
Acquisition Research Program
Graduate School of Business & Public
Policy Naval Postgraduate School

UCI-AM-16-016

ACQUISITION RESEARCH PROGRAM

SPONSORED REPORT SERIES

Achieving Better Buying Power through Acquisition of Open
Architecture Software Systems for Web and Mobile Devices

 22 February 2016

Dr. Walt Scacchi

Dr. Thomas A. Alspaugh

Institute for Software Research University

University of California, Irvine

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

Acquisition Research Program

Graduate School of Business & Public Policy

Naval Postgraduate School

The research presented in this report was supported by the Acquisition Research
Program of the Graduate School of Business & Public Policy at the Naval Postgraduate
School.

To request defense acquisition research, to become a research sponsor, or to print
additional copies of reports, please contact any of the staff listed on the Acquisition
Research Program website (www.acquisitionresearch.net).

http://www.acquisitionresearch.net/

- i-

About the Authors

Dr. Walt Scacchi is a senior research scientist and research faculty member at the
Institute for Software Research, University of California, Irvine. He received a PhD in information
and computer science from U.C. Irvine in 1981. From 1981 to 1998 he was on the faculty at the
University of Southern California. In 1999 he joined the Institute for Software Research at U.C.
Irvine. He has published more than 150 research papers and has directed 60 externally funded
research projects. In 2011 he served as co-chair for the 33rd International Conference on
Software Engineering - Practice Track, and in 2012 he served as general co-chair of the 8th
IFIP International Conference on Open Source Systems.

Dr. Walt Scacchi, Senior Research Scientist
Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3455 USA
E-mail: wscacchi@ics.uci.edu

Dr. Thomas Alspaugh is a project scientist at the Institute for Software Research,
University of California, Irvine. His research interests are in software engineering, requirements,
and licensing. Before completing his PhD, he worked as a software developer, team lead, and
manager in industry, and as a computer scientist at the Naval Research Laboratory on the
Software Cost Reduction or A-7 project.

Dr. Thomas Alspaugh, Project Scientist
Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3455 USA
E-mail: thomas.alspaugh@acm.org

Acquisition Research Program

Graduate School of Business & Public Policy

Naval Postgraduate School

mailto:wscacchi@ics.uci.edu
mailto:thomas.alspaugh@acm.org

- ii-

THIS PAGE LEFT INTENTIONALLY BLANK

Acquisition Research Program

Graduate School of Business & Public Policy

Naval Postgraduate School

Acquisition Research Program

Graduate School of Business & Public Policy

Naval Postgraduate School

Acquisition Research Program

Graduate School of Business & Public Policy - iii-
Naval Postgraduate School

UCI-AM-16-016

ACQUISITION RESEARCH PROGRAM

SPONSORED REPORT SERIES

Achieving Better Buying Power through Acquisition of Open
Architecture Software Systems for Web and Mobile Devices

22 February 2016

Dr. Walt Scacchi

Dr. Thomas A. Alspaugh

Institute for Software Research University

University of California, Irvine

Disclaimer: The views represented in this report are those of the author and do not reflect the official policy
position of the Navy, the Department of Defense, or the federal government.

- iv -

THIS PAGE LEFT INTENTIONALLY BLANK

Acquisition Research Program

Graduate School of Business & Public Policy

Naval Postgraduate School

Executive Summary

Many people within large enterprises rely on up to four Web-based or mobile devices
for their daily work routines—personal computer, tablet, personal and work-specific
smartphones. Our research was directed at identifying, tracking, and analyzing
software component costs and cost reduction opportunities within acquisition life cycle
of open architecture (OA) systems for such Web-based and mobile devices. These
systems are subject to different intellectual property license and cybersecurity
requirements. Our research goal was to create a new approach to address challenges
in the acquisition of software systems for Web-based or mobile devices used within
academic, business, or government enterprises. Acquisition personnel in such
enterprises will increasingly be called on to review and approve choices between
functionally similar open source software (OSS) components, and commercially priced
closed source software (CSS) components, to be used in the design, implementation,
deployment, and evolution of secure OA systems. Through our research, we sought to
make this a simpler, more transparent, and more tractable process. Finally, this
acquisition research supports and advances a public purpose by investigating
acquisition challenges arising from the adoption and deployment of secure OA
software systems for Web-based or mobile devices, which is of contemporary concern
to most academic, business, or government enterprises.

Our research objective was to develop new ways and means for identifying, tracking,
and analyzing the costs and other better buying opportunities associated with the
acquisition life cycle of OA software systems for Web-based or mobile devices. OA
system software elements can include either open source software (OSS) or
proprietary closed-source software (CSS) components subject to different IP licenses
and cybersecurity constraints. Such components may be configured into different,
functionally similar versions that allow for common but costly CSS components to be
replaced by their OSS counterparts, as a strategy to reduce software acquisition costs.
Such replacement or substitution may arise at different stages of system acquisition
including system design, integration, deployment, and evolution. But it is unclear what
happens when the OA software components are widgets, apps, or mashups that arise
from multi-party engineering efforts in heterogeneous software producer ecosystems,
where end-users (or their home enterprise) are expected to serve as system
integrators.

Web-based OA systems and mobile devices systems often integrate components
independently developed by software producers using OSS or CSS, which then may
be integrated into complete systems by system integrators [CoR14, GMO14, ReB12,
RNC14, ScA14]. Acquisition personnel will increasingly be called on to review and
approve security measures employed during the design, integration, deployment, and
evolution of OA systems [ScA13b, ScA13c]. Our effort builds on related acquisition
research efforts at the Software Engineering Institute (SEI) that address software
product lines (SPLs) [BeJ10, JoB11], as well as on acquisition and development of
secure OA systems built with widgets and apps [CBD14, CoR14, GGM14, GMH13,
GMO14, ReB12, ReN14, ScA14, ScA14c]. Other related research addressing OSS
[HiW10, Ke12, MarL11], component-based software ecosystems [End13, ReB12,
RNC14, ScA12b, ScA13c, ScA14a, ScA14b], and better buying initiatives [ScA14]

1

informs us as well.

Our recent research demonstrates how complex OA systems can be designed, built,
and deployed with alternative components and connectors resulting in functionally
similar system versions, to satisfy overall system security requirements and individual
system component intellectual property (IP) and cybersecurity requirements [ScA13a,
ScA13b, ScA13c], as well as surfacing new challenges for achieving better buying
power that can decrease (or increase) software acquisition costs [ScA14a, ScA14b,
ScA15a]. Our next step is to identify, track, and analyze software acquisition and
development practices associated with different types of Web-based and mobile
software components including widgets, apps, and mashups. This may then help us to
highlight opportunities to realize cost reduction and improve opportunities to realize
better buying power. Our research results are applicable to most academic, business,
or government enterprises that deploy complex information systems.

Our research results have been well received in presentations to different audiences,
including within the larger Defense community, and the Federal Government more
broadly. In particular, throughout 2015 our research results have been disseminated
and picked up for use within the Assembled Capabilities Working Group (ACWG),
under the guidance of the C3CB (Command, Control, Communications, and Business
Systems) office within the DASD(A). This effort was facilitated through collaboration
with many people from The MITRE Corporation, who along with the C3CB office are
working in support of the Defense Intelligence Information Enterprise (DI2E). More
broadly, our research results have been (or will be) presented to audiences at the
2015 Acquisition Research Symposium (Monterey, CA May 2015), the 2015 IEEE
Software Technology Conference (Los Angeles, CA, 13 October 2015), and also as an
invited tutorial at the 2016 Ground Systems Architecture Workshop (Los Angeles, CA,
29 February 2016, hosted by The Aerospace Corporation). Finally, one research paper
has been submitted for review and publication, described below.

Finally, our research results are documented in chapters that follow in this Final
Report. Chapter 1 is an overview of our research. Chapter 2 denotes our paper
presented at the 2015 Acquisition Research Symposium, and also presented at the
2015 IEEE Software Technology Conference. Chapter 3 is our paper submitted for
review and presentation at the 2016 Software Engineering and Industrial Practice
Workshop at the International Conference on Software Engineering (Austin, TX, May
2016). Chapters 4 and 5 represent technical notes that were prepared, circulated,
reviewed and discussed within the ACWG in support of the DASD(A)-C3CB office
during Summer 2015. Finally, Chapter 6 provides a copy of an invited half-day tutorial
at the 2016 Ground Systems Architecture Workshop for the Defense and Aerospace
community.

2

Table of Contents

Executive Summary...1
Chapters:

1. Research Overview...5

2. Achieving Better Buying Power through Acquisition of Open Architecture Software
Systems for Web and Mobile Devices...20

3. Emerging Research Issues in the Defense Open Architecture Ecosystem.................39

4. Notes on Life Cycle Activities for Acquiring Software-Based Assembled
Capabilities..53

5. Starting Assumptions on Life Cycle Activities for Acquiring Software-Based
Assembled Capabilities...70

6. Tutorial Presentation: Beyond Open Architecture: Issues, Challenges, and
Opportunities in Open Source Software Development (OSSD) for Aerospace and

Defense Applications...77

3

4

THIS PAGE LEFT INTENTIONALLY BLANK

Chapter 1:

Research Overview

5

 Introduction

This research focuses on continuing investigation and refinement of techniques for
identifying and reducing the costs, streamlining the process, and improving the
readiness of future workforce for the acquisition of complex software systems.
Emphasis is directed at identifying, tracking, and analyzing software component costs
and cost reduction opportunities within acquisition life cycle of open architecture (OA)
systems for Web-based and mobile devices, where such systems combine best-of-
breed software components and software products lines (SPLs) that are subject to
different intellectual property (IP) license and cybersecurity requirements.

This chapter provides an overview of the research effort during the period of 16
January 2015 through 15 January 2016. It includes a statement of work and
description of the four research activities engaged during this period, followed by
identification of the two acquisition research problems being investigated, the research
and development basis for our research, and identification of our research publications
that contain our studies and results. Each section is presented in turn.

Statement of Work and Research Description

Our objective was to develop new ways and means for identifying, tracking, and
analyzing the costs associated with the acquisition life cycle of OA software systems.
OA systems are those whose software elements can include either OSS or proprietary
CSS components, where components are subject to different IP licenses and security
constraints. Such components may be configured into different, functionally similar
versions that allow for common but costly CSS components to be replaced by their
OSS counterparts, as a strategy to reduce software acquisition costs. Such
replacement or substitution may arise at different stages of system acquisition
including system design, integration, deployment, and evolution. Recent DoD policy
encourages the move to component-based OA software systems [DISA12, DISA12a,
DoDOSA11], especially as DoD moves to embrace new mobile computing devices
like smartphones and cloud-based software application services [DISA12a, Tak12].

Better Buying Power (BBP) is part of DoD's mandate to do more without more by
implementing best practices in acquisition [Ken15]. BBP (up through 2013) identifies
seven areas of focus organizing 36 initiatives that offer the potential to restore
affordability in defense procurement and improve defense industry productivity. One
area focuses on promoting competition, and includes an initiative to enforce open
system architectures and effectively manage technical data rights.. Technical data
rights pertain to two categories of IP: the Government's rights to (a) technical data (TD
– product design data, computer databases, computer software documentation, etc.);
and (b) computer software (CS – source code, executable code, processes, and
related materials). These rights are controlled by IP licenses from system product or
service providers (i.e. software producers) to the Government customer, imposing
obligations the customer must fulfill (e.g., a fee paid in exchange for a certain number
of software users authorized for the licensed product or service) [An12]. Our
acquisition research has focused on issues addressing OA systems and IP licenses
since 2008 [ScA08], and cybersecurity requirements since 2011 [ScA11].

6

OA software systems, integrated from components independently developed by
different producers, offer the potential to reduce acquisition costs through new ways
and means to acquire, develop, deploy, and sustain software-intensive systems. This
may transform how DoD acquires complex systems by moving away from long-
duration, proprietary (closed) system architectures with development costs that are
difficult to control, towards more rapidly assembled/integrated OA systems with more
transparent costs [ReB12, ScA13a, ScA13c]. Such a transformation may in turn
reduce vendor lock-ins for deployed systems, often associated with rising costs and
systems that are inaccessible to competing vendors. Our research on OA systems
dating many years back [ScA08] has consistently been aligned with efforts to improve
competition in software system development and evolution, through investigation of
innovative ways and means to acquire/develop component-based OA software
systems subject to diverse, heterogeneous IP licenses [AlS10]. But there is more to
do to improve competition and defense affordability while effectively managing
technical data rights in the acquisition of secure OA systems. There is a need to better
understand how processes for acquiring cost-sensitive software systems are
facilitated or constrained in light of overall BBP guidance and best practices, as well
as how best to improve and streamline these processes when component-based OA
software systems are being acquired.

We have sought to identify ways and means for streamlining the acquisition process
for secure OA systems that incorporate Web-based or mobile devices through new
ways and means for identifying, tracking, and analyzing OA software component
costs. Such systems often integrate components independently developed by different
software producers as either OSS or proprietary CSS. Program managers, acquisition
officers, and contract managers will increasingly be called on to review and approve
security measures employed during the design, integration, deployment, and evolution
of OA systems [DoDOSA11, ScA13b, ScA13c]. Our effort builds on both our prior
acquisition research [e.g., ScA08, ScA11, ScA12b, ScA13a, ScA14a] and related
acquisition research efforts at the PEO IWS [GuC10, GuW12, WoS11], Department of
the Navy [MaS12, GSS15], and Software Engineering Institute (SEI) that address
SPLs [BeJ10, JoB11]. It is also influenced by related research in the DoD community
addressing OSS [DISA12, HiW10, Ke12, MarL11], component-based software
ecosystems [ReB12, ScA12b, ScA13c], and BBP initiatives [Ken15].

Realizing the objective of our investigation focused on four project work activities:

• Investigate the interactions between software system acquisition processes, and
the cost consequences of alternative software system architectures incorporating
different mixes of OSS and CSS widgets, apps, and mashup components subject
to different licenses [ScA12b, ScA13a, ScA13b, ScA13c]. This entails exploring the
balance between development, verification, and validation of software licenses and
security rights, as well as the software widget, app, and mashup
component/license costs while managing the development and evolution of OA
systems at design-time, build-time, release and run-time.

• Developing formal foundations for establishing acquisition guidelines program

7

managers can use in reduced cost acquisition of software-intensive systems that
rely on development and deployment of secure OA systems using OSS widget,
app, and mashup technology and processes [ScA11, ScA12a, ScA12b, ScA13a,
ScA13b, ScA13c, ScA14a, ScA14b, ScA14c].

• Continuing to develop concepts contributing to the emerging design of an
automated approach supporting acquisition of secure, component-based, and
increasingly mobile OA systems by (a) determining their conformance to
acquisition guidelines/policies, contracts, and related license management issues,
and (b) giving future acquisition workforce support and insights to properly review,
approve, and manage the acquisition of complex systems that incorporate cost-
sensitive acquisition of OA systems and software widget and application (“app”)
components [ScA11, ScA12a, ScA12b, ScA13a, ScA13b, ScA13c, ScA14a,
ScA14b, ScA14c].

• Documenting the investigation, foundations, and results of the research in: (a) a
Final Report delivered within 30 days of project completion to the Technical Point
of Contact at NPS; (b) a research paper to be presented at the 12th Annual
Acquisition Research Conference in Monterey, CA, May 2015; (c) a progress
report with the OSD sponsor via a video teleconference or other meeting at a time
to be determined during the period of the award, or as requested by the project
sponsor; and (d) related research dissemination venues (conferences, symposia,
summits, workshops, etc.) and publications of interest to the broader government
and industry communities, including the DoD, as well as publication and
dissemination of periodic research progress reports.

Overall, we sought to identify, track, and analyze new ways and means for how best
to articulate, tailor, and streamline the process for acquiring different kinds of secure
OA systems that incorporate Web-based and mobile devices running widgets, apps,
and mashups. We seek to do so in ways that focus on software cost drivers and
highlight opportunities for cost reduction through alternative software components or
system configurations. This investigation is therefore applicable to complex software
elements used in many kinds of component-based OA software-intensive systems as
commonly found in academic, business, or government enterprises. Last, this
acquisition research supports and advances a public purpose by investigating
challenges arising from the adoption and deployment of OA software systems for
Web-based or mobile devices, which is central to the ongoing deployment of emerging
mobile system capabilities in academic, business, or government enterprises, which is
a broad audience for our research [ScA14b, ScA14c].

Scientific Background

The move to OA systems represents a transition from the acquisition of monolithic
systems to the acquisition of reusable system components that can be integrated to
realize different configurations of a software product line for a specific application
domain [BeJ10, GuC10, JoB11, ReB12, ScA12b, WoS11]. These components are
acquired within a software ecosystem that is evolving towards component provisioning
within open repositories, where components from different producers are available for
selection, evaluation, and system integration [GuW12, Iba13, MartL11, ReB12,

8

ScA12a, ScA13b]. However, current scientific understanding of software system costs
focus attention to estimating the cost of development for new proprietary CSS
systems, that do not anticipate use of OSS, nor the replacement/substitution of CSS
with functionally similar OSS components [MadB11].

OSS represents an integrated web of people, processes, and organizations, including
project teams operating as virtual organizations. The “purchase price” for most OSS is
“no cost” meaning it can be downloaded and used without additional software license
fees, subject to compliance with the OSS component's license. Consequently, there is
a basic need to understand how to identify an optimal mix of OSS and CSS
components within OA systems, as well as how they reduce or increase the system
costs during design, integration, deployment, and evolution when OSS components
may be substituted for CSS components. However, the relationship among OA, OSS,
security requirements, and acquisition is complex and evolving, so consequently it is
poorly understood [cf. Sca09, Sca10, ScA11, ScA12b, ScA13c]. Subsequently, in
2007-08, we began by examining how different OSS licenses can encumber software
systems with OA, which give rise to new requirements for how best to acquire OA
software-intensive systems the employ OSS software elements [ScA08] during
system design, integration, deployment, and evolution [ScA13a, ScA13b].

Our recent acquisition research efforts demonstrate it is both possible and feasible to
develop OA systems that incorporate best-of-breed software components, whether
proprietary CSS or OSS, in ways that can reduce the initial and sustaining acquisition
costs of such systems.

We strongly believe that our research results are applicable to enterprise information
systems, which are widespread throughout DoD and the U.S. government, as well as
to command and control (C2) systems (e.g., [ReB12, ScB12, ScA13b]) and other
defense systems. The audiences for our presentations included in Chapters 2, 3, and
4 in this Final Report Volume I, and the compiled and integrated materials we are
developing, as included in Volume II of this Final Report, demonstrate our
commitment to communicate our research results to large, diverse audiences. Doing
so however requires new guidance, and ideally automated tools, for explicitly
modeling and analyzing the architecture of an OA system during its development and
evolution, along with annotating the architecture with software component license
rights and obligations. Our results thus demonstrate a major technological advance in
the acquisition and development of OA systems, as a breakthrough in simplifying
software license analysis throughout the contracting activities. Creating similar
advances for streamlining the acquisition process while reducing the costs of secure
OA systems is the next breakthrough that is needed.

Acquisition Research Problems and Our Approach:

The core of our proposed technical approach was to investigate a closely related set of
research questions through systematic empirical observation of current software cost
and IP licensing practices for different kinds of common application and infrastructure
software components. We then sought to formalize and comparatively analyze these

9

observations and practices into computational schemes that supplement our existing
framework for modeling and analyzing the licensing and security requirements of OA
software systems. In short, we sought to extend our formal software IP modeling
scheme to incorporate software component cost elements, in ways derived from the
answers to our four research questions. These four research questions follow from our
accomplishments described above and in detail elsewhere [ScA13a, ScA14a,
ScA15a]. Each is described in turn.

Research question 1: What are the emerging principles, practices, and sharing
agreements of secure OA systems to be acquired through Multi Party
Engineering in Adaptive Agile Ecosystems of software component apps,
widgets, and mashups for mobile devices available within online markets or app
stores? Researchers and practitioners have identified various kinds of software
component/system design, integration, deployment, and evolution costs: one-time
purchase of license rights, subscription-like licensing, usage-based licensing; source
code licensing, technical data licensing, service licensing, licensing of data generated
while the system runs; licensing of software elements needed at run time, deployment
time, distribution time, build time, design time; training and support needed for a
system to be usable; evolution costs to maintain the current system; evolution costs to
reach future versions; evolution costs to branch out into related systems to enable
reuse; and so forth. Which of these costs matters to whom, when, where, and why,
and which should people in the acquisition workforce be expected to track and
manage, especially when Web-based or mobile devices are to be incorporated?

Research question 2: What is the best way to formally model and analyze the
business models incorporated into new Web-based and mobile software
component IP licenses, and "shared agreements" among participating
ecosystem end-user organizations that are interested in utilizing mobile
software components? Software system architectural decisions influence overall
costs, but in what way? A brute-force approach could estimate overall system life cycle
costs for each candidate architecture. Guidance for an architectural decision then
requires calculating this estimate for each alternative that the decision may produce.
The question of whether more direct connections may be made from specific classes
of costs to specific kinds of decisions is an open one. How are people in the
acquisition workforce to make such decisions and realize predictable costs of
alternative system architectures, especially within the context of Web-based or mobile
devices supporting command and control system application?

It is clear that overall system life cycle costs cannot in general be evaluated without
information about the context in which the system is expected to be developed, built,
distributed, deployed, used and evolved. The effect of architectural decisions on
overall acquisition life cycle costs necessarily takes place and is strongly influenced by
the context in which the costs are incurred, and an important role is played by such
questions as how many instances of the system are expected, how much and what
kind of usage is expected, over what time period, with what level of training and
support, with what expected future evolution, preferring which suppliers and
ecosystems, and so forth. It will be necessary to characterize the kinds of context that
are needed, and to express contexts in a way that is manageable for the people who

10

must collect or estimate the information as well as for the architects, acquisition
officers, and others that will use it in making decisions that will affect costs. We
foresee that choosing among the contexts will be in some sense as influential and
important as choosing among the myriad architectural alternatives. In any case,
making sensible architectural choices will not be practical without appropriate
characterizations of the contexts in which their effects will unfold.

Research question 3: What are the implications for acquisition management of
mobile software components (widgets, apps, and mashups) and the required
knowledge or skill they require for acquisition management personnel? In our
previous work we have focused on non-monetary license obligations. While some
obligations appear in more than one license, and a few appear to be very widely
distributed across licenses, in general each license requires its own distinct list of
obligations in exchange for the rights offered. An important result from our research
has been an approach for placing license obligations (and rights as well) in a partial
order, based on subsumption among the classes of actions that satisfy the obligations.
Using this we can show that one license obligation subsumes another, or stated
informally that satisfying the first obligation necessarily satisfies the second obligation
as well. The subsumption relationship among obligations makes reasoning about
licenses a manageable task. The monetary obligations of various kinds that proprietary
licenses impose must be brought into this partial order.

While costs of the same class are ordered based on the numeric value involved, there
are (as we note above) different classes of costs such as purchase costs, subscription
costs, per-seat costs, support costs, and so forth. We see several avenues that appear
promising, such as (to list a few of the more obvious ones) comparing an outright
purchase cost with a subscription cost summed over the expected lifetime of the
system, or subscription costs over different periods by converting them to the costs for
a specific time period of interest. The many classes of costs raise the need for
approaches for comparing or if possible unifying them. In addition, costs and other
non-monetary license obligations must be considered together in a useful fashion.

Research question 4: What new information technologies or IT concepts for
acquisition can further streamline BBP processes, activities, and initiatives
targeted to secure OA systems with Web-based or mobile devices? It is essential
to collect and calculate information about the effect of architectural decisions on
overall costs, but just as essential to be able to combine and present it in a way that
provides usable architectural guidance. Research questions in this phase include
identifying relevant architectural decisions, marshalling the cost information relevant to
each decision, and evaluating alternatives in a way that allows architects to make
good choices. While a total of overall system costs, including monetary costs and non-
monetary obligations that must be met, is a fundamental and important criterion, we
foresee that more focused information will also be useful. For example, certain kinds of
architectural decisions affect the evolution of the system's software ecosystem in ways
that may not directly translate into costs but still have a powerful effect on whether the
system will thrive in the future, such as steering the system away from closed
interfaces and proprietary solutions toward open interfaces and solutions that can
available from a variety of suppliers.

11

Overall, investigating and developing answers to these four questions is the focus of
our proposed effort for the 2015 project period. In particular, we sought to develop,
document, and deliver our answers through research publications that were presented
at the 2015 Acquisition Research Symposium and elsewhere, as described later. We
similarly sought to articulate these answers in ways that can ultimately contribute to
the practice and guidance provided to the acquisition workforce. Effort targeting such
practice emerged primarily through interactions with the Assembled Capabilities
Working Group organized by The MITRE Corporation to support the C3CB Office
within the DASD(A).

Inter-project research coordination

We continue to believe we are and have been extremely well positioned to leverage
our recent research work and results [AlS10, ScA08, ScA11, ScA12a, ScA12b,
ScA13a, ScA13b, ScA13c, ScA14a, ScA14b, ScA15a] with the effort described in this
Final Report. We have continued to build on our current research efforts in OSS [e.g.,
Sca10] and software requirements-architecture interactions [ScA08, Sca09], as well as
our track record in prior acquisition research studies. Similarly, we have found recent
related research supported by the DoD addressing related issues in OSS [HiW10] also
influences our proposed effort. In addition, our effort builds from and contributes to
research on software system acquisition within the DoD, focusing on software reuse
[MaS12], SPLs [GuW10, BeJ10], open innovation and emerging software component
markets [GuW12]. We thus believe our complementary research places us at an
extraordinary advantage to conduct the proposed study that addresses a major
strategic acquisition goal of the DoD and the military services [DoDOSA11].

Prospects for longer-term Acquisition-related research

Most large academic, business, or government enterprises are orienting their major
system acquisition programs around the adoption of an OA systems strategy. This in
turn increasingly encourages the adoption, development, use, and evolution of OSS
components within an overall OA system. This is especially true for command and
control systems and other business enterprise systems that must support Web-based
or mobile devices. Thus, there is a significant need for sustained research that
investigates the interplay and inter-relationships between (a) current/emerging
guidelines for the acquisition of software-intensive systems, and (b) how secure,
reusable software product lines [MaS12, WoS11] that employ an OA incorporating
OSS/CSS component products (e.g., widgets, apps, and mashups) and their
production processes [ScA13b], are essential to improving the buying power and cost-
reduction effectiveness of software-intensive program acquisition efforts. Thus, there is
a significant need for sustained research that investigates the interplay and inter-
relationships between:

• (a) current/emerging guidelines for the acquisition of software-intensive systems
within the DoD community (including contract management and software
development issues), as well as emerging research issues within the software
engineering community that can contribute to and benefit the DoD community in

12

the near-future [ScA16];

• (b) how secure, reusable software product lines [MaS12, WoS11] that employ an
OA incorporating OSS/CSS component products (e.g., widgets, apps, and
mashups) and their production processes [ScA13b], are essential to improving the
BBP and cost-reduction effectiveness of software-intensive program acquisition
efforts; and

• (c) how (a) and (b) contribute to advances and new insights for how best to realize
the Better Buying Power initiatives [Ken15] addressing open architecture systems
that may incorporate open source software components and closed source
software components that are subject to different, possibly conflicting Intellectual
Property (IP) licenses and cybersecurity requirements.

Research Results

Our research studies and results are included in the remaining chapters of this
Final Report as five individual research publications. Each is briefly described in turn.

The first publication, appearing as Chapter 2 in this Final Report, focuses attention to
the key problem addressed by our acquisition research effort throughout 2015. This
paper, Achieving Better Buying Power through Acquisition of Open Architecture
Software Systems for Web-Based and Mobile Devices, was presented at the 12th
Annual Acquisition Research Symposium, in Monterey, CA, in May 2015 [ScA15a]. As
this paper summarizes our key acquisition research results, we choose to highlight
and summarize the key issues/findings here, while the report in Chapter 2 provides the
details.

• Acquisition program managers/staff (including in-house legal counsel) may not
understand how software licenses affect OA system design, and how OA system
design affects software licenses.

• Software license obligations and rights propagate through system development life
cycle activities in ways not well understood by system developers, integrators,
end-users, or acquisition managers.

• Different acquisition programs within the DoD and other government agencies may
independently re-interpret software component licenses to mean different
obligations are implied and different rights are received.

• Failures to understand software license obligation and rights propagation can
reduce DoD buying power, increase software life cycle costs, and reduce
competition.

• Software producers often provide idiosyncratic, heterogeneous licenses that
generally conform to common business models and common license types.

• In the presence of heterogeneously licenses software elements, it is unclear what
kinds of trade-offs can/should software system integrators or program acquisition
staff make in order to maximize overall system development agility and
evolutionary adaptation address.

• Software IP license and cybersecurity obligations and rights must be tracked,

13

accounted, and managed, but it is unclear if the acquisition workforce is prepared
to do so.

• The DoD and other government agencies would financially and administratively
benefit from engaging the development and deployment of an open source,
automated software obligations and rights management systems (SORMS)
solution that could be standardized, disseminated, and deployed for use within
acquisition program offices.

• It is unclear and likely too early to identify how best to cultivate and sustain DoD
online storefronts and software ecosystem.

• All of these findings can be both anticipated and mitigated through action and
careful investment that best enable BBP 3.0 compatible solutions.

Last, in this publication, we identify and recommend three key opportunity area for
future acquisition research and development that can help mitigate the issues just
identified, as well as help to further realize BBP objectives and goals [Ken15], as
follows. First, we need to research and develop worked examples of well-formed
OA system architectures that are appropriate for C2 system capabilities, and that
accommodate Web-based apps, widgets, and mobile devices. Such OA system
architectures should specify representative and standardized component interfaces.
The examples should also include carefully specified shared agreements that account
for different IP licenses and diverse business models of software producers, system
integrators, and multiple end-user organizations who must collectively act in ways that
enable agile development and adaptive evolution of demonstrable C2 system
capabilities.

Second, we need robust open source models of application security processes
and reusable cybersecurity requirements that account for exigencies in
heterogeneous app/widget software ecosystems, account for software evolution
dynamics, formation and continuous improvement of automation-compatible shared
agreements, and more. These models should account for description of current
process practices, prescription of required verification and validation activities and
outcome (deliverable documents or online artifacts), and proscription of what
tools/techniques to use, by whom, when, where, and how.

Third, we need precise domain specific languages for specifying, and automated
analysis tools for continuously assessing and continuously improving,
cybersecurity and IP license requirements for dynamically evolving Web/mobile
C2 system-based capabilities. The DSLs needed must be able to specify and
operationalize the shared agreements between different DoD organizations,
government agencies, and commercial enterprises involved in producing, integrating,
or evolving component-based OA C2 system capabilities.

Overall, none of these three opportunity areas for acquisition research require
fundamental scientific breakthroughs—instead, they require applied acquisition
research effort that is focused on producing practical results. But as such research
does call for new technology solutions that can support diverse acquisition programs,

14

identifying the appropriate funding vehicle or agency is a challenge, and one that may
be beyond the current level of resources available for the small-scale research efforts
currently funded by the Acquisition Research Program. Consequently, this publication
presents results that primarily address our research questions 3 and 4 identified
above.

The second publication, appearing as Chapter 3 in this Final Report, focuses attention
to the identifying emerging research issues in the Defense OA ecosystem [ScA16a]. In
contrast to the other acquisition research publications in this Final Report, this
publication seeks to engage the software engineering R&D community (i.e., software
producers and system integrators) that support industrial practices in the Defense
Community, and by extension, the Defense Acquisition Community. Specifically, this
publication identifies six software engineering research challenges whose solutions we
believe will both contribute to OA system development practices, as well as to new
practices within the broader acquisition and Defense Community concerned with OA
and BBP objectives. Consequently, this publication presents results that primarily
address our research questions 1 and 2, and thus has been submitted for publication
at the Workshop on Software Engineering and Industrial Practice, International Conf.
Software Engineering, May 2016.

The third publication, appearing as Chapter 4 in this Final Report, focuses attention to
the Life Cycle Activities for Acquiring Software-Based Assembled Capabilities
[ScA15b]. This publication was developed and electronically circulated during the
Summer 2015 within the Assembled Capabilities Working Group, to support the
DASD(A) office for C3CB. This publication was produced in response to ongoing
discussion of technical challenges arising in the proposed acquisition and
development of new software elements that include Web-based or mobile devices in
support of C3CB system applications. The fourth publication, appearing as Chapter 5
in this Final Report, focuses attention to the Starting Assumptions on Life Cycle
Activities for Acquiring Software-Based Assembled Capabilities, Assembled
Capabilities Working Group, Working Notes, electronically disseminated 28 July2015.
It is a companion publication to that just described, and was circulated for comment,
review, discussion and revision within the ACWG. Both of these two publications
describe technical details that arose as we sought to take the findings from [ScA13a,
ScA14a, ScA15a], make them relevant for use to different program offices participating
in the ACWG, and to identify and disambiguate misunderstandings that were detected,
all under the aegis of the ACWG in support of the DASD(A) C3CB office. Together,
these two publications present results that address our research questions 1, 3 and 4.

The fifth and final publication, appearing as Chapter 6 in this Final Report, focuses
attention to issues, challenges, and opportunities in OSS system development for
Aerospace and Defense applications [ScA16b]. This publication constitutes an invited
tutorial presentation (invited in Fall 2015) to be presented at the 2016 Ground
Systems Architecture Workshop, hosted by The Aerospace Corporation, Los Angeles,
CA, on 29 February 2016. The target audience for this presentation is contractors,
program managers, and others within the Defense Community who are engaged in the
production and/or integration of software elements into OA systems, including those

15

for C3CB applications. This publication presents results that address our research
questions 1, 2, 3 and 4. This publication is therefore the more comprehensive in
scope, as well as describing and integrating our diverse acquisition research efforts up
to this time.

Overall, we are grateful for the support and funding we have received that enabled our
acquisition research to continue, and as documented in this Final Report.

Acknowledgements

Preparation of this report and all work products therein benefitted from a research
grant, #N00244-15-1-0010 from the Acquisition Research Program at the Naval
Postgraduate School, Monterey, CA. None of the content of this Final Report has
been reviewed, approved, or endorsed by the ARP, NPS, US Navy, Department of
Defense or any other government agency. The work presented is solely the
responsibility of the authors.

References

[AlS10] Alspaugh, T.A, Scacchi, W., and Asuncion, H. (2010). Software Licenses in
Context: The Challenge of Heterogeneously Licensed Systems, J. Assoc. Information
Systems, 11(11), 730-755, November 2010.

[AlS13] Alspaugh, T.A. And Scacchi, W. (2013). Ongoing Software Development
without Classical Requirements, Proc. 21st Intern. Conf. Requirements Engineering,
Rio de Janeiro, BZ, 165-174, July 2013.

[An12] Anderson, S. (2012). Software Licensing – Smart Spending in These Changing
Times, CHIPS: The Department of the Navy's Information Technology Magazine, July,
28-31.

[BeJ10] Bergey, J., & Jones, L. (2010). Exploring acquisition strategies for adopting a
software product line approach. Proc. 7th Acquisition Research Symposium. Vol. 1,
111-122, Naval Postgraduate School, Monterey, CA.

[CoR14] Cochran, J. and Reed, H. (2014). DoD Widget Working Group Report, 13
March 2014.

[DISA12] Defense Information Systems Agency (2012). DOD Open Source and
Community Source Software Development in Forge.mil, SoftwareForge Document ID
– doc26066doc26066, http://bit.ly/16abVh1, accessed 30 October 2012

[DISA12a] Defense Information Systems Agency (2012). Strategic Plan: 2013-2018,
Version 1.0,
http://www.disa.mil/News/PressResources/2012/~/media/Files/DISA/About/Strategic-
Plan.pdf, accessed 30 October 2012.

[DoDOSA11] Department of Defense Open Systems Architecture (2011). Contract
Guidebook for Program Managers, Vol. 0.1, December,
https://acc.dau.mil/OSAGuidebook

16

https://acc.dau.mil/OSAGuidebook
http://www.disa.mil/News/PressResources/2012/~/media/Files/DISA/About/Strategic-Plan.pdf
http://www.disa.mil/News/PressResources/2012/~/media/Files/DISA/About/Strategic-Plan.pdf
http://bit.ly/16abVh1

[GGM14] George, A., Galdorisi, G., Morris, M., and O'Neil, M. (2014). DoD Application
Store: Enabling C2 Agility, Proc. 19th Intern. Command and Control Research and
Technology Symposium, Paper-104, Alexandria, VA, June 2014.

[GMH13] George, A., Morris, M., Galdorisi, G., Raney, C., Bowers, A., and Yetman, C.
(2013) Mission Composable C3 in DIL Information Environments using Widgets and
App Stores. Proc. 18th Intern. Command and Control Research and Technology
Symposium, Paper-036, Alexandria, VA, June 2013.

[GMO14] George, A., Morris, M. and O'Neil, M. (2014). Pushing a Big Rock Up a
Steep Hill: Lessons Learned from DoD Applications Storefront, Proc. 11th Annual
Acquisition Research Symposium, Vol. 1, 306-317, Naval Postgraduate School,
Monterey, CA.

[GuC10] Guertin, N. and Clements, P. (2010). Comparing Acquisition Strategies: Open
Architecture versus Product Lines, Vol. 1, 78-90, Proc. 7th Acquisition Research
Symposium, Naval Postgraduate School, Monterey, CA.

[GSS15] Guertin, N.H., Sweeney, R., and Schmidt, D.C. (2015). How the Navy Can
Use Open Systems Architecture to Revolutionize Capability Acquisition: The Naval
OSA Strategy Can Yield Multiple Benefits. Proc. 12thAnnual Acquisition Research
Symposium, Monterey, CA, NPS-AM-15-004, May 2015.

[GuW12] Guertin, N. and Womble, B. (2012). Competition and the DoD Marketplace,
Proc. 9th Acquisition Research Symposium. Vol. 1, 76-82, Naval Postgraduate
School, Monterey, CA.

[HiW10] Hissam, S., Weinstock, C.B., and Bass, L. (2010). On Open and Collaborative
Software Development in the DoD, Vol. 1, 219-235, Proc. 7th Acquisition Research
Symposium, Naval Postgraduate School, Monterey, CA.

[Iba13] Ibanez, L. (2013). Ozone Widget Framework required to be open source under
congressional law, 5 March 2013, http://opensource.com/education/13/2/ozone-
widget-framework , accessed 8 June 2013. Also see, Ozone Widget Framework,
https://www.owfgoss.org/

[JoB11] Jones, L. and Bergey, J. (2011). An Architecture-Centric Approach for
Acquiring Software-Reliant Systems, Proc. 8th Acquisition Research Symposium, Vol.
1, 32-49, NavalPostgraduate School, Monterey, CA.

[Ken15] Kendall, F. (2015). Implementation Directive for Better Buying Power 3.0, 9
April 2015, http://www.acq.osd.mil/fo/docs/betterBuyingPower3.0%289Apr15%29.pdf .
Also see Defense Acquisition University, Better Buying Power, http://bbp.dau.mil/

[Ke12] Kenyon, H. (2012). DoD, Intel Officials Bullish On Open Source Software;
Government-wide Software Foundation In The Mix, AOL Defense, October 2012.

[MaS12] Mactal, R., Spruill, N. (2012). A Framework for Reuse in the DoN. Proc. 9th
Acquisition Research Symposium, Vol.1, 149-164, Naval Postgraduate School,
Monterey, CA.

[MadB11] Madachy, R, Boehm. B., Clark, B., Tan, T., and Rosa, W. (2011). US DoD
Application Domain Empirical Software Cost Analysis, 2011 Intern. Symp. Empirical

17

http://bbp.dau.mil/
http://www.acq.osd.mil/fo/docs/betterBuyingPower3.0(9Apr15).pdf
https://www.owfgoss.org/
http://opensource.com/education/13/2/ozone-widget-framework
http://opensource.com/education/13/2/ozone-widget-framework

Software Engineering and Measurement, Banff, Canada, 392-395.

[MarL11] Martin, G. and Lippold, A. (2011). Forge.mil: A Case Study for Utilizing Open
Source Software Inside of Government, Open Source Systems, Springer, 334-337.

[ReB12] Reed, H., Benito, P., Collens, J., and Stein, F. (2012). Supporting Agile C2
with an Agile and Adaptive IT Ecosystem, 17th. Intern. Command and Control
Research and Technology Symposium (ICCRTS), Paper-044, Fairfax, VA, June 2012

[RNC14] Reed, H., Nankervis, J., Cochran, J., Parekh, R., and Stein, F. (2014). Agile,
Adaptive IT Ecosystem: Results, Outlook, and Recommendations, Proc. 19th Intern.
Command and Control Research and Technology Symposium (ICCRTS), Paper-011,
Arlington, VA, June.

[Sca09] Scacchi, W., (2009). Understanding Requirements for Open Source Software,
in K. Lyytinen, P. Loucopoulos, J. Mylopoulos, and W. Robinson (eds.), Design
Requirements Engineering: A TenYear Perspective, LNBIP 14, Springer Verlag, 467-
494, 2009.

[Sca10] Scacchi, W. (2010). The Future of Research in Free/Open Source Software
Development, Proc. ACM Workshop Future of Software Engineering Research
(FoSER), Santa Fe, NM, 315-319.

[ScA08] Scacchi, W. and Alspaugh, T., (2008). Emerging Issues in the Acquisition of
Open Source Software within the U.S. Department of Defense, Proc. 5th Acquisition
Research Symposium, NPS-AM-08-036, Naval Postgraduate School, Monterey, CA,
May.

[ScA11] Scacchi, W. and Alspaugh, T., (2011). Advances in the Acquisition of Secure
Systems Based on Open Architectures, Proc. 8th Acquisition Research Symposium,
Vol. 1, Naval Postgraduate School, Monterey, CA.

[ScA12a] Scacchi, W. and Alspaugh, T., (2012a) Understanding the Role of Licenses
and Evolution in Open Architecture Software Ecosystems, J. Systems and Software,
85(7), 1479-1494, July 2012.

[ScA12b] Scacchi, W. and Alspaugh, T., (2012b). Addressing Challenges in the
Acquisition of Secure Software Systems with Open Architectures, Proc. 9th
Acquisition Research Symposium, Vol. 1, 165-184, Naval Postgraduate School,
Monterey, CA.

[ScA13a] Scacchi, W. and Alspaugh, T., (2013a). Streamlining the Process of
Acquiring Secure Open Architecture Software Systems, Proc 10th Annual Acquisition
Research Symposium, Monterey, CA, 608-623, May 2013.

[ScA13b] Scacchi, W. and Alspaugh, T. (2013b). Processes in Securing Open
Architecture Software Systems, Proc. 2013 Intern. Conf. Software and System
Processes, 126-135, San Francisco, CA, May 2013.

[ScA13c] Scacchi, W. and Alspaugh, T. (2013c). Challenges in the Development and
Evolution of Secure Open Architecture Command and Control Systems, Proc. 18Th

Intern. Command and Control Research and Technology Symposium, Paper-098,
Alexandria, VA, June 2013.

18

[ScA14a] Scacchi, W. and Alspaugh, T. (2014a). Achieving Better Buying Power
through Cost-Sensitive Acquisition of Open Architecture Software Systems. Proc 11th
Annual Acquisition Research Symposium, Monterey, CA, NPS-AM-14-C11P07R01-
036, May 2014.

[ScA14b] Scacchi, W. and Alspaugh, T. (2014b). Cost-Sensitive Acquisition of Open
Architecture Software Systems for Mobile Devices, Invited Presentation, MITRE-
ATARC Workshop on Challenges in Legal and Acquisition, Federal Mobile Computing
Summit, Washington, DC, 19 August 2014.

[ScA14c] Scacchi, W. and Alspaugh, T. (2014c). Reasoning about the Security of
Open Architecture Software Systems for Mobile Devices, Invited Presentation, Federal
Mobile Computing Summit, Washington, DC, 20 August 2014.

[ScA15a] Scacchi, W. and Alspaugh, T. (2015a). Achieving Better Buying Power
through Acquisition of Open Architecture Software Systems for Web-Based and
Mobile Devices, Proc. 12th Annual Acquisition Research Symposium, Monterey, CA,
NPS-SYM-AM-15-088, May 2015.

[ScA15b] Scacchi, W. and Alspaugh, T. (2015b). Notes on Life Cycle Activities for
Acquiring Software-Based Assembled Capabilities, Assembled Capabilities Working
Group, Working Notes, electronically disseminated 30 June 2015.

[ScA15c] Scacchi, W. and Alspaugh, T. (2015c). Starting Assumptions on Life Cycle
Activities for Acquiring Software-Based Assembled Capabilities, Assembled
Capabilities Working Group, Working Notes, electronically disseminated 28 July2015.

[ScA16a] Scacchi, W. and Alspaugh, T. (2016a). Beyond Open Architecture: Issues,
Challenges, and Opportunities in Open Source Software Development (OSSD) for
Aerospace and Defense Applications. 2016 Ground Systems Architecture Workshop,
The Aerospace Corporation, Los Angeles, CA, 29 February 2016.

[ScA16b] Scacchi, W. and Alspaugh, T. (2016). Emerging Research Issues in the
Defense Open Architecture Ecosystem, Workshop on Software Engineering and
Industrial Practice, International Conf. Software Engineering, May 2016 (submitted for
publication).

[ScB12] Scacchi, W., Brown, C. and Nies, K. (2012). Exploring the Potential of Virtual
Worlds for Decentralized Command and Control, Proc. 17th. Intern. Command and
Control Research and Technology Symposium (ICCRTS), Paper 096, Fairfax, VA,
June 2012.

[Tak12] Takai, T.M. (2012). Department of Defense Mobile Device Strategy, Version
2.0, Office of the DoD Chief Information Officer, May 2012.
http://www.defense.gov/news/dodmobilitystrategy.pdf .

[WoS11] Womble, B., Schmidt, W., Arendt, M., and Fain, T. (2011). Delivering Savings
with Open Architecture and Product Lines, Proc. 8th Acquisition Research
Symposium, Vol. 1, 8-13, Naval Postgraduate School, Monterey, CA.

19

http://www.defense.gov/news/dodmobilitystrategy.pdf

Chapter 2:

Achieving Better Buying Power through Acquisition of
Open Architecture Software Systems for Web and

Mobile Devices

20

Achieving Better Buying Power through Acquisition of Open
Architecture Software Systems for Web and Mobile Devices

Walt Scacchi and Thomas Alspaugh
Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3455 USA

Abstract

Many people within large enterprises rely on up to four Web-based or mobile devices for their
daily work routines—personal computer, tablet, personal and work-specific smartphones. Our
research is directed at identifying, tracking, and analyzing software component costs and cost
reduction opportunities within acquisition life cycle of open architecture (OA) systems for such
Web-based and mobile devices. These systems are subject to different intellectual property
license and cybersecurity requirements. Our research goal is to create a new approach to
address challenges in the acquisition of software systems for Web-based or mobile devices
used within academic, business, or government enterprises. Acquisition personnel in such
enterprises will increasingly be called on to review and approve choices between functionally
similar open source software (OSS) components, and commercially priced closed source
software (CSS) components, to be used in the design, implementation, deployment, and
evolution of secure OA systems. We seek to make this a simpler, more transparent, and more
tractable process. Finally, this acquisition research supports and advances a public purpose
by investigating acquisition challenges arising from the adoption and deployment of secure
OA software systems for Web-based or mobile devices.

Overview

The Department of Defense, other government agencies, and most large-scale business
enterprises continually seek new ways to improve the functional capabilities of their software-
intensive systems with lower acquisition costs. The acquisition of open architecture (OA)
systems that can adapt and evolve through replacement of functionally similar software
components is an innovation that can lead to lower cost systems with more powerful
functional capabilities. OA system acquisition, development and deployment are thus seen as
an approach to realizing Better Buying Power (BPP) goals for lowering system costs,
achieving technical excellence, enabling innovation, and advancing the acquisition workforce.

Our research identifies and analyzes how new software component technologies like apps
and widgets for Web-based and/or mobile devices, along with their intellectual property (IP)
license and cybersecurity requirements interact to drive down (or drive up) total system costs
across the system acquisition life cycle. The availability of such new scientific knowledge and
technological practices can give rise to more effective expenditures of public funds and
improve the effectiveness of future software-intensive systems used in government and
industry. Thus, a goal of this presentation is to explore new ways and means for achieving
cost-sensitive acquisition of OA software systems, as well as identifying factors that can
further decrease or increase the costs of such systems at this time.

We begin by briefly reviewing to identify a set of recent trends in the development of OA

21

software systems that intend to develop more capable OA systems. These trends include the
transition to adoption of small-form factor software components as distinct applications
(standalone and plug-in “apps”) and widgets that exploit modern Web capabilities. We then
turn to examine some key goals of the BBP 3.0 initiative [Ken14] that direct attention to
adoption of OA system development practices that affect acquisition practices. Next, we
identify a new set of emerging challenges to achieving BBP through OA software systems.
We then identify three new practices to realize the cost-effective acquisition of OA Software
systems.

Recent Trends Affecting Better Buying Power through OA Systems

We find there are four broad trends that mediate the cost-effectiveness and buying power
of emerging OA system acquisition efforts. These include: (a) the move towards shared,
multi-party acquisition and agile development of new OA systems across compatible
software ecosystems; (b) exploitation of new software component technologies compatible
with Web and mobile devices; (c) growing diversity of cybersecurity challenges to address
during system development; (d) new software development business models for
app/widget development and deployment. Each is examined in turn.

A. Multi-party acquisition and development system ecosystems – Many in the
Defense community seek to embrace the acquisition and development of agile command
and control (C2) and related enterprise systems [AGV14, GGM14, GMH13, GuW12,
RBC12, ScA12b, ScA13c, Sca14a]. Such systems are envisioned to arise from the
assembly and integration of system elements (application components, widgets, content
servers, networking elements, etc.) within a software ecosystem of multiple producers,
integrators, and consumers who may supply or share the results of their efforts. The
assembly and integration of system elements produces “assembled capabilities for C2
systems” (AC-C2). Our purpose is to identify how our approach to the design of secure OA
systems can be aligned with this emerging vision for agile C2 system development and
adaptive deployment. We also focus on design of OA system capability involving office
productivity and social media components [AGV14] that increasingly may be configured
within a secure AC-C2 [ScA11, ScA12a, ScA13b].

The design and development of agile C2 systems follows from two sets of principals: one
set addressing guidelines/tenets for multi-party engineering (MPE) of C2 system
components; the other set addressing attributes of agile and adaptive ecosystems (AAE)
for producing AC-C2s or C2 system elements [RBC12, RNC14, ScA14a, ScA14b,
ScA14c]. To help understand what we mean by a software ecosystem, we use Figure 1 to
represent where different parties are located across a generic software supply networks or
multi-party relationships that emerge to enable the software producers to develop and
release products that are assembled and integrated by system integrators for delivery to
end-user organizations, via online storefronts [GGM14, GMH13].

As noted, OA system components can include software applications (apps) and widgets.
Widgets are lightweight, single-purpose web-enabled applications that users can configure
to their specific needs [AGV14, Giz11, GMH13, ScA13b]. Widgets can provide summary
information or a limited view into a larger application that can be used alongside related

22

widgets provides an integrated view, as required by users.

The lower part of Figure 1 also identifies where elements of shared agreements like IP
licenses or cybersecurity requirements enter into the ecosystem, and how the assembly of
components into a configured system or subsystem architecture by system integrators
effectively (and perhaps unintentionally) determines which IP license or cybersecurity
obligations and rights get propagated to consumer or end-user organizations. Agreement
terms and conditions acceptable to consumer/end-user organizations flow back to the
integrators. This helps reveal where and how shared agreements will mix, match, mashup,
or encounter semantic mis-matches at the system architecture level, which is one reason
why we use (and advocate) explicit OA system models.

Overall, a move towards MPE and AAE substantiates a path towards decentralized OA
system development, integration, and deployment [DoD12, Giz11].

__

Figure 1. A generic software ecosystem supply network (upper part), along with a sample
elaboration of producers, software component applications, and licenses for OA system

components they employ (lower part) [ScA12a].

23

This decentralization will engender acquisition and development of heterogeneously-
licensed systems (HLS), whereby different software components (apps, widgets) will be
subject to different IP licenses [AlA13, AlS10], as well as to different cybersecurity
requirements [DAG15, ScA12b, ScA13a, ScA13b, ScA13c]. This implies that such
components, their IP licenses, and cybersecurity requirements will be subject to ongoing
evolution across a diversity of methods, shown in Figure 2 [ScA12a, ScA13b]. These will
create a new generation of challenges for the acquisition workforce, in terms of training,
new work and contract management practices, and need for automated assistance to track
and manage oversight of policy compliance (e.g., for alignment with BPP and cybersecurity
assessment). Without automated assistance, it appears that the acquisition workforce will
be overwhelmed with technical details that interact with acquisition, development, and/or
system integration contracts and software component IP licenses and cybersecurity
requirements. Otherwise, these conditions suggest that acquisition management practices
can complicate acquisition [GGM14], and thus potentially mitigate the benefits of BBP that
can arise from MPE and AAE for C2 systems.

Figure 2. The kinds of common evolutionary changes that arise during OA software
component development, deployment and sustained usage.

B. Moving towards shared development of Apps and Widgets as OA system
components – Future OA systems for agile C2 may be configured by system integrators,
end-user organizations, or war-fighters in the field. This would be accomplished through
access to online repositories of software apps or user-interface widgets such as The Ozone
Widget Framework (OWF), a government open source software (GOSS) effort that is central
to such agile OA system development. The OZONE family of products includes the OWF
and the OZONE Marketplace, the marketplace being an online repository whose operation is
similar in kind to the online app stores by Apple and Google [ScA13b]. These products are
built to fit the needs of human centered fusion activities in network centric warfare
environments. The OZONE family of products is designed as a presentation layer toolkit

24

that can be rapidly deployed in a variety of mission contexts ranging from strategic
planning to enable the creation of a real-time common operational picture and situation
awareness applications. Figure 3 displays examples of OWF-based widgets operating in a
Web browser, while Figure 4 shows OWF widgets deployed for use on a mobile device.

Figure 3. OWF Widgets running within a Web browser.

Figure 4. OWF Widgets running on a mobile device.

25

C. Growing diversity of challenges in cybersecurity – New types of software
components like apps and widgets must be developed, deployed, and sustained in ways
compatible with existing cybersecurity requirements. They must also be later adapted to
accommodate emerging cybersecurity requirements that are not yet apparent. For
example, there is growing interest in accommodating not just mobility, but also “Bring Your
Own Device” (BYOD) capabilities.

BYOD suggests that end-users and war fighters are bringing their own mobile devices with
themselves into the field to support their mission. However, BYOD clearly exacerbates the
technical challenges of cybersecurity assurance, often in ways that cannot be readily
anticipated, as when independently developed components co-evolve in conflict with one
another [Wei14]. Nonetheless, acquisition policy necessitates cybersecurity vulnerability
and exposures be addressed [DAG15]. But at present, it is unclear what new kinds of
requirements these new OA system components bring to the acquisition workforce. For
example, a move to adopt mobile apps and/or mobile widgets means these OA system
components must pass though an application security process for “vetting” these
components.

Vetting entails establishing what cybersecurity requirements are to be verified, how they
are to be validated, as well as where, when and by whom these activities should be
performed. One approach is to assume the vetting can be performed by a centralized
authority, such as by the operator of the Ozone Marketplace. But it is not clear there will
ever only be one such authority.
Instead, if we foresee multiple
marketplaces, which are already
appearing both in GOSS and
industrial online settings, then the
acquisition workforce will be
challenged in how best to
determine which cybersecurity
requirements must be addressed,
validated, and compliance certified,
as well as by whom and how often.
Consider the example, seen in
Figure 5, of a widget for
“emergency response incident
command system,” developed for
the Dept. of Homeland Security
[Roc15]. How do its components
(possibly GOSS) compare or
interoperate with widgets/AC-C2
from DoD agencies or program
offices concerned with C2 system
interoperability or AC-C2?

Figure 5. AC-C2 style widget from the next-
 generation incident response system for DHS.

26

A move to widgets also presents new kinds of cybersecurity challenges when two or more
widgets are configured together with one or more apps to create a mashup that provides an
agile system capability. This situation refers to the technical challenges of inter-widget
communication. Such component-component communication can be technically realized in
different ways, such as via ad hoc, “open standards,” or publish-subscribe messaging
interfaces, as well as whether point-to-point or as configured through a dynamic processing
mashup [CFG13, End13]. While OA system may rely on “open standards” style widget
interfaces and communications patterns, widget communication/interface standards/
interfaces are still very new technologies and techniques. Thus, it is unclear which will
survive and be widely adopted [End13a].

Similarly, knowledge about the proper usage of widget components is unclear, and thus is not
yet ready for compliance assessment within current acquisition practices. The technical
challenge is further complicated when apps/widgets are acquired from different online
marketplaces. Different marketplaces may rely on different schemes for specification and
interchange of shared data semantics between autonomously developed components. This in
turn hinges on the expertise of OA system integrators, end-users, or war-fighters to recognize
how, where, and when the semantics of technical data interchange arise and to what
consequences via component-component API alignments (to avoid mis-matches), data type
representations, data formats (e.g., “CSV” vs. .xls vs. XML), data naming conventions (for
resource discovery vs. data modeling ontology), data range value limits, exceptional values,
data-flow control signals, etc. These are still new technical problems that are yet to be readily
resolved or to have development/usage guides.

D. New business models for OA software component development and use – New
business models imply differentiated IP licenses and contracting practices. Given our
discussion up to this point, along with reference to our recent acquisition research studies
[AlA13, ScA11, ScA12b, ScA13b], this means different obligations and rights will be
transferred from component producers to system integrators and end-user organizations.
Some licenses are “buy and pay now,” while others are “free now, pay later, based on usage,”
others are “many organizations (e.g., PEOs) will share purchase costs,” and so forth.

Acquisitions of new kinds of OA system components allow for new business models. These
include new models for software component producers, system integrators, and end-user
organizations. For example, new software and OA system development business models for
software app/widget development and deployment include (in no particular order): (1)
franchising; (2) enterprise licensing; (3) metered usage; (4) advertising supported; (5)
subscription; (6) free component, (7) paid service/support fees; (8) federation reciprocity for
shared development; (9) collaborative buying; (10) donation; (11) sponsored development;
(12) free/open source software (e.g., Government OSS – GOSS); and others [Hanf13].
Further, this list is not exhaustive; instead, it is only representative.

In contrast, for end-user organizations that involved in agile development of OA system
components, or an integrated system capability, there is a need to develop and codify their
own business models regarding OA software component development or system integration.
These business models are constituted through “shared agreements” that allow for sharing

27

the cost of component or integrated capability development and cybersecurity assurance
vetting across multiple parties (e.g., multiple Program Offices). However, these shared
agreements are also a core part of emerging MPE/AAE development practices. These
agreements must convey how OA component development or system integration costs and
security assurance will be shared, as well as how they will be sustained in the presence of
interacting software component development, deployment, and evolution processes and
practices [ScA13a]. Shared agreements denote the obligations the participating organizations
are willing to accept, in order to realize the provided rights they need. So shared agreements
can be expressed and assessed in the same manner, and with the same analysis tools and
techniques, as IP licenses and cybersecurity requirements [ScA13b, ScA13c].

Software acquisition costs easily become difficult to predict/manage given diversity of
business models, IP licenses, and implied software component cybersecurity assessment.
Development/usage cost sharing agreements can further complicate determination of
development cost, costs shares across organizations, and system costs over time as
business models, component licenses, and cybersecurity assessment requirements evolve
[ScA12a, ScA13a].

What kind of expertise do we expect the acquisition workforce to need in order to make
adoption of “component-based system capabilities” (including for mobile devices) agile,
adaptive, and practical across different commercial/governmental software
marketplaces/ecosystems? What kinds of acquisition guidance is needed for articulating and
streamlining Shared Agreements between multiple organizations participating in shared OA
component development and cybersecurity assurance? What kinds of acquisition
management practices and analysis tools are needed for the acquisition workforce to insure
cost savings and BBP in such settings? Addressing these questions is beyond the scope of
this paper, but these questions require follow-on acquisition research to resolve and answer.

Better Buying Power 3.0 Goals

Better Buying Power (http://bbp.dau.mil/) is part of DoD's initiative that sees continuous
improvement as the best approach to improving the performance of the defense acquisition
enterprise. BBP 3.0 [Ken14] identifies eight areas of focus that group a larger set of itemized
initiatives that offer the potential to restore affordability and realize technical excellence in
defense procurement and improve defense industry productivity. One of the eight areas
focuses on promoting or increasing competition, and this area includes an initiative to utilize
modular open system architectures to stimulate innovation [Ken14]. Technical innovations are
constrained by two categories of Intellectual Property (IP) rights available to the Government:
(a) technical data (TD – e.g., product design data, computer databases, computer software
documentation); and (b) computer software (CS – e.g., source code, executable code, design
details, processes, and related materials). These rights are realized through IP licenses
provided by system product or service providers (e.g., software producers) to the Government
customer, so long as the customer fulfills the obligations stipulated in the license agreement
(e.g., to indicate how many software users are authorized to use the licensed product or
service according to a fee paid).

As already noted, our acquisition research has focused on issues addressing OA systems

28

http://bbp.dau.mil/

and IP licenses since 2008 [ScA08], as well as forward to the acquisition of secure OA
systems for command and control (C2) and enterprise information systems [ScA11, ScA12b,
ScA13b], where security requirements can be expressed in a manner similar to IP obligations
and rights. Therefore, here we turn to identify how a sample of different goals of BBP 3.0
initiatives interact or relate to the trends and challenges examined so far in this paper. The
BBP goals are highlighted, and then followed by a brief examination.

• Promote effective competition – One central purpose for acquiring OA systems is to
increase the likelihood of creating and maintaining competitive environments among
system producers who can provide software components that can be replaced by
similar offerings by other component producers. We demonstrate how this can work
when system architectures are explicitly modeled, and their software components and
interconnections are similarly specified in an open manner [AlA13, ScA12a]. Such
openness also supports improved technology search and outreach, but enabling
retrieval of compatible OA system components from online (software app) storefronts.

• Use Modular Open Systems Architecture to stimulate innovation – Open system
architectures that can accommodate common components from alternative producers
requires that the components utilize standardized interfaces, whether in the form of
open Application Program Interfaces (APIs), standard data exchange protocols, and
standard data representations, formats, and meta-data, as well as utilization of open
source software (OSS) components [ScA08]. But also noted earlier, app and widget
components at present have a plethora of standardized interfaces, and it is unclear
which will survive, be sustained, be widely adopted (inside/outside of DoD), and be
evolved [End13a].

• Increase small business participation and opportunities – one way to increase
competition in the realm of OA systems is to identify where smaller scale software
applications (apps) or widgets can be utilized, which might be produced by innovative
small businesses or startup ventures which dominate much of the online markets for
Web-based or mobile device apps/widgets. Small businesses may further be
advantaged by their utilization of shared OSS infrastructure components, platforms, or
remote services, since large commercial contractors may not see sufficient profit
margins to develop proprietary alternatives. So OA systems that accommodate OSS
components that can integrate custom apps/widgets into innovative system capabilities
(AC-C2), may then realize new opportunities for DoD customers. Other small business
opportunities may similarly arise for such ventures that focus on emerging
cybersecurity assessment or tool development services.

• Improve our leaders’ ability to understand and mitigate technical risk – In looking
forward, there is potential interest in seeing the BPP initiative evolve to also address
risk as an implicit cost driver. This might allow or innovative ways and means to reduce
emerging risks through accelerated or “look ahead” system acquisition and
development approaches that emphasize increased reliance on rapid prototyping.

• Increase the use of prototyping and experimentation – The rapid development of Web-

29

based or mobile app mashups might be performed by appropriately trained end-users
or war-fighters [AGV14, End13]. A move towards OA systems for Web-based and
mobile devices that rely on apps/widgets retrieved from online marketplaces--apps
composed through interpretive software program “scripting” and mashup techniques--is
a clear example of this [End13, GMH13 GuW12, ScA13a]. Thus, it is not surprising to
find such emerging techniques being investigated and assessed for possible
production of new C2 capabilities [GGM14, GMH13, ScA13b].

• Achieve dominant capabilities through innovation and technical excellence – an overall
summary of the current BBP initiative is focusing attention of how to make acquisition
more agile, more innovative, and to develop a new generation acquisition workforce
that can enact acquisition processes that are technically excellent—thin and flexible
when needed, yet robust and cost-effective, while also being amenable to continuous
improvement. This is indeed a real challenge to fulfill, and beyond the scope of what
current acquisition practices are likely to achieve without targeted investment in
acquisition improvement research. To be clear, one just needs to consider emerging
opportunities (and potential asymmetric cybersecurity threats) that arise through the
desire to develop next-generation AC-C2 that are to be composed from apps/widgets
that can operate on Web-based/mobile devices. What are the best processes or
practices for acquiring, developing, and sustaining deployed systems that are to be
built using these new software technologies (e.g., apps/widgets for mobile devices)?
How should these processes and practices be adapted to accommodate personal
devices (e.g., Apple iPhones/iPads, Android phones/tablets, Blackberry 10 phones)
that individual war-fighters, joint force troops, or contracted service providers bring with
them into the battlespace? How must acquisition processes be best adapted to
accommodate and rely on software supply chains that arise around consumer-oriented
app marketplaces as possible ways/means for doing more (e.g., rapidly prototyping
warfighter composable C2 app/widget mashups [GMH13]) without more (e.g., war-
fighters who bring their own mobile computing devices for use in C2 contexts) [AGV14,
GGM14]? Once again, these are critical questions to address and resolve through new
acquisition research and supporting technology development.

Emerging Challenges in Achieving BBP through OA Software Systems for Web-based
and Mobile Devices

The business models and IP licenses for software components are tightly coupled: software
component licenses codify component producer business models. Said more simply, licenses
codify business models. So different software business models imply different software
license obligations and rights, and different license types reflect different possible business
models. Licenses are generally recognized as contracts regarding IP expressed through
terms and conditions that specify obligations and rights stipulated by the component's
producer to enable/constrain what can be done with the component by its integrator or end-
users. Understanding and assuring software IP obligations and rights is routinely a task for
acquisition offices, and thus a task to be competently performed by the acquisition workforce.

Obligations (like purchase costs/fees paid, or to insure access to open source software code
modifications) denote conditions, events, or actions imposed by a software producer (the

30

licensor) that must be fulfilled by the software integrator/customer enterprise (the licensee) in
order to realize the rights identified in the licenses (right to use; right to distribute copies; no
right to distribute modified copies, etc.). Note that software system integrators play a role is
shaping the obligations and rights imposed on customer enterprises based on choices they
make in how software component-based systems are designed, built, and deployed. So
where/who does system integration matters, as does whether customer enterprises that
acquire systems have policies that determine which software licenses (or business models)
they will accept.

Similarly, we note that “cybersecurity requirements” can also be expressed and analyzed in
terms of obligations and rights [ScA11, ScA12b]. This suggests the problems and solutions to
software component IP license management will be similar in kind or form to those for
cybersecurity assurance. Below, we just focus attention to software IP obligations and rights,
though the same consequences may apply to the cybersecurity of OA systems and
components.

There are many unstated consequences that can arise when software licenses are not well
understood. Here are some examples we have seen within the DoD context.

• Acquisition program managers/staff (including in-house legal counsel) may not
understand how software licenses affect OA system design, and vice-versa.
Component-based system design can determine which software licenses will fit, or
which can fit if the system design is altered to encapsulate desirable software
components with somewhat problematic license obligations or rights [ScA13a].

• Software license obligations and rights propagate through system development life
cycle activities in ways not well understood by system developers, integrators, end-
users, or acquisition managers. We have investigated and described many examples
of this in a recent paper that shows how license constraints are mediated by software
system design, build-integration, deployment, post-deployment support tools and
activities.

• Different acquisition programs within DoD and other government agencies may
independently reinterpret software component licenses. This realizes enterprise-wide
inefficiencies, as well as increases avoidable costs. It appears to be technically
possible to codify software component licenses by type or producer, especially with
regards to performative obligations and operational rights that Program Offices or
customer organizations seek. The license modeling techniques we have investigated
demonstrates the potential, practicality, and scalability of such possibility [AlA13,
ScA12a, ScA12b, ScA13b]. However, it may be most efficient and most effective for
DoD to have common legal interpretations for different licenses (or different business
models). Such interpretations could be common, if produced by a central legal
authority (e.g., Office of General Counsel). Alternatively, it may also be possible for
DoD and other government agencies to provide an open framework or (acquisition)
policy guidance whose purpose is to encourage software producers to not only provide
software licenses in current narrative forms, but also to provide them in computer
processable forms (using domain-specific languages) amenable to automated license

31

analysis. Once again, this is a form of guidance and training we can provide, but it is
not one that we can impose on anyone. We believe it is in the best interest of DoD and
other government agencies to employ software licenses that are both human readable
and formally processable though automated means, at least in terms of software
license obligation and right determinations.

• Failures to understand software license obligation and rights propagation can reduce
DoD buying power, increase software life cycle costs, and reduce competition.
Guidance from the OUSD for Acquisition, Technology, and Logistics recommends
programmatic adoption of different BBP 3.0 initiatives grouped into eight focus areas of
relevance as methods for innovation, continuous improvements, and doing more
without spending more. Acquiring licensed software components is a cost-generating
activity, whose costs/fees can be reduced while acquiring evermore agile and adaptive
software components and open architecture component-based systems. However,
software license non-compliance or worse, infringement, on the part of DoD will
generate costs, program delays, as well as reduce agility and adaptation, all of which
can be avoided. Such situations can and must be avoided through acquisition and
development practices with little/no additional cost to affect. Such practices can be
codified within open source business processes or open source computational
business process models that can be shared, customized to specific program needs,
redistributed and archived [ScA13b].

• Software producers often provide idiosyncratic licenses that generally conform to
common business models and common license types. This seems mainly to arise from
efforts by software producers to protect or update their business models in ways that
improve their financial yield or protect/lock-in their customer base. This in turn
generates demand for time, attention, and effort from legal counsel that support
acquisition programs, while also reducing the effectiveness and timeliness of program
acquisition efforts. DoD and other government agencies may be able to explicitly
specify in advance what kinds of generic software license obligations they will accept
and what kinds of generic software rights they seek, through their own explicit business
models. Such specifications can be codified and provided to software producers in
open source manner through software license acquisition policies. Software producers
might then separate license terms and conditions that do and do not address current
license acquisition policies, in order to streamline licensing design and analysis
practices for the mutual benefit of software producers, integrators, and customers.

• Software producers generally provide software licenses that are assumed to legally
dominate in systems composed of components from different software producers or
integrators. We refer to software systems (or systems of systems) composed from
components (e.g., apps, widgets) subject to different licenses as “heterogeneously-
licensed systems” (HLS) [AlS10, AlA13]. Popular Web browsers that are compatible
with widgets, apps, or plug-in components (e.g., Google Chrome, Mozilla Firefox,
Apple Safari) are subject to dozens of component licenses. Popular COTS software
components also sometimes encompass components subject to multiple licenses. In
both situations, the component producer asserts overall component license obligations

32

and rights in ways that are compatible with the licenses included therein (or so we
hope). But when we deploy components that are composed into complex system
architectures, or employ components that support on-demand download and implicit
integration of smaller components (widgets, plug-ins, scripts, etc.) from online stores,
then analysis of license obligation and rights propagation or encapsulation matters.
Such technical details can readily overwhelm program acquisition managers and legal
staff, thereby reducing the agility and adaptation of component-based system
development/deployment. Provision of automated license analysis capabilities within
software license management systems should be able to overcome this situation.

• Given the challenges of HLS, it is unclear what kinds of trade-offs can/should software
system integrators or program acquisition staff make in order to maximize overall
system development agility and evolutionary adaptation address. This situation is not
unique to DoD, but is in fact widespread. However, as DoD and other government
agencies move to embrace agile and adaptive component-based software systems to
realize new, more timely system capabilities at lower cost compared to legacy
approaches, then there is need to provide guidance for how to identify and manage
such trade-offs. Failure to recognize the challenges of analyzing and managing HLS
systems translates into opportunities lost while avoidable costs increase. We can and
should do better than this. But this will require that resources be allocated to identify,
articulate, train, and iteratively refine best practices about how, where, when, and why
these trade-offs arise. Such knowledge should therefore be captured, codified, shared,
accessed, updated, and redistributed in an open source manner.

• Software IP license and cybersecurity obligations and rights must be tracked,
accounted, and managed. A move to component-based open architecture systems
increases organizational overhead for managing software licenses. This overhead can
be reduced, or better transformed into productive, value-adding business practices,
through use of automated software obligations and rights management systems
(SORMS). While SORMS exist and are routinely used by software component
producers (to keep track of who has a licensed copy of their software products),
SORMS do not exist at this time for software system integrators or customer
enterprises.

• DoD and other Government agencies would financially and administratively benefit
from engaging the development and deployment of an open source automated
SORMS. This may represent the lowest cost means for simplifying license analysis
while maximizing the benefits of agile and adaptive component-based software
systems acquisition within the DoD and other government agencies. SORMS can help
to better DoD software buying power. Similarly, an open source SORMS would also be
of value to smaller or startup software producers who may best be able to create
innovative and agile software components (widgets) in cost-competitive ways. Last, an
open source SORMS intended for software integrator/customer enterprises would be
of value to large, established DoD software producers, as a medium through which
larger-scale software component acquisitions (e.g., components acquired for
standardized deployment throughout an enterprise can be negotiated and simplified.

33

• How best to cultivate and sustain DoD online storefronts and software ecosystem. The
acquisition of development of some DoD Web/mobile widgets may be strongly
influenced by commercially available apps that are not secure, nor DoD information
assured. War-fighters and others are often drawn to the best available technologies,
including apps found in commercial online stores. Who decides whether apps in these
conditions should be migrated, secured, and assured to meet DoD requirements?
Alternatively, allowing such apps to be used as widgets for rapid prototyping new DoD
AC-C2 may represent a promising new direction to stimulate innovation. Subsequently,
this entails the needs to better understand possible commercial-DoD online storefront
interactions and interdependencies, as well as articulating the needs of DoD
Agency/Program Office-specific storefronts. Next, we expect to see redundant app
offerings across multiple storefronts, including challenges of identifying common apps
of different versions or variants across storefronts and user devices (e.g., is Google
Maps the same version across all platforms in use; is Apple Maps equivalent to Google
Maps; is Google Earth compatible with NASA World Wind?). How best to determine
when redundancy is good/bad for such apps/widgets is unclear and under-explored at
this time. Last, as noted, software component apps/widget licenses and business
models across DoD Software App Ecosystem are very diverse with unclear/unknown
interactions and interdependencies. Business models are codified in Web/mobile app
IP licenses (e.g., conferring right to use or EULAs) and cybersecurity requirements.
Again, much remains here to investigate and resolve to best enable BBP 3.0 initiatives
realized with Web-based and mobile software.

Finally, as suggested along the way, all of these consequences can be both anticipated and
mitigated through action and careful investment that best enable BBP 3.0 compatible
solutions.

New Practices to Realize Cost-Effective Acquisition of OA Software Systems for Web-
based and Mobile Devices

The trends and concerns identified above point to substantial challenges in identifying what
can be done to both realize cost-effective BBP for Web-based and mobile device software
apps, and to do so in ways that enable and empower the acquisition workforce in the years
ahead. Technology, better buying practices, new business models, new cybersecurity
requirements all point to the need for future research and development of new acquisition
support technologies, work processes, and guidance practices. The goal is to make sure that
acquisition time and effort does not become the main cost and the main risk factor going
forward on the path to agile OA Web-based or mobile compatible C2 system development,
deployment, and sustaining system evolution.

At this point, we see at least three key areas of opportunity for future acquisition research and
development. First, we need to research and develop worked examples of well-formed OA
system architectures that are appropriate for C2 system capabilities, and that accommodate
Web-based apps, widgets and mobile devices. Such OA system architectures should specify
representative and standardized component interfaces. The examples should also include
carefully specified shared agreements that account for different IP licenses and diverse

34

business models of software producers, system integrators, and multiple end-user
organizations who must collectively act in ways that enable agile development and adaptive
evolution of demonstrable C2 system capabilities.

Second, we need robust, open source models of application security processes and
reusable cybersecurity requirements that account for exigencies in heterogeneous app/widget
software ecosystems, account for software evolution dynamics, formation and continuous
improvement of automation-compatible shared agreements, and more. These models should
account for description of current process practices, prescription of required verification and
validation activities and outcome (deliverable documents or online artifacts), and proscription
of what tools/techniques to use, by whom, when, where and how.

Third, we need precise domain specific languages (DSLs) for specifying, and automated
analysis tools for continuously assessing and continuously improving, cybersecurity and IP
license requirements for dynamically evolving Web/mobile C2 system-based capabilities. The
DSLs needed must be able to specify and operationalize the shared agreements between
different DoD organizations, government agencies and commercial enterprises involved in
producing, integrating, or evolving component-based OA C2 system capabilities.

Overall, what we call for is similar in kind to what we have already produced and applied in
other software development domains, using then current technologies [JeS05, ScA08]. What
we now call for is a reinvention and repurposing of these concepts, but in contemporary forms
scaled and secured in ways that best meet the needs of the DoD Program Offices, acquisition
program managers, and others in the acquisition workforce to best support BBP 3.0 initiatives
for Web-based and mobile device software components (widgets, apps, plug-ins).

Conclusions

The Department of Defense, other government agencies, and most large-scale business
enterprises continually seek new ways to improve the functional capabilities of their software-
intensive systems. The acquisition of OA systems that can adapt and evolve through
replacement of functionally similar software component applications (apps) and widgets is an
innovation that can lead to lower cost systems through more agile system development and
adaptive system evolution. Our research identifies and analyzes how new software
component apps and widgets, their IP license and cybersecurity requirements, and new
software business models can interact to drive down (or drive up) total system costs across
the system acquisition life cycle. The availability of such new scientific knowledge and
technological practices can give rise to more effective expenditures of public funds and
improve the effectiveness of future software-intensive systems used in government and
industry.

Our study reported in this paper also identifies a new set of technical risks that can dilute the
cost-effectiveness of Better Buying Power efforts. It similarly suggests that current acquisition
practices aligned with BBP can also give rise to acquisition management activities that can
dominate and overwhelm the costs of OA system development. This adverse condition can
arise through app/widget vetting, new software business models, opaque and/or
underspecified acquisition management processes, and the evolving interactions of new

35

software development and deployment techniques. Unless proactive investment in acquisition
research and development can give rise to worked examples, open source models, and new
acquisition management system technologies, the likelihood of acquisition management
dominating agile development and adaptive deployment of component-based OA C2 system
capabilities is increased.

Overall, this paper serves to help describe and detail how Web-based and mobile device
software component technologies, IP licenses, security requirements, business models and
adaptive system evolution interact. It also highlights what policies, practices, or technologies
within DoD and other government agencies can simplify or exacerbate OA system cost
arising at different points in the acquisition life cycle. Our common goal is to increase the
ways, means, and beneficial consequences of the transition to the cost-effective acquisition of
Web-based and mobile device OA software systems whose acquisition, development,
deployment, and ongoing evolution are agile and adaptive.

Acknowledgements

The research described in this report was supported by grants N00244-14-1-0030 and
N00244-15-1-0010 from the Acquisition Research Program at the Naval Postgraduate
School, Monterey, CA. No endorsement, review, or approval implied. This paper reflects the
views and opinions of the authors, and not necessarily the views or positions of any other
persons, group, enterprise, or government agency.

References

[AGV14] Agre, J.R., Gordon, K.D., and Vasiliou, M.S. (2014). Practical Considerations for Use
of Mobile Apps at the Tactical Edge, Proc. 19th Intern. Command and Control Research and
Technology Symposium (ICCRTS), Paper-035, Fairfax, VA, June 2014.

[AlA13] Alspaugh, T.A, Asuncion, H. and Scacchi, W. (2012). The Challenge of
Heterogeneously Licensed Systems in Open Architecture Software Ecosystems, S.
Jansen, S. Brinkkemper, and M. Cusumano (Eds.), Software Ecosystems: Analyzing and
Managing Business Networks in the Software Industry, Edward Elgar Publishing, 103-120,
Northampton, MA.

[AlS10] Alspaugh, T.A, Scacchi, W., and Asuncion, H. (2010). Software Licenses in
Context: The Challenge of Heterogeneously Licensed Systems, Journal of the Association
for Information Systems, 11(11), 730-755, November 2010.

[CFG13] Chudnovsky, O., Fischer, C. Gaedke, M. and Pietschmann (2013). Inter-Widget
Communication by Demonstration in User Interface Mashups. Web Engineering, Springer-
Verlag, Lecture Notes in Computer Science, Vol. 7977, 502-505.

[DAG15] Defense Acquisition Guidebook (2014). CVE--Common Vulnerabilities and
Exposures. Chapter 13.7.3.1.4, accessed April 2015.
https://acc.dau.mil/CommunityBrowser.aspx?id=492079#13.7.3.1.4

36

[DoD12] Department of Defense (2012). Joint Operational Access Concept, Version 1.0,
17 January 2012, http://www.defense.gov/pubs/pdfs/JOAC_Jan%202012_Signed.pdf

[End13] Endres-Niggemeyer, B. (2013). The Mashup Ecosystem, in Semantic Mashups:
Intelligence Reuse of Web Resources, Springer, 1-50.

[End13a] Endres-Niggemeyer, B. (2013). Mashups Live on Standards, in Semantic
Mashups: Intelligence Reuse of Web Resources, Springer, 51-89.

[GGM14] George, A., Galdorisi, G., Morris, M. and O'Neil (2014). DoD Application Store:
Enabling C2 Agility. Proc. 19th Intern. Command and Control Research and Technology
Symposium (ICCRTS), Paper-104, Fairfax, VA, June 2014.

[GMH13] George, A., Morris, M., Galdorisi, G., Raney, C., Bowers, A., and Yetman, C.
(2013) Mission Composable C3 in DIL Information Environments using Widgets and App
Stores. Proc. 18Th Intern. Command and Control Research and Technology Symposium,
Paper-036, Alexandria, VA, June 2013.

[GuW12] Guertin, N. and Womble, B. (2012). Competition and the DoD Marketplace, Proc.
9th Acquisition Research Symposium. Vol. 1, 76-82, Naval Postgraduate School,
Monterey, CA.

[Giz11] Gizzi, N. (2011). Command and Control Rapid Prototyping Continuum (C2RPC)
Transition: Bridging the Valley of Death, Proceedings 8th Annual Acquisition Research
Symposium, Vol. 1, Naval Postgraduate School, Monterey.

[Han13] Hanf, D. (2013). MPE/AAE Business Model Framework Overview. Mitre
Corporation, personal communication, July 2013.

[JeS05] Jensen, C. and Scacchi, W. (2005). Process Modeling Across the Web Information
Infrastructure, Software Process--Improvement and Practice, 10(3), 255-272, July-
September 2005.

[Ken14] Kendall, F. (2014). Better Buying Power 3.0 Interim Release,
http://www.acq.osd.mil/dpap/sa/Policies/docs/BBP_3_0_InterimReleaseMaterials.pdf, 19
September 2014.

[RBC12] Reed, H., Benito, P., Collens, J., and Stein, F. (2012). Supporting Agile C2 with
an Agile and Adaptive IT Ecosystem, Proc. 17th Intern. Command and Control Research
and Technology Symposium (ICCRTS), Paper-044, Fairfax, VA, June 2012.

[RNC14] Reed, H., Nankervis, J., Cochran, J., Parekh, R., Stein. F. and others (2014).
Agile and Adaptive Ecosystem, Results, Outlook and Recommendations. Proc. 19th Intern.
Command and Control Research and Technology Symposium (ICCRTS), Paper-011,
Fairfax, VA, June 2014.

[Roc14] Rockwell, D. (2015). DHS Transfer Emergency-Response Tech. Federal

37

http://www.acq.osd.mil/dpap/sa/Policies/docs/BBP_3_0_InterimReleaseMaterials.pdf
http://www.defense.gov/pubs/pdfs/JOAC_Jan%202012_Signed.pdf
http://www.defense.gov/pubs/pdfs/JOAC_Jan%202012_Signed.pdf

Computer Week, 3 April 2015. http://fcw.com/articles/2015/04/03/dhs-nics.aspx

[ScA08] Scacchi, W. and Alspaugh, T., (2008). Emerging Issues in the Acquisition of Open
Source Software within the U.S. Department of Defense, Proc. 5th Acquisition Research
Symposium, NPS-AM-08-036, Naval Postgraduate School, Monterey, CA, May.

[ScA11] Scacchi, W. and Alspaugh, T., (2011). Advances in the Acquisition of Secure
Systems Based on Open Architectures, Proc. 8th Acquisition Research Symposium, Vol. 1,
Naval Postgraduate School, Monterey, CA.

[ScA12a] Scacchi, W. and Alspaugh, T., (2012a) Understanding the Role of Licenses and
Evolution in Open Architecture Software Ecosystems, Journal of Systems and Software,
85(7), 1479-1494, July 2012.

[ScA12b] Scacchi, W. and Alspaugh, T., (2012b). Addressing Challenges in the Acquisition
of Secure Software Systems with Open Architectures, Proc. 9th Acquisition Research
Symposium, Vol. 1, 165-184, Naval Postgraduate School, Monterey, CA.

[ScA13a] Scacchi, W. and Alspaugh, T. (2013a). Processes in Securing Open Architecture
Software Systems, Proc. 2013 Intern. Conf. Software and System Processes, San
Francisco, CA, May 2013.

[ScA13b] Scacchi, W. and Alspaugh, T.A. (2013b). Streamlining the Process of Acquiring
Secure Open Architecture Software Systems, Proc. 10th Annual Acquisition Research
Symposium, Monterey, CA, 608-623, May 2013.

[ScA13c] Scacchi, W. and Alspaugh, T.A. (2013c). Challenges in the Development and
Evolution of Secure Open Architecture Command and Control Systems, Proc. 18Th Intern.
Command and Control Research and Technology Symposium, Paper-098, Alexandria, VA,
June 2013.

[ScA14a] Scacchi, W. and Alspaugh, T. (2014). Achieving Better Buying Power through
Cost-Sensitive Acquisition of Open Architecture Software Systems. Proc 11th Annual
Acquisition Research Symposium, Monterey, CA, NPS-AM-14-C11P07R01-036, May
2014.

[ScA14b] Scacchi, W. and Alspaugh, T. (2014). Cost-Sensitive Acquisition of Open
Architecture Software Systems for Mobile Devices, Invited Presentation, MITRE-ATARC
Workshop on Challenges in Legal and Acquisition, Federal Mobile Computing Summit,
Washington, DC, 19 August 2014.

[ScA14c] Scacchi, W. and Alspaugh, T. (2014). Reasoning about the Security of Open
Architecture Software Systems for Mobile Devices, Invited Presentation, Federal Mobile
Computing Summit, Washington, DC, 20 August 2014.

[Wei14] Weir, M. (2014). BYOD Topic: How Complicated Can Calendars Be? J.
Cybersecurity and Information Systems, 2(1). 18-19.

38

http://fcw.com/articles/2015/04/03/dhs-nics.aspx

Chapter 3:

Emerging Research Issues in the Defense Open
Architecture Ecosystem

39

Emerging Research Issues in the Defense Open
Architecture Ecosystem

Walt Scacchi and Thomas Alspaugh
Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3455 USA

ABSTRACT
The U.S. Defense Community denotes an ecosystem of industrial system/component producers,
system integrators and customer organizations. This community now embraces the need to utilize
open source software and proprietary software in the systems or system components it acquires,
designs, develops and deploys for a variety of reasons. But the long-term transition to embrace OSS
components has surfaced a number of software engineering issues that require research-led
approaches and solutions. In this paper, we identify and describe six issues areas now found in the
Defense OSS ecosystem that pertain to (a) unknown or unclear software architectural representations;
(b) how to best deal with diverse, heterogeneous software IP licenses; (c) how to address
cybersecurity requirements; (d) challenges arising in software integration and release pipelines; (e)
how OSS evolution patterns transform software IP and cybersecurity requirements; and (f) the
emergence of new business models for software distribution, cost accounting, and software
distribution. We use the domain of command and control systems with Web and mobile devices as our
focus to help illuminate these issues along the way. We close with suggestions for how to resolve
them.

Keywords
Architecture, Licensing, Processes, Cybersecurity, Evolution.

INTRODUCTION

The U.S. Defense Community, including the military services and civilian-staffed agencies, is among
world's largest acquirers of commodity and bespoke (custom) software systems. This community
further extends its reach and influence on a global basis through national treaties and international
alliances through enterprises like NATO. Bespoke software systems are primarily provided and
developed through the Defense/Aerospace industry, though most non-Defense industry providers of
software systems, application or services (i.e., the mainstream software products/service industry)
also provide their wares to Defense system acquisition or procurement enterprises. Such acquisitions
often entail software procurement or development contracts valued in the the millions to hundreds of
millions of USD [16]. Certain kinds of software engineering (SE) research problems arise at this scale
of endeavor and economic value, which are not visible or are insignificant in smaller scale SE R&D
efforts.
In this paper, we focus attention to that slice of this world that focuses on the development and
deployment of software-intensive command, control, communication, cyber and business systems,
(hereafter, C3CB). We further limit our focus to the most common software elements found in C3CB
systems, so as to allow open discussion and broad exposure to emerging SE research issues in this
arena. Specifically, we draw attention to issues surrounding the development, integration, and
deployment of multi-version and multi-variant software systems composed from different open source

40

software (OSS) and proprietary (CSS) software elements or remote services [22,23], eventually
including recent efforts to support Web-compatible services and/or mobile devices in C3CB. This
focus provides exposure to systems composed from apps acquired through various acquisition
regimes, including apps downloaded from Defense Community App Stores. We do not focus on
Defense research programs whose purpose is to produce innovative software concepts, methods,
prototypes or demonstrations, through academic research, unless as noted.

DEFENSE COMMITMENT TO OPEN ARCHITECTURE AND OSS

Historical Background
Interest within the U.S. Department of Defense (DoD) and military services in open source software
(OSS) first appeared in more than 10 years ago [cf. 7]. More recently, it has become clear that the
U.S. Defense Community has committed to a strategy of acquiring software-intensive systems across
the board that require or utilize an “open architecture” (OA) which may incorporate OSS technology or
OSS development processes [11,17] that can help Defense customer organizations to achieve better
buying power [15]. Why?

According to Riechers [21], the Air Force saw that with its software-intensive systems, there is
increasing complexity of the software (code) itself, they may be “held hostage” to proprietary legacy
components, they seek more timely delivery of new solutions, and that acquisitions and requirements
take too much effort. So the Air Force is moving towards an OA development approach that embraces
open standards, open data, open APIs, best-of-breed OSS, and OSS development practices.

According to Brig. Gen. Justice [12,13], the Army sought to move away from closed source software
(CSS), expensive software upgrades, vendor lock-in, and broadly exploited security weaknesses.
Subsequently, the Army seeks to adopt OSS because it may realize direct cost savings (compared to
proprietary closed source software), gain access to source code to better develop domain and IT
expertise, enable the transition to contemporary Web services/technologies, and to enable rapid
injection of innovative concepts from diverse R&D/IT communities into systems for tactical command
and control systems, future combat systems, enterprise (business) systems, and others [30].

Last, according to Guertin [10], the Navy sought to mitigate the spiraling costs of weapon systems
through adoption of OA [17], as well as the adoption of open business models for the acquisition and
spiral development of new systems. This may therefore necessitate better alignment of the system
requirements and program acquisition communities, as well as to better alignment of industry and
academic partners who engage in software-focused research and development activities with DoD
support.

There are now a number of policy directives within the Defense Community that formally recognize
that OSS system elements can be treated as commercial-off-the-shelf (COTS) components, and that
bespoke software system development projects will utilize an OA, unless otherwise justified and
approved [17]. Thus, developing contemporary C3CB that incorporate both OSS and CSS elements is
“business as usual.” However, many legacy Defense industry contractors are hesitant about how best
to engineer such OA/OSS systems. For example, does an OA system imply/require that its software
architecture be explicitly modeled, be accessible for sharing/reuse (e.g., as a Reference Model), as
well as modeled in a form/notation that is amenable to architectural analysis and computational
processing? So now some ten or so years later, we can begin to identify what kinds of SE research
issues can be observed and investigated within the Defense Community associated with its transition
to OA systems and OSS software elements, specifically for Web and Mobile devices within the realm
of C3CB.

OA, Open APIs, and OSS
OA seem to simply suggest software system architectures incorporating OSS components and open

41

application program interfaces (APIs). But not all software system architectures incorporating OSS
components and open APIs will produce OA, since OA depend on: (a) how/why OSS and open APIs
are located within the system architecture, (b) how OSS and open APIs are implemented, embedded,
or interconnected, (c) whether the copyright (Intellectual Property) licenses assigned to different OSS
components encumber all/part of a software system's architecture into which they are integrated, and
(d) many alternative architectural configurations and APIs that may or may not produce an OA [cf.
1,24]. Subsequently, this can lead to situations in which acquisition contracts stipulate a software-
intensive system with an OA and OSS, but the resulting software system may or may not embody an
OA. This can occur when the architectural design of a system constrains system requirements—that
is, what requirements can be satisfied by a given system architecture, when requirements stipulate
specific types or instances of OSS (e.g., Web browsers, content management servers) to be
employed, or what architecture style [6] is implied by given system requirements.

Application domain of interest: C3CB with Web or Mobile Devices
C3CB are common information system applications that support modern military operations at a
regional, national, or global level. These applications may be focused to address common military
mission planning, mapping, resource status tracking and scheduling, and performance activities
through application sub-systems. However, closely related C3CB systems applications are also in
common use within civilian/public safety agencies, public infrastructure/utility operations, live television
and sports event broadcasting, massively multi-player online game operations centers, and even in
high-end motorsports racing like Formula 1. So study of SE issues arising in the Defense Community
and its software development efforts can inform awareness of similar issues in other non-Defense
software system domains.

Modern C3CB applications are increasingly expected/planned to be composed from best-available
software components, whether OSS or CSS. Furthermore, as smartphones, tablets and laptop
computers are being brought into the workplace, so too is interest within the Defense Community into
supporting the acquisition and development of Web-compatible widgets and mobile apps provided
through an emerging ecosystem of component producers and system integrators, for configuration
into secure OA C3CB systems [9,19,20,26,29]. Common software elements for such systems include
Web browsers open to extensions like custom Map widgets, and remote content servers, email and
calendaring, word processing, local/networked file servers, and operating systems. The data
processed by the software may have high-relevance to military missions/operations, or may just be the
daily grind of data manipulated by “productivity” applications which most of us use routinely to
perform/enact our work assignments. Security has been mostly addressable through system isolation
or “air gaps” to the outside world. But this is no longer common practice, and cybersecurity concerns
have risen to the top of functional and non-functional requirements for all such C3CB applications, and
new OA systems are now required to be secure by design, by implementation, and through release
and deployment, as well as subject to independent testing and certification. Secure OA designs can
then entail different schemes for encapsulating different (sets of) components, use of virtualization
schemes, shims and wrappers, while encrypting data transfers and storage, and configuring multi-
level system access capabilities. But, we have found examples of where different OA system designs
and configurations propagate security obligations, privacy protections, and access rights are
mediated/nullified by different software component IP licenses or system updates, identified later.

OA ECOSYSTEMS

In our view, software ecosystems denote a network of software component producers, system
integrators, and customer organizations. In the Defense community, producers and integrators are
commonly industrial entities (defense contractors), while customer organization are military program
offices. Figure 1 presents an abstract view of a software ecosystem that associates software
components or apps with their producers, system architectures with system integrators, and delivered

42

component or integrated application systems with their customer. We also add annotations to indicate
that each component or app has its own software IP license, and that integrated systems delivered to
customers come with some composition of IP license obligations and rights propagated through the
system's OA.

Figure 1. An abstract software ecosystem rendered as a software supply network (aka, a value
chain).

There is growing interest within the Defense Community in transitioning to acquiring complex software
systems via an agile and adaptive ecosystem [19,20,29], where components may be sourced from
alternative producers or integrators, allowing for more competition, and ideally lower costs and better
quality software elements that arise from a competitive marketplace [15]. But this adaptive agility to
mix, match, reuse, mashup, swap, or reconfigure integrated systems or components requires that
systems be compatible with, or designed to utilize, an OA—a software representation that identifies
component types, component interconnections, and open APIs. An example of the common core of an
C3CB system OA resembles most enterprise business systems, as C3CB are a kind of management
information system for navigating, mapping, tracking resources; scheduling people and other
resources; producing plans and documentation; supporting online email, voice or video
communications. Figure 2 depicts an OA representation for such a kind of system. This OA
representation can be read as a “reference model” for a C3CB software product line.

43

Figure 2. An OA reference model for common software component types interconnected within
integrated C3CB systems.

One complication that can be anticipated here arises when component types are replaced with
versioned component instances (e.g., Web Browser → Firefox 40.0.3 or Chrome 47.0.2526.111 (64-
bit); etc.), where each component has a specific IP license (e.g., Mozilla Public License 2.0 or GPL
3.0) associated with the versioned instance, which in turn may be viewed by system integrators as
limiting an integrated system's architectural design, depending on how different components are
interconnected in ways that may or may not propagate (un)desirable IP obligations and rights—a
concern that arises frequently when using components subject to the GPL. As we have learned in
practice, corporate lawyers employed by Defense contractors or in government do not have solutions
for how to resolve such complexities, except via costly overall liability indemnification schemes, and
efforts to distribute integrated systems with mostly IP obligations and few rights that effectively make
an integrated open source system closed. This in turn can defeat the potential opportunities and
benefits for commitment to OA systems that integrate OSS components.

With this background and sets of concepts for understanding a simplified view of the world of C3CB
software systems, we now turn to identify and examine a set of issues that are now recurring in the
acquisition, design, development, and deployment of such systems.

44

EMERGING SE RESEARCH ISSUES IN DEVELOPING AND DEPLOYING OA C3CB
SYSTEMS WITH OSS ELEMENTS

We identify six kinds of emerging SE research challenges or issues that we have observed within the
U.S. Defense Community as they have moved to OA systems for C3CB that utilize contemporary OSS
and CSS components.

1. Unknown or unclear OA solutions

This first kind of challenge arises when acquiring new or retrofitting legacy software systems that lack
an open or explicit architectural representation that identifies major components, interfaces,
interconnections and remote services (if any). Though OA reference models are in use within the SE
research community, contemporary C3CB generally lack such descriptions or representations that are
open, sharable, or reusable. This may be the results of legacy business practices that see software
architectures as proprietary IP, even when OSS components are included, or when applications sub-
systems are entirely made of OSS code. An alternative explanation reveals that complex software
systems like common Web browsers (Mozilla Firefox, Google Chrome, Apple Safari, Microsoft Internet
Explorer) have complex architectures that integrate millions of SLOC that are not well understood, and
that entail dozens of independently-developed software elements with complex APIs and IP licenses
that shift across versions [25], such that the effort to produce an explicit OA reference model is itself a
daunting architectural discovery, restructuring, and continuous software evolution task [8,14]. Thus,
new ways and means for extracting software components interconnections and interfaces and
transforming them into higher-level architectural representations are needed.

2. Heterogeneously licensed OA systems

OSS components are subject to widely varying copyright, end-user license agreements, digital civil
rights, or other IP protections. The Open Source Institute recognizes dozens of OSS licenses are in
use, through the top 10 represent more than 90% of the open source ecosystem [18]. This is
especially true for OSS components or application systems that incorporate source code from
multiple, independent OSS development projects, such as found in contemporary Web browsers like
Firefox and Chrome which incorporate components from dozens of OSS projects, most with diverse
licenses [25]. This means that OSS application systems are subject to complex software IP obligations
and rights that may defy tracking, or entail legally contradictory obligations/rights [2]. Determining
overall IP obligations for such systems is generally beyond the scope of expertise for software
developers, as well as most corporate lawyers. Furthermore, we have observed many ways in which
IP licenses interact within an OA software system, such that different architectural design choices that
configure a fixed set of software components results in different overall system obligations and rights.
Understanding multiple license interaction and IP mis-matches is way too confusing for most mortals
and is a source of legal expense, or alternatively requires expensive indemnification insurance policies
by the software producers or system integrators. Nonetheless, in our view, OA software ecosystems
are defined, delimited, and populated with niches that locate specific integrated system solutions [25].
Furthermore, we see that these niches effectively have virtual IP licenses that must be calculated via
the obligations and rights that propagated across integrated system component licenses via union,
intersection, and subsumption relations among them [5]. Such calculation is daunting, and begs for a
simpler, tractable, and computationally enforced scheme that can scale to large systems composed
from many components. In such a scheme, OSS/CSS licenses could formalize IP obligations as
operational requirements (i.e., computationally enforceable, at the integrated system level) instantiated
by system integration architects. Similarly, customer/user rights are then non-functional requirements
that can be realized and validated as access/update capabilities propagated across the integrated
system [4].

3. Cybersecurity for OA systems

45

Cybersecurity is a high priority requirement in all C3CB systems, applications, and platforms [26,28].
No longer is cybersecurity something to be addressed after C3CB are developed and deployed—
cybersecurity must be included throughout the design, development, deployment, and evolution of
C3CB. However, the best ways and means for addressing cybersecurity requirements are unclear,
and oftentimes somewhat at odds with one another depending on whether cybersecurity capability
designs are specific to a: C3CB platform (e.g., operating system or processor virtualization; utilization
of low-level operating system access control or capability mechanisms); component producer (secure
programming practices and verification testing); system integrator (e.g., via use secure data
communications protocols and data encryption); customer deployment setting (mobile: air-borne or
ship-board; fixed: offices, briefing rooms, operations centers); end-user authentication mechanisms; or
acquisition policy (e.g, reliance on third-party audit, certification, assurance of system cybersecurity).
However, in reviewing these different arenas for cybersecurity, we have found that the cybersecurity
requirements or capabilities can be expressed in much the same way as IP licenses: using concise,
testable formal expressions of obligations and rights. Some examples follow (capital letters are
placeholders that denote specified system, service, or component contexts).

• The obligation for a user to verify his/her authority to see compartment T, by password or other
specified authentication process.

• The obligation for a specific component to have been vetted for the capability to read and
update data in compartment T.

• The obligation for all components connected to specified component C to grant it the capability
to read and update data in compartment T.

• The obligation to reconfigure a system in response to detected threats, when given the right to
select and include different component versions, or executable component variants.

• The right to read and update data in compartment T using the licensed component.

• The right to replace specified component C with some other component.

These examples show how cybersecurity requirements can be expressed or paraphrased into/from
restricted natural language (e.g., using a domain-specific language) into composite specifications that
denote “security licenses” [2,3]. In this way, it should be possible to develop new software analysis
tools whose purpose is to interpret cybersecurity obligations as operational constraints (executable) or
provided capabilities (access control or update privileges), through mechanisms analogous to those
used for analyzing software licenses [2,5], and how component or sub-system-specific obligations and
rights can be propagated across a system's architecture. Consequently, we believe that cybersecurity
can therefore in the future be addressed using explicit, computational OA representations that are
attributed with both IP and cybersecurity obligations and rights.

4. Build, Release, and Deployment (BRD) Processes and Process Automation

C3CB applications represent complex software systems that are often challenging to produce,
especially when conceived as bespoke systems. To no surprise, acquisition of these systems often
requires a development life cycle approach, though some system elements may be fully-formed
components that are operational as packaged software (e.g., commercial database management
systems, Web browsers, Web servers, user interface development kits/frameworks). C3CB
development is rarely clean-sheet and less likely in the future. Subsequently, component-based
system development approaches are expected to dominate, thus relegating system integrators (or
even end-users) to perform any residual source code development, inter-app integration scripting, or
intra-app extension script development. But software process challenges arise along the way [27].

First, is again the issue noted earlier of whether there is an explicit, open source OA design

46

representation, preferably one that is not just a diagram, but instead is expressed in an architectural
design language. With only a diagram or less, then is little/no guidance for how to determine whether a
resulting software implementation is verifiable or complaint with its OA requirements or acquisition
policies, such as provision or utilization of standardized, open APIs, intended to increase software
reuse, selection of components from alternative producers, or post-deployment system extensions
[15].

Second, is the issue arising from system development practices based on utilization of software
components, integrated sub-systems, or turn-key application packages. These software elements
come with their own, possibly unknown requirements that are nonetheless believed to exist and be
knowable with additional effort [4]. They also come with either OSS code or CSS executables, along
with their respective APIs. These components must be configured to align with the OA specification.
Consequently, software tool chains or workflow automation pipelines are utilized to build and package
internal/external executable, version-controlled software releases. We have found many diverse
automated software process pipelines are used across and sometimes within software integration
activities [27]. These pipelines take in OSS code files, dependent libraries, or repositories (e.g.,
GitHub), build executable version instances that are then subjected to automated testing regimes that
include simple “smoke tests” and extensive regression testing. Successful builds that eventually turn
into packaged releases that may or not be externally distributed and deployed as ready-to-install
executables. While this all seems modest and tractable, when one sees the dozens of different OSS
tools used in different combinations across different target platforms, then it becomes clear that what
is simple is the small, is a complex SE activity when the scale of deployment increases.

Another complication that is now beginning to be recognized within and across BRD processes and
process automation pipelines arises in determining when and how different BRD tool chain
versions/configurations can mediate cybersecurity requirements in the target system being built. We
have seen when software builds and deployed released are assumed to integrate to functionally
equivalent CSS components, which are not included in releases, due to IP restrictions. We have also
observed and reported how functionally equivalent variants as well as functionally similar versions
may or may not be produced by BRD tool chains, either by choice or by unintentional consequence.
This in our opinion gives rise for the need for explicit open source models of BRD process automation
pipelines that can be analyzed, reused, and shared, as well as systematically tested to determine
whether release versions/variants can be verified and/or validated to produce equivalent or similar
releases that preserve prior cybersecurity obligations and usage rights.

5. Software Evolution Practices Transmitted Across the OA Ecosystem

Software evolution is among the most-studied of SE processes. While formerly labeled as “software
maintenance,” a profitable activity mediated through maintenance contracts from software producers
to customers, the world of OSS development projects and practices suggest a transition to a world of
continuous software development—one that foreshadows the emergence of continuous SE
processes, or software life cycles that just keep cycling until interest falters or spins off into other
projects. OSS development projects rely on OSS tools that themselves are subject to ongoing
development, improvement, and extension, as are the software platforms, libraries, code-sharing
repositories, and end-user applications utilized by OSS developers to support their development work.
Developers entering, progressing, or migrating within/across OSS projects further diversifies the
continuous development of the most successful and widely used OSS components/apps. This
dynamism in turn produces many ways for how OSS systems, or OA systems that incorporate OSS
components evolve.

47

Figure 3 portrays different software evolution patterns, paths, and practices we have observed arising
with new C3CB applications [25]. Here we see paths from a currently deployed, executable system
release, to a new deployed release—something most of us now accept as routine as software updates
are propagated across the Internet from producers, through integrators, to customers and end-users.

Figure 3. Different paths and mechanisms through which OA software systems can evolve [25].

Integrated OA systems can evolve through upgrades of functionally equivalent component variants
(patches) as well as through substitution of functionally similar software components sourced from
other producers or integrators. In Figure 4, we show a generic situation that entail identifying how an
OA consistent with that depicted in Figure 2 may accommodate the substitution and replacement of a
locally installed word processor application with a remote Web-based word processing software
services (for example, Google Docs or Microsoft Office 365).

This is capability is a result of utilizing an OA that constitutes a reference model aligned with a vendor-
neutral software product line. This is also a capability sought by customer organizations, and
sometimes encouraged by software producers to accommodate their evolving business models
(discussed below). While the OA remains constant, the location of the component has moved from
local to remote/virtual, as has its evolutionary path. Similarly, the cybersecurity of the local versus
remote component has changed in ways that are unclear, and entail a different, evolved assurance
scheme.

Overall, the evolution of software components, component licenses, component interconnects and
interconnections, and interconnected component configurations are now issues that call for SE
research efforts to help make such patterns, paths, and practices more transparent, tractable,
manageable, and scalable within an OA software ecosystem, as well as for customer organizations
that seek the benefits of openness, sharing, and reuse.

48

Figure 4. Alternative configurations of integrated instance releases of components consistent with the
OA in Figure 2 that are treated as functionally equivalent by customer organizations.

6. New Business Models for Acquisition of Software Components and Apps
The last issue we address is the newest in this set of six for consideration for new SE research. While
the field of SE research and practice has long paid attention to software economics, the challenges of
software cost estimation are evolving in light of new business models being put into practice by
software producers and system integrators.

In the past, software development projects were often managed by a single contractor responsible for
both software production and system integration. Costs could be assessed through augmentation to
internal business accounting practices (e.g., budgeting, staffing workloads, time-sheet reports, project
schedules, etc.). But a move to OA ecosystems means that multiple producers can participate, and
OA schemes accommodate switching among providers, while a system is being integrated, deployed,
or evolved in the field. This in turn coincides with new ways and means to electronically distribute
software updates, components, or applications, as well as new ways to charge for software. OSS
components may be acquired and distributed at “no cost,” but their integration and evolution charged
as service subscription, or as time-effort billings.

We have already seen other alternatives for costing or charging for software that include: franchising;
enterprise licensing; metered usage; advertising supported; subscription; free component, paid
service/support fees; federation reciprocity for shared development; collaborative buying; donation;
sponsorship; free/open source software (e.g., Government OSS – GOSS); and others. So how are
customer organizations, especially in the Defense Community where software cost estimation

49

practices are routine, suppose to estimate the development or sustaining costs of the software
components or integrated systems they acquire and evolve, especially when an OA system allows for
producers whose components come with different costing/billing schemes? This is an open problem
for SE research in industry practice.

The last piece of the puzzle we are studying is the envisioned transition with the Defense Community
to C3CB system being composed by customer organizations, and possibly extended by end-users
deployed in the field. This is the concept that surrounds the transition to discovering software
components, apps, or widgets in Defense Community app stores [9]. These app stores are modeled
after those popularized for use in distributing and acquiring software apps for Web-based or mobile
devices, like those operated by Apple, Google, Microsoft, and others. How the availability of such
Defense Community app stores will transform the way C3CB systems are produced, or even if they
will be produced by legacy Defense industry contractors remains to be seen. Said differently, how app
stores transform OA software ecosystem networks, business models, or cybersecurity practices is an
emerging challenge for SE research in industrial practice.

DISCUSSION and CONCLUSIONS

In this paper, we have focused attention to software engineering research challenges that are
emerging in the industrial arena we called the Defense Community. Much of the earlier research and
advances in SE emerged from challenges in this same community 40-50 years ago. Most
contemporary SE research has moved away from this community. However, as we sought to describe
in this paper, this community is again surfacing and facing a growing myriad of issues and challenges
that can directly benefit from advanced in SE research.

We identified and examined six areas for SE research in industrial practice that now plague the
Defense Community (and perhaps other industries as well). These six issues areas include: (1) the
lack of architecture representations and schemes for discovering or specifying OA system designs; (2)
OA systems that integrate components or applications subject to diverse, heterogeneous IP licenses;
(3) how to manage the cybersecurity of OA systems during system design, development, and
deployment; (4) software process challenges and evolving disruptions in seemingly mundane process
automation pipelines; (5) software evolution patterns, path, and practices in OA ecosystems; and (6)
how new business models are upending software cost estimation practices and outcomes. All of these
SE research areas are readily approachable, and research results are likely to have significant
practical value, both within the Defense Community and beyond.

These issue areas were investigated and addressed in the domain of command, control,
communication, cyber and business systems (C3CB). We believe are all tractable, yet dense and
sufficient for both deep sustained research study, as well as for applied research in search of near-
term to mid-term practical results.

In related work [29], we have called for specific R&D investments into the development of open
source, domain-specific languages for specifying open architecture representations (or architectural
description languages) that are formalizable and computational, as well as supporting annotations for
software license obligations and rights. While ADLs have been explored in the SE research
community, the challenges of how software architectures mediate software component licenses and
cyber security requirements is an open issue, with practical consequence. Similar, ADL annotations
that assign costs or cost models in line with new software business models is an open problem area.
We have also called for R&D investment in new SE tools or support environments who purpose is to
provide automated analysis and support of OA systems IP and cybersecurity obligations and rights, as
new requirements for industrial practice in large-scale software acquisition, design, development,
deployment, and evolution. Such environments are the automated tools that could be used to model,

50

specify, and analyze dynamically configurable, component-based OA software systems expressed
using the open source architectural representation schemes or ADLs noted here.

Hopefully, this paper serves to help throw light into these otherwise dark corners of SE research that
can inform and add benefit to industrial software practices.

ACKNOWLEDGMENTS

The research described in this report was supported by grants #N00244-15-1-0010 from the
Acquisition Research Program, at the Naval Postgraduate School, Monterey, CA. No endorsement,
review, or approval implied.

REFERENCES
[1] Alspaugh, T.A and Anton, A.I., (2007). Scenario Support for Effective Requirements, Information

and Software Technology, 50(3), 198-220.
[2] Alspaugh, T.A, Asuncion, H.A., Scacchi, W. (2010). Software Licenses in Context: The Challenge

of Heterogeneously Licensed Systems, J. Assoc. Info. Systems, 11(11), 730-755.
[3] Alspaugh, T.A. And Scacchi, W. (2012). Security Licensing, Proc. Fifth Intern. Workshop on

Requirements Engineering and Law, 25-28, September 2012.
[4] Alspaugh, T.A. And Scacchi, W. (2013). Ongoing Software Development Without Classical

Requirements, (with T. Alspaugh), Proc. 21st. IEEE Intern. Conf. Requirements Engineering, Rio
de Janeiro, Brazil, 165-174.

[5] Alspaugh, T.A., Scacchi, W. & Kawai. R. (2012). Software Licenses, Coverage, and Subsumption,
Proc. Fifth Intern. Workshop on Requirements Engineering and Law, 17-24, September 2012.

[6] Bass, L., Clements, P., and Kazman, R., (2003). Software Architecture in Practice, 2nd Edition,
Addison-Wesley Professional, New York.

[7] Bollinger, T., (2003). Use of Free and Open-Source Software (FOSS) in the U.S. Department of
Defense, The MITRE Corporation, 2 January.

[8] Choi, S.C. & Scacchi, W. (1990). Extracting and Restructuring the Design of Large Systems, IEEE
Software, 7(1), 66-71.

[9] George, A., Morris, M., Galdorisi, G., Raney, C., Bowers, A., & Yetman, C. (2013). Mission
composable C3 in DIL information environments using widgets and app stores. In Proc. 18th Intern.
Command and Control Research and Technology Symposium, Paper-036. Alexandria, VA.

[10] Guertin N., (2007). Naval Open Architecture: Open Architecture and Open Source in DOD,
Presentation at “Open Source - Open Standards - Open Architecture,” Association for Enterprise
Integration Symposium, Arlington VA, 14 March 2007.

[11] Herz, J.C. And Scott, J., (2007). COTR Warriors: Open Technologies and the Business of War,
The DoD Software Tech News, 10(2), 3-6, June.

[12] Justice, Brig. General Nick (2007a). Open Source Software Challenge: Delivering Warfighter
Value, Presentation at “Open Source - Open Standards - Open Architecture,” Association for
Enterprise Integration Symposium, Arlington VA, 14 March.

[13] Justice, Brig. General Nick (2007b). Deploying Open Technologies and Architectures within
Military Systems, Presentation at 3rd DoD Open Conference, Deployment of Open Technologies
and Architectures within Military Systems, Association for Enterprise Integration Symposium,
Arlington VA, 12 December.

[14] Kazman, R. and Carriere, S.J. (1998). Playing Detective: Reconstructing Software Architecture
from Available Evidence. J. of Automated Sofware Eng., 6(2), 107-138.

[15] Kendall, F. (2014). Better Buying Power 3.0: Interim Release, 19 September 2014. Also see
Defense Acquisition University, Better Buying Power, http://bbp.dau.mil/

[16] Meyers, B.C. and Obendorf, P., (2001). Managing Software Acquisition: Open Systems and COTS
Products, Addison-Wesley, New York.

[17] OA (2016). Open Systems Architecture, https://acc.dau.mil/CommunityBrowser.aspx?id=1801

51

https://acc.dau.mil/CommunityBrowser.aspx?id=18016
http://bbp.dau.mil/
http://breakingdefense.com/wp-content/uploads/sites/3/2014/09/Better-Buying-Power-3-0-Interim-Release-Materials.pdf

[18] OSSI (2016). The Open Source Initiative, http://www.opensource.org/
[19] Reed, H., Benito, P., Collens, J., & Stein, F. (2012). Supporting Agile C2 with an agile and

adaptive IT ecosystem In Proc.17th International Command and Control Research and
Technology Symposium (ICCRTS), Paper-044. Fairfax, VA.

[20] Reed, H., Nankervis, J., Cochran, J., Parekh, R., Stein. F., et al. (2014). Agile and adaptive
ecosystem: results, outlook and recommendations. In Proc. 19th International Command and
Control Research and Technology Symposium (ICCRTS), Paper-011. Fairfax, VA.

[21] Riechers, C., (2007). The Role of Open Technology in Improving USAF Software Acquisition,
Presentation at “Open Source - Open Standards - Open Architecture,” Association for Enterprise
Integration Symposium, Arlington VA, 14 March.

[22] Scacchi, W. (2002). Understanding the Requirements for Developing Open Source Software
Systems, IEE Proceedings--Software, 149(1), 24-39. Also see Scacchi, W. (2009). Understanding
Requirements for Open Source Software, in K, Lyytinen, P. Loucopoulos, J. Mylopoulos, and W.
Robinson (eds.), Design Requirements Engineering: A Ten-Year Perspective, LNBIP 14, Springer-
Verlag, 467-494.

[23] Scacchi, W. (2010). The Future of Research in Free/Open Source Software Development, in Proc.
ACM Workshop on the Future of Software Engineering Research (FoSER), Santa Fe, NM, 315-
319.

[24] Scacchi, W. and Alspaugh, T.A. (2008). Emerging Issues in the Acquisition of Open Source
Software within the U.S. Department of Defense, Proc. 5th Acquisition Research Symposium, NPS-
AM-08-036, Naval Postgraduate School, Monterey, CA, May.

[25] Scacchi, W. and Alspaugh, T.A. (2012). Understanding the Role of Licenses and Evolution in
Open Architecture Software Ecosystems, J. Systems and Software, 85(7), 1479-1494, July 2012.

[26] Scacchi, W. and Alspaugh, T.A. (2013a). Challenges in the Development and Evolution of Secure
Open Architecture Command and Control Systems, Proc. 18th Intern. Command and Control
Research and Technology Symposium, Paper 098, Alexandria, VA, June.

[27] Scacchi, W. and Alspaugh, T.A. (2013b). Processes in Securing Open Architecture Software
Systems, Proc. 2013 Intern. Conf. Software and System Processes, 126-135, May 2013, San
Francisco, CA.

[28] Scacchi, W. and Alspaugh, T.A. (2013c). Advances in the Acquisition of Secure Systems Based on
Open Architectures, in J. Cybersecurity & Information Systems, 1(2), 2-16.

[29] Scacchi, W. and Alspaugh, T.A. (2015). Achieving Better Buying Power Through Acquisition of
Open Architecture Software Systems for Web-Based and Mobile Devices, Proc. 12th Annual
Acquisition Research Symposium, Monterey, CA, May 2015.

[30] Starrett, E., (2007). Software Acquisition in the Army, Crosstalk: The Journal of Defense Software
Engineering, 4-8, May, http://stsc.hill.af.mil/crosstalk.

52

http://www.opensource.org/

Chapter 4:

Notes on Life Cycle Activities for Acquiring Software-
Based Assembled Capabilities

53

Notes on Life Cycle Activities for Acquiring Software-
Based Assembled Capabilities

Walt Scacchi and Thomas Alspaugh
Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3455 USA

wscacchi@gmail.com

Version of: 30 June 2015
1.0 Introduction

In this note, we identify and briefly describe the acquisition life cycle of assembled capabilities
(AC) for software-intensive command, control, communications, cyber, and business systems
(C3CB). Such systems may incorporate widgets, plug-ins, apps, and other mission
components that accommodate Web-based or mobile devices.

Our overall goal is to work towards a new approach to acquisition of AC that is timely,
produces technologically superior solutions, and does so in a cost-effective, agile, and
adaptive manner. Said differently, our goal is how to avoid making well-intended AC
acquisition practices become a strategic vulnerability. Consequently, our goal is to identify
how best to provide new ways and means for streamlining AC acquisition through timely,
agile, and adaptive technologically superior ways and means.

The remainder of this notes is organized into two sections: our views on the life cycle issues,
risks and opportunities; and discussion and conclusions. There are also References included
that provide further details that underlie or substantiate the materials presented. Each of
these sections is presented in turn next.

2.0 Life Cycle Issues, Risks, and Opportunities

We now turn to identify issues, risks, and opportunities arising during the development,
deployment and field adaptation life cycle of AC. The life cycle activities in focus include:
procurement via shared agreements; requirements; design; integration and testing; release
and deployment; installation and local configuration, and post-deployment adaptation and
evolution. Each is addressed in this order.

2.1 AC Procurement –

There are new adoption challenges that can arise in the procurement of AC. These
challenges arise due to emerging shared agreements among two or more parties (e.g.,
Program Offices) acting to share acquisition responsibilities or costs. Other challenges may
arise due to different scenarios regarding technological constraints or opportunities afforded
by integration if new innovative mission components with legacy systems or common
technologies. As more than a dozen such challenges or use cases have already been
identified by the ACWG/BMTT, then each would benefit from a systematic analysis of how
these challenges/use cases are translated within the development, deployment, and support
life cycle of relevant exemplar AC.

2.2 AC Requirements –

54

mailto:wscacchi@gmail.com

Traditional ways and means for articulating and specifying the requirements for C3CB
capabilities are a key factor driving acquisition processes. How system requirements change
or evolve is also a key factor (or the root cause) leading to the very long timelines associated
with acquiring complex software-intensive system capabilities. Developing complex software
is a difficult business and technological endeavor whose history is punctuated with far too
many failure stories entailing cost and schedule overruns, compared with too few cost-
effective, timely success stories. Why this is so is beyond the scope of discussion here, but
suffice to say that if our goal is to realize agile, timely, and cost-effective acquisition of AC,
that following current requirements engineering practices will not likely accomplish much
beyond the status quo. Consider the following conditions that apply to acquiring AC.

2.2.1 Component/AC Mission Requirements: An AC has multiple types of requirements that
are nominally suppose to be certified for completion or compliance by acquisition personnel.
There are: (a) mission functional requirements (FR) that express functional operations or
performance levels of an AC; (b) non-functional mission requirements (NFR) refer to
necessary contextual elements that may or not part of the delivered AC, but are nonetheless
required for the intended operation of the functional AC elements. Common NFR include
specification of the types and/or versions of the C3CB platform that hosts the delivered AC,
as well as cybersecurity and IP license fulfillment obligations (e.g., right to use software
components as installed; right to modify and redistribute software components within an AC;
only accept software updates from pre-specified trusted authorities). NFR specify what is
needed to make a system or AC usable. In general, FR and NFR are often understated or
implied by customers, yet are critical to successful use of deployed components or AC. While
satisfaction of FR may be determined via operational validation of verified system functions
through automated testing assistance, NFR traditionally assume human observation,
intervention, or experience to demonstrate their fulfillment or satisfaction. However, FR and
NFR are interdependent and thus jointly affect system design, integration, and deployment
processes and decisions. Consequently, failure to identify and address NFR thus increases
risk of operational system component or AC failure, or uncontrolled cost during development
and deployment. Specifying sufficiently complete FR for software components or AC takes
too much skill, effort, and time, thus increases the risk of difficult to control acquisition costs
and unreliable delivered system performance. The currently best available way to avoid or
mitigate such risks is to limit the scope of new development effort to those that utilize reusable
components and interconnection mechanisms or AC that coalesce into tailorable product lines
[GSS15, MaS12, ScA12, WoS11]. Such components or AC imply the need for reusable FRs,
NFRs, and OA that can be tailored, but with knowable and measurable trade-offs. Such reuse
can dramatically streamline acquisition, perhaps to the level of months.

2.2.2 Requirements versus Provisionments: Traditionally, specification of FRs for complex
software-intensive systems was seen a critical to the system's robust, resilient, and reliable
development and engineering. For example, many software systems have on average about
1000 source lines of code per FR, so that a system with 1000 requirements would likely
necessitate a software implementation of 1,000,000 SLOC, and by extension 10K FR
corresponding to 10M SLOC. But oftentimes, enterprise customers or Program offices have
far fewer explicit FR, which producers necessarily transform into many more FRs. This is
because those FR articulated by the customer are often underspecified, ambiguous, and
stated in natural language that allows imprecision and hedging (e.g., “I will know what I need
once I see it”, or “We need this because they already have it”). Imagine needing to specify the

55

FR for a modern Web browser, word processor, or slide presentation application that we now
take for granted as being widely available and common to many C3CB environments. Such
components are most likely simply to be specified by name or app type (i.e., specified as
NFR), rather than in terms of the FR they fulfill. Such components have FR that are knowable
in theory (e.g., via reverse engineering, user command menus or documentation), but are
unknown in practice. Thus, we find ourselves in the position where you find yourself asking if
anyone has explicit, documented FR for a Web browser or word processor that many C3CB
utilize. This is a situation we cannot address or resolve.

In contrast, most/all AC for C3CB will incorporate one or more components that utilize maps
of one kind or another. Mapping apps vary by type and integration of data that is fused from
sources and sensors (e.g., fusion of ISR data) for overlay display on a map. Subsequently,
map display and interaction utilities, along with repositories that serve user-requested data for
display on the map, can be realized as a standalone app, plug-in extension for a Web
browser, or as a widget., depending on the scope and scale of their functional capabilities and
integration with legacy components, common repository technology and infrastructural
services. So map-based modules are common mission components that can be tailored for
use across multiple AC, if their common and mission-specific FR and NFR can be
systematically elicited and parametrically coded.

Last, in the age of Web-based online stores (e.g., Apple App Store, GEOINT App Store,
Google Play [ScA13b], and SPAWAR [GGM14, GMO14]), many software components are
now simply based on what has already been delivered in some form. Such apps already
appear within the fielded systems, commercial or consumer markets, or based on some
innovative mashup that composes functional capabilities from multiple components or
common technology services. This suggests that we are heading towards a world where
software components accessed from online stores or repositories come with knowable but
unknown FRs. This in turn implies we now prefer to simply determine whether the
components available satisfy enough of our needs, or curiosity, to justify their adoption and
usage. Consequently, we refer to the knowable by unknown FR as “provisionments,” meaning
software components now provide functional capabilities to potential customers or end-users,
and it is up to the customer or user to decide whether what is provided is satisfactory or close
enough to meet unstated FRs in whole or part [AlS13].

The primary technical risks for provisionment-driven components usage in an AC include
unknown cybersecurity vulnerabilities or reliability issues. Such risks may be mitigated
through (a) prior widespread use in unsecured operation to reveal faults compared to the
value realized of near-term availability for usage; (b) cybersecurity containers (e.g., virtual
machines or operating system containers) that isolate the ability of a component to access,
input/output data into/from mandatory access controlled system areas or storage mechanisms
[ScA13d]; or (c) cybercurrency mechanisms that maintain a decentralized, encrypted but
verifiable proof-of-work development update history that reveal where and when any
vulnerabilities or unknown updates have entered into system executable code storage areas.
Of these risk mitigations, (a) is most common but informal, so coverage depends on
crowdsourced component usage; (b) is increasingly found in large enterprises actively
engaged in cybersecurity defense; while (c) is a state of the art R&D challenge. Finally, it
should be noted that the existence of such risks and common methods for their mitigation
(i.e., (a) and (b)), suggests these conditions do not justify their avoidance and return to status

56

quo requirements practices: as noted, current practices may not really produce any better
results, and that current practices are already known to be unreliable, costly and untimely,
while producing sometimes unusable or limited performance systems. Nonetheless,
provision-driven software components and their use within AC is a path towards improvement
in acquisition.

2.3 AC Architectural Design and Mission Component Design –

There are two aspects of design process that are of interest: architectural (system-level)
design and detailed (component-level) design.

2.3.1 AC architectural design – Assuming the requirement for use of an OA means there must
be an explicit representation and method for specifying the architectural design of an AC.
Such an architectural design configures a set of component types that are interconnected
through explicit, open interfaces. Components include both those that are specific to the
mission, and common technology and infrastructure services that are encapsulated as
components accessed through public APIs. Components at the architectural design may be
functional modules like an app found in an online store, or may be composition/configuration
of multiple components/services that are grouped into a logical sub-system that may be
shared or reused across different AC. This means that sub-systems can be treated from a
design standpoint as just another component. So a system like the Secure Web Integration
Framework from SPAWAR [DBA15] could be treated as either a composed system or a
mission component for some AC. This flexibility in representation brings benefits of
simplification through use of system abstractions such as OA and AC reference models that
are also used to specify software product lines. For example, a “content management system”
typically is composed of a multi-tier, Web-based repository that includes a Web server (like
Apache) that serves content requested by user query, a database management system, (like
MySQL or Oracle 11) that stores, queries and updates metadata associated with the
requested content, and an underlying network file server (e.g., NFS, ZFS) that stores and
updates the content (data, text, or media assets) requested by user query. Consequently, a
CMS may be treated as a standalone system, or as a component (sub-system) in some AC.
Components also may critically specify their interfaces through which data and control signals
enter/exit, as well as any corresponding constraints. In particular, constraints of interest
include IP licenses and cybersecurity requirements.

57

Figure 1. An OA design specification—a reference model—for a family of common networked
C3CB applications utilizing typed components for Web browsing, word processing, email and

calendaring, common technology and infrastructure services, each respectively within a
security container boundary.

IP licenses may stipulate that components connected via APIs to other components APIs, can
transfer IP rights and obligations across such interfaces. This condition may or may not be
desirable, and thus requires guidance from the customer as to what IP obligations and rights
they are willing to accept, or seek to propagate. Cybersecurity requirements work in a similar
manner, so that customers often stipulate that connection of an un-secure component to
another that has been assured to be secure, will require that such interconnection must not
expose or provide access rights to the un-secure component, while the secure component
may access and pull specified data (subject to further security checks) from the un-secure
component. Again, the customer must be able to specify the cybersecurity requirements or
enforceable policies (e.g., access control obligations and access rights). Thus, we need a
method and explicit representational scheme to specify system or AC architectural
configuration of components and interconnections. Ideally, such a scheme is also coupled to
the AC implementation (e.g., software source code, connectors, and binary executables) such
that evolutionary changes in configuration of the AC architectural design, integration and
release package build, deployment and installation, and end-user run-time environment are
visible, predictable, and tractable (perhaps even automatically propagated).

OA benefit strongly from their specification in an explicit architectural description language

58

(ADL). ADLs are used to identify and model the components within a composed system,
system of systems, or AC, as well as their interconnections (what components exchanges
data with what other components), in what is sometimes called the architectural layout
(analogous to floor plans for a new building). In this regard, ADLs can have both textual and
visual diagram views. Many ADLs exist, but choices for supporting, interactive architectural
design environment, as an automated system for creating and updating ADL specifications for
an AC are few. So there is a technology gap here that in turn reduces the potential benefits of
Better Buying Power initiatives that seek to improve competition, improve innovation and
increase adaptability of fielded systems.

Some technical risks can be identified that pertain to the architectural design of AC. These
include:

• Closed architecture systems/AC with therefore unknown IP license and cybersecurity
obligations and rights passed on to the customer/end-user.

• Closed architecture systems/AC may have vulnerabilities that are unknowable and
difficult to reconstruct and overcome.

• Closed architecture systems/AC require the customer to trust and be locked into the
system integrator, which works against improving competition and reducing costs.

As noted earlier, closed architecture software systems mitigate the benefits of OA and thus
also mitigate against the desired outcomes from the Better Buying Power initiatives [Ken15].
Other technical risks that can arise during the architectural design of AC include:

• OA diagrams that do not call out explicit connectors, connection mechanisms, and
component interface ports, which in turn are:

◦ Vulnerable architectural mis-matches that prevent seemingly obvious system
composition or AC that might otherwise be very desirable;

◦ Vulnerable to neglect of man-in-the-middle or connector-based cybersecurity
attacks.

• OA specifications that lack IP license and cybersecurity requirements annotations on
components (interfaces) or overall system/AC may be unable to systematically
determine the scope of obligations required and rights provided in response to
evolutionary system changes.

2.3.2 Mission Component Design for Composition/Assembly within the OA for an AC

In simplest terms, the main element of component design to enable its integration and
configuration within an AC is an explicit, open interface (open APIs). As noted, there is still
legal debate now in progress before the SCOTUS as to whether APIs are (a) subject to
license (so that their use requires a license agreement), (b) subject to fair use doctrine (thus
open for use without license), or (c) not subject to copyright protection (which applies in
Europe, and thus to NATO countries and AC for NATO systems). This is a mess, and
represents a different kind of risk that we cannot address. However, back to the world we
seek, it is desirable for mission components to provide explicit open interfaces which allows
mission components to be integrated using open interconnection mechanisms. This is mostly
an issue for components to be developed from scratch, and for components for common

59

http://www.di.univaq.it/malavolta/al/
http://en.wikipedia.org/wiki/Architecture_description_language

technologies and infrastructure services, whether new or legacy.

2.4 AC Integration and Testing –
Continuous integration (CI) systems support automated processes for building, testing, and
packaging a software system for release deployment. Without a CI system, developers must
build, test, and integrate their software (component) products using hand-crafted scripts, and
it is common for such scripts to have to rely on idiosyncratic dependencies on tool chains and
libraries versions for each deployment platform targeted. In contrast, CI systems incorporate
the capabilities of software build systems that may invoke sequential, distributed, or parallel
builds across multiple build servers to produce singular builds (e.g., “nightly builds”),
continuously updated agile development builds, or diverse, functionally equivalent executable
variants. The build systems access and update software code (version control) repositories
via process automation scripts. CI sub-processes take as input directories/folders of source
code files and produce software component executables. The executables may also be
organized as a structured collection (an information architecture) of binary files, static data
value and parameter setting files packaged in interlinked directories, constituting releases for
deployment.

Figure 2. An Integration and Testing Build-time view of a specific integration of common
components that are compatible with the OA design and cybersecurity containment scheme

in Figure 1.

Automated CI systems comprise composed environments of software tools, or sets of loosely
coupled tools together by automated process invocation scripts that guide and constrain their

60

use. Often these tools are independently developed and evolved. Automated CI environments
are continuously being improved or supplanted, and different CI systems offer different
features, functional capabilities, and depend on different software tools. So no single CI
environment or approach will be universal, nor easy to standardize for use in AC multiple
acquisitions, unless such standardization is stipulated within shared agreements, and release
deployment is constrained to homogeneous platforms and component versions.

Next, one of the first activities in moving from architectural design to continuous integration is
to identify specific software component versions that can be instantiated within the current
architectural configuration. While at first it might seem that this is a simple task, we have
found that component and version selection are subject to the obligations and rights
stipulated with a component’s associated IP license [ScA13c]. However, it is possible to
determine, prior to integration, whether the subsequent candidate for release deployment may
suffer from licensing problems or not. When conflicts or mis-matches are discovered, again
prior to further build-time process actions, alternative components with the similar functional
capabilities and interfaces but different licenses may be substituted. An integration and test
build process can instantiate components into a reusable OA software product line design, as
we can determine families of component version instances that can be substituted within the
OA system. For example, Google Chrome browser in this configuration may replace the
Firefox Web browser, because both are under permissive open source software (OSS) IP
licenses.

Once an integrated is built from source code and linkage of pre-existing binary executables
and connectors (e.g., dynamically loaded libraries) the many faces of testing the integrated
assembly now begin. As testing is itself a reasonably complex process, we simply note that
no single testing regime will guarantee the presence of faults, vulnerabilities, or bugs. All
components should be subject to black box testing against known test cases, as well as self-
defending cybersecurity mechanism and vulnerability testing. Detection of flaws may then
necessitate white box testing, which requires access to source code, whose availability will be
determined by component IP licenses and shared acquisition agreements. Integrated AC
builds should be subjected to build test (aka, smoke test); regression tests; self-defending AC
cybersecurity mechanism and vulnerability testing; and IP license compliance testing. All test
results should also be organized as a test case suite aligned with reusable requirements, and
stored within test data repository.

Some technical risks can be identified that pertain to the integration and packaging of
components needed to build and test an AC include:

• Multi-component AC can be developed using different CI environments, tool chains,
software code repositories, and software component file versions.

• Multi-component AC diversity can result in combinatorial large versions spaces that
cannot be easily managed or tracked by people (e.g., acquisition program officers)
without automated tools and support environments (e.g., configuration management
systems tailored to produce acquisition support reports).

• Such diversity can, if manageable, enable new approaches to cybersecurity at
integration build time that is not readily detectable or observable once the AC is
deployed.

61

2.5 AC Release, Component Deployment, Installation and Local Configuration –

The software system you release and deploy depends on what (and how) you build and
package for release and installation. However, what you build and what you release may not
be the same, though they need to be functionally equivalent. For example, when you select
one or more closed source software (CSS) components (an already compiled and integrated
executable binary image) with a common restrictive IP license (i.e., one that prohibits copying
or redistribution) for inclusion in a build-time AC configuration, during the build process, you
must link it as an executable binary for inclusion in a release candidate for deployment (or
deployment testing) on a local computer. Such inclusion is a prerequisite for overall integrated
system testing processes required by CI. However, you cannot distribute such a release
candidate to others, as it is common for CSS to not allow duplication or distribution of licensed
copies of software binaries. Instead, we need to specify and configure a deployment-platform
specific automated software installation mechanism (e.g., installation wizard) that needs to
search for and find a local licensed copy of the CSS executable binary, and link it to the result
of the build sub-process that provides a run-time linkage mechanism in expectation.

Figure 3. Screenshot of a PC desktop view of the released system seen in integration
specification view in Figure 2, as well as compatible with the OA seen in Figure 1: Firefox

Web browser upper left, AbiWord word processor upper right, Evolution email and
calendaring app lower left, and the securable SE Linux operating system and command shell

lower right.

62

A similar effort is needed to enable user acceptance testing or certification testing on their
local platform. These AC release deployment process steps can be accomplished with some
effort, but this effort could also be anticipated at design-time or build-time, when developers
make their selection for which component instances to include in the AC integration and test
build.

Some technical risks can be identified that pertain to the release, deployment and installation
of components needed to install and configure the AC on end-user computing platforms
include:

• Inability to detect remote end-user components or component versions that must be
linked by an automated software installation utility, such that what is known to operate
as intended at the system integrator site, does not operate as intended on the end-user
platform.

• Component version mis-matches between integration and deployment platforms also
applies to IP license versions associated with the components—component IP licenses
must match or be compatible.

• Software installations may be partial due to processing delays or problems not visible
to system integrators, and such installations need to be automatically verified by the
installation utility, once resumed (or restarted) and completed.

• Some AC may be configured at build-and-test integration time with components that
are not licensed for redistribution, so only a partial implementation of the AC is
deployed and the end-user platform must provide the necessary mission components
that can be linked to the partial AC to produce a fully operational AC.

• Component IP licenses must be carefully specified for the OA of an AC so that
redistribution, local cybersecurity configuration, and local component IP license and
version are known to be compatible in advance of deployment.

• Installed AC software configurations should be tracked and their as-built configuration
specification serialized and stored in a repository at the integration site, to facilitate
more rapid IP license and as-configured cybersecurity status, otherwise mis-matches
will arise which are time-consuming to decipher and remedy.

• There is no prior software installation process that is known to be reliable without some
sort of imposed common deployment platform (e.g., Apple iPhones), versus when the
deployment platforms are subject to combinatorial large version spaces (e.g., Android-
based smartphones prior to 2015).

• Shared agreements should account for software component/AC release installation
processes and automated utilities that can verify what versions of what components
with what IP licenses are installed and operational on a given end-user platform, and
whether the installed Ac is configured appropriately for local cybersecurity protection,
so as to minimize downtime resulting from problematic software update installations.

2.6 AC and Mission Component Post-deployment Adaptation and Evolution –

An OA system can evolve by a number of distinct mechanisms or process enactment
pathways, some of which are common to all systems, but others of which arise only in OA

63

systems or where components in a single system are heterogeneously licensed [AAS10].
Figure 4 provides a summary of some of the various paths, as described elsewhere in greater
detail [ScA12, ScA13c].

An OA system can evolve by a number of distinct mechanisms, some of which are common
to all systems but others of which are a result of heterogeneous component licenses in a
single system.

By component evolution— One or more components can evolve, altering the overall system’s
characteristics (for example, upgrading and replacing the Firefox Web browser from version
35 to 36). Such minor versions changes generally have no effect on AC system architecture.

By component replacement— One or more components may be replaced by others with
modestly different functionality but similar interface, or with a different interface and the
addition of shim code or scripting glue code to make it match.

Figure 4. Ways and means for how composed systems or AC may evolve over time and
technology.

By architecture evolution— The OA can evolve by changing connectors between components
rearranging connectors in a different configuration, or changing the interface through which a
connector accesses a component, altering the system characteristics. Revising or refactoring
the configuration in which a component is connected can change how its license affects the

64

rights and obligations for the overall system. An example is the replacement of word
processing, calendaring, email components, and connectors to them with Web-browser-
based services such as Google Docs, Google Calendar, and Google Mail. Compare the end-
user run-time version of the AC shown in Figure 5 to that previously seen in Figure 3, which is
functionally similar, and is compatible with the OA design in Figure 1, yet has a different
integration build architectural configuration. Thus cybersecurity attacks targeted to the OA
system depicted in Figure 3 would not be effective against a functionally similar system
displayed in Figure 5, due to architectural and data storage repository differences (e.g., local
file system versus remote cloud services).

By component license evolution— The license under which a component is available may
change. For example, IP license stipulations regarding technical data rights that were not
available previously with earlier versions of this component are now available, due to a IP
license update.

In response to different desired rights or acceptable obligations— The OA system’s integrator
or consumers may desire additional IP license rights (for example the right to sublicense and
redistribute), or no longer desire specific rights; or the set of license obligations they find
acceptable may change. In either case the OA system evolves, whether by changing
components, evolving the architecture, or other means, to provide the desired rights within the
scope of the acceptable obligations associated with one or more of the AC components' IP
licenses.

Rapid dynamic system reconfiguration— More advanced evolution scenarios entail support
for building and releasing of multi-variant AC deployment configurations that substitute
functionally equivalent software component compilations (integration builds) that produce
multiple, diverse executable binary images, each of which may execute in its own processor
core, in a multi-threaded, multi-core processor. Rapid dynamic system reconfiguration may be
part of an emerging cybersecurity strategy for realizing software diversification, whose goal is
to reduce the attack surface on common AC configurations or components deployed on
homogeneous run-time platforms. Pursuing this path requires a new compilation and build
system regime that in turn anticipates a new generation of CI systems, repositories, and
software installation utilities.

65

Figure 5. A screenshot view of a deployed end-user run-time configuration of the alternative
OA system configuration (now using Web-based service apps) compared to that in Figure 3,

resulting from system evolution.

Some technical risks can be identified that pertain to the post-deployment adaptation and
evolution of components needed to sustain field operation of the AC include:

• Evolutionary changes to AC components, component licenses, or configuration may be
additive, subtractive, or orthogonal; and also may or may not be upward compatible
with the versions they replace.

• Non upward-compatible evolutionary changes do occur, especially when transitioning
from components sourced by different producers or system integrators, or when large
system development contractors acquire smaller component producers, or when large
contractors acquire or merge with one another.

• End-users will need to become aware of the shifting functional performance and usage
modes of evolving AC components, as well as how to work around them if
component/AC functionality is degraded or denied.

• End-user modifications to deployed AC run-time configuration are possible or may be
desirable to support rapid adaptation in the field. Such end-user customizations that
create deployed AC variants whose architectural changes (e.g., component-connector
interface modifications) need to be conveyed or remotely assessed for both added

66

value for sharing/redistribution and introduced vulnerabilities.

• Not updating deployed AC or components with known vulnerabilities (due to slow or
policy-limited provisioning of software updates) means that end-users may know their
AC may be compromised and thus less trustworthy.

4.0 Discussion and Conclusions

In our view, the best way forward is to invest is a focused R&D effort that can iteratively
develop and deliver a domain-specific language (DSL) for specifying and modeling (1) the
open architectures (OA) of assembled capabilities (AC) composed from mission software
components and software interconnection mechanisms. Such a DSL can be (2) utilized
across the AC development, deployment, and sustainment life cycle. Each life cycle stage
either (3) creates, processes, analyzes, or updates the OA representation rendered in the
DSL that is both (4) human-readable and computer processable. Furthermore, (5) the DSL
can be utilized within an interactive environment that can be used by software producers,
system integrators, customers, and acquisition authorities. Such a DSL-based interactive
environment can be utilized in particular (6) to manage, track, and update specifications of
functional requirements (FR) provided by missions components, sub-assemblies, and overall
AC, as well as the (7) cybersecurity and (8) intellectual property (IP) licenses associated with
different mission components, all within the DSL used to specify and annotate the OA for an
AC. To be clear, this requires an investment in a focused R&D effort that can iteratively
develop and deliver the DSL and supporting software as an open source, open architecture
system, ideally subject to IP license that allows open access, modification and (possibly
limited) redistribution, as well as support for specify cybersecurity requirements processing
capabilities.

Overall, these notes are meant to help surface our starting assumptions that then help frame
life cycle activities that arise during the rapid acquisition of legacy, custom, or reusable
mission components and Assembled Capabilities supporting C3CB systems. AC for C3CB
systems will be acquired across an ecosystem of multiple parties: component producers,
system integrators and diverse customers/end-users. Choices made regarding the
employment of Open Architectures and reusable AC Reference Models that are explicitly
rendered in human-readable and computer-processable domain-specific languages, along
with automated tools and techniques for modeling and analyzing appear key to enabling the
rapid acquisition of adaptable mission components and agile integrated AC.

Comments or questions regarding any of the materials in these notes are welcome by the
authors. We look forward to your requests for revision or simplification where appropriate, as
well as to requests for further information on the concepts described in these notes.

Acknowledgements

Preparation of this report is supported by grant #N002444-15-1-0010 from the Acquisition
Research Program at the Naval Postgraduate School, Monterey, CA. No endorsement,
review, or approval implied. This paper reflects the views and opinions of the authors, and not
necessarily the views or positions of any other persons, group, enterprise, or government
agency.

67

References

[AAS10] Alspaugh, T.A., Asuncion, H. and Scacchi, W. (2010). Software Licenses in Context:
The Challenge of Heterogeneously Licensed Systems, Journal of the Association for
Information Systems, 11(11), 730-755, November 2010.

[AlS13] Alspaugh, T.A., and Scacchi, W. (2013). Ongoing Software Development Without
Classical Requirements, Proc. 21st. IEEE Intern. Conf. Requirements Engineering, Rio de
Janeiro, Brazil, 165-174, 15-19 July 2013.

[DBA15] Diercks, P., Brockman, B., and Ansari,J. (2015). Secure Web Integration Framework,
Slide presentation, ACWG/BMTT Working Group Meeting, 3 June 2015. Also see, Galdorisi,
G., Brockman, B., Diercks, P., George, A., et al. (2014). Achieving Information Dominance:
Unleashing the Ozone Widget Framework, Proc. 19th Intern. Command and Control Research
and Technology Symposium (ICCRTS), Paper 109, Alexandria, VA, June 2014.

[GGM14] George, A., Galdorisi, G., Morris, M. and O'Neil (2014). DoD Application Store:
Enabling C2 Agility. Proc. 19th Intern. Command and Control Research and Technology
Symposium (ICCRTS), Paper-104, Fairfax, VA, June 2014.

[GMH13] George, A., Morris, M., Galdorisi, G., Raney, C., Bowers, A., and Yetman, C. (2013)
Mission Composable C3 in DIL Information Environments using Widgets and App Stores.
Proc. 18th Intern. Command and Control Research and Technology Symposium, Paper-036,
Alexandria, VA, June 2013.

[GMO14] George, A., Morris, M. and O'Neil, M. (2014). Pushing a Big Rock Up a Steep Hill:

Lessons Learned from DoD Applications Storefront, Proc. 11th Annual Acquisition Research
Symposium, Vol. 1, 306-317, Naval Postgraduate School, Monterey, CA.

[GSS15] Guertin, N.H., Sweeney, R., and Schmidt, D.C. (2015). How the Navy Can Use
Open Systems Architecture to Revolutionize Capability Acquisition: The Naval OSA Strategy

Can Yield Multiple Benefits. Proc 12th Annual Acquisition Research Symposium, Monterey,
CA, NPS-AM-15-004, May 2015.

[Ken15] Kendall, F. (2015). Implementation Directive for Better Buying Power 3.0,
http://www.acq.osd.mil/fo/docs/betterBuyingPower3.0%289Apr15%29.pdf

[MaS12] Mactal, R., Spruill, N. (2012). A Framework for Reuse in the DoN. Proc. 9th

Acquisition Research Symposium, Vol.1, 149-164, Naval Postgraduate School, Monterey,
CA.

[ScA12] Scacchi, W. and Alspaugh, T.A. (2012). Understanding the Role of Licenses and
Evolution in Open Architecture Software Ecosystems, Journal of Systems and Software,
85(7), 1479-1494, July 2012.

[ScA13a] Scacchi, W. and Alspaugh, T.A. (2013a). Advances in the Acquisition of Secure
Systems Based on Open Architectures, in Journal of Cybersecurity & Information Systems,
1(2), 2-16, February 2013.

[ScA13b] Scacchi, W. and Alspaugh, T.A. (2013b). Streamlining the Process of Acquiring

68

http://www.ics.uci.edu/~wscacchi/Papers/New/ARS2013-Scacchi-Alspaugh.pdf
https://www.thecsiac.com/sites/default/files/journal_files/CSIAC_V1N2_WEB.pdf
https://www.thecsiac.com/sites/default/files/journal_files/CSIAC_V1N2_WEB.pdf
https://www.thecsiac.com/sites/default/files/journal_files/CSIAC_V1N2_WEB.pdf
http://www.ics.uci.edu/~wscacchi/Papers/New/Scacchi-Alspaugh-Software-Ecosystem-Niches-2010.pdf
http://www.ics.uci.edu/~wscacchi/Papers/New/Scacchi-Alspaugh-Software-Ecosystem-Niches-2010.pdf
http://www.acq.osd.mil/fo/docs/betterBuyingPower3.0(9Apr15).pdf
http://www.ics.uci.edu/~wscacchi/Papers/New/RE13-Alspaugh-Scacchi-April13.pdf
http://www.ics.uci.edu/~wscacchi/Papers/New/RE13-Alspaugh-Scacchi-April13.pdf
http://www.ics.uci.edu/~wscacchi/Papers/New/RE13-Alspaugh-Scacchi-April13.pdf
http://www.ics.uci.edu/~wscacchi/Papers/New/Scacchi-Alspaugh-Asuncion-JAIS.pdf
http://www.ics.uci.edu/~wscacchi/Papers/New/Scacchi-Alspaugh-Asuncion-JAIS.pdf

Secure Open Architecture Software Systems, Proc. 10th Annual Acquisition Research
Symposium, Monterey, CA, 608-623, May 2013.

[ScA13c] Scacchi, W. and Alspaugh, T.A. (2013c). Processes in Securing Open Architecture
Software Systems, Proc. 2013 Intern. Conf. Software and System Processes, 126-135, May
2013, San Francisco, CA.

[ScA13d] Scacchi, W. and Alspaugh, T.A. (2013d). Challenges in the Development and
Evolution of Secure Open Architecture Command and Control Systems, Proc. 18th Intern.
Command and Control Research and Technology Symposium, Paper 098, Alexandria, VA,
June 2013.

[ScA14b] Scacchi, W. and Alspaugh, T. (2014). Cost-Sensitive Acquisition of Open
Architecture Software Systems for Mobile Devices, Invited Presentation, MITRE-ATARC
Workshop on Challenges in Legal and Acquisition, Federal Mobile Computing Summit,
Washington, DC, 19 August 2014.

[ScA14c] Scacchi, W. and Alspaugh, T. (2014). Reasoning about the Security of Open
Architecture Software Systems for Mobile Devices, Invited Presentation, Federal Mobile
Computing Summit, Washington, DC, 20 August 2014.

[ScA15] Scacchi, W. and Alspaugh, T.A. (2015). Achieving Better Buying Power Through
Acquisition of Open Architecture Software Systems for Web-Based and Mobile Devices, Proc.
12 th Annual Acquisition Research Symposium, pgs. 4-21, Monterey, CA, May 2015.

[WoS11] Womble, B., Schmidt, W., Arendt, M., and Fain, T. (2011). Delivering Savings with
Open Architecture and Product Lines, Proc. 8th Acquisition Research Symposium, Vol. 1, 8-
13, Naval Postgraduate School, Monterey, CA.

69

http://www.acquisitionresearch.net/files/FY2015/NPS-AM-15-005.pdf
http://www.acquisitionresearch.net/files/FY2015/NPS-AM-15-005.pdf
http://www.acquisitionresearch.net/files/FY2015/NPS-AM-15-005.pdf
http://www.acquisitionresearch.net/files/FY2015/NPS-AM-15-005.pdf
http://www.acquisitionresearch.net/files/FY2015/NPS-AM-15-005.pdf
http://www.ics.uci.edu/~wscacchi/Papers/New/ICCRTS2013-ScacchiAlspaugh.pdf
http://www.ics.uci.edu/~wscacchi/Papers/New/ICCRTS2013-ScacchiAlspaugh.pdf
http://www.ics.uci.edu/~wscacchi/Papers/New/ICCRTS2013-ScacchiAlspaugh.pdf
http://www.ics.uci.edu/~wscacchi/Papers/New/Scacchi-Alspaugh-ICSSP13.pdf
http://www.ics.uci.edu/~wscacchi/Papers/New/Scacchi-Alspaugh-ICSSP13.pdf
http://www.ics.uci.edu/~wscacchi/Papers/New/Scacchi-Alspaugh-ICSSP13.pdf
http://www.ics.uci.edu/~wscacchi/Papers/New/ARS2013-Scacchi-Alspaugh.pdf
http://www.ics.uci.edu/~wscacchi/Papers/New/ARS2013-Scacchi-Alspaugh.pdf

Chapter 5:

Starting Assumptions on Life Cycle Activities for
Acquiring Software-Based Assembled Capabilities

70

Starting Assumptions on Life Cycle Activities for
Acquiring Software-Based Assembled Capabilities

Walt Scacchi and Thomas Alspaugh
Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3455 USA

wscacchi@gmail.com

Version of: 28 July 2015
1.0 Introduction

In this note, we identify and briefly describe starting assumptions for the acquisition life cycle
of assembled capabilities (AC) for software-intensive command, control, communications,
cyber, and business systems (C3CB). Such systems may incorporate widgets, plug-ins, apps,
and other mission components that accommodate Web-based or mobile devices.

Our overall goal is to work towards a new approach to acquisition of AC that is timely,
produces technologically superior solutions, and does so in a cost-effective, agile, and
adaptive manner. Said differently, our overall goal is to identify how best to provide new ways
and means for streamlining AC acquisition through timely, agile, and adaptive technologically
superior ways and means.

2.0 Starting Assumptions

Our starting assumptions for the goals of acquiring AC into four groups, account for
Acquisition, AC, IP and Cybersecurity requirements, and technical support requirements. The
assumptions thus include:

Acquisition

1. Rapid acquisition life cycles are measured in months instead of years (e.g., 2-12
months) through ways and means that are compliant with relevant Federal Acquisition
Regulations.

2. We seek to enable new rapid acquisition life cycle practices best suited for producing
adaptive, agile, AC within multi-party ecosystems of mission component producers,
integrators/assemblers, and customers/end-users.

3. Acquisition includes the processes, support systems, personnel, review and approval
activities, etc. associated with the procurement, development, deployment, and field support
of assembled capabilities or their components.

4. In November 2013, the Department of Defense (DoD) released Interim DoD Instruction
5000.02, "Operation of the Defense Acquisition System." Enclosure 2 of this document
describes policies that apply to the management of acquisition programs. Regulations require
that programs develop an intellectual property (IP) strategy as part of the acquisition strategy.

Assembled Capabilities (AC)

5. In concept, AC incorporate four kinds of software or data components, identified here.

71

http://www.dtic.mil/whs/directives/corres/pdf/500002_interim.pdf
mailto:wscacchi@gmail.com

Some of these components may represent new elements to be developed via acquisition, or
may be already deployed legacy systems that may need to be refactored and componentized
for use within the AC via acquisition.

5.1 Mission specific widgets, plug-ins, mashups or applications (“apps”) possibly acquired
via an online app store;

5.2 Common technology (e.g., Ozone widget framework, Java); and

5.3 Shared infrastructure (Joint Information Environment, MPE, ICITE).

5.4 Data components (sensor signal processing, data aggregation/reduction, data
repositories, reusable source code libraries, etc.) are collectively composed/composable
through custom capability-specific integration code (e.g., software scripting or glue code).

31.Data components may also incorporate business logic elements, which may
themselves be treated as business logic components.

6. The range of components within an AC can include:

6.1 Standalone programs (“apps”);

6.2 Executable binary code;

6.3 Run-time common technology libraries, frameworks, or middleware;

6.4 Inter-app (glue code) and intra-app (widget) scripting code;

6.5 Configured systems or existing sub-systems, such as for infrastructure services.

7. Software or data components used in AC are composed/assembled using software-
based connectors as interconnection mechanisms. Different connectors may utilize mission
specific hardware or network technologies within the AC. However, apps that are hardware-
unique should be avoided, as this limits their potential reuse, and instead should follow the
Joint C2 Reference Architecture to insure their portability. Different types of software/data
connectors include:

7.1 source code that accesses application program interfaces (APIs) or Web-service
interfaces;

7.2 reusable source code or re-entrant executable libraries;

7.3 data messaging protocols (e.g., specific to a network);

7.4 middleware (e.g., Mobile Device Manager);

7.5 new/legacy databases;

7.6 network file systems; etc.

8. The Joint C2 Reference Architecture provides a solid basis for an AC approach that
maximizes decoupling between applications through the use of well-defined service interface
exposure and service usage.

9. AC employ explicit, open architectures (OAs) that specify how components are
connected together through specific interconnection mechanisms:

9.1 The goals of AC with OA are to improve adaptation and transparency, accommodate
innovative mission components, increase competition, and other initiatives aligned with OUSD

72

(AT&L) Better Buying Power (BBP) guidelines [Ken15].

9.2 OAs may conform to explicit (open source) reference models of known, viable, and
reusable capabilities, cybersecurity requirements, or acquisition processes.

9.3 OA references models should be specified and represented in explicit, open source
formats that can be shared, modified, and redistributed within a community of interest.

9.4 Reusable OAs or reference models may be created and shared to support common
AC development scenarios.

10. AC must accommodate mobile and Web-based C3CB platforms subject to
cybersecurity requirements and assurance processes.

11. AC may be assembled or field-adapted by system integrators that can include external
contractors, internal consultants, Program Offices, deployed forces personnel, or others in the
Mission Partner environment, where appropriate.

12. AC may incorporate components, sub-assemblies, or assembly acquired/provided by
one or more Program offices, subject to shared (acquisition) agreements.

13. AC can be verified for their cybersecurity status, and resistance to known
vulnerabilities and cyber attack scenarios, in light of asynchronous evolution of AC mission
components.

Assembled Capabilities Intellectual Property and Cybersecurity Issues

14. Software components are subject to intellectual property (IP) licenses determined by
their producers. IP licenses stipulate obligations (e.g., covenants like fee paid per user
licenses) that end-user organizations/participants, as well as system integrators (capability
assemblers), must satisfy in order to realize rights associated with the use, modification, or
redistribution of components within assembled capabilities:

14.1 In November 2013, the Department of Defense (DoD) released Interim DoD Instruction
5000.02, Operation of the Defense Acquisition System. Enclosure 2 of the document
describes policies that apply to the management of acquisition programs. Regulations require
that programs develop an IP strategy as part of the acquisition strategy [SEI13].

14.2 IP licenses may be permissive and provide open source computer software and/or
technical data rights, or be restrictive and closed (proprietary) with limited computer software
and/or technical data rights for customers/end-users.

14.2.1 Technical data “means recorded information, regardless of the form or method of the
recording, of a scientific or technical nature (including computer software documentation). The
term does not include computer software or data incidental to contract administration, such as
financial or management information” (DFARS 252.227.7013 (15)).

14.2.2 Computer software “means computer programs, source code, source code listings, ob-
ject code listings, design details, algorithms, processes, flow charts, formulae and related ma-
terial that would enable the software to be reproduced, recreated, or recompiled. Computer
software does not include computer databases or computer software documentation” (DFARS
252.227.7013 (a)(3)).
14.3 Permissive and restrictive licenses fall along a spectrum of possibilities, from most

73

http://www.dtic.mil/whs/directives/corres/pdf/500002_interim.pdf

permissive (least restrictive) to most restrictive (least permissive), as determined by their
specified obligations to be fulfilled in order to realize the rights available.

15. Software interconnection mechanisms (connectors) may or may not be subject to
proprietary IP licenses or “fair use” doctrine (cf. Oracle v. Google, re: Java APIs, now pending
before the SCOTUS):

15.1 Use of closed source or proprietary software interconnection mechanisms mitigate
against use of OA.

15.2 Software interconnection mechanisms may or may not transfer IP license obligations
and rights between components, or across the AC, depending on their design,
implementation and usage within an AC.

15.3 Systems or AC with closed or unknown architectures may or may not transfer IP
licenses or cybersecurity requirements across interconnected components, and may be
subject to the inversion or denial of rights due to evolutionary changes in included system
components.

15.4 In Europe (and thus much of NATO), the European Copyright Directive expressly
excludes APIs from copyright.

16. Program Offices and other acquisition service providers will need to specify and
assess the IP obligations they are willing to accept, and what rights they require/desire, in the
components and assembled capabilities they seek to acquire, deploy, and adapt.

16.1 System integrators (capability assemblers) determine which IP obligation and rights
are realized in an AC delivered to a customer organization or end-users, through the
integrators choices when configuring the AC using specified interconnection mechanisms and
components.

16.2 Program offices or other acquisition service providers need to provide guidance to
system integrators and verify compliance with IP obligation stipulations in order to insure end-
user and technical data rights.

17. Shared agreements for acquiring AC across Program offices/agencies are either a kind
of:

17.1 “Unilateral agreement” where a single party is chartered to produce, maintain and
operate a set of components or services which are intended for re-use by third parties without
requiring shared agreements between parties. In this case, a Service Level Declaration
provides the basis for establishing the expectation for the components' functionality,
performance and availability.

17.2 “Bilateral agreement” between two parties to share acquisition costs, IP obligations and
rights, and cybersecurity assurance.

17.3 “Multi-lateral agreement” among three or more parties to share acquisition costs, IP
obligations and rights, and cybersecurity assurance.

17.4 Shared agreements must be iteratively negotiated in advance of use.

17.4.1 Worked examples of shared agreements would be beneficial for review and training

17.4.2 Worked examples should include identification of representative trade-off alternatives

74

among the parties.

17.5 Shared agreements should be reusable and tailorable across Program Offices

17.5.1 Federal Acquisition Regulation (and DFAR) compliance should be assured with
constraints allowing variability within the terms and conditions for reuse and tailoring.

17.5.2 Shared agreements that are reusable and tailorable provide pre-certified FAR/DFAR
compliance will streamline acquisition of AC covered by such agreements.

Technical System Requirements Going Forward

18. Cybersecurity requirements also entail obligations (e.g., mandatory access control)
and rights (e.g., authorized end-users can access sensor data), so that the tools, techniques,
and processes for assuring IP license compliance are also usable for cybersecurity
requirements assurance.

19. IP and cybersecurity obligations and rights for mission components and AC can be
expressed in human-readable and computer-processable formats, such as through use of a
domain-specific language (DSL) designed for such purposes a) IP and cybersecurity
obligations and rights can be used to annotate the components interfaces or sub-assembly
interfaces within an OA AC, using such a DSL.

20. Such a DSL may also explicitly model the OA for specific AC, and for tailorable product
lines of AC [GSS15, MaS12, ScA12, WoS11].

20.1 Product lines correspond to, and are specified with, reference models, as reference
models specify a family of systems or AC that share a common OA and functionally similar
components.

20.2 Product lines are an established approach that accommodates reuse and tailoring of
product line family members.

20.3 Many types of software components and connectors for AC may be grouped into
product lines, where family members are either functionally equivalent, functionally similar, or
distinct.

20.4 Shared agreements may also be grouped into product lines.

21. Such a DSL enables and streamlines acquisition of AC through use of an open source
software-based system for managing, analyzing, and tracking AC OA, IP and cybersecurity
obligations and rights.

22. Such a DSL can serve as the basis for automated calculation of metrics regarding AC
development status, AC architectural completion gaps and component interface mis-matches,
IP obligations (like license costs), extent of new versus reusable requirements within or
across AC product lines, frequency and ease of post-deployment adaptation into AC, and
more.

Though this is quite a laundry list of what is required to acquire AC, it does help to provide a
context for identifying the issues and opportunities that can arise during the acquisition of AC
for C3CB. Conversely, failure to recognize or explicitly declare such starting assumptions will

75

necessitate the need to restate and recapitulate the problems encountered in order to realize
the breakthrough solutions sought for acquiring AC needed for emerging missions that utilize
new, innovative technologies and platforms. Warfighters and supporting military forces will
increasingly be treated as active C3CB elements. This will be especially true in the near
future when warfighters and supporting forces are adorned with body-worn sensors and hand-
held/mobile devices that are networked with command centers, combat platforms/vehicles,
logistics supply chains, and personnel readiness assessment capabilities, potentially across
joint forces.

3.0 Conclusions

Technological superiority is a common goal, as is streamlining AC acquisition. So starting
assumptions matter, as do visions for emerging technological opportunities, risks, and
vulnerabilities. This note thus serves to collect the assumptions we are making as we seek to
move towards articulating the acquisition life cycle for AC and mission components that are
rapid, agile, and adaptive across an ecosystem of component producers, system integrators
or capability assemblers, and customers/end-users. Please help us identify any missing
assumption, or to suggest revisions that will help improve the value and quality of this note.

Acknowledgements

Preparation of this report is supported by grant #N002444-15-1-0010 from the Acquisition
Research Program at the Naval Postgraduate School, Monterey, CA. No endorsement,
review, or approval implied. This paper reflects the views and opinions of the authors, and not
necessarily the views or positions of any other persons, group, enterprise, or government
agency.

References

[GSS15] Guertin, N.H., Sweeney, R., and Schmidt, D.C. (2015). How the Navy Can Use
Open Systems Architecture to Revolutionize Capability Acquisition: The Naval OSA Strategy

Can Yield Multiple Benefits. Proc. 12th Annual Acquisition Research Symposium, Monterey,
CA, NPS-AM-15-004, May 2015.

[Ken15] Kendall, F. (2015). Implementation Directive for Better Buying Power 3.0,
http://www.acq.osd.mil/fo/docs/betterBuyingPower3.0%289Apr15%29.pdf

[MaS12] Mactal, R., Spruill, N. (2012). A Framework for Reuse in the DoN. Proc. 9th

Acquisition Research Symposium, Vol.1, 149-164, Naval Postgraduate School, Monterey,
CA.

[ScA12] Scacchi, W. and Alspaugh, T.A. (2012). Understanding the Role of Licenses and
Evolution in Open Architecture Software Ecosystems, Journal of Systems and Software,
85(7), 1479-1494, July 2012.

[SEI13] Software Engineering Institute (2013). Managing Intellectual Property in
the Acquisition of Software Systems—SPRUCE/SEI, November.

[WoS11] Womble, B., Schmidt, W., Arendt, M., and Fain, T. (2011). Delivering Savings with
Open Architecture and Product Lines, Proc. 8thAcquisition Research Symposium, Vol. 1, 8-13,
Naval Postgraduate School, Monterey, CA.

76

https://www.csiac.org/spruce/resources/ref_documents/recommended-practices-managing-intellectual-property-acquisition-software-in
https://www.csiac.org/spruce/resources/ref_documents/recommended-practices-managing-intellectual-property-acquisition-software-in
http://www.ics.uci.edu/~wscacchi/Papers/New/Scacchi-Alspaugh-Software-Ecosystem-Niches-2010.pdf
http://www.ics.uci.edu/~wscacchi/Papers/New/Scacchi-Alspaugh-Software-Ecosystem-Niches-2010.pdf
http://www.acq.osd.mil/fo/docs/betterBuyingPower3.0(9Apr15).pdf

Chapter 6:

Tutorial Presentation: Beyond Open Architecture:
Issues, Challenges, and Opportunities in Open Source

Software Development (OSSD) for Aerospace and
Defense Applications

77

Beyond Open Architecture:

Issues, Challenges, and Opportunities in

Open Source Software Development

(OSSD) for Aerospace and Defense

Applications

Walt Scacchi

© 2016, Institute for Software Research.

 Published by The Aerospace Corporation with permission.

Overview
● Background
● Sample of research findings on OSSD
● OSSD as multi-project software ecosystems
● OSSD, open architectures, and software licenses
● Challenges in securing OA C2 systems

● Case Study: Securing the development and evolution of an
OA C2 system within an agile, adaptive software ecosystem

● Emerging transformations with OSS and OA
systems

● Conclusions

78

Background

Personal History of OSS Development
Studies

● 2000-2015 (60+ publications)

● Computer games, defense, X-ray astronomy,
Internet/Web infrastructure, bioinformatics, higher
education, e-commerce, neuroscience, virtual reality.

● Discovering requirements practices and
processes across OSS communities of practice.

● Participant role sets, role migration, and social
movements within/across OSS projects.

● Open architecture (OA) systems with
heterogeneously licensed components.

79

What is open source?

● Open source software (OSS) denotes
specifications, representations, socio-technical
processes, and multi-party coordination
mechanisms in human readable, computer
processable formats.

● Socio-technical control of OSS is elastic,
negotiated, and amenable to decentralization.

● OSS development subsidized by contributors
and participants.

JPL Mars Exploration Rover

Space Activity Planner

Source: J.S. Norris, Mission Critical Development of Open Source Software: Lessons

Learned, IEEE Software, 21(1), 42-49, Jan 2004.

80

OA and OSS for the Army

Sample of research
findings on OSSD

81

What is free/open source software

development?

● Free (as in “freedom” or liberty, not cost) vs. open source
● Freedom to access, browse/view, study, modify and

redistribute the source code—it's about IP licenses!

● Free is always open, but open source is not always free

● FOSSD is not “software engineering”
● Different: FOSSD can be faster, better, and cheaper

than SE in some circumstances

● FOSSD teams use 10-500+ OSSD tools (versions) and
communications applications to support their
development work

400M Mozilla users

82

LibreOffice Internationalization

12

SourceForge.net info Jan. 2016

83

OSSD Enterprise Models

● Free Software (GPL)
● Permissive Open Source (BSD/MIT, FreeBSD)
● Corporate/Inner Source (Hewlett-Packard)
● Consortium/Alliance (OSDL, SugarCRM)
● Non-profit foundations (Apache, Mozilla, Gnome, Perl)
● Corporate-Sponsored (Google, HP, IBM, Microsoft, Oracle)
● Open Modding Extensions to Closed Source (many game

companies)
● Community Source (Sakai, Westwood)

----------------------------- not OSSD models below ----------------------
● Shared Source via Non-Disclosure Agreement
● Open Systems (open APIs, closed components)

OSSD Project Characteristics

● Operational code early and often--actively improved

and continuously adapted
● Short-cycle (FOSS) vs. long-cycle (SLC) time processes

● Post-facto software system requirements and

design
● FOSSD has its own “-ilities” which differ from those for

SE

● Caution: the vast majority (>90%) of OSSD projects

fail to grow or to produce a viable, sustained

software release.

84

OSSD Project Characteristics

● FOSS developers are typically end-users of what
they build

● Some FOSS users (~1%) are also FOSS developers

● These developers know their “functional requirements”

● Requires critical mass of contributors and FOSS
components connected through socio-technical
interaction networks

● Can be <1% of user community for large FOSS
projects

● Sustained commitment and contribution critical

● OSSD projects can emerge/evolve via bricolage
● Unanticipated architectural (de)compositions

● Multi-project component integrations

OSSD Informalisms

● Software informalisms--artifacts participants

use to describe, proscribe, or prescribe what’s

happening in a project

● Informalisms capture detailed rationale and

debates for what changes were made in

particular development activities, artifacts, or

source code files

85

OSSD Informalisms: Artifacts and repositories

enable collaboration in OSS development

Email lists Discussion
forums

News postings Project digests

IM/Internet
Relay Chat

Scenarios of
usage

How-to guides Screenshots

FAQs; to-do
lists: item lists

Project Wikis System
documentation

External
publications

Copyright
licenses

Architecture
diagrams

Intra-app
scripting

Plug-ins

Code from
other projects

Project Web
site

Multi-project
portals

Project source
code web

Project
repositories

Software bug
reports

Issue tracking
databases

Blogs, videos,
social media.

86

OSSD Processes?

● How does OSSD occur in practice, or via prescription?

● Who does what, where, when, how, why?

● OSSD projects in the wild eschew explicit models of

their processes, preferring that contributors “learn” how

things get done, by whom, etc. as a way to

demonstrate your commitment to project success.

● Models of OSSD processes are few and mostly scarce,

yet should be key to industrial OSSD utilization.
● Informal, formal, and executable models desirable.

87

NetBeans self-organized

coordination and control

Legend: Boxes are activities (using informalisms); Ellipses are resources required or provided; Actor roles

in boldface; flow dependencies as arrows.

88

 OSSD Research Surveys
● Scacchi, W. (2007). Free/Open Source Software Development: Recent Research Results and

Emerging Opportunities. Proc. 6th. ESEC/FSE, 459–468. Also see, Scacchi, W. Free/Open
Source Software Development: Recent Research Results and Methods, in M.V. Zelkowitz (ed.),
Advances in Computers, 69, 243-295, 2007.

● Gasser, L. and Scacchi, W. (2008). Towards a Global Research Infrastructure for
Multidisciplinary Study of Free/Open Source Software Development, in Open Source
Development, Community and Quality; B. Russo, E. Damiani, S. Hissan, B. Lundell, and G.
Succi (Eds.), IFIP Vol. 275, Springer, Boston, MA. 143-158.

● Hauge, O., Ayala, C. and Conradi, R. (2010). Adoption of Open Source Software in Software-
Intensive Organizations - A Systematic Literature Review. Information and Software
Technology, 52(11), 1133-1154.

● Aksulu, A. and Wade, M.R. (2010). A Comprehensive Review and Synthesis of Open Source
Research, J. Assoc. Info. Systems, 11(11), 576-656.

● Scacchi, W., Crowston, K., Jensen, C., Madey, G., Squire, M., and others (2010). Towards a
Science of Open Source Systems, Final Report, Computing Community Consortium, November
2010. http://foss2010.isr.uci.edu/content/foss-2010-reports/

● Höst, M., Oručević-Alagić, A. (2011). A Systematic Review of Open Source Software in
Commercial Software Product Development, Information and Software Technology, 53(6), June,
616-624.

● Crowston, K., Wei, K., Howison, J., and Wiggins, A. (2012). Free/libre open source software
development: what we know and what we do not know. ACM Computing Surveys, 44(2).

OSSD as multi-project

software ecosystems

89

What is a (software) ecosystem?

● An ecology of systems with diverse species
juxtaposed in adaptive prey-predator food chain
relationships.

● Economic network of processes that transform
the flow of resources, enacted by actors in
different roles, using tools, to produce products,
services, or capabilities.

● Software supply network of component
producers, system integrators, and consumers.

Software ecosystem of producers and the
software components for an enterprise or

Web-compatible C2 system

90

Multi-project software ecosystem

● Mutually dependent OSS development and
evolution propagate architectural styles,
dependencies, and vulnerabilities

● Architectural bricolage arises when
autonomous OSSD projects, artifacts, tools,
and systems co-mingle or merge
● Enables discontinuous or exponential growth of

FOSS code, functionality, complexity, contributions

FOSS Social Networking across

projects

Source: G. Madey, et al., 2005

91

Web software ecosystem

Source: C. Jensen and W. Scacchi, Process Modeling Across the Web Information Infrastructure,

Software Process--Improvement and Practice, 10(3), 255-272, July-September 2005.

OSSD, open
architectures, and

software licenses for C2 or
C3CB systems

92

What is an Open Architecture?

• DoD has announced policies and initiatives that

commit to the acquisition of software-intensive

systems that require or utilize an Open Architecture,

and Open Technology.

• OA systems may include components with open APIs,

OSS technology or development processes.

• Air Force, Army, and Navy each have their own

reasons for adoption OA systems.

– But what happens when there are conflicts across

the services regarding what an OA is?

• Therefore, is it clear what an OA is?

OA software ecosystems

Software supply network for OA
system components: Component IP

license and cybersecurity
requirements propagate from/to
Producers, Integrators, and

Consumers

93

What is a C2 or C3CB System?

• C2 – Command and Control System

• C3CB – Command, Control, Communications (C3), Cyber

and Business System

• Common features
– Centralized architecture (decentralized in R&D)

– Applications include: word processing, presentation,

spreadsheet, email, calendar, messing, mapping,

visualization/media display, resource scheduling, global

shared displays, personal workstations, special devices.

– Deployments in military operations, space operations,

public utilities, network operations, live media (sports

events) broadcasting, gaming centers, motorsports (F1).

Recurring vision for advanced C2: C2RPC [2010]

94

Decentralized Command and Control
(DCC)

● DCC emerging as a new strategic thrust

● [DoD JOAC 2012]

● DCC encourages physically decentralized user
practices, using low-cost/open source software.

● DCC operates as a virtual enterprise

● Physically distributed, logically centralized

● “Edge” of a multi-site organization [Albert and Hayes
2003]

● DCC accommodates peer-to-peer organizational
decision-making and work locations

● Crowd-sourced DCC may also be possible

DECENT: a prototype platform for research and
experimentation with DCC

● DECENT is an online virtual world prototype and
platform for experimentation with DCC

● Used in early studies of C2 mission planning games

● Developed with low-cost, open source software for
virtual worlds (OpenSim).

● Transformative: Potential to dramatically reduce the cost
of fielding C2 system capabilities

● Few barriers to acquisition

● Applicable to mission planning and coordination in
physical and virtual applications (Cyberwarfare)

Scacchi, W. Brown, C. and Nies, K. (2012).
Exploring the Potential of Virtual Worlds for Decentralized Command and Control, Proc. 17th Intern.
Command and Control Research & Technology Symposium, Paper-096, Alexandria, VA.

95

Virtual worlds and physical places for C2

● Virtual worlds (VWs) can be used to mirror physical
spaces, actors (avatars), devices, activities and
resources within them.

● DECENT models physical C2 worlds and many
mission planning IT resources as found in C2RPC
[2010] for web-based C2.

● DECENT integrates remote text, chat, speech, image
and video stream servers/clients

● DECENT supports decentralized, networked users

● C2 activities with physically distributed users, within
logically centralized/shared VW

Physical C2 facility

96

Virtual world for C2: DECENT

Under-explored topics for DECENT

● Most VW software technologies, including
OpenSim and Second Life offer little/no ready
support for integration of external application
programs or other software components.

● Securing a VW for military C2 applications is a
major concern in advancing this line of research
and deployment.

● Availability of OSS+VW platforms supports low-
cost R&D of next-gen C2/C3CB systems.

97

Conclusions and recommendations for
studies for DECENT approaches to C2

● DECENT demonstrates a transformative
reduction in cost of rapidly creating and
deploying C2 systems supporting DCC via OSS

● DECENT can be deployed via pocket storage
devices (flash storage thumb drives)

● Much remains to be studied using DECENT like
technologies and approaches to DCC

● R&D should seek to demonstrate future
benefits and articulate system/software risks
(e.g., security of VWs is an open problem).

Open Architectures, OSS, and

software license analysis

• Goal: identify software architecture principles

and OSS licenses that mediate OA

• OSS elements subject to different IP licenses

• DoD policies and initiatives encouraging OA

with OSS elements

• How to determine the requirements needed to

realize OA strategies with OSS?
Source: W. Scacchi and T. Alspaugh, Emerging Issues in the Acquisition of Open Source Software within the U.S. Department of Defense,

Proc. 5th Annual Acquisition Research Symposium, Vol. 1, 230-244, NPS-AM-08-036, Naval Postgraduate School, Monterey, CA,

2008.

98

Open (Software) Architecture Concepts

• Software source code components

– Standalone programs

– Libraries, frameworks, or middleware

– Inter-application script code (e.g., for mash-ups)

– Intra-application script code (e.g., for Rich Internet Apps.)

• Executable software components (binaries)

• Application program interfaces (APIs)

• Software connectors

• Configured sub-system or system

Open Architecture Example
Legend: Grey boxes are

components; ellipses

are connectors; white

boxes are interfaces;

arrows are data or

control flow paths;

complete figure is

architectural design

configuration

99

OSS elements subject to different

IP licenses

● Intellectual Property (IP) licenses stipulate obligations (requirements)
and rights (capabilities) regarding use of the IP

– GPL (Gnu Public License) stipulate right to access, study, modify, and reciprocal
obligation to redistribute modified source

– Mozilla now offers a “tri-license” for its software like Firefox:

• GPL, MPL (lightweight), or Restricted (accommodating proprietary services)

– Other OSS covered by different rights and obligations

• How to determine which IP obligations and rights apply to a configured
system?

– At design-time (maximum flexibility)

– At build-time (may/not be able to redistribute components at hand)

– At run-time (may/not need to install/link-to components from other sources)

– At evolution-time (component suppliers, licenses, connections, etc. may change).

Source: Scacchi W. and Alspaugh, T. (2012). Understanding the Role of Licenses and Evolution in Open Architecture Software
Ecoystems, Journal of Systems and Software, 85(7), 1479-1494, July.

OSS elements subject to different

Security licenses

● Software system security obligations and rights are comparable to IP!
● Security licenses can serve similar purposes (and analysis) as that for IP licenses.

• How to determine which security obligations and rights apply to a
configured system?

– At design-time (maximum flexibility)

– At build-time (may/not be able to redistribute components at hand)

– At run-time (may/not need to install/link-to components from other sources)

– At evolution-time (component suppliers, licenses, connections, etc. may change).

 Source: Scacchi, W. and Alspaugh, T. (2013). Advances in the Acquisition of Secure Systems Based on Open Architectures,
Journal of Cybersecurity & Information Systems, 1(2), 2-16, February 2013.

100

Specifying and analyzing system access
control requirements as “licenses”

• Security policies imply capabilities that
correspond to “rights and obligations” in licenses

• Should be possible to specify and analyze
system security architecture that conform to a
security meta-model, much like we do for
software licenses

• Should be possible to develop computational
tools and development environments that can
analyze security at design-time, build-time, and
run-time, as well as when the system evolves

Software license meta-model for
specifying constraint annotations

101

Logical modality and objects of
software license rights and

obligations constraints

License inference scheme

102

Software IP/Security license
analysis

• License types:
– Strongly reciprocal, weakly reciprocal,

academic, Terms of Service, Proprietary

• Propagation of reciprocal obligations

• Conflicting obligations

• Calculating obligations and rights

103

Reasoning structure during analysis

104

Challenges of securing open
architecture (OA) C2 systems

105

Security challenges
● Security threats to software systems are increasingly

multi-modal and distributed across system
components.

● Physically isolated systems are vulnerable to external
security attacks.

● What makes an OA C2 system secure changes over
time, as new threats emerge and systems evolve.

● Need an approach to continuously assure the security
of evolving OA C2 systems that is practical, scalable,
robust, tractable, and adaptable.

Software systems/components
evolve: what to do about security?

● Individual components evolve via revisions (e.g., security patches)

● Individual components are updated with functionally enhanced
versions;

● Individual components are replaced by alternative components;

● Component interfaces evolve;

● System architecture and configuration evolve;

● System functional and security requirements evolve;

● System security policies, mechanisms, security components, and
system configuration parameter settings also change over time.

106

Current security approaches
● Mandatory access control lists, firewalls;

● Multi-level security;

● Authentication (including certificate authority and passwords);

● Cryptographic support (including public key certificates);

● Encapsulation (including virtualization), hardware confinement (memory,
storage, and external device isolation), and type enforcement capabilities;

● Secure programming practices;

● Data content or control signal flow logging/auditing;

● Honey-pots, traps, sink-holes;

● Security technical information guides (STIGs) for configuring the security
parameters for applications and operating systems;

● Functionally equivalent but diverse multi-variant software executables.

● Software component security assurance processes.

Current approaches to software system security
do not address the challenges of continuously
evolving OA C2 systems emerging within agile,

adaptive software ecosystems!

107

Case Study:
Securing the development and

evolution of an OA C2 system within
an agile, adaptive software

ecosystem

Carefully specifying security policy
obligations and rights

● The obligation for a user to verify his/her authority to see compartment T, by

password or other specified authentication process

● The obligation for all components connected to specified component C to
grant it the capability to read and update data in compartment T

● The obligation to reconfigure a system in response to detected threats, when
given the right to select and include different component versions, or
executable component variants.

● The right to read and update data in compartment T using the licensed

component

● The right to add, update, replace specified component D in a specified
configuration

● The right to add, update, or remove a security mechanism

● The right to update security policy L.

108

Software product lines?

● When functionally similar software components,

connectors, or configurations exist,

● Such that equivalent alternatives, versions, or variants

may be substituted for one another, then

● We have a strong relationship among these OA

system elements that denotes a software product line.

● Software product lines for OA systems enable support

from agile, adaptive software (component) ecosystems

● Reed, H., Benito, P., Collens, J. and Stein, F. (2012). Supporting Agile C2 with an Agile and Adaptive

IT Ecosystem, Proc. 17Th Intern. Command and Control Research and Technology Symposium

(ICCRTS), Paper-044, Fairfax, VA, June 2012.

Security challenges
● Security threats to software systems are increasingly

multi-modal and distributed across system
components.

● Physically isolated systems are vulnerable to external
security attacks.

● What makes an OA C2 system secure changes over
time, as new threats emerge and systems evolve.

● Need an approach to continuously assure the security
of evolving OA C2 systems that is practical, scalable,
robust, tractable, and adaptable.

109

Design-time view of an OA system

Software product line of functionally
similar OA system alternatives

110

Product line selection of one
alternative system configuration

A security requirement encapsulating the design-time
configuration via multiple virtual machine containers

111

Build-time view of OA design selecting
proprietary product family alternatives

Build-time view of OA design selecting
OSS product family alternatives

112

Run-time deployment view of OA
system family member configuration

Evolution-time software changes

113

Evolutionary redevelopment,

reinvention, and redistribution

● Overall evolutionary dynamic of many OSSD projects
is reinvention and redevelopment

● Reinvention enables continuous improvement and collective
learning

● OSS evolve through minor mutations
● Expressed, recombined, redistributed via incremental

releases

● OSS systems co-evolve with their development
community

● Success of one depends on the success of the other

74

Institute for Software Research, UCI

114

Product line selection of different
functionally similar alternative

Evolved run-time deployment view of a functionally
similar alternative OA system configuration

115

Emerging

Transformations with

OSS and OA systems

New paths for OA C2 development and evolution
using widgets/apps acquired from online App Store

116

PEO C4I Storefront Concept

Source: George, A. Galdorisi, G, Morris, M. O”Neil, M. (2014). DoD Application Store: Enabling C2 Agility?, Proc. 19th Intern. Command and
Control Research & Technology Symposium, Alexandria, VA.

Ozone Widget Framework (2012-2015+)

117

Transforming to multi-party acquisition of
software elements within OA ecosystems

Customer/end-user organizations now looking for ways to reduce
acquisition cost and effort through shared development/use of common

OA software system components (apps, widgets).

118

Transforming to multi-party acquisition of
software elements within OA ecosystems

Customer/end-user organizations now looking for ways to reduce
acquisition cost and effort through shared development/use of

assembled capabilities for C3CB systems

Shared development of Apps and Widgets
as OA system components

Ozone Widget Framework for Web PCs and Mobile
Devices

119

Commercial Mobile Apps also being used
(middleware services, not shown)

Enterprise-to-Mobile Middleware IP Licenses
(for the NitroDesk Touchdown product in 2014)

* LGPL 2.1 * Sony Mobile

* Ical4j from Ben Fortuna * Jesse Anderson

* Public Domain Declaration * OpenSSL

* Apache 2 * Apple Non-Exclusive

* The Legion of the Bouncy
Castle

* SQLite

* Creative Commons BY * Microsoft Public License

120

Growing diversity of challenges in
cybersecurity

● Scacchi, W. and Alspaugh, T. (2012) Addressing Challenges in the

Acquisition of Secure Software Systems with Open Architectures, Proc. 9th

Acquisition Research Symposium, Vol. 1, 165-184, Naval Postgraduate
School, Monterey, CA.

● Scacchi, W. and Alspaugh, T. (2013a). Processes in Securing Open
Architecture Software Systems, Proc. 2013 Intern. Conf. Software and
System Processes, San Francisco, CA, May 2013.

● Scacchi, W. and Alspaugh, T.A. (2013b). Streamlining the Process of

Acquiring Secure Open Architecture Software Systems, Proc. 10th Annual
Acquisition Research Symposium, Monterey, CA, 608-623, May 2013.

● Scacchi, W. and Alspaugh, T.A. (2013c). Challenges in the Development
and Evolution of Secure Open Architecture Command and Control Systems,

Proc. 18th Intern. Command and Control Research and Technology
Symposium, Paper-098, Alexandria, VA, June 2013.

Shared development of Apps and Widgets
as OA system components: Cybersecurity?

Ozone Widgets supporting “Bring Your Own
Devices” (BYOD)?

121

New business models for acquisition of
OA Web/mobile software components

● Franchising

● Enterprise licensing

● Metered usage

● Advertising supported

● Subscription

● Free component, paid

service fees

● Federated reciprocity for
shared development

● Collaborative buying

● Donation

● Sponsorship

● Government open source
software (GOSS)

● and others

Emerging challenges in achieving Better
Buying Power via OA software systems

● Program managers/staff may not understand how
software IP licenses affect OA system design, and
vice-versa.

● Software IP and cybersecurity obligations and rights
propagate across system development, deployment,
and evolution activities in ways not well understood by
system developers, integrators, end-users, or
acquisition managers.

122

Emerging challenges in achieving Better
Buying Power via OA software systems

● Failure to understand software IP and cybersecurity
obligations and rights propagation can reduce DoD
buying power, increase software life cycle costs, and
reduce competition.

● DoD, other Government agencies, and large
enterprises would financially and administratively
benefit from engaging the OSSD and deployment of
an automated software obligations and rights
management system for the software asset
management (acquisition) workforce.

New practices to realize cost-effective
acquisition of OA software systems

● Need to R&D worked examples of reference OA
system models, and component evolution alternatives.

● Need open source models of app/widget security
assurance processes and reusable cybersecurity
requirements.

● Need precise domain-specific languages (DSLs)
and automated analysis tools for continuously
assessing and continuously improving cybersecurity
and IP requirements for OA C2 systems composed
from apps/widgets.

123

Conclusions
● Our research identifies how new OSS component

technologies, IP and security requirements, OSS
development practices, and new business models
interact to drive-down or drive-up C2 system costs.

● New technical risks for component-based OA software
systems can dilute the cost-effectiveness of OSSD
efforts.

● Need R&D leading to automated systems that can
model and continuously analyze OA system IP
licenses and cybersecurity requirements

● Empower OA C2 system development workforce

● Identify and manage cost-effectiveness trade-offs

Acknowledgements
Research collaborators

• Mark Ackerman, UMichigan, Ann Arbor; Kevin Crowston,
Syracuse U; Les Gasser, UIllinois, Urbana-Champaign;
Chris Jensen, Google; Greg Madey, Notre Dame U; John
Noll, LERO; Megan Squire, Elon U; and others.

• Thomas Alspaugh, Hazel Asuncion (UWashington-
Bothwell), Margaret Elliott, and others at the UCI ISR.

• DASD(A)-C3CB Assembled Capabilities Working Group.

124

Acknowledgements

Funding support (No endorsement, review, or approval
implied).

• National Science Foundation: #0083075, #0205679,
#0205724, #0350754, #0534771, #0749353, #0808783,
and #1256593.

• Naval Postgraduate School

– Acquisition Research Program (2007-2015+)

• N00244-1-15-0010 (2015-2016)

– Center for the Edge Research Program (2010-2012).

• Computing Community Consortium (2009-2010).

Thank you!

125

THIS PAGE LEFT INTENTIONALLY BLANK

Acquisition Research Program

Graduate School of Business & Public Policy

Naval Postgraduate School

Acquisition Research Program
Graduate School of Business & Public Policy
Naval Postgraduate School
555 Dyer Road, Ingersoll Hall
Monterey, CA 93943

 www.acquisitionresearch.net

	NPS-ARP-2015-FinalReport-Scacchi
	INTRODUCTION
	DEFENSE COMMITMENT TO OPEN ARCHITECTURE AND OSS
	Historical Background
	OA, Open APIs, and OSS
	Application domain of interest: C3CB with Web or Mobile Devices

	OA ECOSYSTEMS
	EMERGING SE RESEARCH ISSUES IN DEVELOPING AND DEPLOYING OA C3CB SYSTEMS WITH OSS ELEMENTS
	1. Unknown or unclear OA solutions
	2. Heterogeneously licensed OA systems
	3. Cybersecurity for OA systems
	4. Build, Release, and Deployment (BRD) Processes and Process Automation
	5. Software Evolution Practices Transmitted Across the OA Ecosystem
	6. New Business Models for Acquisition of Software Components and Apps

	DISCUSSION and CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

	GSAW-OSS-Tutorial-Scacchi-12Feb16-2SlidesPage
	UCI_Intro Pages_Scacchi.pdf
	ARP Back Cover.pdf
	Report Cover
	1. Double click the header or footer area (see below).
	2. Make changes to the existing header or footer, on the first page. Close the header or footer.
	Page Layout
	Organization

	2. Acknowledgements
	3. About the Author

	Back Cover.pdf
	Report Cover
	1. Double click the header or footer area (see below).
	2. Make changes to the existing header or footer, on the first page. Close the header or footer.
	Page Layout
	Organization

	2. Acknowledgements
	3. About the Author

	Blank Page
	Blank Page
	Blank Page

