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Abstract 

Recognizing the inevitability of large-scale disruptions, emphasis in supply 

chain decision making has shifted from prevention and protection to resilience, or 

the ability to withstand, adapt to, and recover in a timely manner from a disruptive 

event. Recent work in supply chain resilience has primarily consisted of qualitative 

frameworks and lessons learned after disruptions. This project addresses resilient 

supplier selection, a significant concern across industry and government enterprises. 

This work develops a supplier selection decision framework that includes (i) a multi-

objective optimization formulation for multi-sourced supplier selection and (ii) a 

means to address uncertainty underlying the occurrence of a disruptive event 

through a Bayesian network-driven measure of disruption likelihood. The model 

accounts for several resilience strategies such as increasing supplier capacity 

beyond normal levels as a mitigation strategy to fortify suppliers against disruption, 

connecting firms to a back-up supplier as a contingency strategy that allows the 

supplier to adapt its loss by reconfiguring the channels for the movement of 

materials, and a contingency strategy of having additional recovery resources to 

enable suppliers to restore lost capacity more quickly. 
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Introduction 

In today’s competitive global market, firms are more willing to delegate some 

of their business processes to external organizations, leveraging benefits ranging 

from low cost labor, improved product quality, and service innovation. A primary 

example of such outsourcing is purchasing components and services through global 

suppliers. The supplier selection problem (SSP), or the problem of choosing the 

appropriate supplier or set of suppliers across one or more criteria, has become a 

key issue due to the growth of global supply chains and strategic outsourcing. 

However, the disruption of a supplier’s performance can halt a firm’s operation and 

can cascade to other components of the supply chain. As such, utilizing resilient 

suppliers can significantly reduce the likelihood of supply chain disruption.  

Supplier selection is a complex multi-criteria decision making problem that 

involves tangible and intangible criteria [Ho et al. 2010]. It aims to choose the best 

portfolio of suppliers among a set of alternatives and to optimally allocate demand 

among the selected suppliers to meet different procurement criteria. Traditionally, as 

noted by Hosseini and Barker [2016a], SSP has accounted for primary criteria (e.g., 

cost, quality, lead time, response rate and, more recently, green criteria (e.g., 

environmentally friendly transportation modes, packing, management). Interest has 

recently been given to the notion of resilience in supplier evaluation due to the 

vulnerability of global supply chains against unexpected natural and man-made 

disasters such as tsunamis, earthquakes, floods, fires, transport accidents, and labor 

strikes. In the wake of Japan’s earthquake and tsunami in 2011, Toyota suspended 

much of its production at plants across Japan, resulting in a world-wide shortage of 

parts [Reuters 2016]. Many automotive companies in the UK and the US were hit the 

hardest in the aftermath of Japan’s 2011 earthquake because of their dependence 

on a factory in the earthquake zone that supplied 12% of its engines [BBC News 

2011]. Apple suffered from a shortage of sensors for its iPhone, as the sensors were 

exclusively manufactured at a Sony facility that was damaged by the Japanese 

tsunami [Fortune 2011]. A recent study of the exposure level of Ford Motor 

Company to supply chain disruptions found that the suppliers whose disruption 
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would cause greatest damage are those from which Ford’s annual purchases are 

relatively small [Simchi-Levi et al. 2014]. That is, there are some critical suppliers 

that, when disrupted, lead to significant profit losses because they are difficult to 

quickly replace, as shown in Figure 1. These events demonstrate that disruptive 

events, particularly natural disasters can pose a major threat to the incumbency of 

businesses from a revenue standpoint and lost productivity.  

In general, the risk associated with supply chains can be classified into two 

categories: operational and disruption [Tang 2006]. Operational risks refer to the 

inherent “every day” events that occur within a supply chain, including uncertainty in 

transportation cost, customer demand and key personnel absence and power 

outage [Hosseini and Barker 2016b]. Disruption risks refer to major disruptive events 

such as natural disasters, man-made threats or employee strikes. These types of 

events, particularly natural disasters, are disruptions with low likelihood but high 

impact which may have short or long term negative impacts on the supply chain 

operations. Disruption risks are the focus of this work.     

 

 
Figure 1. Impact of supplier disruption on Ford’s profits [Simchi-Levi et al. 2014]. 

 
While other work has analyzed supply chain resilience from a quantitative 

perspective [e.g., Sheffi 2005, Tang 2006, Petit et al. 2010, Carvalho et al. 2012], the 
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objective of this research was to enhance supplier selection decision making under 

uncertainty with (i) a multi-objective optimization formulation for multi-sourced 

supplier selection and (ii) a means to address uncertainty underlying the occurrence 

of a disruptive event through a Bayesian network-driven measure of disruption 

likelihood. 
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Background 

This section provides methodological background to some components of this 

research, including a paradigm for resilience, recent approaches to comparing 

suppliers, and a particular approach for the multi-criteria comparison of discrete 

alternatives. 

Resilience Modeling   

In the last few years, the concept of resilience has been increasingly used to 

describe the behavior of systems under disruption. Resilience is a multidisciplinary 

concept studied across different disciplines such as sociology, ecology, engineering, 

and economics with applications that include disaster management, sustainable 

development, infrastructure restoration, emergency response, and supply chain risk 

management. Supply chain resilience is relatively new concept that has been 

defined as “the adaptive capability of the supply chain to prepare for unexpected 

events, respond to disruptions, and function” [Ponomarov and Holcomb 2009]. 

Melnyk et al. [2014] defined supply chain resilience as “the ability of a supply chain 

to both resist disruptions and recover operational capability after disruption occur”. 

Brandon-Jones et al. (2014) used “the ability of a supply chain to return to normal 

operating performance, within an acceptable period of time, after being disrupted” to 

define supply chain resilience. All of these definitions generally note the ability to 

withstand and recover timely from a disruption.  

Several measures of resilience have been offered [Park et al. 2013, Hosseini 

et al. 2016]. In particular, this work adapts a graphical paradigm of system behavior 

before, during, and after a disruption is provided in Figure 2 [Henry and Ramirez-

Marquez 2012, Pant et al. 2014]. The capacity of a supplier to provide supplies to a 

firm before, during, and after a disruption is depicted generally in Figure 2. Figure 2 

highlights two important dimensions of resilience: vulnerability (or the supplier’s lack 

of ability to withstand the disruption) and recoverability (the supplier’s ability to return 

to a nominal level of capacity).  
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Figure 2. Depiction of a disruptive event on supplier capacity (adapted from Henry and 

Ramirez-Marquez [2012]). 

 
Several practical strategies for designing a resilient supply chain can be found 

in the literature. Sheffi et al. [2005] argued that resilience in companies and 

enterprises can be built through three general ways: (i) creating redundancies 

throughout the supply chain (e.g., keeping extra inventory, maintain low capacity 

utilization, and multiple sourcing), (ii) increasing supply chain flexibility (e.g., using 

flexible transportation modes under disruptive event, using concurrent instead of 

sequential processes, aligning procurement strategies with supplier relationships), 

and (iii) changing corporate culture (e.g., maintaining continuous communication 

among informed employees, conditioning for disruptions). Christopher and Peck 

[2004] brought attention to the general principles that underpins resilience in supply 

chains, concluding that agility and flexibility are the two key dimensions of resilience. 

These two dimension have implications beyond process redesign to primary 

decisions on sourcing and the establishment of more collaborative supply chain 

relationships based on greater transparency of information. Torabi et al. [2015] 

discussed that supply chain resilience can be built based on the several proactive 

strategies including supplier’s business continuity plans, fortification of the supplier, 

and contracting with backup suppliers. Rezapour et al. [2017] highlighted that three 

policies can be used to mitigate the disruption risk in a supply chain, including 
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holding emergency stock, reserving back-up capacity at suppliers, and multiple-

sourcing.  

Most of the work in supply chain resilience is qualitative in nature, and few 

quantitative models that address supply chain resilience performance or examine 

impacts of different mitigation policies to achieve resilience in supply chains. 

Spiegler et al. [2012] used integral of the time absolute error, a deviation 

performance measure in the control engineering field, to quantify the resilience of 

supply chain systems, using system dynamic simulation to model the impact of 

disruption to inventory and ordering control systems on supply chain resilience.  

Datta et al. [2007] presented an agent-based computational framework to study 

complex multi-product, multi-country supply chain subject to demand variability and 

production and distribution capacity constraints with the aim of improving operational 

resilience. Falasca et al. [2008] introduced a simulation-based framework that 

captures three dimensions of supply chain resilience (complexity, density, and node 

criticality) into the process of supply chain design. They also developed a 

quantitative method for evaluating supply chain resilience by using the resilience 

triangle introduced by Bruneau et al. [2003]. Rezapour et al. [2016] introduced a 

non-linear model to find the most profitable supply chain networks under disruption 

scenarios. Miller-Hooks et al. [2012] proposed a two-stage stochastic programming 

model to quantify the resilience of freight transportation networks. Their stochastic 

model determines optimal set of preparedness and recovery actions in 

transportation arcs needed to achieve resilience level. 

Other work focused particularly on supplier selection. Venkatesan and Goh 

[2016] proposed a multi-objective supplier selection model under disruption risks, 

developing a fuzzy AHP PROMETHEE to deal with the supplier selection problem. 

The authors then concluded that the probability of supplier’s failure affects the 

expected total cost more than supplier flexibility and the costs associated with 

losses. Rajesh and Ravi [2015] applied a combined grey methodology with AHP for 

resilient supplier selection, primarily considering vulnerability, risk awareness, supply 

chain continuity management, and collaboration. Carvalho et al. [2012] presented a 

discrete event simulation model to evaluate alternative supply chain scenarios for 
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improving supply chain resilience considering two performance measures for 

comparing supplier alternatives: lead time and total cost. Sawik [2013] addressed 

the supplier selection problem under disruption risk conditions by considering 

fortification of suppliers as an effective strategy to reduce disruption risks. Torabi et 

al. [2015] developed a bi-objective mixed probabilistic, two-stage stochastic 

programming to address the resilient supplier selection problem. 
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Proposed Optimization Model 

This section describes the supplier selection problem and proposed model. 

The notation used in the model is found in Table 3.  

Likelihood of a Disruption Scenario 

Prior to developing the optimization formulation for supplier selection and 

demand allocation, we first model the likelihood of a supplier disruption. This section 

proposes a probabilistic graphical model to compute this likelihood for   a set 𝐼𝐼 of 

alternative suppliers. Assume that suppliers are subject to variety of random 

disruption risks such as floods, earthquakes, hurricanes, and labor strikes. Let 𝜋𝜋𝑖𝑖 

denote the disruption probability of supplier 𝑖𝑖, 𝑖𝑖 = 1, … ,𝑚𝑚 In the presence of a 

disruption, supplier 𝑖𝑖 can either continue to operate or fail. Let 𝑃𝑃𝑠𝑠 denote the 

probability that disruption scenario s is realized, where each disruption scenario 

𝑠𝑠 ∈ 𝑆𝑆 results in a unique subset 𝐼𝐼𝑠𝑠 ⊂ 𝐼𝐼 of suppliers that continue to operate. The 

probability of realizing disruption scenario s can be calculated with Eq. (1). 

 
𝑃𝑃𝑠𝑠 = �(1 − 𝜋𝜋𝑖𝑖)

𝑖𝑖∈𝐼𝐼𝑠𝑠

× �𝜋𝜋𝑖𝑖
𝑖𝑖∉𝐼𝐼𝑠𝑠

 (1) 
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Table 1. Notation used in the proposed model. 

Indices, sets 
𝑖𝑖, 𝐼𝐼  Index 𝑖𝑖 refers to supplier 𝑖𝑖 ∈ 𝐼𝐼 
𝑡𝑡, 𝑇𝑇 Index 𝑡𝑡 refers to planning period 𝑡𝑡 ∈ 𝑇𝑇 
𝑠𝑠, 𝑆𝑆  Index 𝑠𝑠 refers to disruption scenario 𝑠𝑠 ∈ 𝑆𝑆 
Parameters 
𝑑𝑑𝑖𝑖𝑖𝑖 Shortest distance between locations of supplier i and j   
𝑑𝑑𝑖𝑖 Distance between supplier i and firm 
L Smallest segregation distance between every pair of suppliers   
𝜆𝜆𝑖𝑖 Expected disruption rate of supplier i 
𝑁𝑁𝑖𝑖 Number of disruptions that occur for supplier i in specified time period 𝑡𝑡 
𝑓𝑓𝑖𝑖  Unit cost of keeping additional capacity for supplier i 
𝐵𝐵𝑖𝑖 Cost of building secondary connection between supplier i and firm 
G Primary investment required for restorative capacity (per unit of item) 
𝑂𝑂𝑖𝑖𝑖𝑖 Order cost of supplier i in time period t 
𝐴𝐴𝑖𝑖𝑖𝑖 Amount of capacity (units) available for restoration by supplier i in time period t  
Φ𝑖𝑖 Disruption cost incurred to supplier i 
𝑃𝑃𝑠𝑠 Probability of disruption scenario s  
𝜀𝜀,𝜑𝜑,𝛽𝛽, 𝜉𝜉, 𝛿𝛿 Weighting factors 
L Limit on suppliers allowed to a firm 
D Customer demand 
𝑐𝑐𝑖𝑖 Required resource to restore one unit of capacity of supplier i 
𝐸𝐸𝑖𝑖 Primary capacity of supplier i 
𝜈𝜈 Penalty cost of supplying low quality products 
𝜃𝜃𝑖𝑖 Expected defect rate of supplier i  
𝜏𝜏𝑖𝑖𝑠𝑠 Fraction of capacity of supplier i available after occurrence of disruption scenario s 
Δ Threshed value of resilience cost for an extreme disruptive event  
M A very large constant 
Decision variables 
𝑧𝑧𝑖𝑖 1, if supplier i is assigned to the firm; 0, otherwise 
𝑟𝑟𝑖𝑖𝑖𝑖 1, if suppliers i and j are both selected; 0, otherwise  
Φ𝑖𝑖 Additional normal capacity of supplier i 
𝑈𝑈𝑖𝑖 Additional restorative capacity invested by supplier i (units per period)  
𝑄𝑄𝑖𝑖𝑖𝑖𝑠𝑠  Cumulative capacity of supplier i in period t of scenario s 
𝑥𝑥𝑖𝑖𝑖𝑖𝑠𝑠  Proportion of customer demand that is served by supplier i in period t of scenario s 
𝑘𝑘𝑖𝑖𝑖𝑖𝑠𝑠  Capacity of supplier i that is restored in period t of scenario  
𝑞𝑞𝑖𝑖𝑠𝑠 Proportion of customer demand that is not met in period t of scenario s 

Ω𝑠𝑠 Violation cost (amount of cost that exceeds resilience cost, calculated as mitigation cost + 
contingency cost)  

𝑤𝑤𝑖𝑖 Auxiliary variable 
𝜔𝜔𝑖𝑖 Additional capacity provided by supplier i 
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Geographical Segregation 

Segregating suppliers geographically is an important proactive resilience 

strategy that helps to reduce the risk of a supply chain disruption. Many logistics 

companies focus on regionalizing of their supply chains. For example, International 

Federation of Red Cross and Red Crescent Societies hold inventories of vital goods 

in four geographically segregate logistics centers to facilitate responses to 

humanitarian disasters [Chopra and Sodhi 2014]. In the aftermath of the Japanese 

earthquake and tsunami in 2011, automakers such as Toyota and Nissan tried to 

collaborate with suppliers that are geographically dispersed. To model this resilience 

strategy, an objective function represented in Eq. (2) is defined to maximize the sum 

of the distance between selected suppliers, thus acting to segregate suppliers. Note 

that L in Eq. (3) represents smallest segregation distance between locations of any 

pair of suppliers.  
 

𝐺𝐺𝑆𝑆 = max � � 𝑧𝑧𝑖𝑖𝑧𝑧𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=𝑖𝑖+1

𝑛𝑛

𝑖𝑖=1

 (2) 

      
The constraint in Eq. (3) is written for the location of each pair of potential 

suppliers, effectively placing an upper bound on L equal to 𝑑𝑑𝑖𝑖𝑖𝑖 only if both suppliers i 

and j are selected, since (1 − 𝑧𝑧𝑖𝑖) and (1 − 𝑧𝑧𝑖𝑖) will be both zero. However, if either 

supplier i or j is not selected, then either (1 − 𝑧𝑧𝑖𝑖) or (1 − 𝑧𝑧𝑖𝑖), or both, will have a 

value of 1. In such a case the upper bound on L in Eq. (3) will be large, equal to 

either 𝑑𝑑𝑖𝑖𝑖𝑖(1 + 𝑀𝑀) or 𝑑𝑑𝑖𝑖𝑖𝑖(1 + 2𝑀𝑀), where 𝑀𝑀 is a large value. Therefore, only the 

distance between pairs of supplier locations that are selected will have a limiting 

effect on L. Note that the number of constraints associated with Eq. (3) is 𝑛𝑛(𝑛𝑛 − 1)/

2.      
 

𝐿𝐿 ≤ 𝑑𝑑𝑖𝑖𝑖𝑖 �1 + 𝑀𝑀(1 − 𝑧𝑧𝑖𝑖) + 𝑀𝑀�1 − 𝑧𝑧𝑖𝑖��      ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑛𝑛| 𝑖𝑖 < 𝑗𝑗 (3) 
 

The objective function in Eq. (2) is nonlinear because of multiplication of 

binary variables 𝑧𝑧𝑖𝑖𝑧𝑧𝑖𝑖, which can be linearized by introducing a new auxiliary binary 

variable 𝑟𝑟𝑖𝑖𝑖𝑖. The proposition of linearization and related proof are discussed below. 
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Proposition 1. The non-linear term in objective function of Eq. (2) can be linearized 
with 𝑟𝑟𝑖𝑖𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑧𝑧𝑖𝑖 under the following sets of constraints: 
 

𝑟𝑟𝑖𝑖𝑖𝑖 ≤ 𝑧𝑧𝑖𝑖         ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑛𝑛| 𝑖𝑖 < 𝑗𝑗 (4) 
 

𝑟𝑟𝑖𝑖𝑖𝑖 ≤ 𝑧𝑧𝑖𝑖          ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑛𝑛| 𝑖𝑖 < 𝑗𝑗 (5) 
 

𝑟𝑟𝑖𝑖𝑖𝑖 ≥ 𝑧𝑧𝑖𝑖 + 𝑧𝑧𝑖𝑖 − 1         ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑛𝑛| 𝑖𝑖 < 𝑗𝑗 (6) 
 
Proof. This can be shown for all four cases that can arise. 
Case (i): 𝑧𝑧𝑖𝑖 = 𝑧𝑧𝑖𝑖 = 0, ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑛𝑛| 𝑖𝑖 < 𝑗𝑗. In this case 𝑟𝑟𝑖𝑖𝑖𝑖 ≤ 0, 𝑟𝑟𝑖𝑖𝑖𝑖 ≤ 1 and 𝑟𝑟𝑖𝑖𝑖𝑖 ≥ 0 which turns in 
𝑟𝑟𝑖𝑖𝑖𝑖 = 0. 
Cases (ii) and (iii): 𝑧𝑧𝑖𝑖 = 1, 𝑧𝑧𝑖𝑖 = 0 or  𝑧𝑧𝑖𝑖 = 0, 𝑧𝑧𝑖𝑖 = 1.These cases are similar to case (i).  
Case (iv): 𝑧𝑧𝑖𝑖 = 𝑧𝑧𝑖𝑖 = 1. In this case, 𝑟𝑟𝑖𝑖𝑖𝑖 ≥ 1, 𝑟𝑟𝑖𝑖𝑖𝑖 ≤ 1 which turns in 𝑟𝑟𝑖𝑖𝑖𝑖 = 1.  

 

Disruption Cost 

The reliability of a supplier can be viewed as a proactive strategy for choosing 

resilient suppliers. Manufacturers prefer to collaborate with highly reliable suppliers 

so they can reduce the chance of disruption on their production. As such, reliability is 

considered in the proposed model, accounting for the following assumptions: 

• Suppliers fail due to random external and internal disruptive events, which 
are described probabilistically.    

• The disruption time for each supplier follows an exponential distribution 
with a known disruption rate. 

• The disruption cost of each supplier is known. 
 

The objective function of the proposed model minimizes the total cost of 

supplier’s disruption (failure). Considering 𝑦𝑦𝑖𝑖 as the number of disruptions including 

external and internal disruptions of supplier i in time period H. Let 𝜆𝜆𝑖𝑖 denote the 

expected disruption rate of supplier i within time period H, 𝑁𝑁𝑖𝑖 denote the number of 

disruptions that occur into supplier i in specified time period H, and Φ𝑖𝑖 denote the 

disruption cost imposed to supplier i. As such, the disruption cost (DC) of suppliers is 

calculated with Eq. (7). 
 

DC = �𝑧𝑧𝑖𝑖𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

Φ𝑖𝑖 (7) 
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In this model, the time between supplier disruptions is assumed to follow an 

exponential distribution. Therefore, the number of disruptions for each supplier 

follows a Poisson distribution. As such, the probability of 𝑁𝑁𝑖𝑖 disruptions for supplier i 

is calculated with Eq. (8). 
 

𝑃𝑃(𝑦𝑦𝑖𝑖 = 𝑁𝑁𝑖𝑖) =
(𝜆𝜆𝑖𝑖𝑐𝑐𝑖𝑖𝐻𝐻)𝑁𝑁𝑖𝑖  exp(𝜆𝜆𝑖𝑖𝑐𝑐𝑖𝑖𝐻𝐻)

𝑁𝑁𝑖𝑖!
 (8) 

 
Due to the stochastic nature of a supplier disruption, a chance constraint 

programming (CPP) approach is used. The core assumption in CPP models is that 

the stochastic constraints will hold at least 𝛼𝛼 proportion of time, where 𝛼𝛼 is a suitable 

safety margin by the decision maker. Based on the concept of CPP, the stochastic 

variable 𝑦𝑦𝑖𝑖 is replaced with 𝑁𝑁𝑖𝑖 as a new deterministic variable, and the chance 

constraint in Eq. (9) is added to the model to ensure that the number of disruptions 

for supplier i never exceed 𝑁𝑁𝑖𝑖 in at least 𝛼𝛼 of time.  
 

𝑃𝑃(𝑦𝑦𝑖𝑖 ≤ 𝑁𝑁𝑖𝑖) ≥ 𝛼𝛼 (9) 
   
Integrating Eqs. (8) and (9), is rewritten in Eq. (10). 
 

�
(𝜆𝜆𝑖𝑖𝑐𝑐𝑖𝑖𝐻𝐻)𝑘𝑘 exp(𝜆𝜆𝑖𝑖𝑐𝑐𝑖𝑖𝐻𝐻)

𝑘𝑘!
≥ 𝛼𝛼

𝑁𝑁𝑖𝑖

𝑘𝑘=0

 (10) 

 
An additional integer constraint in Eq. (11) is added. 
  

𝑁𝑁𝑖𝑖  is integer   ∀𝑖𝑖 (11) 
 

The TDC in Eq. (7) is nonlinear because of the product of 𝑧𝑧𝑖𝑖 and 𝑁𝑁𝑖𝑖. To 

manage this difficulty, a new auxiliary variable 𝑤𝑤𝑖𝑖 is shown in Eq. (12). The 

proposition of linearization and related proof are provided subsequently. 
 

𝑤𝑤𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑁𝑁𝑖𝑖 (12) 
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Proposition 2. The nonlinear term in objective function of Eq. (7) can be linearized with 
𝑤𝑤𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑁𝑁𝑖𝑖 under the following constraints of Eq. (13).   
 
𝑤𝑤𝑖𝑖 ≥ 𝑁𝑁𝑖𝑖 − (1 − 𝑧𝑧𝑖𝑖)𝑀𝑀 (13) 

 
Proof.  This can be shown for the possible cases explained below: 
Case (i): 𝑧𝑧𝑖𝑖 is a binary variable, and 𝑁𝑁𝑖𝑖 is an integer variable. Let M be a large positive 
number. If 𝑧𝑧𝑖𝑖 takes 0, the above constraint becomes 𝑤𝑤𝑖𝑖 ≥ −𝑀𝑀, because of the minimization 
form of the objective function, 𝑤𝑤𝑖𝑖 takes 0.  
Case (ii): If 𝑧𝑧𝑖𝑖 takes 1, the constraint (13) becomes 𝑤𝑤𝑖𝑖 ≥ 𝑁𝑁𝑖𝑖, and because of the same 
argument (minimization form), 𝑤𝑤𝑖𝑖 will equal to 𝑁𝑁𝑖𝑖. 
 
The only difficulty remains in the CCP model is the nonlinearity of Eq. (10). 
 
Proposition 3. The nonlinear constraint (10) is linearized by introducing Eq. (14). 
 
𝑁𝑁𝑖𝑖 ≥ 𝐹𝐹−1(𝜆𝜆𝑖𝑖𝑐𝑐𝑖𝑖𝐻𝐻,𝛼𝛼) (14) 

 
Proof. The left hand side of Eq. (10) is the cumulative Poisson distribution with parameter 
𝜆𝜆𝑖𝑖. Considering the inverse form of the cumulative Poisson distribution, the Eq. (10) then can 
be rewritten as Eq. (14). Note that in Eq. (14), 𝐹𝐹−1 is the inverse of cumulative Poisson 
distribution function.  
 

Vulnerability and Recoverability Impact 

Discussed previously, a disruptive event may reduce the capacity of supplier 

as illustrated in Figure 2. The recovery of a disrupted supplier requires the allocation 

of resources. Different recovery strategies may require a different level of recovery 

cost, as depicted in Figure 5. In addition to recovery strategies, it may also be 

possible to make investments in the system to reduce the magnitude of the 

disruptive effect, as depicted in Figure 6. In general, a supplier’s resilience cost is 

comprised of (i) the mitigation cost to reduce vulnerability and (ii) the contingency 

cost to enhance recoverability. Across different disruption scenarios, the total 

resilience cost will vary, resulting in a probability distribution of total impact. A 

conceptual version of such a distribution is illustrated in Figure 7.  
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Figure 3. Two different recovery strategies with two different recovery costs. 

    

 
Figure 4. Comparison of two different recovery actions, one with pre-investment (recovery 

action 2), and other without pre-investment (recovery action 1). 

 

      
Figure 5. Probability distribution of resilience cost under different scenarios. 

 
The purpose of considering the resilience cost is to find a set of investment 

and operational decisions that shift this distribution to the left. Doing so results in a 

smaller and flatter tail, where extreme costs are found. Variable Ω𝑠𝑠 is introduced to 

emphasize large resilience cost values found in the upper tail of cost distributions for 

extreme disruption scenarios, as depicted in Figure 5. This mechanism is 
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implemented with an input parameter Δ that represents the threshold value on total 

resilience cost. If total resilience cost exceeds the threshold value Δ in scenario s, 

then Ω𝑠𝑠 is defined as the amount of the difference. The values of Ω𝑠𝑠 are then 

penalized in the objective function with nonnegative weights, 𝛽𝛽𝑃𝑃𝑠𝑠. This weighting 

factor includes the probability of disruption for extreme scenarios, 𝑃𝑃𝑠𝑠, and a relative 

weighting term, 𝛽𝛽. The combination of input parameters Δ and 𝛽𝛽 makes the tuning of 

the model possible for the extreme outcomes by determining how heavily 𝛽𝛽 is 

weighted and which outcomes are considered to be extreme using Δ.  

To reduce (i) the chance of supplier inoperability and (ii) supplier resilience 

cost, three resilience strategies are taken into account: 

• Expansion of supplier capacity: Increasing supplier capacity beyond 
normal levels is a mitigation strategy to fortify suppliers against disruption.  

• Back-up supplier: Connecting firms to a back-up supplier is a contingency 
strategy that allows the supplier to adapt its loss by reconfiguring the 
channels for the movement of materials.  

• Resource investment for faster supplier recovery: A contingency strategy 
of having additional recovery resources will enable suppliers to restore lost 
capacity more quickly.  

Integrating the modeling approaches above with these resilience 

enhancement strategies result in the proposed optimization formulation discussed 

subsequently.  

Optimization Formulation 

This section proposes a stochastic multi-objective optimization model for 

supplier selection and demand allocation. The first objective function, GS, ensures 

geographical segregation among suppliers by maximizing the distances between all 

pairs of supplier locations. The second objective function, TC in Eq. (16), minimizes 

the total cost of supplier selection.   Eq. (16) consists of, respectively, (i) the cost of 

initial capacity carried by suppliers, (ii) the cost of making backup connections 

between suppliers and customers, (iii) the additional restorative capacity invested by 

suppliers, (iv) the order cost of suppliers, (v) the disruption costs incurred by the 

suppliers, (vi) transportation costs, (vii) the penalty costs associated with the 
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proportion of customer demand that is unmet, (viii) the restoration costs of suppliers, 

(ix) the capacity holding costs of suppliers, (x) a penalty for scenarios whose 

resilience cost exceeds the maximum threshold, and finally (xi) the total defect rate. 

 

𝐺𝐺𝑆𝑆 = max � � 𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=𝑖𝑖+1

𝑛𝑛

𝑖𝑖=1

 (15) 

 

𝑇𝑇𝑇𝑇 = min�𝑓𝑓𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝜔𝜔𝑖𝑖 + �𝐵𝐵𝑖𝑖𝑧𝑧𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ �𝐺𝐺𝑖𝑖𝑈𝑈𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ �𝑧𝑧𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�𝑂𝑂𝑖𝑖𝑖𝑖

𝑇𝑇

𝑖𝑖=1

+ �𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1

Φ𝑖𝑖 

         +�𝑃𝑃𝑠𝑠
𝑆𝑆

𝑠𝑠=1

�𝜀𝜀�𝐷𝐷𝑑𝑑𝑖𝑖�𝑥𝑥𝑖𝑖𝑖𝑖𝑠𝑠
𝑇𝑇

𝑖𝑖=1

+ 𝜑𝜑𝐷𝐷�𝑞𝑞𝑖𝑖𝑠𝑠
𝑇𝑇

𝑖𝑖=1

+ 𝛿𝛿�𝑐𝑐𝑖𝑖�𝑘𝑘𝑖𝑖𝑖𝑖𝑠𝑠
𝑇𝑇

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

� 

        +�𝑃𝑃𝑠𝑠
𝑆𝑆

𝑠𝑠=1

�𝜉𝜉��(𝐸𝐸𝑖𝑖 + 𝜔𝜔𝑖𝑖 − 𝑄𝑄𝑖𝑖𝑖𝑖𝑠𝑠 ) +
𝑇𝑇

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

𝛽𝛽Ω𝑠𝑠 + 𝜈𝜈��𝜃𝜃𝑖𝑖

𝑇𝑇

𝑖𝑖=1

𝑥𝑥𝑖𝑖𝑖𝑖𝑠𝑠
𝑛𝑛

𝑖𝑖=1

� 

 

(16) 

 
Subject to 

𝐿𝐿 ≤ 𝑑𝑑𝑖𝑖𝑖𝑖 �1 + 𝑀𝑀(1 − 𝑧𝑧𝑖𝑖) + 𝑀𝑀�1 − 𝑧𝑧𝑖𝑖��      ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑛𝑛| 𝑖𝑖 < 𝑗𝑗 (17) 
 

𝑟𝑟𝑖𝑖𝑖𝑖 ≤ 𝑧𝑧𝑖𝑖         ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑛𝑛| 𝑖𝑖 < 𝑗𝑗 (18) 
 

𝑟𝑟𝑖𝑖𝑖𝑖 ≤ 𝑧𝑧𝑖𝑖          ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑛𝑛| 𝑖𝑖 < 𝑗𝑗 (19) 
 

𝑟𝑟𝑖𝑖𝑖𝑖 ≥ 𝑧𝑧𝑖𝑖 + 𝑧𝑧𝑖𝑖 − 1             ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑛𝑛| 𝑖𝑖 < 𝑗𝑗 (20) 
 

𝑤𝑤𝑖𝑖 ≥ 𝑁𝑁𝑖𝑖 − (1 − 𝑧𝑧𝑖𝑖)𝑀𝑀     ∀𝑖𝑖 (21) 
 

𝑁𝑁𝑖𝑖 ≥ 𝐹𝐹−1(𝜆𝜆𝑖𝑖𝑐𝑐𝑖𝑖𝐻𝐻,𝛼𝛼)        ∀𝑖𝑖 (22) 
 

�𝑧𝑧𝑖𝑖 ≤ 𝐿𝐿
𝑛𝑛

𝑖𝑖=1

 (23) 

 

𝑧𝑧𝑖𝑖∗ = 1 (24) 
 

𝑐𝑐𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖𝑠𝑠 ≤ 𝐴𝐴𝑖𝑖𝑖𝑖 + 𝑈𝑈𝑖𝑖         ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (25) 

𝑄𝑄𝑖𝑖𝑖𝑖𝑠𝑠 = 𝜏𝜏𝑖𝑖𝑠𝑠(𝐸𝐸𝑖𝑖 + 𝜔𝜔𝑖𝑖) + �𝑘𝑘𝑖𝑖ψ𝑠𝑠
𝑖𝑖−1

ψ=1

       ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (26) 

 

𝑄𝑄𝑖𝑖𝑖𝑖𝑠𝑠 ≤ 𝐸𝐸𝑖𝑖 + 𝜔𝜔𝑖𝑖         ∀𝑖𝑖, 𝑡𝑡 < 𝑇𝑇, 𝑠𝑠 (27) 
 

𝑄𝑄𝑖𝑖𝑇𝑇𝑠𝑠 = 𝐸𝐸𝑖𝑖 + 𝜔𝜔𝑖𝑖         ∀𝑖𝑖, 𝑠𝑠 (28) 
 

𝑥𝑥𝑖𝑖𝑖𝑖𝑠𝑠 − 𝑧𝑧𝑖𝑖 ≤ 0            ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (29) 
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�𝑥𝑥𝑖𝑖𝑖𝑖𝑠𝑠
𝑛𝑛

𝑖𝑖=1

+ 𝑞𝑞𝑖𝑖𝑠𝑠 = 1      ∀𝑡𝑡, 𝑠𝑠 (30) 

 

𝐷𝐷𝑥𝑥𝑖𝑖𝑖𝑖𝑠𝑠 ≤ 𝑄𝑄𝑖𝑖𝑖𝑖𝑠𝑠        ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (31) 
 

𝜀𝜀�𝐷𝐷𝑑𝑑𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�𝑥𝑥𝑖𝑖𝑖𝑖𝑠𝑠
𝑇𝑇

𝑖𝑖=1

+ 𝜑𝜑𝐷𝐷�𝑞𝑞𝑖𝑖𝑠𝑠
𝑇𝑇

𝑖𝑖=1

+ �𝑐𝑐𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�𝑘𝑘𝑖𝑖𝑖𝑖𝑠𝑠
𝑇𝑇

𝑖𝑖=1

− Δ ≤ Ω𝑠𝑠           ∀𝑠𝑠 (32) 

 

𝑧𝑧𝑖𝑖 ∈ {0,1}      ∀𝑖𝑖 (33) 
 

𝑟𝑟𝑖𝑖𝑖𝑖 ∈ {0,1}       ∀𝑖𝑖, 𝑗𝑗 ∈ 𝑛𝑛| 𝑖𝑖 < 𝑗𝑗 (34) 
 

𝑤𝑤𝑖𝑖,𝑁𝑁𝑖𝑖 , are integer        ∀𝑖𝑖 (35) 
 

𝑈𝑈𝑖𝑖 is integer       ∀𝑖𝑖 (36) 
 

𝑓𝑓𝑖𝑖, 𝑞𝑞𝑖𝑖𝑠𝑠, 𝑥𝑥𝑖𝑖𝑖𝑖𝑠𝑠 ,𝑄𝑄𝑖𝑖𝑖𝑖𝑠𝑠 , 𝑟𝑟𝑖𝑖𝑖𝑖𝑠𝑠 ,Ω𝑠𝑠 ≥ 0            ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (37) 
 

Constraints (17)-(22) are discussed in Section 4 with Eqs. (3) through (6) and 

Eqs. (13) and (14). Constraint (23) specifies that a firm can be connected up to 𝐿𝐿 

suppliers. Constraint (24) determines that the primary connection as given, decisions 

in the model must be made only for secondary or backup connections. Constraint 

(25) specifies the restoration capacity limitation in terms of units/period for each 

supplier. Constraints (26)-(28) represent capacity evolution of suppliers over time in 

each disruption scenario. Constraint (29) ensures that produce movement from 

supplier i to the customer can be done when a connection is made between supplier 

i and customer. Constraint (30) quantifies the amount of unmet demand when 

customer is not fully served by suppliers. Constraint (31) ensures that the product 

shipped to the customer for supplier i is not more than its available capacity. 

Constraint (32) ensures that extreme scenarios that produce high resilience costs 

are penalized. Constraints (33)-(37) define the type of decision variables.         
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Solution Approach 

The solution procedure to solve the proposed stochastic multi-objective model 

involves the augmented 𝜀𝜀-constraint method to deal with the multiple objectives of 

geographical segregation and total cost.  

Augmented ε-constraint Method 

To solve the proposed resilient supplier selection model, we apply an 

extension of the 𝜀𝜀-constraint method by which the two objective functions are 

converted to the single objective counterpart. In the 𝜀𝜀-constraint method, one of the 

objective functions is chosen as the main objective function while the other functions 

are added to the constraints. For the bi-objective optimization formulation proposed 

in this paper, the 𝜀𝜀-constraint method is illustrated in Eq. (43). 

 
min   𝑇𝑇𝑇𝑇(𝑥𝑥, 𝑧𝑧) 

  s. t.   𝐺𝐺𝑆𝑆(𝑧𝑧) ≥ 𝜀𝜀 
𝑥𝑥, 𝑧𝑧 ∈ 𝑆𝑆 

(43) 

 
In this way, the main objective function is optimized individually, and the value 

of other objective functions is calculated at this optimal point. The efficient solutions 

of bi-objective model can be obtained by parametrical variation in the right hand side 

(𝜀𝜀1) of constrained objective function [Mavrotas 2009]. The range of 𝜀𝜀2 can be 

calculated by optimizing the constrained objective RE separately subject to the 

feasible set S and establishing the pay-off table [Torabi et al. 2016]. Then, by 

dividing the range of constrained objective 𝐺𝐺𝑆𝑆(𝑟𝑟) to q equal intervals for 𝜀𝜀2 can be 

calculated with Eq. (44). 

 
𝑟𝑟 = 𝐺𝐺𝑆𝑆max − 𝐺𝐺𝑆𝑆min;     𝜀𝜀2𝑙𝑙 = 𝐺𝐺𝑆𝑆max −

𝑟𝑟
𝑞𝑞

× 𝑙𝑙       𝑙𝑙 = 0, … . , 𝑞𝑞 − 1 (44) 

 
The 𝜀𝜀-constraint is a popular approach to deal with bi-objective models, but it 

has some drawbacks. For example, this method does not guarantee optimality of 

solutions (i.e., reaching to weakly efficient solutions). Mavrotas [2009] discussed 

some other drawbacks and introduced an improved version of 𝜀𝜀-constraint, called 
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augmented 𝜀𝜀-constraint approach. The formulation of this method for the proposed 

bi-objective model is illustrated in Eq. (45), where Υ is a small number usually 

between 10−6 to 10−3, 𝑠𝑠2 is slack variable for second objective function, and the 

efficient solution for each 𝜀𝜀 vector results from incorporating the augmented term 

Υ × 𝑠𝑠2.     

 
min       𝑇𝑇𝑇𝑇(𝑥𝑥, 𝑧𝑧) + (Υ × 𝑠𝑠2) 

  s. t.      𝐺𝐺𝑆𝑆(𝑧𝑧) − 𝑠𝑠2 = 𝜀𝜀2 
𝑥𝑥, 𝑧𝑧 ∈ 𝑆𝑆, 𝑠𝑠2 ∈ 𝑅𝑅+ 

(45) 

  
  



Acquisition Research Program 
Graduate School of Business & Public Policy - 21 - 
Naval Postgraduate School 

Illustration and Computational Results 

In this section, the proposed epsilon constraint model with sensitivity analysis 

capability is applied on a case study with 10 instances entitling 10 suppliers 

selection scenarios (i.e., the first chosen supplier, 𝑧𝑧𝑖𝑖∗), with 9 supplier candidates 

that are located randomly in a Cartesian coordinate system. To generate these 

instance, we vary problem characteristics by specifying the cost parameters from 

random distribution according to the model limitations. The fraction of remained 

capacity f supplier 𝑖𝑖 after the occurrence of disruptive scenario 𝑠𝑠, 𝜏𝜏𝑖𝑖𝑠𝑠, is calculated 

from 𝜏𝜏𝑖𝑖𝑠𝑠 = 𝜌𝜌𝑠𝑠𝜃𝜃𝑖𝑖. Here 𝜌𝜌𝑠𝑠 is a parameter used to determine the effect of scenario on 

the expected defect each supplier. We note that our choice of the threshold value of 

resilience cost changes the upped bound of the model in the given time limit. Figure 

8 illustrates the trajectory of the two objective categories, minimizing supplier 

selection and restoration costs and maximizing selected suppliers distance, over the 

course of an optimization run. On average, each of the instances was computed in 

less than 10 seconds. The results provide sufficient information to choose the 

optimal supplier selection policy when trying to decrease the cost. Note that the 

points above the line are dominated by points on the Pareto front.  

In this respect, a question arising from the result is how the uncertainty of key 

parameters (e.g., demand and threshold value of resilience cost), change the 

behavior of the model and consequently decision making policies. When the model’s 

condition changes during the uncertainties, decision makers lack the capability to 

select the best answer, but rather to avoid the least desirable decision. Therefore, 

analyzing the sensitivity of the optimal model on the uncertainty/errors minimizes the 

undesirable quality of decisions.  
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Figure 6. Pareto-optimal frontier for different pairs of selected suppliers. 

 

We analyze how the uncertainty of demand, 𝐷𝐷,  and threshold value of 

resilience cost, ∆, affect the trajectory of two objective functions and their interaction. 

Figure 9 illustrates the sensitivity of the bi-objective model to changes in demand. 

Higher demand values lead to more expensive supplier selection and restoration 

decision. For lower value of objective function one, the uncertainty of demand does 

not result in a wide range of the second objective function values. On the other 

hand, when higher selected suppliers distance is required, the model shows obvious 

sensitivity on the uncertainty of demand in higher values.  

 

 
Figure 7. Non-dominated solutions showing the sensitivity of model on the uncertainty of demand. 
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In Figure 10 we analyze the sensitivity of the model on the variation of 

threshold value of resilience cost, ∆= {100,300,500,700,1000,1300}. When the 

threshold decreases, the portion of supplier selection and restoration showed in the 

cost objective function increases with a fixed rate, 260 approximately. Therefore, 

optimal investment on resilience cost threshold can be identified based on decision 

making policies used by the managers.  

 

 
Figure 8. Non-dominated solutions showing the sensitivity of model to parameter variation. 
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Conclusions 

The study provided an optimization formulation for supplier selection and 

demand allocation. The formulation (i) captures multiple objectives of supplier 

segregation distance and cost associated with implementing resilience building 

strategies and (ii) captures the uncertainty associated with disruptive events that 

may affect suppliers.  
 

The model accounts for several resilience strategies from mitigation (i.e., 

fortify suppliers against disruption) and contingency (i.e., connecting firms to a back-

up supplier, having additional recovery resources to enable suppliers to restore lost 

capacity more quickly). Uncertainty associated with supplier disruption with 𝑃𝑃𝑠𝑠 could 

be captured with a Bayesian network formulation. The investigators are continuing to 

explore the usefulness of Bayesian networks in modeling resilience in an on-going 

NPS Acquisition Program project. 

Research Output 

Given the change of date for the 2017 Acquisition Research Symposium, a 

conference paper was not submitted, though one is planned for 2018. A larger scale 

work is still ongoing, and a manuscript will be submitted in coming months.  
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