 2014]. 

 

𝐼 𝑗𝑖
PS = 

𝜕𝐴 
PS

𝜕𝐴 𝑗𝑖
= ∏(1−∏𝐴 𝑙𝑘

𝑛

𝑘=𝑗

)

𝑚

𝑙≠𝑖

×∏𝐴 𝑗𝑘

𝑛

𝑘≠𝑗

 (38) 

 

In examination of PS system it is noted the component I𝑖𝑗
𝑃𝑆 with the highest rank is the most 

important in terms of availability to the overall system.  Redesign of this component would lead 

to the other components Availability Importance Measures (AIM) to intuitively increase overall 

and as expected. 

 

2.4. Point Estimates and Random Variables 

In the calculation for availability, a mean time is required for each element in the equation.  The 

expected value, or mean, is a point estimate and are highly dependent upon the sample taken of 

the population.  Additionally, the “mean” is a single point within the body of the sample and it 

does not describe anything about the variance or possible outliers, information needed to build a 

basic confidence interval. 

 



Point estimates are ultimately a single observation within a sample that may or may not be the 

true expected value of the population.  Two separate samples from the same population can have 

large differences between their expected values which when included together creates yet 

another but possibly more accurate overall expected value. Most statistics courses seek to prove 

that any sample from a population follows a normal distribution but that the underlying 

population can be represented by a non-normal distribution.   

 

If instead of using a single point estimate in the availability calculation, a probability distribution 

function is used that represents both the uptime of the system or component as well as the 

downtime of the system or component. Perhaps such a setup is a more meaningful measure of 

determining importance and propagates more efficient use of valuable resources. 

 

When deciding on what is most important in a system or component, understanding the body of 

observation, through the use and knowledge of a random variable, could possibly improve the 

precision of the decision framework.  If a random variable such as a Weibull distribution is used 

to describe the uptime of a piece of equipment [Lie et al. 1977], therein exists a possible 

advantage over the information provided by just a single point estimate or expected value.  

Similarly, the same argument holds true for using a distribution to describe the downtime of a 

system.  In Lie et al. [1977], it is discussed that the downtime or time to repair data follows a 

lognormal distribution. 

 

It is with these ideas and understanding that this thesis seeks to improve the availability 

importance measure through the use the Monte Carlo Simulation Method modeling availability 

importance of a system or components via random variable probability distributions for the 

uptime and downtime inputs. 

 

When using MCS it is important to generate a large number of iterations, preferably on the order 

of tens of thousands.  The larger the number of iterations, the more precise the results become 

[Vose 2008].  The random number generator and time needed to perform calculations becomes 

the limiting factor for MCS, however, proper sectioning of the problem can usually supplant this 

issue [Vose 2008]. 

 

Once a MCS simulation is performed and a random distribution is created, a means of 

comparison of the final output is required.  This is solved by using Copeland’s method. 

 

Copeland’s method was proposed by A. H. Copeland in an unpublished seminar at the University 

of Michigan on applications of mathematics to the social sciences [Al-Sharrah 2010].  It 

concerns the study of ranking objects that have different comparative information such as 

databases, voting, chemical reactance etc. [Al-Sharrah 2010].  Attention is focused on the item 

with the highest rank order for the underlying interested characterizing indicator.  It is similar to 

other methods such as average rank by Bruggeman et al. [2004]; however, it does not guarantee 

the final ranking will be different for all comparisons [Al-Sharrah 2010].  In Sharrah’s paper, it 

was demonstrated that the simple Copeland method was consistent and comparable to the Hasse 

diagram but it has some disadvantages in that there is a loss of some information due to data 

aggregation; however, it has many advantages, namely: 

 It is a rapid nonparametric ranking tool for identifying best or worst objects 



 It is systematic and easily computerized even for very large data set sizes 

 It is transparent, clear to the user, and flexible enough to be adapted for many 

purposes in terms of the number of objects or indicators 

 It is based on scientifically justified framework 

 Expert judgment can be used to add weights to the indicators, if needed 

 It has proven to be stable to variations in the data 

 It is readily comparable to the Hasse diagram method but has simpler mathematical 

requirements and allows for the possibility of providing relative or categorical 

ranking. 

 

Simply, Copeland’s Method is a non-parametric relative ranking approach that determines a 

preferred rank based on many pairwise comparisons.  All criteria are weighted equally and no 

information about the preference is needed.  The pairwise comparison is plotted as a cumulative 

density function (CDF) of interest and predetermined percentiles along the curves are selected 

for comparison.  The mathematical representation of Copeland score for alternatives a and b are 

as follows: 

 

S𝑗
 (𝑎, 𝑏) = {

𝑆𝑗−1 (𝑎, 𝑏) + 1  𝑥𝑎𝑗 < 𝑥𝑏𝑗
𝑆𝑗−1 (𝑎, 𝑏) − 1  𝑥𝑎𝑗 > 𝑥𝑏𝑗
𝑆𝑗−1 (𝑎, 𝑏)  𝑥𝑎𝑗 = 𝑥𝑏𝑗

 (39) 

 

And calculate the Copeland Score for all alternatives 

CS(𝑎) = ∑𝑆𝑚(𝑎, 𝑏)

𝑏≠𝑎

 (40) 

 

The alternative with the highest CS provides the measure of interest. 

 

2.5. Simulation Method Outline 

Paul Sheehy and Eston Martz created detailed instructions on how to use MiniTab to create 

random distributions and perform Monte Carlo Analysis [Sheehy and Martz 2012]. 

 

The first step is to identify the Transfer Equation (TE) which is the quantitative model of what is 

being explored.  In this case it is the Availability Importance Measure for a particular system 

design. 

 

Second, for each variable in the transfer equation, define the type of random distribution as 

required.  For the Availability Importance Measures, the uptime is known to follow a Weibull 

distribution and the downtime is known to follow a lognormal distribution.  For each 

distribution, their parameters are pre-defined. 

 

Third, MiniTab is tasked to create a very large random data set for each input of the transfer 

equation along the order of 100,000 observations.  As such, each iteration represents a random 

value that could be observed over a long enough time period for that particular defined 

distribution. 

 



Lastly, once the columns of 100,000 observations for each components distribution are created, 

the transfer equation can be applied to simulate the probable outcomes.  Given the large number 

of samples, the overall results are likely to be a reliable indication of the transfer equation output 

over time. 

 

Analyses of the results are done by Copeland’s method by ranking the Availability Importance 

Measures data distributions pre-determined percentiles to determine if and where each 

importance value outranks each other.  As discussed in the Copeland’s Method section, the 

alternative with the highest Copeland Score provides the measure of interest.  Then that AIM 

from each method (MCS and TPE) will be improved equally and Copeland’s Method will again 

be used to do a pairwise comparison between the MCS chosen component system availability 

result and the TPE chosen component system availability result to determine if MCS is more 

efficient than TPE. 

      

 

3. Illustrative Example 

Independence is assumed for all components of a system or a system of systems in that a failure 

of a component or system does not have an impact on other components.  The failure of a 

component can affect the overall system to be in a functioning or non-functioning state.  It is 

assumed that the system or systems of components are in a steady state.  For lognormal, 

threshold is greater than or equal to zero. 

 

The uptime and downtime of the components are assumed to have the following random 

variables as referenced earlier by [Lie et al. 1977]. For uptime or Time Between Failure, a 

random variable with a Weibull probability density function (PDF) is assumed and the shape, 𝜃  

and scale, 𝛽 parameters are annotated: 

 

𝑓(𝑡) =   
𝛽

𝜃
∗ (
𝑡

𝜃
)
𝛽−1

𝑒−(
𝑡
𝜃
)
𝛽

 (41) 

 

For downtime or Time To Repair, a random variable with a Lognormal probability density 

function (PDF) is assumed with the scale 𝜎, location 𝑚 and threshold 𝜃 as parameters are 

annotated: 

 

𝑓(𝑡) =  

𝑒
−((ln(

𝑡−𝜃
𝑚

)) 2
/(2 ∗ 𝜎 2))
 

(𝑡 − 𝜃) ∗ 𝜎√2𝜋
, 𝑡 >  𝜃;𝑚, 𝜎 > 0 

(42) 

 

MiniTab 16 is used in all Monte Carlo Simulations and calculations.  MiniTab can create any 

defined distribution in a random form.  For each component availability importance measure, 

100,000 random numbers are generated that follow the predefined Weibull or Lognormal 

distribution as desired.   

 



3.1. Application and Data Simulation 

Given the uptime and downtime components of the AIM are represented as appropriate random 

variable distributions for each component in the system, and MCS can take the AIM transfer 

equation, a practical application and data simulation are performed through all steps using 

Copeland’s method for final ranking of each component and method. 

 

It is of interest to determine if there is improvement between MCS over the TPE method and 

success is determined if the AIM MCS produces a greater overall system availability 

improvement as measured by Copeland’s method and the traditional point estimate.   

 

Two system configurations, Parallel Series (PS) and Series Parallel (SP) systems are simulated 

and the results analyzed.  

 

3.1.1. Parallel-Series System Simulation 

Several examples exist on the industrial plant floor where machinery contains a redundant 

system of series components similar to Figure 13. Parallel-Series , such as a large critical 

hydraulic system or the intensifier section of a water jet cell. 

 

 

Figure 13. Parallel-Series System Example 

  

In Figure 13. Parallel-Series System Example, there are two similar sub-systems in parallel that 

contain series components.  The parallel redundancy of subsystem 1 and 2 allow for an increase 

in the possible chosen paths for the work to be performed.  This increases the overall reliability 

and availability of the complete system if one of the components were to fail on the series 

section.  

 

The availability importance equations will now be used in step one: The appropriate transfer 

equation for the system layout.  For step two, defining the input parameters of the transfer 

equation, the uptime and downtime random variables are described for each type respectively as 

seen in Table 2. Initial Setup Parameters Parallel-Series System 

  



Table 2. Initial Setup Parameters Parallel-Series System 

 

Notice that there are different uptime parameters for some of the components due to the fact they 

may or may not be active in the system or they perform a duty and standby function where one 

subsystem has been operating a majority of the time.  This reflects real world examples and will 

allow the AIM computation the ability to facilitate a definite choice for the most important 

component. 

 

The Weibull distribution components that have a shape parameter of less than one exhibit an 

infant mortality failure rate.  The shape parameters that are equal to one represent a random or 

constant failure rate.  Those shape parameters that are greater than one represent end of life 

failure rates which are increasing with increasing time.  This system is composed of mainly wear 

items that exhibit increasing failure rates except for one component that appears to be 

experiencing early life failures, component 11. 

 

The Lognormal distribution components are described in terms of how MiniTab expects to 

define the random variable parameters such as the location m , scale 𝜎 and threshold 𝜃.  Overall, 

this system is assumed to be modular with repair or replacement components in inventory for 

quick turnaround during repair.  This resembles several systems common in the industrial plant. 

 

Step 3: create random data from the given random variable definitions and parameters in Table 

2. Initial Setup Parameters Parallel-Series System with 100,000 iterations.  Every component 

receives an entry column with both uptime and downtime random variable distributions created. 

 

An example of the distributions created in Minitab is in Figure 14: Component 11 Weibull and 

Figure 15: Component 11 Lognormal: 

Initial Setup Parameters Weibull subsystem 1 Weibull subsystem 2 

Parallel-Series, Uptime Shape/Scale Shape/Scale 

Component 11,  Component 21 0.9/5 10/4.25 

Component 12,  Component 22 12/4.75 10/4.25 

Component 13,  Component 23 10/5.25 10/5.25 

     

Initial Setup Parameters Lognormal subsystem 1 Lognormal subsystem 2 

Parallel-Series, Downtime Location/Scale Location/Scale 

Component 11,  Component 21 1/0.25 1/0.25 

Component 12,  Component 22 1/0.5 1/0.5 

Component 13,  Component 23 1/0.8 1/0.8 



 

Figure 14: Component 11 Weibull 

 

 

Figure 15: Component 11 Lognormal 

 
Minitab includes helpful statistics about the summary distribution on the right side and below for 

reference. 

 

Next, in step 4: simulation of each component is performed by breaking down the mathematical 

calculations into a few steps.  After the uptime and downtime Weibull and Lognormal 

distributions are created, then each component’s availability is calculated in an intermediate step 
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to result in a component level availability.  An example of the component level availability is 

seen in Figure 16: Component 11 Availability.   
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Figure 16: Component 11 Availability 

 

This component level computed availability distribution is then pushed through the transfer 

equation to produce the final Monte Carlo Simulated Availability Importance Measure 

distribution.  Each component’s Availability Importance Measure distribution for the Parallel 

Series System is shown below. 
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Figure 17: Component 11 AIM Distribution 
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Figure 18: Component 12 AIM Distribution 
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Figure 19: Component 13 AIM Distribution 
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Figure 20: Component 21 AIM Distribution 
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Figure 21: Component 22 AIM Distribution 
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Figure 22: Component 23 AIM Distribution 

 



Concurrent to the Monte Carlo Simulations, the same Availability Importance Measure (AIM) 

was performed for the Traditional Point Estimate (TPE) using only the traditional point estimates 

mean of each component distribution.  For each distribution the expected value is one that would 

have traditionally been chosen for the “mean” in Mean Time Between Failure (MTBF) and the 

“mean” in Mean Time To Repair (MTTR) as seen below: 

 

MTBF =  
Uptime

Count of system failures
 (43) 

 

MTTR =
Corrective Maintenance Downtime

Count of system failures
 (44) 

 

Further clarification of only using the average of the distributions is that when we use the 

traditional point estimation method, we ignore all knowledge of the shape or characteristics of 

the distribution even though it exists for purposes of this thesis.  The idea is that all we have is a 

count of system failures over a selected period of time giving a mean time or average time 

between failures.  The same is assumed for the mean time to repair in the TPE method. 

 

Table 3: Point Estimates for Parallel Series System shows the average of each random variable 

distributions that are then used to determine the Availability Importance Measures for the 

Traditional Point Estimation method. 

 

Table 3: Point Estimates for Parallel Series System 

Traditional Point Estimation Value 

Mean Weibull   component 11 5.274881 

Mean Lognormal component 11 2.804947 

TPE Availability component 11 0.652846 

Mean Weibull   component 12 4.550231 

Mean Lognormal component 12 3.080445 

TPE  Availability component 12 0.596308 

Mean Weibull   component 13 4.996404 

Mean Lognormal component 13 3.737447 

TPE  Availability component 13 0.572073 

Mean Weibull   component 21 4.04472 

Mean Lognormal component 21 2.806813 

TPE  Availability component 21 0.590338 

Mean Weibull   component 22 4.551903 

Mean Lognormal component 22 3.069695 

TPE  Availability component 22 0.597237 

Mean Weibull   component 23 4.991835 

Mean Lognormal component 23 3.735542 

TPE  Availability component 23 0.571974 



 

Now that a baseline exists for the parallel series system described by Figure 13. Parallel-Series 

System Example and the Monte Carlo Simulation produced a final random variable output, 

Copeland’s Method will now be used to compare the Availability Importance Measures from the 

MCS method to determine which component is the most important and a candidate for 

improvement.  Recall that the component with the largest Copeland ranking will be considered 

the best candidate for improvement in the MCS method.  Additionally, the component with the 

largest Availability Importance Measure from the Traditional Point Estimate (TPE) method will 

be considered for improvement to the system.  Each component will receive the same magnitude 

improvement and a final Copeland Score against each method will determine which method is 

superior. 

 

To perform the Copeland comparison, each AIM MCS distribution was reordered into a 

cumulative density function (CDF) and percentiles assigned from 1% to 100% in about ten 

percent intervals as seen in Table 4: Availability Importance Measures by Component for MCS 

PS example.   

  



Table 4: Availability Importance Measures by Component for MCS PS example 

% # 

Availability 
Importance 
Component 

11 

Availability 
Importance 
Component 

12 

Availability 
Importance 
Component 

13 

1% 1000 0.089293294 0.00465775 0.004768686 

10% 10000 0.165920924 0.055227609 0.058463312 

20% 20000 0.206978671 0.107604817 0.113873281 

30% 30000 0.238679483 0.15381208 0.162538783 

40% 40000 0.266830809 0.197142293 0.205232673 

50% 50000 0.293826008 0.239090415 0.244498834 

60% 60000 0.321456552 0.281967584 0.282218743 

70% 70000 0.351576552 0.327835527 0.321034326 

80% 80000 0.387353645 0.380387169 0.363994587 

90% 90000 0.436556504 0.449565851 0.421642831 

100% 100000 0.739178544 0.785826652 0.785202958 

     

% # 

Availability 
Importance 
Component 

21 

Availability 
Importance 
Component 

22 

Availability 
Importance 
Component 

23 

1% 1000 0.088901697 0.091727823 0.131597871 

10% 10000 0.168612379 0.170900003 0.194983896 

20% 20000 0.210467646 0.211328903 0.225998712 

30% 30000 0.244065967 0.242325683 0.249515284 

40% 40000 0.274593813 0.270018343 0.270315687 

50% 50000 0.303797292 0.296527342 0.290403815 

60% 60000 0.334668229 0.323232147 0.311244441 

70% 70000 0.36806281 0.351893439 0.334038799 

80% 80000 0.408213404 0.38508705 0.360797069 

90% 90000 0.464279568 0.430586239 0.398535658 

100% 100000 0.796208996 0.706716115 0.647842651 

 
Then Copeland Method of pairwise comparisons was performed and a ranking of components by 

largest Availability Importance is seen in Table 5: MCS Copeland Pairwise AIM Ranking PS 

Example. 

 

Table 5: MCS Copeland Pairwise AIM Ranking PS Example 

Monte Carlo Simulation 

Component 
Copeland Score Rank 

Avail. Importance Component 11 29 4 

Avail. Importance Component 12 11 6 



Avail. Importance Component 13 12 5 

Avail. Importance Component 21 47 1 

Avail. Importance Component 22 36 2 

Avail. Importance Component 23 30 3 

 

Copeland’s Method identified component 21 from the Monte Carlo Simulation method as the 

most important to the system in terms of affecting the overall availability. For the Traditional 

Point Estimation method, the following Availability Importance Rank was produced and shown 

in Table 6. 

 

Table 6: TPE AIM Ranking PS Example 

Traditional Point Estimation Value Rank 

TPE Availability Importance Component 11 0.27234 4 

TPE Availability Importance Component 12 0.29816 2 

TPE Availability Importance Component 13 0.31079 1 

TPE Availability Importance Component 21 0.26553 5 

TPE Availability Importance Component 22 0.26246 6 

TPE Availability Importance Component 23 0.27405 3 

 
The Traditional Point Estimation method identified component 13 from the Traditional Point 

Estimation method as the most important to the system in terms of affecting the overall 

availability.  The results are curious in that they are nearly on opposite ends of a ranking 

spectrum.  The Monte Carlo Simulation resultant distribution places more emphasis on the 

second half of the system in contrast to the traditional point estimation that favors the first half of 

the system. 

 

 

The research methodology has been formulated in this task. However, the journal manuscript 

and illustrative example still need much work. 

  



TASK 3. IMPROVING INSPECTIONS AND COMPARING SUPPLIERS 

 

This section is based on the following: 

Hague, R.K., K. Barker, and J.E. Ramirez-Marquez. 2015. Interval-valued Availability 

Framework for Supplier Selection Based on Component Importance. Accepted in International 

Journal of Production Research. 

 

 

1. Introduction 

The Government Accountability Office [2011] recently found that the Department of Defense 

(DoD) does not effectively consider tradeoffs among cost, schedule, and performance when 

analyzing system requirements. The DoD has recently adopted a “Better Buying Power” mantra 

[Defense AT&L 2011], identifying 23 efficiency-related initiatives, including mandating 

affordability within system requirements. Ashton B. Carter [2010], Under Secretary of Defense, 

stated “…we have a continuing responsibility to procure the critical goods and services our 

forces need in the years ahead, but we will not have ever-increasing budgets to pay for them.  We 

must therefore strive to achieve what economists call productivity growth:  in simple terms, to do 

more without more.”  One particular area of need within DoD is in considering maintenance 

resources during supplier selection (e.g., for the F-35 Joint Strike Fighter [GAO 2013]). To 

reduce costs and answer Mr. Carter’s statement, a proactive maintenance philosophy that the 

DoD has adopted is Reliability Centered Maintenance (RCM), which guides what must be done 

to ensure that a system continues to performs in its present operating context [Moubray 1997].  

 

A primary goal of a maintenance organization is to minimize equipment downtime. In the DoD 

context, this translates to maximizing the availability of weapon systems. Availability, or the 

probability that a system is performing its required function at a given point in time when 

operated and maintained in a prescribed manner [Ebeling 2010], inherently accounts for 

reliability (the ability to last as long as intended) and maintainability (the ability to be fixed with 

minimum effort and time).  

 

Routinely in the DoD, reliability and availability have been the focus of maintenance decision 

making for weapon systems, but not necessarily for the individual parts or components that make 

up the system. To build an available system, availability must be considered at the component 

level. In this paper, we focus on making appropriate supplier selection decisions to emphasize 

component availability. We assume that several suppliers can provide the same component part 

but with varying levels of reliability (mean time between failures) and maintainability (mean 

time to repair), the two constituents of availability. As such, we develop a supplier selection 

framework driven by component availability importance. 

 

This paper addresses the need to make acquisition decisions with system availability in mind, 

proposing an availability-based sole supplier selection framework that accounts for uncertainty 

in the reliability and maintainability perspectives of availability. In doing so, we provide a 

supplier selection framework to “do more without more” by accounting for availability, thereby 

addressing concepts of reliability and maintainability in the procurement process. Often, supplier 

selection decisions ultimately come down to procurement cost, though we look beyond to 



availability, a driver of subsequent costs. We extend a traditional weighted multi-criteria discrete 

comparison technique, TOPSIS, to make this comparison. The innovations in this work are (i) 

our treatment of the availability of each component as the criteria with which to select a supplier, 

and (ii) our use of component importance measures to derive how each component is weighted. 

Section 2 provides background to several methodologies integrated in the proposed framework. 

Section 3 develops the supplier selection framework with an illustration, and conclusions are 

given in Section 4.  

 

2. Methodological Background 

This section provides background on availability and importance measure calculations, interval 

arithmetic, and some approaches for making comparisons among discrete alternatives.  

 

2.1. Availability 

Mentioned previously, availability is a very common measure in reliability engineering, 

particularly for weapon systems whose function is needed at a moment’s notice. Availability is 

calculated from uptime and downtime. Uptime, a function of reliability, is defined as the average 

time during which an asset or system is either fully operational or is ready to perform its 

intended function. Downtime measures how long a system is not in function, likely due to 

maintenance activities, suggesting that downtime is synonymous with maintainability. The 

traditional functional relationship for availability is shown in Eq. (45), with mean time between 

failure (MTBF) as a measure of uptime and mean time to repair (MTTR) as a measure of 

downtime [Lie et al. 1977]. 

 

Availability =
uptime

uptime + downtime
=

MTBF

MTBF + MTTR
 (45) 

  

Availability is a key metric that a maintenance organization (or any other) can use to measure its 

effectiveness.  If a system or component is operating for a longer period between failures and has 

a minimal corrective maintenance time, then its availability will likely be at a desirable level.   

 

2.2. System Configurations and Importance Measures 

A system is comprised of multiple components or subsystems. Common system configurations 

are shown in Figure 1. A simple series system with n components, where each component must 

be in operating condition for the system to operate, is represented in Figure 1a. Figure 1b 

portrays a parallel system with m components, where each individual component does not have 

to be in operating condition for the system to operate due to redundancy. Slightly more complex 

system structures appear in Figure 1c, a series-parallel system (a series of n subsystems each 

with parallel component configurations). Yang et al. [2011] provide an example series-parallel 

system within an aircraft: the servo-actuation system, which consists of servo controllers, servo 

actuators, power sources, and an actuating cylinder. Figure 1d, a parallel-series system (m series 

subsystems in parallel). Gravette and Barker [2014] provide a realistic parallel-series system 

example that would appear in a DoD weapons system. 
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(c) series-parallel (d) parallel-series 

Figure 23. Four primary configurations that describe the structure of most systems. 

 

The illustrative example used subsequently in this paper is the aircraft servo-actuation series-

parallel system. In a series-parallel system, there are multiple components, each with their own 

criticality to the performance of the system. We can measure the importance of each component 

in contributing to overall system performance with the calculation of component importance 

measures (CIMs). CIMs allow for the ranking of components from most important to least.  

 

Reliability is the most common measure of system performance for applying CIMs [Kuo and 

Zuo 2003, Modarres et al. 2010]. That is, in the reliability context, CIMs highlight the 

components that are most critical to system reliability. CIM examples include risk reduction 

worth (RRW), an index that quantifies the potential damage to a system caused by a particular 

component, and the reliability achievement worth (RAW) of a component, or the maximum 

proportion increase in system reliability generated by that component [Ramirez-Marquez et al. 

2006]. This work will focus on the Birnbaum CIM [Birnbaum 1969], shown in Eq. (46). Where 

𝑅𝑠 measures system reliability and 𝑅𝑖 measures the reliability of component i, the Birnbaum 

CIM, I𝑖
𝐵, measures the change in system reliability due to a change in the reliability of 

component i. The component with the largest 𝐼𝑖
𝐵 value is the component that offers the greatest 

improvement in system reliability when its reliability is improved. 

 

I𝑖
𝐵 =

∂𝑅𝑠
∂𝑅𝑖

 (46) 

  

As availability is the primary system performance measure of interest in this paper, we adopt a 

Birnbaum importance measure for availability [Cassady et al. 2004, Barabady and Kumar 2007, 



Gravette and Barker 2014], shown in Eq. (47). The availability of the system and the availability 

of component i are represented with 𝐴𝑠 and 𝐴𝑖, respectively. 

 

𝐼𝑖
𝐴 = 

𝜕𝐴𝑠
𝜕𝐴𝑖

 (47) 

 

The availability of a series-parallel system is provided in Eq. (8). Applying Eq. (47) to this 

series-parallel system results in the importance measure in Eq. (49) [Gravette and Barker 2014].  

 

𝐴SP =∏[∐𝐴a𝑖𝑗

𝑚

𝑗=1

]

𝑛

𝑖=1

=∏[1 −∏(1 −
MTBF𝑖𝑗

MTBF𝑖𝑗 +MTTR𝑖𝑗
)

𝑚

𝑗=1

]

𝑛

𝑖=1

 (48) 

 

I𝑖𝑗
SP = 

𝜕A𝑆𝑃

𝜕A𝑖𝑗
= ∏[1 −∏(1 − A𝑘𝑙)

𝑚

𝑙=1

]

𝑛

𝑘≠𝑖

×∏(1 − A𝑖𝑙)

𝑚

𝑙≠𝑗

 

=∏[1 −∏(1 −
MTBF𝑘𝑙

MTBF𝑘𝑙 +MTTR𝑘𝑙
)

𝑚

𝑙=1

]

𝑛

𝑘≠𝑖

×∏(1 −
MTBF𝑖𝑙

MTBF𝑖𝑙 +MTTR𝑖𝑙
)

𝑚

𝑙≠𝑗

 

(49) 

 

We will subsequently use Eq. (49) to rank the importance of system components to prioritize 

suppliers of these components.  

 

2.3. Comparing Discrete Alternatives  

Often decision makers prefer not necessarily to choose the best option but avoid the worst 

option. The Technique for Order Preferences by Similarity to an Ideal Solution (TOPSIS) 

[Hwang and Yoon 1981] is a tool that addresses this decision making preference with the 

concept of the compromise solution, or the option that is nearest to the best solution (or positive 

ideal solution) and farthest from the worst solution (or negative ideal solution). The idea behind 

TOPSIS is rooted in reference-dependent theory, wherein consumers evaluate alternatives in 

terms of gains and losses to a subjective reference point [Kahneman and Tversky 1979]. Multiple 

criteria are considered when determining the positive and negative ideal solution, and those 

criteria are weighted separately depending on decision maker preferences. Several recent 

applications of comparing discrete alternatives with TOPSIS include project selection [Khalili-

Damghani et al. 2013, Taylan et al. 2014], manufacturing decision making [Azadeh et al. 2011, 

Goyal et al. 2012], and enterprise systems [Rouhani et al. 2012, Ye 2010]. 

 

For 𝐵 different discrete alternatives, 𝑏 = 1,… , 𝐵, and 𝐶different objectives or performance 

criteria, 𝑐 = 1,… , 𝐶, each alternative exhibits performance ratings contained in set 𝑋 =
{𝑥𝑏𝑐|𝑏 = 1,… , 𝐵; 𝑐 = 1,… , 𝐶}. As some criteria may be more important than others to the 

decision maker, the criteria are weighted with 𝑤𝑐, 𝑐 = 1,… , 𝐶. Performance ratings 𝑥𝑏𝑐 can be 

normalized if the various performance criteria exhibit different ranges (e.g., reliability on [0,1] 

along with costs in millions of dollars) with a variety of normalization approaches. For the 

application discussed subsequently, normalization will not be necessary. 

 



The weighted performance rating of alternative 𝑏 for criterion 𝑐 is found in Eq. (50). A number 

of approaches to assess attribute weights from decision makers could be used, including the 

Analytical Hierarchy Process [Saaty 1990] or rank reciprocal approach [Barron and Barrett 

1996]. We will describe the use of the availability CIM for determining this weight in Section 3. 

 

𝑣𝑏𝑐 = 𝑤𝑐𝑥𝑏𝑐 (50) 

 

The positive ideal solution has all the best attainable criteria values, while the negative ideal 

solution has all worst possible criteria values. The positive ideal solution, 𝐵+, is found with Eq. 

(51). Set 𝐶+ represents the set of benefit criteria, where larger values of the criteria are preferred 

(e.g., profit, time between failure). Set 𝐶− is the set of cost criteria, where smaller values of the 

criteria are preferred (e.g., expenditures, losses, travel time). Eq. (51) suggests that the positive 

ideal solution consists of those weighted performance ratings that maximize benefit criteria and 

minimize cost criteria. Likewise, the negative ideal solution, or the weighted performance ratings 

that represent the smallest from set 𝐶+ and largest from set 𝐶−, is provided in Eq. (52). 

 

𝐵+ = {𝑣1
+, … , 𝑣𝑐

+, … , 𝑣𝐶
+} = {(max

𝑏
𝑣𝑏𝑐 |𝑐 ∈ 𝐶

+) , (min
𝑏
𝑣𝑏𝑐 |𝑐 ∈ 𝐶

−)} (51) 

 

𝐵− = {𝑣1
−, … , 𝑣𝑐

−, … , 𝑣𝐶
−} = {(min

𝑏
𝑣𝑏𝑐|𝑐 ∈ 𝐶

+) , (max
𝑏
𝑣𝑏𝑐|𝑐 ∈ 𝐶

−)} (52) 

 

The Euclidean distance between the performance ratings of alternative 𝑏 and 𝐵+ is found in Eq. 

(53). The distance from the positive ideal solution for alternative 𝑏 is referred to as 𝐷𝑏
+. 

Likewise, the Euclidean distance between alternative 𝑏 and 𝐵− is found in Eq. (54) and is 

referred to as 𝐷𝑏
−. 

 

𝐷𝑏
+ = √∑ (𝑣𝑏𝑐 − 𝑣𝑐

+)2
𝐶

𝑐=1
 (53) 

 

𝐷𝑏
− = √∑ (𝑣𝑏𝑐 − 𝑣𝑐−)2

𝐶

𝑐=1
 (54) 

 

The preference order of alternatives can then be generated by ordering the measure in Eq. (55) in 

descending order. 𝐷𝑏
⋆ is a measure of the similarity to the positive ideal solution. 

 

𝐷𝑏
⋆ =

𝐷𝑏
−

𝐷𝑏
+ + 𝐷𝑏

− (55) 

 

2.4. Interval Arithmetic  

Point estimates (e.g., MTBF, MTTR) often do not effectively portray the uncertainty associated 

with their underlying random variables (e.g., time between failures, repair time). In this work, we 

opt to not use point estimates for failure time and repair time. An approach where these uncertain 



parameters are described by probability distributions is always preferred when distributions are 

known, as one could address the problem with, for example, Monte Carlo simulation. However, 

when such probability distributions are not known, “forcing” a distribution may do more harm to 

the decision making process than good [Huber 2010]. This is particularly true when developing 

distributions for failure time or repair time during the requirements development process in 

system design. 

 

Addressing such uncertainty in the TOPSIS technique has been done with an extension using 

fuzzy numbers to deal with uncertainty in the set of performance ratings, 𝑋 [e.g., Samvedi et al. 

2013, Vahdani and Zandieh 2010, Chen et al. 2006]. We instead represent uncertainty in these 

failure time and repair time parameters with interval values, assuming we can bound the 

parameters with minimum and maximum values. If we can only assume the upper and lower 

bounds, we should “consider what decisions we could reach for all possible values of those data 

that are consistent with those interval constraints” [Huber 2010]. 

 

An interval number is an ordered pair of real numbers [𝑦, 𝑦] such that 𝑦 ≤ 𝑦, where the underbar 

represents the lower bound of the interval and the overbar represents the upper bound. For 

interval numbers 𝑌 = [𝑦, 𝑦] and 𝑍 = [𝑧, 𝑧], the following algebraic relationships hold [Moore 

1966]. 

 

𝑌 + 𝑍 = [𝑦, 𝑦] + [𝑧, 𝑧] = [𝑦 + 𝑧, 𝑦 + 𝑧] (56) 

 

𝑌 − 𝑍 = [𝑦, 𝑦] − [𝑧, 𝑧] = [𝑦 − 𝑧, 𝑦 − 𝑧] (57) 

 

𝑌 × 𝑍 = [𝑦, 𝑦] × [𝑧, 𝑧]

= [min (𝑦 × 𝑧, 𝑦 × 𝑧, 𝑦 × 𝑧, 𝑦 × 𝑧) ,max (𝑦 × 𝑧, 𝑦 × 𝑧, 𝑦 × 𝑧, 𝑦 × 𝑧)] 
(58) 

 

𝑌/𝑍 = [𝑦, 𝑦] /[𝑧, 𝑧] = [min (𝑦/𝑧, 𝑦/𝑧, 𝑦/𝑧, 𝑦/𝑧) ,max (𝑦/𝑧, 𝑦/𝑧, 𝑦/𝑧, 𝑦/𝑧)], where 0 ∉

[𝑧, 𝑧] 
(59) 

 

𝑌2 = [min (𝑦2, |𝑦 × 𝑦| , 𝑦
2
) ,max (𝑦2, |𝑦 × 𝑦| , 𝑦

2
)] (60) 

 

Other properties include the following [Neumaier 1990]. 

 

1/𝑌 = [1/𝑦, 1/𝑦] , where 0 < 𝑦1 < 𝑦2 (61) 

 

𝛼 × 𝑌 = 𝛼 × [𝑦, 𝑦] = [𝑦, 𝑦] × 𝛼 = [𝛼 × 𝑦, 𝛼 × 𝑦] , for real constant 𝛼 ≥ 0 (62) 

 



Ultimately, there are instances where two intervals will be compared to each other (e.g., 

determining which suppliers’ interval availability is preferred to another). For intervals 𝑌 =

[𝑦, 𝑦] and 𝑍 = [𝑧, 𝑧], assume that 𝑌 is preferred to 𝑍 when a maximum value of the interval is 

sought. Barker and Rocco [2011] provide several decision rules for comparing intervals shown in 

Eq. (63) that reflect different levels of risk aversion. 

 

𝑌 ≻ 𝑍 ⇔ 

{
 
 
 

 
 
 
𝑦 > 𝑧 Best case

𝑦 > 𝑧 Worst case

(𝑦 + 𝑦) > (𝑧 + 𝑧) Laplace

𝜃 (𝑦 − 𝑧) > (1 − 𝜃)(𝑦 − 𝑧), 𝜃 ∈ [0,1] Hurwicz

(𝑦 − 𝑧) > (𝑧 − 𝑦) Min regret

 (63) 

 

3. Framework for Supplier Selection with Illustrative Example 

Dickson [1966] introduced 23 supplier selection criteria still found in literature today, including 

quality, delivery, performance history, and price. Many have recently applied TOPSIS to a 

subset of these criteria for supplier selection [Kasirian and Yusuff 2013, Liao and Kao 2011, 

Awasthi et al. 2010, Wang et al. 2009]. In this work, we focus on the availability aspect of 

supplier quality. That is, we want to select component (or service) suppliers based on their ability 

to maintain a level of availability in the system of interest. And an innovation of this work comes 

from how we weight the importance of component availability with the availability CIM 

provided in Eq. (47). Ultimately, we choose a sole supplier who can supply the most important 

components of the system such that system availability is maintained. 

 

We assume that the desired component and system availability can be derived from system 

requirements or from documentation from the original equipment manufacturer (OEM). We will 

derive component importance from these original requirements and later compare how different 

suppliers meet these availability requirements. However, when we assume that component 

design specifications come from system requirements, we could naturally conclude some 

uncertainty associated with the two main elements of the availability calculation, MTBF and 

MTTR. Such uncertainty could exist particularly when a new system is under development or is 

being redesigned, and failure or repair histories do not exist. Assume, however, that intervals can 

effectively quantify these design parameters. Notation for the intervals of the two availability 

parameters are MTBF = [MTBF,MTBF] and MTTR = [MTTR,MTTR]. 
 



 

Figure 24. Overview of the four-step framework for availability-based supplier selection. 

 

The following subsections develop the four steps of the interval-valued availability framework 

for supplier selection, the outline for which is provided in Figure 24. The series-parallel 

configuration in Figure 25 will illustrate framework within each step. The system, which 

mentioned previously could represent an aircraft servo-actuation system, consists of three 

subsystems in series, where each subsystem is a collection of components (servo controllers, 

servo actuators, and power sources) arranged in parallel. While this example is notional, a servo-

actuation system is an important subsystem in an aircraft flight control system. Other 

configurations beyond the series-parallel system could be explored, including network 

configurations, assuming that computational requirements for calculating system availability and 

availability component importance are not too great.  

 

 

Figure 25. The series-parallel system serving as the illustrative example for the supplier selection framework. 

 

3.1. Step 1: Calculate the Interval-valued Availability Importance for Each Component 

Before considering any of the suppliers, we want to understand the importance of each 

component with respect to its contribution to system availability. For the general series-parallel 

representation in Figure 1c, Eq. (64) integrates the availability CIM with the interval 

representations of mean failure and repair times.  

 



I𝑖𝑗
𝑆𝑃 = 

𝜕A𝑆𝑃

𝜕A𝑖𝑗
= ∏[1 −∏(1−

[𝑀𝑇𝐵𝐹,𝑀𝑇𝐵𝐹]
𝑘𝑙

[MTBF,𝑀𝑇𝐵𝐹]
𝑘𝑙
+ [MTTR,𝑀𝑇𝑇𝑅]

𝑘𝑙

)

𝑚

𝑙=1

]

𝑛

𝑘≠𝑖

×∏(1−
[𝑀𝑇𝐵𝐹,𝑀𝑇𝐵𝐹]

𝑖𝑙

[𝑀𝑇𝐵𝐹,𝑀𝑇𝐵𝐹]
𝑖𝑙
+ [MTTR,𝑀𝑇𝑇𝑅]

𝑖𝑙

)

𝑚

𝑙≠𝑗

 

(64) 

 

Applying the interval arithmetic rules in Eqs. (56), (59), and (62), the ratio in Eq. (64) becomes 

the following.  

 

[MTBF,MTBF]

[MTBF,MTBF] + [MTTR,MTTR]

= [min {(MTBF2 + (MTBF × MTTR)), ((MTBF × MTBF) + (MTBF

×MTTR)), ((MTBF ∗ MTBF) + (MTBF ×MTTR)), (MTBF
2
+ (MTBF

×MTTR)} ,max {(MTBF2 + (MTBF × MTTR)), ((MTBF × MTBF)

+ (MTBF × MTTR)), ((MTBF ×MTBF) + (MTBF × MTTR)), (MTBF
2

+ (MTBF × MTTR)}] 

(65) 

 

Using constant ψ, the interval-valued availability importance measure is simplified in Eq. (67). 

 

ψ = [(MTBF2 + (MTBF × MTTR)), ((MTBF × MTBF) + (MTBF × MTTR)), ((MTBF

× MTBF) + (MTBF × MTTR)), (MTBF
2
+ (MTBF × MTTR)] 

(66) 

 

I𝑖𝑗
𝑆𝑃 = 

𝜕A𝑆𝑃

𝜕A𝑖𝑗
= ∏[1 −∏(1 − [min(ψ𝑘𝑙) ,max(ψ𝑘𝑙)])

𝑚

𝑙=1

]

𝑛

𝑘≠𝑖

×∏(1 − [min(ψ𝑖𝑙) ,max(ψ𝑖𝑙)])

𝑚

𝑙≠𝑗

 

(67) 

 

The importance of the components to system availability is a function of the design of the system 

not the suppliers. Therefore, system requirements for MTBF and MTTR are used to parameterize 

Eq. (67). For the illustrative example in Figure 25, the interval bounds for the availability 

parameters from the system design requirements for each component are found in Table 7.  

 

Table 7. Component MTBF and MTTR intervals, in days. 

Component 𝑀𝑇𝐵𝐹 𝑀𝑇𝐵𝐹 MTTR 𝑀𝑇𝑇𝑅 

C11 25 35 1 5 

C12 365 395 2 7 

C13 150 165 1 8 



C21 150 200 2 5 

C22 75 110 1 6 

C23 185 200 3 5 

C24 120 125 1 3 

C31 365 465 1 1.5 

C32 365 485 1 2 

 

When applying the interval division rule in Eq. (59), there will always be an instance where the 

denominator is less than the numerator when dividing one interval’s maximum by another’s 

minimum. This is problematic when calculating availability values, as the definition of 

availability requires that it be on [0,1]. As such, we eliminate these possibilities with Eq. (68), a 

reformulation of the interval division arithmetic. Resulting component availability and 

importance measure calculations are found in Table 8. CIM results are given in several decimal 

places as some are very small in magnitude. 

 

𝑌/𝑍 = [𝑦, 𝑦] /[𝑧, 𝑧] = [min (𝑦/𝑧, 𝑦/𝑧, 𝑦/𝑧, 𝑦/𝑧) ,max (𝑦/𝑧, 𝑦/𝑧, 𝑦/𝑧, 𝑦/𝑧)], where 0 ≤

𝑌/𝑍 ≤ 1 
(68) 

 

Table 8. Component availability intervals. 

Component I𝑖𝑗
𝑆𝑃 I𝑖𝑗

𝑆𝑃 

C11 0.000036089 0.012236505 

C12 0.000254704 0.049855491 

C13 0.000209593 0.034514925 

C21 0.000001735 0.002155172 

C22 0.000001735 0.001635931 

C23 0.000001430 0.005926724 

C24 0.000002762 0.009251472 

C31 0.002732233 0.250513347 

C32 0.002732233 0.217577706 

 

3.2. Step 2: Rank the Components According to Availability Importance 

As Eq. (67) is a function of interval values, the resulting availability CIM takes the form of an 

interval, as shown in Table 8. The larger the value of I𝑖𝑗
𝑆𝑃, the more important is component ij. 

Discussed previously, a ranking of I𝑖𝑗
𝑆𝑃 provides a prioritization of components from most 

important to system availability to least. However, given that the availability CIM is interval-

valued, ordering the components in Table 8 is not a straightforward task. For example, the 

intervals for components 11 and 12 overlap with each other, making them indistinguishable 

without a decision rule. 

 

We use the Laplace criterion from Eq. (63) to show the order relationship when a maximum 

value is sought. The ranking of components appears in Table 9. Based on the system 

requirements, Table 9 suggests that the components 31 and 32, the components in subsystem 3, 



are the most important in their contribution to system availability. Components within subsystem 

2 would appear to be the least important. Different decision rules take different optimistic and 

pessimistic perspectives on the rankings of the intervals, though the Laplace rule is fairly risk 

neutral. The min regret rule from Eq. (63) also produces the same ranking. 

 

Table 9. Ranking of components according to their interval-valued importance measure results.  

Component Laplace criterion (I𝑖𝑗
𝑆𝑃 + I𝑖𝑗

𝑆𝑃) Rank 

C11 0.0123 5 

C12 0.0501 3 

C13 0.0347 4 

C21 0.0022 8 

C22 0.0016 9 

C23 0.0059 6 

C24 0.0093 7 

C31 0.2532 1 

C32 0.2203 2 

 

3.3. Step 3: Calculate Weights for Components 

Mentioned previously, we adopt the TOPSIS approach for selecting among alternatives when 

different evaluation criteria are considered. In this application, we select a sole supplier for all 

components based on its ability to supply component parts with good availability. Therefore, we 

consider every component to be an “evaluation criterion” in the selection of a supplier.   

 

The TOPSIS approach requires that a weight be applied to each evaluation criterion. The 

availability importance measure from Step 2 gives us a means to weight each component. To 

scale the Laplace criterion result from Table 9 such that all weights sum to 1, Eq. (69) is applied.  

 

w𝑖𝑗 =
(I𝑖𝑗
𝑆𝑃 + I𝑖𝑗

𝑆𝑃)

∑ ∑ (I𝑖𝑗
𝑆𝑃 + I𝑖𝑗

𝑆𝑃)𝑚
𝑗=1

𝑛
𝑖=1

 (69) 

 

The results of Table 9 and Eq. (69) provide an objective approach to weighting the components 

according to their availability importance based on system design requirements. The result is 

provided in Table 10.  

 

Table 10. Component weighting using scaled interval-valued importance results. 

Component  (I𝑖𝑗
𝑆𝑃 + I𝑖𝑗

𝑆𝑃) Weight 

C11 0.0123 0.0208 



C12 0.0501 0.0850 

C13 0.0347 0.0589 

C21 0.0022 0.0037 

C22 0.0016 0.0028 

C23 0.0059 0.0101 

C24 0.0093 0.0157 

C31 0.2532 0.4295 

C32 0.2203 0.3736 

 

3.4. Step 4: Apply TOPSIS to Select Supplier 

The final step in the framework is to select a sole supplier. As we are selecting a sole supplier, 

any supplier alternatives that are unable to meet the system requirements are not be considered: 

we only choose among those suppliers whose availability (via MTBF and MTTR) outperforms 

the requirements [Blanchard and Fabrycky 2010]. For each supplier 𝑆𝑏, we evaluate their 

availability for each component, criterion 𝑐. Availability is an interval number, [𝐴𝑆𝑏,𝑐, 𝐴𝑆𝑏,𝑐]. The 

results from the TOPSIS analysis will provide the supplier that is closest to the best availability 

for each component and farthest from the worst availability for each component, the differences 

for which are weighted according to each component’s importance and summed across all 

components.  

 

Table 11 depicts four suppliers and their interval availability for each component. There is 

considerable overlap among the component availabilities for each supplier, therefore requiring an 

analytical approach to determine which supplier is ideal. 

 

Table 11. Interval-valued component availabilities for each supplier. 

Component 

Supplier 

S1 S2 S3 S4 

𝐴𝑆1,𝑐 𝐴𝑆1𝑐 
𝐴𝑆2𝑐 𝐴𝑆2𝑐 

𝐴𝑆3,𝑐 𝐴𝑆3,𝑐 
𝐴𝑆4,𝑐 𝐴𝑆4,𝑐 

C11 0.85 0.99 0.82 0.98 0.81 0.99 0.86 0.97 

C12 0.90 0.99 0.85 0.99 0.89 0.97 0.91 0.99 

C13 0.85 0.94 0.91 0.99 0.86 0.92 0.88 0.97 

C21 0.84 0.94 0.87 0.96 0.88 0.99 0.91 0.99 

C22 0.84 0.94 0.87 0.96 0.88 0.99 0.91 0.99 

C23 0.91 0.98 0.90 0.97 0.92 0.97 0.87 0.99 

C24 0.91 0.98 0.90 0.97 0.92 0.98 0.87 0.99 

C31 0.81 0.95 0.86 0.97 0.92 0.95 0.89 0.93 

C32 0.88 0.95 0.93 0.98 0.88 0.96 0.90 0.97 

 

After the component weights from Table 10 are applied to Table 11 using Eq. (50), the Laplace 

criterion is used to determine the positive and negative ideal solutions found in Eqs. (70) and 

(71). These solutions are provided in order by criterion, or C11 through C32. For example, for 



component C23, supplier S1 offers the part that provides the best and supplier S4 offers the least 

desired (weighted) interval availability.  

 

𝐵+ = {0.038, 0.161, 0.112, 0.007, 0.005, 0.019, 0.030, 0.803, 0.714} 
= {S1, S4, S2, S4, S4, S1, S3, S3, S2}  

(70) 

 

𝐵− = {0.037, 0.156, 0.105, 0.007, 0.005, 0.019, 0.029, 0.756, 0.684} 
= {S2, S2, S3, S1, S1, S4, S4, S1, S1}  

(71) 

 

To determine which supplier is ideal for all components, the separation between each alternative 

(supplier) and the 𝐵+ and 𝐵− suppliers is calculated using the Euclidean distance equations Eq. 

(53) and (54). 

 

Table 12. Separation between each supplier and the ideal solutions. 

Supplier 𝐷𝑏
+ 𝐷𝑏

+ 𝐷𝑏
− 𝐷𝑏

− 

S1 0.016 0.072 0.017 0.020 

S2 0.023 0.041 0.072 0.084 

S3 0.013 0.039 0.054 0.058 

S4 0.016 0.040 0.003 0.004 

 

Finally, by applying Eq. (55), the supplier that is closest to the best availability for each 

component within the system is calculated. Supplier S3 provides the best overall offerings of the 

nine components in the system according to the weighted importance of each component and 

would therefore be the best sole supplier of the components in the aircraft servo-actuation series-

parallel system if availability is the primary metric of interest. 

 

Table 13. Final supplier ranking. 

Supplier Laplace criterion (𝐷𝑏
⋆ + 𝐷𝑏

⋆) Rank 

S1 0.631 4 

S2 1.596 3 

S3 1.857 1 

S4 1.607 2 

 

3.5. Coherence of Interval Analysis and Comparison with Point Estimates 

The supplier selection approach developed in the previous four sections is compared against a 

ranking of suppliers based on simulation, assuming known probability distributions rather than 

interval values. To do so, the component availability ranges described in Table 11 have been 

used to simulate the performance of the system in Figure 25 independently for each supplier and 

for 1000 simulation runs. 

 



According to the ranking in Table 13, Supplier 3 is the preferred supplier, followed closely by 

Suppliers 4 and 2 and considerably ahead of Supplier 1. The distributions described in Figure 26, 

have been constructed in such a way by simulating (1000 times) component availability from 

each supplier following a uniform distribution as dictated by the bounds in Table 11. The results 

illustrate the distribution of availability for each supplier. The graphs clearly show that Supplier 

1 provides the worst availability distribution. Supplier 3 is better that Supplier 4 since it has a 

smaller variance and the lower and upper ranges are higher. Finally, Supplier 2 is relatively as 

good but with a lower, lower bound and higher variance. Note that the difference in ranking for 

suppliers 2, 3 and 4 via Table 13 is quite small (around 10%), suggesting that the interval 

ranking approach allows for a coherent selection of supplier without resorting to numerous 

simulations. The same conclusions can be obtained when considering a triangular distribution 

with mid-point between the bounds presented in Table 11, shown in Figure 27. 

 

Note that comparison is made here to the Laplace decision rule in Eq. (63), a somewhat risk 

neutral decision approach. Opting for the best or worst case rules could alter the decision 

throughout the steps, resulting in a different conclusion. 

 



 

Figure 26. Availability comparison for the four suppliers, assuming a uniform distribution for availability 

uncertainty. 

 



 

Figure 27. Availability comparison for the four suppliers, assuming a triangular distribution for availability 

uncertainty. 

 

The Monte Carlo analysis assuming two common distributions used in expert elicitation resulted 

in the same supplier selection result as with the interval-valued analysis. Were point estimates 

used, assumed to be the mid-point of the intervals for time between failures and time to repair, 

the end supplier selection result is different. The component importance results for the interval 

calculation (from Table 9) and for the point estimate calculation are provided in Table 14. Very 

little difference is seen the importance ranking of the components, though there is a major 

difference in how the components are weighted based on their importance measure. The most 

preferred supplier does not change when the point estimate is used, though the preference order 

does change, as shown in Table 15. This suggests that limiting ourselves to the point estimate 



can have a misleading impact on the choice of suppliers: the point estimate suggests that 

suppliers 1 and 4 are similar to each other when the interval result (and the simulation result) 

suggest something very different. This impact could be magnified given a potentially optimistic 

or pessimistic outlook (i.e., the best case or worst case decision rules in Eq. (63)).  

 

Table 14. Comparison of interval and point estimate importance results. 

Component  

Interval uncertainty Point estimate 

Importance Weight Importance Weight 

C11 0.0123 0.0208 0.000325 0.0310 

C12 0.0501 0.0850 0.002525 0.2410 

C13 0.0347 0.0589 0.001064 0.1015 

C21 0.0022 0.0037 1.19E-05 0.0011 

C22 0.0016 0.0028 6.41E-06 0.0006 

C23 0.0059 0.0101 1.15E-05 0.0011 

C24 0.0093 0.0157 1.46E-05 0.0014 

C31 0.2532 0.4295 0.003517 0.3356 

C32 0.2203 0.3736 0.003003 0.2866 

 

Table 15. Comparison of interval and point estimate final supplier rankings. 

Supplier  

Interval uncertainty Point estimate 

(𝐷𝑏
⋆ + 𝐷𝑏

⋆) Rank 𝐷𝑏
⋆ Rank 

S1 0.631 4 0.5741 3 

S2 1.596 3 0.2129 4 

S3 1.857 1 0.6391 1 

S4 1.607 2 0.5952 2 

 

 

4. Concluding Remarks 

There has been much research in the area of supplier selection, and much of which continue to 

follow Dickson’s 23 criteria. The Department of Defense tends to consider procurement cost 

very strongly when considering suppliers of component parts for weapons systems, however 

another major source of subsequent costs is due to the unavailability of such systems. To be 

mission-ready, DoD systems must be available for use. As such, the objective of this paper is to 

provide an availability-based framework for choosing a supplier who can provide components 

that lead to a high system availability, focusing particularly on those components that are most 

important to system availability. Due to uncertainty in MTBF and MTTR component data, 

interval arithmetic provides a vehicle for making computations within a known range of data. 

Note that this is a fairly nuanced extension of a TOPSIS, though most any other multi-criteria 

decision analysis technique could take its place. Similarly, we focus on availability as a long-

term cost driver for supplier selection, though other criteria could be considered in addition to or 



in place of availability. A novel idea provided in this framework is the treatment of component 

performance as the criteria in the multi-criteria comparison, with weights being derived by 

component importance measures from the field of reliability engineering. 

 

With the modern economy and the current budgetary constraints placed upon the DoD, obtaining 

components with a high availability and reliability is vital to efficiency.  In the world of 

maintaining equipment, having fewer corrective repairs translates into more time for technicians 

to focus on other tasks such as preventive maintenance, which also is a proponent of equipment 

reliability. The effects of this element of “Better Buying Power” can be felt throughout the DoD 

in the form of reliability, availability, cost avoidance, and better resource allocation. 

 

This work provides an important first step in integrating component importance into supplier 

selection. A primary limitation of this framework is the assumption that sole suppliers are 

chosen, though this could certainly be a realistic assumption at the subsystem level (as the type 

of system represented in Figure 25 would be one of many subsystems in a larger system). Future 

work will explore the development of a supplier mix to meet reliability and maintainability 

needs. 
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