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Abstract 

Development and acquisition efforts of cyberphysical systems can often 

encounter cost or schedule overruns due to the complexity of the system. It has 

been shown that certain amount of system complexity is related to the system 

functionalities (effective complexity), whereas excessive complexity is related to 

unnecessary intricacies in the design (apparent complexity). While the former is 

necessary, the latter can be removed through precise local redesign. One of the 

major challenges of systems engineering today is the development of tools, 

quantitative measures, and models for the identification of apparent complexity 

within the system. 

This research has the goal of evaluating and measuring the structural 

complexity of the engineered system, and does it through the analysis of its graph 

representation. The concepts of graph energy and other spectral invariant quantities 

allow for the definition of an innovative complexity metric. This metric can be applied 

knowing the design of the system, to understand which areas are more in need of 

redesign so that the apparent complexity can be reduced.  
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Introduction 

Complexity is one of the hallmarks of all engineered systems, specially a 

prominent feature of defense acquisition programs. Complex engineered systems 

are continuously exposed to various types of uncertainties, risks, and failures in their 

lifecycle. The causes of failures and risks are either a known observed phenomenon 

and perhaps overlooked in the development phase, or it is a new type of failure. The 

former case can lead to improvements in engineering design and management and 

systems engineering processes of a complex system. The latter case, instead, can 

potentially provide useful information that can be obtained only through unfolding of 

these types of failures and events. Complex engineered systems design effort 

resides partially in the domain of known risks and uncertainties. This domain, also 

known as the domain of complicated systems, is characterized by known unknowns 

which can be addressed with time and effort, through theoretical and experimental 

research. This means that systems in this domain can express large epistemological 

emergence, given to the lack of knowledge, but a low ontological one, meaning that 

the knowledge can be obtained. 

However, the engineered systems with high levels of ontological emergence, 

meaning that the system under study is so far from the current level of knowledge, 

show low levels of predictability in behavior. Complex engineered systems involve 

humans with certain levels of autonomy interacting with the engineered systems. 

Predicting the behavior of a complex system, characterized emergent phenomena is 

very challenging. To reduce various risks in design and operation of an acquisition 

program, systems engineers have attempted to operate within the domain of 

knowable risks as much as possible, through mitigation and exploitation techniques 

such as trade space exploration, modular designs, open architectures, redundancy, 

verification and testing. However, a comprehensive, applied and formal way to 

measure and capture various dimensions of complexity and risks in lifecycle of a 

complex engineered system or an acquisition program is lacking. In past years, the 

systems engineering research community has introduced some measures of 

complexity for engineering design, however domain dependence and limitation in 
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universality of use of these measures, has seriously limited their use in decision 

making process. In this paper, we introduce a constructed measure of complexity 

which has carefully tried to address and well as to avoid many shortcomings of 

existing quantitative measures of complexity. 

This paper begins with a literature review on the state of the art on complexity 

and emergence. The literature review also covers some existing measures of 

complexity and their merits as well as shortcomings and limitations. The paper 

continues to introduce the concepts of spectral theory of systems complexity and 

explains matrix energy and directed edges in our suggested complexity measure. 

The paper concludes by analyzing the results and sets the stage for the future work 

of various case studies, quantitatively connecting emergence to spectral complexity 

measures of an engineered system or an acquisition program. 
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Literature Review 

Three Types of Problems 

The first hint to the role of complexity in science and engineering design has 

been given by Weaver (Weaver, Science and complexity., 1948). He described three 

distinct types of problems: problems of simplicity, problems of disorganized 

complexity, and problems of organized complexity. Problems of simplicity are the 

problems with a low number of variables that have been tackled in the nineteenth 

century. An example is the classical Newtonian mechanics, where the motion of a 

body can be described with differential equations in three dimensions. In these 

problems, the behavior of the system is predicted by integrating equations that 

describe the behavior of its components. Problems of disorganized complexity are 

the ones with a very large number of variables that have been tackled in the 

twentieth century. The most immediate example is the motion of gas particles, or as 

an analogy the motion of a million balls rolling on a billiard table. The statistical 

methods developed are applicable when particles behave in an unorganized way 

and their interaction is limited to the time they touch each other -- which is very 

short. In these problems, it has been possible to describe the behavior of the system 

without looking at its components or the interaction among them. Problems of 

organized complexity are the ones that are to be tackled in the twenty-first century, 

and that see many variables showing the feature of organization. These problems 

have variables that are closely interrelated and influence each other dynamically. 

This high level of interaction that gives rise to organization, is the reason for which 

these problems cannot be solved easily. Weaver early described them as solvable 

with the help of powerful calculators, but today's technology is not able yet to solve 

the most complex of these problems. These are the problems that nowadays we 

define as "complex". Predicting the behavior of a system with many interconnected 

parts changing their behavior in line with the state of other components is a problem 

of organized complexity, and the system itself is a referred to as a complex system. 
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The Point of View of the Observer 

On his blog, Rouse wrote about the absolute or relative nature of complexity 

(Rouse, 2016). To illustrate his stand on the matter, he considers two uses for a 

Boeing 747: as a paperweight and as an airliner. This thought exercise allows to 

understand that the 747 as a paperweight is not very complex. It does a perfect job, 

given its large mass, but carries no complexity in its operation. On the other side, the 

airliner function exposes all the operational difficulties of flying and maintaining an 

airplane. From this example, he concludes that complexity should be defined in 

terms of a relationship between the entity and an observer. Thus, complexity is 

relative to the point of view of the observer. 

Wade and Heydari categorized complexity definition into three major groups, 

according to the point of view of the observer (Wade & Heydari, Complexity: 

Definition and Reduction Techniques, 2014). When the observer is external to the 

system and can only interact with it as a black box, then the type of complexity that 

can be measured is called behavioral complexity, since it looks at the overall 

behavior of the system. When the observer has access to the internal structure of 

the system, such as blueprints and source code for engineered systems, or scientific 

knowledge for natural systems, then the structural complexity of the system is the 

one being measured. If the process of constructing the entity is under observation, 

then is the constructive complexity to be measured, which is the complexity of the 

building process. This definition relates complexity to the difficulty of determining the 

output of the system.  

Fischi built a framework for the measurement of dynamic complexity entirely 

based on the role of the observer (Fischi, Nilchiani, & Wade, Dynamic Complexity 

Measures for Use in Complexity-Based System Design, 2015). The definition of 

complexity used in this framework is based on the system being observed, the 

capabilities of the observer, and the behavior that the observer is trying to predict. 
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Complexity and Emergence 

Often complex systems have behaviors that cannot be immediately 

explained, and for this reason complexity is associated with the concept of 

emergence. As defined by Checkland, emergence is “the principle that entities 

exhibit properties which are meaningful only when attributed to the whole, not to its 

parts” (Checkland, 1981). In other words, an emergent phenomenon is a 

phenomenon at the macro-level that was not hard-coded at the micro-level (Page S. 

E., 1999), and which can be described independently from the underlying 

phenomena that caused it (Abbott, 2006). 

Both natural and engineered systems are capable of expressing emergence. 

One example of emergence in natural system is wetness. Water molecules can be 

arranged in three different phases (i.e. solid, liquid, and gas) but only one of them 

expresses a certain type of behavior, that is high adherence to surfaces. This 

behavior is due to the intermolecular hydrogen bonds that affects the surface tension 

of water drops. These bonds are also active in the solid and liquid phase, but in 

those cases, they are either too strong or too weak to generate wetness. As we will 

see for many systems, some properties emerge only when conditions are just right. 

In engineered systems, the system requirements and software specifications are 

supposed to be written in such a way that they are independent from their 

implementation. For this reason, the functions and properties they describe are 

emergent (Abbott, 2006). 

These definitions of emergence often do not differentiate on whether the 

emergent property is expected or unexpected, and this is obvious, since not every 

system has a designer that is putting together components to generate the system, 

and therefore sometimes there is no one to expect the property. Natural systems, 

which are created through evolution, do not justify the classification of emergence 

into expected and unexpected. In engineered systems, this is of course not true. The 

system engineer is responsible for the identification of the properties of the system in 

relation to its environment. Not only the operational environment, but also assembly, 

integration, testing, and disposal environment. In the design process, it is customary 
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to differentiate between the attributes of the system that are wanted, and therefore 

expected, and the ones that are unexpected, which can be beneficial or adverse. 

Two Types of Emergence 

The works of Chalmers (Chalmers, 2008), Bedau (Bedau, 1997), and 

Kauffman (Kauffman, Beyond reductionism: Reinventing the sacred, 2007) identify 

differences between two types of emergence: epistemological and ontological. 

Kauffman proposes two approaches to the nature of emergence. The 

reductionist approach, sees emergence as epistemological, meaning that the 

knowledge about the systems is not yet adequate to describe the emergent 

phenomenon, but it can improve and explain it in future. This is the case of wetness, 

where knowledge about molecules and intermolecular interactions can explain the 

emergent phenomenon. On the other hand, there is the ontological emergence 

approach, which says that “not only we don't know that will happen, [but] we don't 

even know what can happen”, meaning that there is a gap to fill not only about the 

outcome of an experiment (or process), but also about all the possible outcomes 

(Kauffman, Beyond reductionism: Reinventing the sacred, 2007). Ontological 

emergence is given by the enormous amount of states the system could evolve into. 

The evolution of the swimming bladder in fish is an example of ontological 

emergence (Longo, Montévil, & Kauffman, No entailing laws, but enablement in the 

evolution of the biosphere, 2012). An organ that gives neutral buoyancy in the water 

column, as its main function, also enables the evolution of some kinds of worms and 

bacteria that will live in it. Ontological (or radical) emergence is given by the 

enormous amount of states the system could evolve into. In these cases, we not 

only are not able to predict which state will happen, but not even what are the 

possible states. 

Chalmers provides definitions for two different types of emergence, weak and 

strong, based on the capabilities of the observer (Chalmers, 2008). At the lower 

level, there is weak emergence, which includes any property possessed by the 

whole and not its parts. A chair is an example of weak emergence since the property 

of allowing someone to sit is present in the whole but not in its parts. At the upper 
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level, there is strong emergence with the example of consciousness. In the case of 

weak emergence, the emergent phenomenon is just unexpected, while in the case 

of strong emergence, it is completely non deducible. This of course depends on the 

capabilities of the observer in linking the phenomena at the two levels. Chalmers, 

being a philosopher and cognitive scientist, implicitly assumes that the observer has 

the knowledge and capabilities of a human being. An example that he provides to 

illustrate the difference between weak and strong emergence is the high-level 

patterns in cellular automata. These patterns are unexpected but deducible just by 

looking at the low-level rules of the automaton, making them weakly emergent and 

not strongly emergent. The only example that Chalmers provides of strong 

emergence is consciousness, and goes along to state that there is no other such 

phenomenon other than the ones in which the strong emergence derives “wholly 

from a dependence on the strongly emergent phenomena of consciousness”. Thus, 

the way of differentiating between a system with weak or strong emergence is to 

look for conscious elements within the system. 

Complexity and Complication 

The idea that complexity also depends on the tools and knowledge available 

to the observer is common to many researchers. Crawley, Cameron, and Selva use 

the concepts of essential and apparent complexity to make a distinction between 

complexity and complication (Crawley, Cameron, & Selva, 2015). Being engineers, 

they only consider designed systems. Essential complexity comes from functionality, 

and represents the minimum amount of complexity required for the desired 

functionalities to emerge. Apparent complexity, on the other hand, represents the 

unnecessary intricacies that a designed system can have. These are the 

architectural features that are not required from the functionality, which make the 

design complicated and hard to understand. The role of the system architect is to 

minimize the apparent complexity, without affecting the essential one. 

Evolved systems do not have functions, but they create advantages to their 

stakeholders. The presence of a heart in the cardiovascular system of many animals 

is only explained by the advantage it creates in the distribution of resources within 
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the organism. The heart does various things, such as pumping blood, and making 

the characteristic heart sound. The categorization of these behaviors into functions 

and side effects has no meaning in evolved systems, and therefore the concepts of 

essential and apparent complexity lose their validity (Longo, Montévil, & Kauffman, 

No entailing laws, but enablement in the evolution of the biosphere, 2012). On the 

other side, the work of Chaisson suggests that evolution keeps the apparent 

complexity as low as possible, by selecting the unfit organisms. This implies that the 

complexity of an evolved organism, which has thrived for a substantial amount of 

time in its environment, is close to its essential complexity (Chaisson E. J., The 

Natural Science Underlying Big History, 2014). This means that evolved systems are 

complex but not complicated. 

Gell-Mann, being a physicist, has a more holistic definition of effective 

complexity, and logical depth (apparent complexity) (Gell-Mann, What is complexity? 

Remarks on simplicity and complexity by the Nobel Prize-winning author of The 

Quark and the Jaguar, 1995). Effective complexity is the length of a concise 

description of the regularities of an entity. This quantity should not be confused with 

logical depth. Mandelbrot's set has high logical depth, since being a fractal, a simple 

rule is applied infinite times in a recursive fashion, but a low amount of effective 

complexity, since the formula used to describe it is relatively short. This is in general 

true for all fractals. 

In the decision-making field, the Cynefin framework has been proposed by 

Snowden to help identify the best approach to solving a specific problem (Snowden 

D. , Multi-ontology sense making: a new simplicity in decision making, 2005). This 

sense-making model can be used to understand from the data available which are 

the characteristics of the problem at hand, and which strategy will lead to a solution. 

As shown in Figure 1 the framework identifies five domains of knowledge: simple 

and complicated, which are ordered, complex and chaotic, which are unordered, and 

disorder. 
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Figure 1 - Representation of the Cynefin framework (Snowden & Boone, 2007) 

In the simple domain, systems decisions can be taken unanimously with all 

the parties, due to the shared understanding of the matter, and to the clear 

relationships between cause and effects. The simple domain is the domain of best 

practice, where once a solution to a problem has been found, it is applicable unless 

there is a domain shift. In the complicated domain, there still is a relationship 

between cause and effect, but not all the parties are able to discern it. The answer to 

the problem often is not best practice, and some relatively deep analysis is 

necessary to find a proper solution.  This definition is common to the definition of 

complication as arising from intricacies, where the problem is made difficult because 

of the way it is formulated. In the complex domain, there might not be a right answer 

at all, and the relationships between cause and effect can be identified only in 

retrospect. This is due to ontological emergence which can create higher logical 



Acquisition Research Program 
Graduate School of Business & Public Policy - 10 - 
Naval Postgraduate School 

structures in which feedback loops are hidden. In the chaotic domain, no patterns 

are discernible, and no relationships can be identified. This is the domain of 

emergency, where the immediate goal is not to find a solution to a problem, but to 

bring the system back to an ordered state, from which a solution can be found 

(Snowden & Boone, 2007). 

Wade and Heydari provide a more technical description of the Cynefin 

framework (Wade & Heydari, Complexity: Definition and Reduction Techniques, 

2014). The simple and chaotic domains have both low complication, the former with 

low complexity, and the latter with high one. The complicated and complex domains 

have both high complication, the former with low complexity, and the latter with 

high one. Systems with high complication can be analyzed with a reductionist 

approach such as decomposition, while systems with high complexity cannot. This 

point of view on reductionism is shared by Bedau, according to whom, weak 

(epistemological) emergence can be analyzed using reductionist techniques (Bedau, 

1997). The possibility of applying a reductionist approach to the systems exhibiting 

only weak emergence allows to connect these two types of emergence with the 

definition of complicated and complex system. Complicated systems are the ones 

which exhibit weak emergence, which can be analyzed using reductionist 

techniques, and in which the emergent phenomena are unexpected but still 

predictable. Complex systems are the ones in which strong emergence comes in 

place, where the reductionist approach does not work, and high-level behaviors are 

not predictable. 

Structural, Dynamic, and Socio-Political Complexity 

In engineered systems, complexity can be divided into six types (Sheard & 

Mostashari, 2010). 

• Structural complexity 

o Size, or number of elements in the system, number of types of 

elements, instances of a certain type. 

o Connectivity, number of connections, types of connections. 

o Topology, architectural patterns, local and global patterns. 
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• Dynamic complexity 

o Short term, at the time scale of the system operations, behavior of the 

system while executing its functions. 

o Long term, at the lifetime scale, evolutionary process of the system, 

retirement or mission extension. 

• Socio-political complexity, anything having to do with humans, cognitive 

limitations, social phenomena. 

How to Measure Complexity? 

With a better understanding of complexity, we can now look at how this 

quantity can be measured. 

Cyclomatic Complexity 

McCabe provided a complexity metric for software systems (McCabe T. J., 

1976). This metric looks at the graph representation of the program, and is defined 

as 

𝑣𝑣(𝐺𝐺) = 𝑒𝑒 − 𝑛𝑛 + 𝑝𝑝 

where 𝑒𝑒 is the number of edges, 𝑛𝑛 the number of vertices, and 𝑝𝑝 the number of 

connected components in the graph. This metric is called cyclomatic number. It can 

be demonstrated that in a strongly connected graph, the Cyclomatic number is equal 

to the maximum number of linearly independent circuits (McCabe T. J., 1976). 

Free Energy Density Rate 

Chaisson proposed a metric for the evaluation of complexity based on the 

amount of energy of the entity under study (Chaisson E. J., 2004). More precisely, 

energy rate density, which is “the amount of energy available for work while passing 

through a system per unit time and per unit mass” (Chaisson E. J., 2015). This 

metric is a boundary metric, since it considers the input and output of the system, 

without looking at its internal structure. It has been derived through the 

generalization of various metrics used in various fields, such as propellant to mass 

ratio for engineering, or metabolic rate for biology. The metric has been evaluated 
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for multiple entities such as galaxies, stars, planets, plants, animals, societies, and 

technological systems, showing a rising trend in complexity (Chaisson E. J., The 

Natural Science Underlying Big History, 2014). 

Per this metric, a system with a large intake of energy per second (i.e. 

power), and a low mass, will be a very complex one. From the engineering point of 

view, this can also represent a very inefficient system. The success of Chaisson’s 

metric is because the systems under study are mostly evolved systems, or designed 

with efficiency in mind. Therefore, the applicability of this metric assumes that the 

system has been designed, or shaped by evolution, in such a way that there is no 

waste of energy, or useless mass. 

Propagation Cost and Clustered Cost 

MacCormack presented two types of metrics for the evaluation of the 

complexity of software systems (MacCormack, Rusnak, & Baldwin, 2006). The 

directed dependency between files in the source code is the function call. The 

propagation cost is the average of the visibility of modifications to dependent files, 

while the clustered cost considers the importance of the node scaling the relative 

cost accordingly. 

Spectral Structural Complexity Metric 

Sinha presented a structural complexity metric based on the design structural 

matrix (DSM) of the system (Sinha & de Weck and Olivier, Structural complexity 

metric for engineered complex systems and its application, 2012). The metric is 

defined as 

𝐶𝐶(𝑛𝑛,𝑚𝑚,𝐴𝐴) =  �𝛼𝛼𝑖𝑖

𝑛𝑛

𝑖𝑖=1���
𝐶𝐶1

+ ���𝛽𝛽𝑖𝑖𝑖𝑖𝐴𝐴𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

�
�����������

𝐶𝐶2

𝛾𝛾𝛾𝛾(𝐴𝐴)���
𝐶𝐶3

 

where 𝑛𝑛 is the number of components in the system, 𝑚𝑚 the number of interfaces, 𝐴𝐴 

the DSM, 𝛼𝛼𝑖𝑖 the complexity of each component, 𝛽𝛽𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑖𝑖𝑖𝑖𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗 the complexity of each 

interface, 𝛾𝛾 = 1/𝑛𝑛 a normalization factor, and 𝐸𝐸(𝐴𝐴) the matrix energy of the DSM. 𝐶𝐶1 
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is the complexity contribution of the components, 𝐶𝐶2 is the contribution of the 

interfaces, and 𝐶𝐶3 is the contribution of the topology. The application of the metric 

sees the evaluation of 𝛼𝛼𝑖𝑖 through expert judgment, and assumes 𝑓𝑓𝑖𝑖𝑖𝑖 = 1 for lack of 

information (Sinha & de Weck and Olivier, 2013). 

Graph Energy 

The metric is inspired from the Hückel Molecular Orbital (HMO) Theory, which 

evaluates the energy of π-bonds in conjugated hydrocarbon molecules as a solution 

of the time-independent Schrödinger equation 

𝐻𝐻𝐻𝐻 = 𝐸𝐸𝐸𝐸 

where 𝐻𝐻 is the Hamiltonian matrix, and 𝐸𝐸 the energy corresponding to the molecular 

orbital. This equation is an eigenvalue problem of the Hamiltonian. In 1978, Gutman 

defined the energy of a graph, as 

𝐸𝐸 =  � |𝜆𝜆𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

 

where 𝜆𝜆𝑖𝑖 are the eigenvalues of the adjacency matrix representing the carbon 

substructure of the molecule (Gutman & Shao, The energy change of weighted 

graphs, 2011). 

Instead of the eigenvalues, the approach introduced by Nikiforov (Nikiforov, 

2007), and embraced by Sihna, evaluates the graph energy using the singular 

values of the matrix. This modification extends the applicability to directed graphs 

where the adjacency matrix is not symmetric, while for undirected ones where the 

adjacency matrix is symmetric matrix, this new approach is coincident with the 

original eigenvalues one. 

The HMO theory is applied to structures of carbon atoms, which are homogeneous. 

Its application to systems of heterogeneous components, this metric does not 

consider the role of components with different levels of complexity.  
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Methodology 

 

Figure 2 - Graph representation of a system 

The goal of this research is to measure the structural complexity of 

engineered systems. The system of interest can vary from a piece of software 

controlling a reaction wheel, to an attitude control system, to a satellite, and up to a 

whole network of satellites. Let’s consider the system represented in Figure 2. This 

graph is a general representation of any engineered system, in which the 

components are represented by the vertices, and the interfaces by the edges. The 

generality of this approach allows to evaluate the complexity of the more disparate 

engineered systems, if they can be represented as a graph. The complexity metric 

proposed by Sinha needs the following data to be available: the complexity of each 

component 𝛼𝛼𝑖𝑖, the complexity of each interface 𝛽𝛽𝑖𝑖𝑖𝑖, and the adjacency matrix 𝐴𝐴. 

Here we describe two limitations of Sinha’s approach, which will be overcome by the 

newly developed metric. 
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Component Swap Test 

 

Figure 3 - Swapping of nodes within a graph 

The component complexity 𝛼𝛼𝑖𝑖 represents the complexity of the irreducible 

components at a certain hierarchical level within the system representation. In the 

graph representation of the system, it can be represented as the weight of a looping 

edge over each vertex. Let's consider two vertices 𝑢𝑢 and 𝑣𝑣, and their weights 

𝑤𝑤(𝑢𝑢,𝑢𝑢)  = 𝛼𝛼𝑢𝑢 and 𝑤𝑤(𝑣𝑣, 𝑣𝑣)  = 𝛼𝛼𝑣𝑣. Swapping the weights so that to have 𝑤𝑤(𝑢𝑢,𝑢𝑢)  = 𝛼𝛼𝑣𝑣 

and 𝑤𝑤(𝑣𝑣, 𝑣𝑣)  = 𝛼𝛼𝑢𝑢 should generally reflect a change in the value of the structural 

complexity metric. 

As an example, consider two separate temperature control systems within a 

building. One takes care of a conference room and the other one of a biotech 

laboratory. These two systems are going to have in general very different essential 

complexities, as it can be seen from their required level of performance (e.g. 

accuracy, responsiveness). The complexity of the whole building would generally be 

affected in case these two systems are swapped. A good complexity metric should 

be able to verify the component swap criterion. 
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The complexity metric developed by Sinha is not able to distinguish between 

the two systems. This is because the contribution of the components 𝐶𝐶1is evaluated 

using a sum of the component complexities which is commutative. 

Interface Swap Test 

 

Figure 4 - Swapping of edges in a graph 

The interface complexity 𝛽𝛽𝑖𝑖 represents the complexity of the interconnection 

between two components at a certain hierarchical level within the system 

representation. In the graph representation of the system, it can be represented as 

the weight of the edge between two vertices. Let's consider two edges having 

weights 𝑤𝑤1(𝑢𝑢1,𝑣𝑣1) = 𝛽𝛽1 and 𝑤𝑤2(𝑢𝑢2, 𝑣𝑣2) = 𝛽𝛽2. Swapping the weights so that to have 

𝑤𝑤1(𝑢𝑢1,𝑣𝑣1) = 𝛽𝛽2 and 𝑤𝑤2(𝑢𝑢2, 𝑣𝑣2) = 𝛽𝛽1 should generally reflect a change in the value of 

the structural complexity metric. 

In this case as well, the metric developed by Sinha does not reflect a change 

following this swap, because of the commutative property of the sum. 
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Requirements for a Structural Complexity Metric 

In this research, we are developing a spectral structural complexity metric which can 

overcome the limitations in other structural complexity measures while maintaining 

all the good features of the existing ones. The new metric shall be able to: 

1. Measure the complexity of a system with directed interfaces, in which the 

adjacency matrix is asymmetric. 

2. Measure the complexity of a system with multiple parallel edges, in which two 

components can be connected via more than one edge. 

3. Measure the complexity of a system with respect to its size, meaning that the 

complexity metric should be normalized with respect to the extension of the 

system. 

4. Pass the component swap test 

5. Pass the interface swap test 

Directed Edges 

Any engineered system can be represented through a graph in which the 

components are vertices and the interfaces are edges. In general, interfaces have a 

direction, such as for broadcasting communication systems in which one 

components transmits data to many receivers. Directionality can create asymmetry 

in the representation of the graph, in case the adjacency matrix is used, with 

subsequent complex eigenvalues. This approach will use the Laplacian matrix, 

which is Hermitian, and since we are going to use real values for the matrix, it will be 

symmetric. Therefore, the use of the Laplacian matrix, allows to have real 

eigenvalues, more precisely non-negative ones, which can be used for the definition 

of the metric. 
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Multiple Parallel Edges 

Engineered systems can also have multiple interfaces between components. 

In a graph representation, this means that the edge (𝑢𝑢, 𝑣𝑣) can have multiple 

instances, namely (𝑢𝑢, 𝑣𝑣)1 , (𝑢𝑢, 𝑣𝑣)2 , … , (𝑢𝑢, 𝑣𝑣)𝑘𝑘. For example, the interfaces between 

two components in a cyberphysical system can be thermal, mechanical, 

electromagnetic, or logical (i.e. in software). In our approach, multiple interfaces are 

simply bundled together and considered as one. The same approach has also been 

used already by Sinha (Sinha & de Weck and Olivier, Structural complexity metric 

for engineered complex systems and its application, 2012), even if without explicit 

mention. 

Size Normalization 

Since the size of the system influences its complexity, we want to adopt 

Chaisson’s approach and normalize the metric with the size of the system. This can 

be done by normalizing the graph metric with the number of vertices, or by using 

normalized matrices such as the normalized Laplacian, which is normalized with the 

degree of the nodes. 

Weighted Edges 

The role of the graph in this application is to carry the information about 

complexity of components and interfaces. For this reason, the edges of the graph 

need to be weighted according to their complexity. The complexity of the 

components is represented through weights on self-looping edges. 

In the following section, the theory behind the development of a new metric is 

presented, and a running example is used to illustrate the results. The example is 

based on the system represented in Figure 2, and assumes that 𝛼𝛼𝑢𝑢 = 1 for all the 

vertices, and 𝛽𝛽𝑢𝑢𝑢𝑢 = 1 for all the edges. While the theory considers the more general 

case, and is not based upon this assumption, its use in the illustrative example 

allows the reader to more easily focus on the topological contribution to the system 

complexity.  
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Spectral Theory of Systems Complexity 

Spectral Graph Theory 

Spectral Graph Theory is the study of graphs through the eigenvalues of their 

matrix representation. The set of eigenvalues is known as the spectrum. The 

elements of spectral graph theory here reported were published by Chung (Chung F. 

R., 1997) and Spielman (Spielman, 2007). Let's consider a graph with 𝑛𝑛 vertices and 

𝑚𝑚 edges. If 𝑢𝑢 and 𝑣𝑣 are two vertices in the graph, and they are connected by an 

edge, we say that they are adjacent. An edge that connects a vertex to itself is called 

a loop. Graphs that contain no loops are called simple graphs. Edges can be 

associated to a direction. Directed graphs have edges with an associated direction, 

meaning that the edges (𝑢𝑢, 𝑣𝑣) and (𝑣𝑣,𝑢𝑢) are two distinct entities. For undirected 

graphs, those are two representations of the same entity. 

Edges in a graph can also be weighted, meaning that we can define a function 

𝑤𝑤(𝑢𝑢, 𝑣𝑣) ∶  𝑉𝑉 ×  𝑉𝑉 → ℝ 

where 

𝑤𝑤(𝑢𝑢, 𝑣𝑣) ≥ 0 

and, in the case of undirected graphs 

𝑤𝑤(𝑢𝑢, 𝑣𝑣) = 𝑤𝑤(𝑣𝑣,𝑢𝑢) 

The degree of a vertex is defined as the number of incoming edges connected to it, 

and in the case of weighted edges  

𝑑𝑑𝑣𝑣 = �𝑤𝑤(𝑢𝑢, 𝑣𝑣)
𝑢𝑢

  

In this section, we introduce various matrix representations of graphs that will be 

useful in the creation of a spectral complexity metric. To do this, we will consider the 

graph represented in Figure 2 as a running example. 
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Adjacency Matrix 

The adjacency matrix is defined as 

𝐴𝐴(𝑢𝑢, 𝑣𝑣) = �1 𝑖𝑖𝑖𝑖 𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

 

The adjacency matrix is symmetric in the case of undirected graphs. For 

directed graphs, the symmetry holds only if edges appear in pairs. In the case of 

weighted edges, the adjacency matrix is defined as 

𝐴𝐴(𝑢𝑢, 𝑣𝑣) = �𝑤𝑤(𝑢𝑢, 𝑣𝑣) 𝑖𝑖𝑖𝑖 𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

 

The eigenvalues of the adjacency matrix are labeled in increasing order and 

represented as 

𝜆𝜆1 ≥  𝜆𝜆2 ≥ ⋯ ≥  𝜆𝜆𝑛𝑛 

and the following is true 

�𝜆𝜆𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 0 

�𝜆𝜆𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

= 2𝑚𝑚 

In our example, the adjacency matrix will have the following values in case we 

consider the edges of the graph as directed or undirected 

𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑 =

⎣
⎢
⎢
⎢
⎢
⎡
0 1 0 1 1 0
0 0 1 0 1 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0⎦

⎥
⎥
⎥
⎥
⎤

, and 𝐴𝐴𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 =

⎣
⎢
⎢
⎢
⎢
⎡
0 1 0 1 1 0
1 0 1 0 1 0
0 1 0 0 0 0
1 0 0 0 1 1
1 1 0 1 0 1
0 0 0 1 1 0⎦

⎥
⎥
⎥
⎥
⎤

 

 

Laplacian Matrix 

The Laplacian matrix is defined as 𝐿𝐿(𝑢𝑢, 𝑣𝑣) = 𝐷𝐷(𝑢𝑢, 𝑣𝑣) − 𝐴𝐴(𝑢𝑢, 𝑣𝑣), where 𝐷𝐷(𝑢𝑢, 𝑣𝑣) 

is the diagonal matrix of the vertex degrees. This definition is equivalent to 

𝐿𝐿(𝑢𝑢, 𝑣𝑣) = �
𝑑𝑑𝑣𝑣 𝑖𝑖𝑖𝑖 𝑢𝑢 = 𝑣𝑣,
−1 𝑖𝑖𝑖𝑖 𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.
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If edges are weighted, its definition is given by 

𝐿𝐿(𝑢𝑢, 𝑣𝑣) = �
𝑑𝑑𝑣𝑣 − 𝑤𝑤(𝑢𝑢, 𝑣𝑣) 𝑖𝑖𝑖𝑖 𝑢𝑢 = 𝑣𝑣,

−𝑤𝑤(𝑢𝑢, 𝑣𝑣) 𝑖𝑖𝑖𝑖 𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

 

In the case of directed graphs (Chung F. , 2005), the Laplacian matrix is defined as 

𝐿𝐿(𝑢𝑢, 𝑣𝑣) = Φ−
Φ𝑃𝑃 + 𝑃𝑃∗Φ

2
 

where Φ is the diagonal matrix of the flow of a vertex 𝜙𝜙(𝑣𝑣), and 𝑃𝑃 is the transition 

probability matrix. For a weighted directed graph (Butler, 2007), 

𝑃𝑃(𝑢𝑢, 𝑣𝑣) =
𝑤𝑤(𝑢𝑢, 𝑣𝑣)
𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜(𝑢𝑢)

 

The Laplacian matrix is always symmetric, both in the case of directed and 

undirected graphs. The eigenvalues of the Laplacian matrix are usually labeled in a 

decreasing order, and represented as 

0 = 𝜇𝜇1 ≤ 𝜇𝜇2 ≤ ⋯ ≤ 𝜇𝜇𝑛𝑛 

and the following is true 

�𝜇𝜇𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 2𝑚𝑚, �𝜇𝜇𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

= 2𝑚𝑚 + �𝑑𝑑𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

 

In our example, the directed and undirected Laplacian matrices assume the 

following values 

𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑 =

⎣
⎢
⎢
⎢
⎢
⎡

2.97 −0.26 −0.017 −0.16 −0.18 −0.064
−0.26 2.97 −1.20 −0.041 −0.32 −0.034
−0.017 −1.20 0.99 −0.027 −0.032 −0.022
−0.16 −0.041 −0.027 2.97 −1.64 −1.19
−0.18 −0.32 −0.032 −1.64 3.97 −1.38
−0.64 −0.034 −0.022 −1.19 −1.38 1.98 ⎦

⎥
⎥
⎥
⎥
⎤

 

and 

𝐿𝐿𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 =

⎣
⎢
⎢
⎢
⎢
⎡

3 −1 0 −1 −1 0
−1 3 −1 0 −1 0

0 −1 1 0 0 0
−1 0 0 3 −1 −1
−1 −1 0 −1 4 −1

0 0 0 −1 −1 2⎦
⎥
⎥
⎥
⎥
⎤
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Normalized Laplacian Matrix 

The normalized Laplacian matrix for undirected graphs is defined as ℒ =

𝐷𝐷−1/2𝐿𝐿𝐷𝐷−1/2 which is equivalent to 

ℒ(𝑢𝑢, 𝑣𝑣) =

⎩
⎨

⎧
1 𝑖𝑖𝑖𝑖 𝑢𝑢 = 𝑣𝑣,

−
1

�𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣
𝑖𝑖𝑖𝑖 𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

 

For weighted graphs, the weighted normalized Laplacian matrix is 

ℒ(𝑢𝑢, 𝑣𝑣) =

⎩
⎪
⎨

⎪
⎧1 −

𝑤𝑤(𝑢𝑢, 𝑣𝑣)
𝑑𝑑𝑢𝑢

𝑖𝑖𝑖𝑖 𝑢𝑢 = 𝑣𝑣,

−
𝑤𝑤(𝑢𝑢, 𝑣𝑣)
�𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣

𝑖𝑖𝑖𝑖 𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

 

In the case of directed graphs (Chung F. , 2005), the normalized Laplacian matrix is 

defined as 

ℒ(𝑢𝑢, 𝑣𝑣) = 𝐼𝐼 −
Φ1 2⁄ 𝑃𝑃Φ−1 2⁄ + Φ−1 2⁄ 𝑃𝑃∗Φ1 2⁄  

2
 

where 𝐼𝐼 is the identity matrix, Φ is the diagonal matrix of the flow of a vertex 𝜙𝜙(𝑣𝑣), 

and 𝑃𝑃 is the transition probability matrix. For a weighted directed graph (Butler, 

2007), 

𝑃𝑃(𝑢𝑢, 𝑣𝑣) =
𝑤𝑤(𝑢𝑢, 𝑣𝑣)
𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜(𝑢𝑢)

 

The normalized Laplacian matrix is always symmetric, and its eigenvalues are 

represented as 

0 = 𝜈𝜈1 ≤ 𝜈𝜈2 ≤ ⋯ ≤ 𝜈𝜈𝑛𝑛 

In our running example, the values of this matrix for the directed and undirected 

case are 

ℒ𝑑𝑑𝑑𝑑𝑑𝑑 =

⎣
⎢
⎢
⎢
⎢
⎡

0.99 −0.088 −0.0096 −0.052 −0.052 −0.026
−0.088 0.99 −0.69 −0.014 −0.092 −0.014
−0.0096 −0.69 0.99 −0.016 −0.016 −0.016
−0.052 −0.014 −0.016 0.99 −0.47 −0.49
−0.052 −0.092 −0.016 −0.47 0.99 −0.49
−0.026 −0.014 −0.016 −0.49 −0.49 0.99 ⎦

⎥
⎥
⎥
⎥
⎤
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and 

ℒ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 =

⎣
⎢
⎢
⎢
⎢
⎡

1 −0.33 0 −0.33 −0.29 0
−0.33 1 −0.58 0 −0.29 0

0 −0.58 1 0 0 0
−0.33 0 0 1 −0.29 −0.41
−0.29 −0.29 0 −0.28 1 −0.35

0 0 0 −0.41 −0.35 1 ⎦
⎥
⎥
⎥
⎥
⎤

 

Graph Energy 

Graph energy has been defined by Gutman in 1978 (Gutman & Shao, The energy 

change of weighted graphs, 2011) (Gutman, 2001) as 

𝐸𝐸𝐴𝐴(𝐺𝐺) =  � |𝜆𝜆𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

 

and it has the following properties 

1. 𝐸𝐸(𝐺𝐺) ≥ 0, where equality is attained only for 𝑚𝑚 =  0, meaning that the graph 

has no edges, and all the vertices are disconnected; 

2. the energy of two disconnected graph components 𝐺𝐺1 and 𝐺𝐺2 is 𝐸𝐸(𝐺𝐺)  =

 𝐸𝐸(𝐺𝐺1)  +  𝐸𝐸(𝐺𝐺2); 

3. if one component is 𝐺𝐺1 and all the other components are isolated vertices, 

then 𝐸𝐸(𝐺𝐺)  =  𝐸𝐸(𝐺𝐺1). 

Laplacian Graph Energy 

Gutman also defined the Laplacian energy of a graph (Gutman & Zhou, 2006) 

as 

𝐸𝐸𝐿𝐿(𝐺𝐺) =  � |𝛾𝛾𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

= ��𝜇𝜇𝑖𝑖 −
2𝑚𝑚
𝑛𝑛 �

𝑛𝑛

𝑖𝑖=1

 

where 𝛾𝛾𝑖𝑖 are the auxiliary Laplacian eigenvalues defined as 

𝛾𝛾𝑖𝑖 = 𝜇𝜇𝑖𝑖 −
2𝑚𝑚
𝑛𝑛
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Generalized Matrix Energy 

A generalization of all these definitions can be given considering a general 

matrix (Cavers, Fallat, & Kirkland, 2010). 

𝐸𝐸𝑀𝑀(𝐺𝐺) =  ��𝜆𝜆𝑖𝑖(𝑀𝑀) −
𝑡𝑡𝑡𝑡(𝑀𝑀)
𝑛𝑛 �

𝑛𝑛

𝑖𝑖=1

 

where 𝑡𝑡𝑡𝑡(𝑀𝑀) is the trace of the matrix 𝑀𝑀. Thanks to this generalization it is possible 

to define the normalized Laplacian energy of a graph 

𝐸𝐸ℒ(𝐺𝐺) = ��𝜈𝜈𝑖𝑖 −
𝑡𝑡𝑡𝑡(ℒ)
𝑛𝑛 �

𝑛𝑛

𝑖𝑖=1

= �|𝜈𝜈𝑖𝑖 − 1|
𝑛𝑛

𝑖𝑖=1
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Spectral Structural Complexity Metrics 

The advancements in spectral graph theory presented in the previous section 

allow us to define a series of complexity metrics based on the spectrum of a certain 

representation of the system. Let’s start with defining the weight function as 

𝑤𝑤(𝑢𝑢, 𝑣𝑣) = �
𝛼𝛼𝑢𝑢 𝑖𝑖𝑖𝑖 𝑢𝑢 = 𝑣𝑣
𝛽𝛽𝑢𝑢,𝑣𝑣 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. 

where 𝛼𝛼𝑢𝑢 represents the complexity of the component 𝑢𝑢, and 𝛽𝛽𝑢𝑢,𝑣𝑣 the complexity of 

the interface between components 𝑢𝑢 and 𝑣𝑣. This function allows us to use the 

definitions for the weighted adjacency, Laplacian, and normalized Laplacian 

matrices, for both the case of directed and undirected graphs. The structural 

complexity evaluated using the adjacency matrix is defined as 

𝐶𝐶𝐴𝐴 =
𝐸𝐸𝐴𝐴(𝐺𝐺)
𝑛𝑛

 

where the adjacency matrix considers the weights of the edges, and 𝑛𝑛 is the number 

of vertices of the graph. In the case of unweighted edges, this metric is equivalent to 

the 𝐶𝐶3 component of the one defined by Sinha (Sinha & de Weck and Olivier, 2012). 

The adjacency matrix is historically the most used in systems engineering (as DSM), 

and in spectral graph theory. In recent years, there has been a shift in spectral graph 

theory, given by the interesting properties of the Laplacian eigenvalues. The second 

smallest eigenvalue is particularly interesting, since it represents the connectivity of 

the graph. Also, the multiplicity of zero in the Laplacian spectrum represents the 

number of connected components, used in the metric proposed by McCabe. For 

these reasons, we awe defining the structural complexity evaluated using the 

Laplacian matrix as 

𝐶𝐶𝐿𝐿 =
𝐸𝐸𝐿𝐿(𝐺𝐺)
𝑛𝑛

 

where the Laplacian matrix considers the weights of the edges, and 𝑛𝑛 is the number 

of vertices of the graph. This type of normalization has an alternative which is to 

normalize using the degree matrix of the system. This alternative approach brings to 
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the normalized Laplacian matrix. The structural complexity evaluated using the 

normalized Laplacian matrix is defined as 

𝐶𝐶ℒ = 𝐸𝐸ℒ(𝐺𝐺) 

where the normalized Laplacian matrix is defined considering the weights of the 

edges. 

In Figure 5 we report the values of these metrics, for the directed and undirected 

case of our running example. 

 

Figure 5 – Evaluation of complexity metrics based on the matrix energy of the adjacency matrix, 
Laplacian matrix, and normalized Laplacian matrix, for the directed and undirected graph represented 
in Figure 2 
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Conclusion and Future Work 

In this report, we presented an alternative to existing structural complexity 

metrics. The purpose of the metrics is to measure the structural complexity of the 

system, considering the contributions of the size, the connectivity, and the topology 

of the system. At this stage of the research, the focus has been shifted on the 

topological contribution, with the plan of addressing size and connectivity in a later 

stage. 

These metrics will subsequently be applied to real world systems, with the 

goal of verifying their applicability, and understanding their differences in terms of 

features and limitations. The results will then be compared to the ones from other 

complexity metrics, with the goal of validating the new metrics and clarifying their 

possible shortcomings. 

In the context of the systems engineering practice, these metrics represent a 

continuation of the widespread effort to introduce quantitative tools to increase 

objectivity of measurements. The spectral approach developed by Sinha is the 

starting point of possibly a series of research efforts that will gradually introduce new 

metrics trying to patch limitations in the existing ones. The long-term expectation is 

for practitioners to converge on the use of a low number of metrics that will be 

applied depending on the specific case. 
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Statement of Work 

This research will be an effort to connect the risks (as symptoms) to their underlying 

causes (e.g., requirement conflicts, design complexity, etc.). The aim of this 

research will be an improved assessment of risk that can save a portion of cost and 

schedule overruns in development projects. The effort will focus on refining the 

complexity measures from the on-going research, identification of risks and their 

categories in the requirement and design phase, and mapping the complexity 

measures to the risks and relevant consequences. 

Levels of system success or failure or, in other words, system affordability, are often 

measured in three dimensions: performance, cost, and schedule. Several 

researchers have related system and development complexities to difficulties in 

meeting expectations in those three dimensions. Since reducing complexity is 

therefore necessary to facilitate success, it is of paramount importance to identify the 

origins of complexity in a system’s development, therefore this research proposal will 

focus on requirement and preliminary design phase. 

Considering the positive correlation between complexity and risk, and complexity 

and cost, the goal of this research is to quantitatively measure the complexity of the 

system of interest. A considerable progress has been done in the domain of 

quantifying a new complexity metric which is based on Laplacian of energy matrix of 

the complex engineered system. Currently, our research team is working on refining 

the measure in full detailed mathematical form with some case studies, which will be 

completed and presented in 2017 NPS symposium in April 2017 in completed 

format. 

Our research team has been following the plan towards this goal as follows 

(February 2016-December 2016): 

1. Identification of a common definition of system complexity 

a. Literature review of complexity definition 

b. Comparison of existing definitions 
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c. Identification of a common definition 

2. Taxonomy of existing complexity metrics 

a. Literature review of complexity metrics 

b. Analysis of applicability of each metric 

c. Analysis of differences and commonalities of each metric 

3. Application of existing complexity metrics to use case systems 

a. Selection of case studies 

b. Data gathering or generation 

c. Formulation of system architecture from data 

d. Analysis of system level parameters affecting complexity 

e. Assessment of performance for existing metrics 

4. Formulation of innovative complexity metric 

5. Validation of new complexity metric 
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Tasks Description: 

Our project has the original following tasks:  

Task 1. Refinement of complexity measures gained from on-going research (NPS 

BAA14-002) at the requirement and design phase in various domains such as 

problem complexity, functional complexity, and structural complexity measures.  

Task 2. Informed and based on a set of chosen historical cases of engineered 

systems (multiple examples such as various spacecraft designs, space shuttle 

historical example, various aircraft and missile designs): 

2.1  Categorize, classify and identify the types of technical risks in early 

development phase the system is facing 

2.2 Categorizing and measuring consequences (costs, schedule delays and 

overruns, as well as other measures) in different stages of a system’s 

lifecycle with a focus on requirement and early design phase  

Task 3. Create a framework that relates the complexity measures into relevant 

consequences and risks: 

3.1  A framework will be created to assist the program managers to facilitate the 

application of the suggested complexity metrics 

3.2 A preliminary relationship between the complexity-metrics and increased risk 

will be derived for use by program managers and systems stakeholders. 

 

Figure 1. Research Tasks 
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As of December 2016, tasks 1 and 2 have been completed. Task 3 is now in 

progress and a considerable progress on a new complexity metric alongside with 

some simulations are achieved and our team is currently preparing the full paper 

during March 2017 for NPS 2017 symposium. 

Task 1: Identification of a common definition of system complexity 

The definitions of complexity and emergence analyzed in extreme details are the 

ones proposed by: 

• Weaver (Weaver, Science and complexity., 1948) 

• Shannon (Shannon C. E., 1948) 

• Checkland (Checkland, 1981) 

• Page (Page S. E., 1999) 

• Abbott (Abbott, 2006) 

• Chalmers (Chalmers, 2008) 

• Bedau (Bedau, 1997) 

• Kauffman (Kauffman, Beyond reductionism: Reinventing the sacred, 2007) 

(Longo, Montévil, & Kauffman, No entailing laws, but enablement in the 

evolution of the biosphere, 2012) 

• Crawley (Crawley, Cameron, & Selva, 2015) 

• Chaisson (Chaisson E. J., 2014) 

• Gell-Mann (Gell-Mann, 1995) 

• Snowden (Snowden, 2000) 

• Wade and Heydari (Wade & Heydari, Complexity: Definition and Reduction 

Techniques, 2014) 
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Task 2: Taxonomy of existing complexity metrics 

The complexity metrics analyzed are the ones proposed by: 

• Shannon (Shannon C. E., 1948) 

• Chaisson (Chaisson E. J., 2004) (Chaisson E. J., 2015) (Chaisson E. J., 

2011) 

• Willcox (Willcox K. , Allaire, Deyst, He, & Sondecker, 2011) 

• Fischi (Fischi, Nilchiani, & Wade, 2015) (Fischi & Nilchiani, 2015) (Fischi, 

Nilchiani, & Wade, 2016) 

• Bone (Bone, 2015) 

• Sinha (Sinha & others, 2014) (Sinha & de Weck and Olivier, 2012) 

• McCabe (McCabe T. J., 1976) (McCabe & Butler, 1989) 

Of these, the more immediate to implement and apply to use cases, with just minor 

modifications, are McCabe’s and Sinha’s. 

Task 3:  Application of existing complexity metrics to use case systems 

Two use cases have been identified: 

1. Open source software systems  

2. Fractionated space systems 

For use case 1, the set of source codes is currently limited to software written in 

Python. An under-development software tool will be able to: 

• generate the system architecture starting from the source code 

• evaluate complexity metrics for each architecture 

This will allow us to identify the patterns and structure that most contribute to system 

complexity. 
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For use case 2, A similar software will partly be reused, but the architectures are 

going to be generated from a reference architecture and not from actual design data. 
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Upcoming Publications 

Once task 3 is completed, three papers are going to be written about the use 

cases with the following tentative titles: 

1. Full research progress report and paper to NPS symposium 2017 in Monterey 

CA, April 26-27 

2. Complexity Analysis of Open Source Software Architectures, planned to be 

submitted to IEEE systems Journal in May 2017 

3. Complexity Analysis of Fractionated Spacecraft Architectures, planned to be 

submitted to IEEE systems Journal in July 2017. 
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