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Abstract 

Military operations create large amounts of damaged equipment, referred to as 

“mountains of metal.” Traditional and current strategies for shrinking the mountain 

include shipping most equipment to U.S. depots for repair and overhaul. Three 

advanced technologies—three-dimensional laser scanning, additive manufacturing, and 

product lifecycle management—can potentially save costs by relocating and 

accelerating repair operations. Published forecasts of the evolution of these 

technologies formed the basis for scenarios of their application to shrinking the 

mountain at U.S. depots, in-theater support facilities, and at forward stations: current 

use, near-future use, and distant future use. Knowledge Value Added modeling was 

applied to four technology adoption scenarios (traditional and the three listed) to the 

Army’s up armor HMMWV fleet to estimate returns on investment for each scenario, 

costs, and potential savings. Cost savings potential of $1.8 billion in the up armor 

HMMWV fleet and over $21 billion in operations similar in scale to those in Iraq and 

Afghanistan are estimated. Conclusions include a recommendation to accelerate the 

adoption and use of these advanced technologies for equipment repair to shrink the 

mountain of metal. 
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Introduction  

Military campaigns such as Operation Iraqi Freedom (OIF), Operations Enduring 

Freedom (OEF), and the war in Afghanistan require vast amounts of equipment and a 

substantial supply chain to support operations. For example, more than 750,000 end 

items (e.g., boats, aircraft, vehicles, weapons) valued over $36 billion were deployed in 

Afghanistan in 2007. The Army estimates that it has deployed 40% of its equipment to 

support OIF and OEF, and the Marine Corps estimated deploying 22% of its total fleet 

assets in Iraq (Solis, 2006). The Marine Corps estimates that 40% of its ground 

equipment, 50–55% of its communications equipment, and 20% of its aircraft equipment 

were supporting operations (Solis, 2006). Much of this equipment is utilized or 

damaged, requiring repair. This has created an “enormous” (the GAO’s term, Solis, 

2006) amount of deployed equipment to be diagnosed and then repaired, overhauled, 

or disposed.  

It is the disposal of this materiel that creates an opportunity for better, less-costly 

options. This collection of equipment has been referred to as “the Mountain of Metal,” 

referred to hereafter as “the Mountain.” Using advanced technologies, that is, additive 

manufacturing, product lifecycle management and three-dimensional laser scanning 

technology, a large portion of the waste incurred by this Mountain of Metal can be 

eliminated. This study reviews and quantifies the potential benefits of using these three 

technologies to reduce the costs of a large portion of this Mountain. 

The Army and Marine Corps have similar systems for managing equipment in 

support of operations. (See Solis, 2006, for parallel descriptions of the two systems.) 

The Army’s system is significantly larger in volume and has been reviewed more 

extensively. The following research is based upon the Army system, with relevant notes 

concerning the Marine Corps. Conclusions are drawn concerning the cost reductions 

possible with the acquisition and use of the three advanced technologies to both 

services.  

Although major combat operations ceased in Iraq and Afghanistan as of late 

2014, the Mountain remains a major Department of Defense (DoD) challenge. The 
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DoD’s reconstitution process is the process whereby materiel from the Mountain can be 

certified for reuse, making it available again for operational use (Government 

Accountability Office [GAO], 2016). Figure 1 depicts the components of reconstitution. 

The Army’s reset (the Marine Corps uses the term “recovery”) processes are a part of 

reconstitution and can benefit from the adoption of the three advanced technologies 

investigated here via a larger percent of reuse of the material in the Mountain.  

Figure 1: Relationship Between Reconstitution, Retrograde, and Reset Activities (GAO, 
2016) 
 

 

 

In theater operations, increased use and harsh operating conditions create the 

unusable equipment that winds up in the Mountain. Equipment usage rates are several 

times higher than during peace time.1 More specifically, the Army reported rates two to 

eight times higher and the Marine Corps reported rates four to nine times higher than 

peacetime rates (Solis, 2006). General Peter Schoomaker, the Army’s Chief of Staff, 

reported to the House Appropriations Subcommittee that “we’re wearing out helicopters 

and trucks, Humvees, tanks at rates that are six, eight, 10 times, in some cases, what 

we’re programmed for” (Hendren, 2007). These usage rates lead to dramatic increases 

in the costs, not to mention the lack of availability of the equipment, in theater 

operations. 

                                                           
1  See the Congressional Budget Office (CBO, 2007) study for usage rate details for several types of large equipment 
and an argument that envisioned Cold War operating tempos should be the benchmark for current operating rates, 
not peace time tempos.  
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Making more of the equipment in the Mountain available for reuse would 

dramatically reduce costs. The Army needs about $13 billion per year for each year of 

the conflict and for several years thereafter to address the costs of eliminating the 

Mountain (Hendren, 2007). The Marine Corps costs to eliminate the mountain 

approaches $1 billion (CBO, 2007).  
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Processes for Shrinking the Mountain 

The DoD Supply Chain Materiel Management Policy (2011) specifies five 

processes by which equipment should be disposed of including how the Mountain can 

be reduced. In order of decreasing priority, the processes for disposing of materiel from 

contingent operations are as follows:  

1. Consume in theater  

2. Reutilize within DoD and other U.S. entities 

3. Retrograde (return to U.S. depots) to reset (restore to full capability) U.S. forces  

4. Transfer or donate to allies or partner nations 

5. Turn-in to Defense Logistics Agency Disposition Services for disposal because 

damage makes reset inappropriate  
 

The efficient repair and overhaul of equipment, using the three advanced 

technologies, can redirect much equipment for future usage that might otherwise be 

scrapped (the lowest priority process). 

The Traditional Strategy 

The traditional Army approach to managing equipment requiring significant 

maintenance, repair, or overhaul (MRO) is that equipment stays with the unit that it is 

deployed with and returns to the United States after deployment, where MRO are 

performed at one of five depots (Figure 2). Some equipment is repaired near forward 

stations by maintenance companies, reducing transportation costs and saving time, and 

maximizing availability. However, according to the CBO, “In general, until 2007, Army 

units rotated in and out of the theater roughly annually, and as a result, most equipment 

remained in the theater for about a year and was then returned to its unit’s home station 

to be reset [be returned to full capability]” (CBO, 2007). The unit deployed to replace the 

returning unit brings their own equipment. This process was used for hundreds of 

thousands of pieces of equipment deployed to Iraq, Afghanistan, and surrounding areas 

(CBO, 2007).  
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Figure 2: Retrograde of Equipment Leaving Southwest Asia and Returning to the United 
States for Reset (GAO, 2012) 

 

 

The Army uses the reset process to manage damaged equipment. “Reset” is the 

term for “a series of repairs, recapitalization, and replacement actions to restore unit’s 

equipment to a desired level of combat capability” (CBO, 2007) (Figure 3). This process 

repairs all damage and performs all routine maintenance. Equipment is returned to 

conditions known as “10/20,” referring to the levels specified by the 10/20 technical 

manuals which call for all shortcomings and deficiencies to be repaired, and all routine 

maintenance performed (Taktikz, 2017). Equipment to be repaired, is often relocated 

away from forward locations to a reset location through a process referred to as 

“retrograde” (Acquipedia, 2017). The Marine Corps published a reset implementation 

plan and the Army published information on aspects of the reset process in 2016 (GAO, 

2016). Figure 3 (GAO, 2012) illustrates part of the reset process. 
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Figure 3: The Reset Process (GAO, 2012, Figure 1) 

 

In-Theater Maintenance, Repair, and Overhaul: The Theater 
Sustainment Stocks (TSS) and the Theatre Provided Equipment (TPE) 
Initiatives 

One disadvantage of the traditional process is that performing repairs in the 

United States requires transporting the equipment round trip to and from the United 

States. However, this equipment could be repaired in-theater using the three advanced 

technologies. The Army initiated two equipment reuse efforts, the Theater Sustainment 

Stocks (TSS) and Theater Provided Equipment (TPE) in an attempt to increase 

operational availability and reduce costs. The Theater Sustainment Stocks (TSS) retain 

an inventory of more than 400 types of vehicles and other equipment in theater for 

deployment with arriving units. The Marine Corps has a similar program named Forward 

In-Stores. In the Army case, this portion of the Mountain typically requires repairs to be 

operational, and those repairs often do not return the equipment to full capability. For 

example, the GAO found that less than 7% of a cross-section of ground vehicles in TSS 

were fully mission capable (Soltis, 2006). Increased in-theater repair capability can 

increase the operational availability of TSS equipment.  
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Since its initiation in 2003, the Theater Provided Equipment2 (TPE) initiative 

takes force-protection equipment from forces returning to the United States while the 

equipment is still in theater instead of shipping it back with the units that brought it into 

the theater. The program transfers the equipment to incoming units. Transfers typically 

happen at forward stations and departing units are expected to maintain equipment to 

full mission capabilities. Almost 75% of the Army’s trucks in Iraq are in the TPE pool 

(CBO, 2007). While increasing operational availability of equipment to users and saving 

shipping costs, the TSS and TPE programs, as currently implemented, prevent depot 

level MRO such as overhauls. This can require more and more expensive repairs later. 

Improved MRO in-theater or repairs at forward stations can increase the effectiveness 

of TPE. 

  

                                                           
2 Theater Provided Equipment was referred to as “stay behind equipment” until 2005.  
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Three Advanced Technologies 

Three advanced technologies, that is, three-dimensional laser scanning 

technologies (3DST), additive manufacturing (AM), and product lifecycle management 

(PLM), have the potential to significantly improve the processes used to shrink the 

Mountain. The following sections provide an overview of these technologies based on a 

prior study by Housel, Hom, Ford, and Mun (2015).  

Three-Dimensional Laser Scanning Technologies  

Three-dimensional laser scanning technologies (3DST) have been used to 

achieve significant cost savings, optimize maintenance schedules, increase quality, 

improve safety, and reduce re-work. Commercial applications range from maritime and 

space applications to manufacturing and production. According to industry analysts, the 

industry’s growth is fueled by the growing recognition that 3D aids in the design, 

fabrication, construction, operations, and maintenance processes.  

Laser scanners use infrared laser technology to produce exceedingly detailed 

three-dimensional images of complex environments and geometries in only a few 

minutes. Millions of discrete measurements are captured in every scan. The resulting 

images, a “point cloud,” are millions of 3D measurement points. A complete project may 

contain hundreds of millions or even billions of points, recreating the complex spatial 

relationships of the 3D environment. Three-dimensional scanners can be used to get 

complete or partial 3D measurements of any physical object without any contact with 

the physical object.  

Often used by offshore oil and gas companies to construct and repair oil rigs, 

3DST is very effective at documenting oil platforms and refineries to assist in 

engineering, maintenance, and planning processes. The aerospace and automotive 

industries have used 3DST for retrofitting floors and measuring parts for accurate fit. 

The following are other industries using the technology: 

• Law Enforcement. Used in crime scene documentation, forensics, and 
accident reconstruction.  



Acquisition Research Program 
Graduate School of Business & Public Policy - 10 - 
Naval Postgraduate School 

• Architectural and Civil Engineering. Used to capture as-built 
documentation of existing buildings and structures such as bridges and 
provides architects and contractors with exact dimensions. Building 
Information Models (BIM) can be developed to retrofit projects. 

• Asset and Facility Management/Documentation. Three-dimensional 
documentation of complex factory and plant installations provide users with 
very precise 3D CAD data for use in facility management, maintenance, 
and asset documentation.  

• Surveying. Used to complement or replace traditional tools such as total 
stations to fully capture manmade or natural objects for volume 
calculations, as-built surveys, and topographic surveys (Faro, 2014). 
 

Example applications of 3DST in PLM include the manufacturing, servicing, design, and 

concept areas as shown in Figure 4. 
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Figure 4. Actual and Potential Applications of 3D Scanning 

 

 

 
Source: Creaform, 2015 
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Three-Dimensional Laser Scanning Technologies in the Navy 

Ship Check Data Capture 2005 

Recognizing the potential of new technologies on the ship check process on the 

U.S. shipping industry, the Navy funded the Ship Check Data Capture project in 2005. 

Laser scanning, close-range photogrammetry and other technologies capturing as-built 

ship conditions in digital format to create 3D electronic models were evaluated. The 

project’s goals were to determine potential technology synergies producing cost 

effective solutions and prototype a ship check data capture process that could be used 

by the U.S. shipbuilding industry. It was also anticipated that archived digital data would 

provide a cost-effective solution to the lifecycle cost management of ships.  

Specific benefits from the software and hardware tested include the following:  

• Creation of as-built 3D models and validation of as-built models to design 
models 

• Reduction of costly design changes, improved design capability 
• Reduced construction rework 
• Accurate factory-fabricate in lieu of field-fabricate 
• Reduced ship check costs: fewer days, fewer personnel 
• Elimination of return visits to the ship for missed measurements 
• Obtaining measurements which are difficult or unsafe for human reach  

 

Initial results were so encouraging from this project that a nine month follow-on 

project was awarded by the NSRP in 2006. The follow-on project evaluated the ship 

check process developed in the FY05 project and refined the process for the U.S. 

shipbuilding and repair industry using available Commercial-Off-The-Shelf (COTS) 

technology. In this follow-up project, the team conducted a ship check onboard a 

surface ship at Bender Shipbuilding & Repair Company and conducted work onboard 

SSGN 729 to validate the data accuracy/repeatability of the SSGN 729 ship check data 

collected from the FY05 project.  
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Performance improvement metrics were developed and tracked to compare the 

“as-is” practice with anticipated project results, as shown in Table 1. This project 

reported the cost/time savings metrics associated with post processing the ship check 

data into 3D CAD models compared to creating CAD models using the traditional ship 

check method with tape measures.   

 
Table 1. Project Performance Improvement Measurements 

 
Source: NSRP 2007 

 

Estimated cost savings of 37% and time savings of 39% were realized for ship 

check data capture/post processing with the available COTS laser scanning technology 

hardware and software tools results when compared to traditional ship checks using 

tape measures. The project team concluded that the technology (hardware/software) 

was mature enough to support the ship check process. Laser scanners were found to 

provide a cost effective method to collect as-built data during ship checks as compared 

to traditional methods. Three-dimensional laser scanning provided time and cost 

savings, and can be applied to the shipbuilding industry. 

3D Scanning in the Navy 

In 2005, 3D laser scanning services were used for ship check of a three-story 

hangar bay on the USS Abraham Lincoln (CVN 72). Scanning the HVAC, piping, fuel 

storage tanks, and other structures allowed shipyard engineers to conduct multi-

discipline “what-if” scenarios to avoid clashes in the installation of a new deck. 

Hundreds of hours in labor were saved with scanning versus the traditional methods. 
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Three-dimensional laser scanning captured data at up to 2000 points per second and 

has a range accuracy of 0.2 inches at 55 feet. 

Three-dimensional laser scanning technology was used to assess damage to the 

USS San Francisco (SSN 711) after it collided at high speed with an undersea mountain 

350 miles south of Guam. Three-dimensional laser scanning was used to evaluate the 

damaged areas of the submarine’s bow. In this case, scanning was invaluable for 

determining the ship's centerline and collecting empirical data about torpedo tube 

deformation.  

The Naval Undersea Warfare Center (NUWC) began using laser scanning to 

reverse engineer components with complex geometries in order to enable competitive 

bidding in 2007. In the past, the Navy did not have sufficient documentation from the 

Original Equipment Manufacturer (OEM) to competitively procure replacement 

components which resulted in purchasing expensive replacements from the OEM. The 

Navy saved $250,000 by purchasing parts produced with laser scanning through 

competitive bidding. Additionally, the time required to reverse engineer a typical 

component, including both measurement and modeling time, was reduced from 100 

hours to 42 hours with a laser scanner.  

Additive Manufacturing (Based on Housel et al., 2015)  

Lu, Li, and Tian (2015) contrast additive manufacturing (AM) with equivalent and 

subtractive forms of manufacturing. Equivalent manufacturing uses the same amount of 

material to create the product as is in the final product. The mass change during 

equivalent manufacturing is zero. Casting, forging, and soldering are examples of 

equivalent manufacturing. Subtractive manufacturing removes material during 

manufacturing. The mass change during subtractive manufacturing is negative. Milling, 

turning, and grinding are examples of subtractive manufacturing. In contrast, AM adds 

material during manufacturing. The mass change in additive manufacturing is positive. 

Stereolithography is an example of additive manufacturing.  
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The American National Standards Institute defines additive manufacturing as the 

“process of joining materials to make objects from 3D model data, usually layer upon 

layer, as opposed to subtractive manufacturing methodologies” (ASTM, 2013). Additive 

manufacturing is also commonly referred to as 3D printing. AM differs radically from the 

currently dominant manufacturing methodologies. Most current methods use subtractive 

processes (e.g., machining), but AM builds a 3D object by gradually adding successive 

layers of material that are laid down exactly in their final location. AM does this by 

fabricating objects directly from 3D computer-aided design (3D CAD) models. The 3D 

model is disaggregated into multiple horizontal layers, each of which is produced by the 

machine and added to the preceding layers. Additive manufacturing is often referred to 

as 3D printing. 

AM generally involves a number of steps that move from a virtual 3D CAD model to 

a physical 3D object, as follows: 

• CAD: A 3D CAD model of the target object is built in software, some times 
based on a 3D scanned image of the target generated with 3DST. The 3D 
CAD model determines only the geometry of the target object. Three-
dimensional laser scanning can be used to create the model. 

• Conversion to files for manufacturing: The CAD model cannot be used 
directly by AM machines; it must be converted to a format usable by the 
specific AM technology (e.g., stereolithography) being used. These files 
describe the external closed surfaces of the original CAD model and forms 
a basis for calculation of the layers used in manufacturing. The model 
approximates surfaces of the model with a series of triangular facets.  

• Revision of manufacturing files: The manufacturing files must be 
manipulated before manufacturing. For example, multiple objects may be 
manufactured simultaneously from the same file, requiring that the files of 
the objects be integrated.  

• Machine setup: AM machines must be set up to accommodate specific 
materials, layer thicknesses, and timing. 

• Build: Although all AM machines follow the layer-by-layer fabrication 
process, they utilize different techniques and technologies. For example, 
some of them use a high-power laser beam to melt a very fine metal 
powder in order to form a thin layer, while others use UV light to solidify a 
specific kind of liquid polymer, called photopolymer.  

• Post-process: Post-processing may be required due to the need to cure 
photopolymers.  
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The first additive manufacturing system was created in the early 1980s when 

Charles Hull invented stereolithography (SLA), a printing process that enabled a 

tangible 3D object to be created from digital data. The technology was then used to 

create a 3D model from a picture and allows users to test a design before investing in a 

larger manufacturing program. Since then, AM has evolved to include at least 13 

different sub-technologies grouped into seven distinct process types. Figure 5 shows 

the evolution of additive manufacturing technology.  

 

Figure 5. Evolution of AM Technology, 1985–2014 

 

(Deloitte,2015) 

 

According to the Gartner Group, consumer adoption of 3D laser printing will take 

several years (as seen in Figure 6). Gartner defines five key phases of a technology’s 

life cycle: 

• Technology Trigger. A new technology triggers excitement for the 
technology. There are early proof-of-concept stories and media interest, 
however, no usable products and un-confirmed commercial viability at this 
phase. 
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• Peak of Inflated Expectations. There are several early successes, in 
conjunction with several failures. Although some companies adopt the 
technology early, many do not. 

• Trough of Disillusionment. Interest lessens as implementations fail to 
deliver. An industry shakeout occurs. 

• Slope of Enlightenment. The technology’s benefits become more understood 
as second- and third-generation products emerge. 

• Plateau of Productivity. Mainstream adoption of the technology.  

 
Figure 6. Gartner's 2013 Hype Cycle for Emerging Technologies  

 
Source: Gartner 2013 

 

AM is already a staple in many manufacturing processes and is increasingly 

being used across a number of industries, including aviation, automobile, and 

healthcare. Lockheed Martin estimates that some complex satellite components can be 

produced 48% cheaper and 43% faster with 3D. Production costs could be reduced by 

as much as 80%. Boeing has installed environmental control system ducting made by 

AM for its commercial and military aircraft for many years; tens of thousands of AM 

parts are flying on 16 different production aircraft (commercial and military; Wohlers, 
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2014). GE Aviation will be using AM to manufacture more than 30,000 fuel nozzles 

annually for its new LEAP engine starting in 2015. Consolidating 18 parts into one, the 

new design is 25% lighter and five times more durable than the previous fuel nozzle. 

In the automotive industry, Ford Motor Co. uses 3D printing in several areas, 

including the tooling used to create production parts and to build intake manifold 

prototypes that can be tested for up to 100,000-mile cycles. With traditional 

manufacturing methods, it would take four months and cost $500,000 to build while a 

3D-printed manifold prototype costs $3,000 to build over four days. 

Additive Manufacturing in the Armed Forces 

The U.S. Navy has supported research into 3D printing for more than 20 years 

and has approximately 70 additive manufacturing projects underway at dozens of 

different locations. Table 2 summarizes benefits achieved for several completed 

projects. In addition, one of the active Navy Manufacturing Technology (ManTech) 

Program projects active in FY14 was the “Non-Destructive Inspection for Electron-Beam 

Additive Manufacturing of Titanium.” In this project, the emerging AM technology of 

Electron Beam Direct Manufacturing (EBDM) process was evaluated for fabrication of 

several F-35 Joint Strike Fighter (JSF) components. EBDM is a technology that is 

considered vital to improving the affordability, reducing lead time, and reducing 

industrial shortfalls inherent in traditional manufacturing technologies. In this Navy 

Metalworking Center (NMC) ManTech project, an Integrated Project Team (IPT) 

evaluated the effectiveness of traditional and advanced non-destructive inspection (NDI) 

techniques, including computed tomography (CT) scanning, traditional radiography, 

standard hand-held ultrasonic, and phased array ultrasonic inspection methods, to 

establish standardized NDI processes and procedures for production. According to the 

Office of Naval Research, studies have shown that EBDM technology has the potential 

to reduce per-part manufacturing costs by 35% to 60% when compared to the costs to 

manufacture complex-shaped parts with traditional manufacturing approaches (ONR, 

2015). Product lead time might also be reduced by as much as 80%. 
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Table 2. Example AM Projects and Benefits 

 Rapid 
Manufacturing & 
Repair: Casting 

Cores 

RARE Parts Program: Part 
Vacuum Rotor Weapon 

System Submarines 

ManTech Data Link Systems 

Cost & 
Time 
Savings 

$4K & 4 weeks $20K & 30 weeks • Reduced unit cost of Mini Data Link 
Diplexer from ~$20,000 to ~$2,000 each 

• Reduced lead time from 13 months to 3 
months 

• Approx. 65% cost savings 
Problem/
Challenge 
 

• Providing low 
quantity castings for 
fleet needs 

• Vacuum Rotor: Part can be 
hard to get.  

• Cost is $19K, lead time 48 
weeks 

• Warfighter needs real time networked 
data in theater.  

• However, cost grows as bandwidths 
become more crowded. 

•  Data link systems found in Unmanned 
Arial Vehicles (i.e., Predator, Global 
Hawk, Hunter) are expensive, have long 
lead times due to exotic materials, and 
require extensive skilled labor with long 
cycle times. 

Solutions/
Results 
 

• System for printing 
sand casting molds 
and cores: skips 
cost and lead time 
associated with 
making a pattern to 
pack sand around 

• Part reverse engineered 
and CAD model created by 
TRF-King’s Bay. Mold 
modeled at NUWC-Keyport, 
and mold will be poured by 
Naval Foundry & Propeller 
Center (NFPC)  

• Printed mold using Ex One 
S15 system, cast parts at 
local foundry  

• Cost $14K, lead time 8 
weeks 

• Air Force ManTech developed and 
produced a tuneless diplexer using 
additive manufacturing to reduce 
material waste, cycle time, cost, and to 
increase yield 

• Utilized highly-developed software 
simulation and advanced manufacturing 
techniques to create Advanced 
Tuneless Diplexer that delivers superior 
performance at significantly reduced 
cost 

•  Implemented the following 
manufacturing improvements into new 
Mini Data Link product to improve 
overall data link lead time and cost: 
–Replaced complex precision machined 
parts with inexpensive die cast 
components 
–Eliminated gold plating, tuning, and re-
tuning 
–Incorporated automated test to assess 
twenty units at a time 

• AFRL ManTech investment of $5.4M 
Benefit/ 
Impact 
 

• Costs: Slight cost 
decrease 

• Time: Substantially 
reduces lead time 

• Weapon System: 
Any system that 
uses castings 

• Costs: $20K savings per 
year based on 4 units 
annually 

• Time: 30 week lead time 
reduction—better suits 
emergent needs 

• Weapon System: Vacuum / 
priming pump used on subs 

• Provides Warfighter with affordable, 
capable, real time networked data 

• Increased performance and reliability of 
diplexer by reducing manufacturing 
variability 

 

Sources: Root 2014 
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The U.S. Army deployed its first mobile 3D printing laboratory in July 2012 in 

Afghanistan inside a shipping container that is capable of being carried by helicopter. 

Figure 7 highlights how additive manufacturing can be used in maintenance activities. 
 

Figure 7. Army’s Additive Manufacturing Opportunities 
 

 
Source: Naguy 2014, pg. 3 

 

Product Lifecycle Management (Based on Housel et al., 2015) 

The meaning of Product Lifecycle Management (PLM) continues to evolve. It has 

been defined as an “integrated, information-driven approach comprised of people, 

processes/practices, and technology, to all aspects of a product's life, from its design 

through manufacture, deployment and maintenance—culminating in the product's 

removal from service and final disposal. By trading product information for wasted time, 

energy, and material across the entire organization and into the supply chain, PLM 

drives the next generation of lean thinking” (Greives, 2006). In another definition by 

CIMdata (n.d.),  

PLM is a strategic business approach that applies a consistent set of business 
solutions in support of the collaborative creation, management, dissemination, 
and use of product definition information across the extended enterprise, and 
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spanning from product concept to end of life-integrating people, processes, 
business systems, and information. PLM forms the product information backbone 
for a company and its extended enterprise. 

Finally, the Gartner Group defines “PLM is a discipline for guiding products and product 

portfolios from ideas through retirement to create the most value for businesses, their 

partners, and their customers.” Although definitions differ, there is agreement that PLM 

is a systematic approach to managing the series of changes from its design and 

development to its ultimate retirement or disposal. 

PLM has been used by the automotive, aerospace, and other industries that build 

very large, very complex products and systems. It was designed to provide stakeholders 

with current views of every product throughout its lifecycle to facilitate decision-making 

and corrective actions if necessary.  

A wide range of industries using PLM are finding that 3DLS is becoming a critical 

tool to link the gap between physical objects in the real world and in the digital design 

world. The aerospace, automotive, consumer products, manufacturing, and heavy 

industries all have benefited from faster time to market, improved quality, and reduced 

warehousing costs with 3D scanning.  
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Potential Process Options to Shrink the Mountain  

Current Capabilities and Forecasted Developments of 3D Scanning 
Technologies, Additive Manufacturing, and Product Lifecycle 
Management  

A general review of the current and future capabilities of each technology will 

provide the basis for forecasting how those technologies might be used to shrink the 

Mountain. The following review of how they might be used immediately and in the future 

as they add new functionalities is necessary to make reasonable forecasts about how 

much cost they can reduce over time.  

3D Scanning Technologies 

Current capabilities and uses of 3D scanning technology include the following:  

• Tabletop scanning and mapping of fixed objects 

• Portable, handheld (no mechanical fix to the scanned object) mapping of free 
form surfaces (Allard, Lavoie, & Fraser, 2013)  

• Translation from point cloud collected by scanning to CAD files for design and 
manufacturing 
 

Potential future capabilities of 3D scanning technology include the following:  

• Scanning technologies integrated with other sensing technologies 

• Smart scanning software that automatically diagnoses damage based on 
scanned data 

• Scanners communicating directly with repair facilities 

• Scanners communicating directly with manufacturing equipment for automated 
manufacturing of parts based on damage assessment 

• User-based damage assessment such as units carrying portable 3D scanners for 
equipment diagnostics 
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Future applications of 3DST within the DoD can include the use of portable 

(tabletop-sized) and very portable (handheld) scanners by in-theater repair facilities and 

at forward stations by repair personnel and equipment users for on-site damage and in-

theater assessment and diagnosis. Damage assessment software may be developed to 

analyze scanned data (e.g., whether actual deviation from design shapes prevents full 

capability) and thereby speed diagnosis. Three-dimensional scanning technology can 

be integrated with AM and automated to speed the creation of replacement parts. The 

technology may eventually be used to sense component conditions while in use and 

collect user experience data for use in real time conditions assessment and repair.  

Additive Manufacturing 

Current capabilities and uses of additive manufacturing include the following:  

• Translation from CAD drawings to manufacturing files for use by AM machines 

• Making molds for casting parts (Lu et al., 2015)  

• Manufacturing with most materials (Lu et al., 2015)  

• Manufacturing complex shaped parts (Lu et al., 2015)  

• Manufacturing small numbers of parts more cheaply that traditional 
manufacturing methods (Thomas & Gilbert, 2014)  

• Reduction in size of equipment required compared to many traditional 
manufacturing methods (Lu et al., 2015), allowing more localized manufacturing 

Potential future capabilities of additive manufacturing include the following: 

• Redesign the shapes of parts to exploit additive manufacturing advantages for 
parts such as heat exchangers and lightweight structures (e.g., drone parts; Lu et 
al., 2015) and custom fitting protective gear (Earls & Baya, 2014).  

• Goal-driven computer design of parts that optimizes designs for weight, strength, 
etc. (Smith, 2015). 

• Integrate additive manufacturing into design of part characteristics (Lu et al., 
2015). AM can be used to control the internal stresses within a part. Therefore 
single parts will, for example, be designed to be stronger at the locations of larger 
loads.  

• Integral design and manufacturing of multiple-material parts (Lu et al., 2015; 
Smith, 2015)—e.g., alternating layers of interacting materials with different 
characteristics such as stiffness and density (Earls & Baya, 2014).  
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• Manufacturing at the micro and nano scales of objects such as miniature 
transducers (Lu et al., 2015; Smith, 2015).  

• Combination and integration of AM, equivalent, and subtractive manufacturing 
methods for the manufacturing of parts such as prototypes, molds, electrodes, 
and casting patterns (Lu et al., 2015).  

• Design and use of high-performance alloys such as for high-temperature 
conditions (Lu et al., 2015).  

• Intelligent manufacturing equipment which senses and responds to 
manufacturing conditions in real time (Lu et al., 2015). 

• Consolidation of many components such as sensors, batteries, and electronics 
into fewer, more complex components, subsystems, and systems. For example, 
printing circuits, antennas, and RFID tags into products (Earls & Baya, 2014 ) 
such as helmets, boots, and clothing (Anusci, 2015) 

• Manufacturing of complete subsystems such as small drone wings (Earls & 
Baya, 2014).  

• Small scale and portable manufacturing that allows on-site parts and equipment 
manufacturing (Smith, 2015).  

• Four-dimensional printing in which products change over time in response to 
conditions, such as for self-assembly, increased strength when in the presence 
of moisture or a specified temperature (Smith, 2015).  

Future applications of AM technologies within the DoD can include their 

widespread use for making single or small batches of replacement parts from basic 

materials, manufacturing near forward stations, integration and automation with 3DST 

for faster parts creation and custom parts, and component designs and manufacturing 

using diverse and multiple materials, integrated component manufacturing for faster and 

cheaper repair work, and 4D component design and manufacturing that changes with 

time or environmental conditions. 

Product Lifecycle Management 

Current capabilities of product lifecycle management include the following:  

• Aggregation and storage of component-specific data 

• Data sharing across user locations and time 

• Component life tracking  

• Inventory analytics  



Acquisition Research Program 
Graduate School of Business & Public Policy - 26 - 
Naval Postgraduate School 

Potential future capabilities of product lifecycle management include the following:  

• Future applications of PLM within the DoD (Shilovitsky, 2016) 
• Smart objects that send and receive data and instructions through the PLM 

system 

• Coordination and communication among connected devices that allow manager-
to-component, user-to-component, and component-to-component communication  

• Automated product performance monitoring and reporting in real time  

• User-experience data collection in real time and analysis for improved 
component design 

• Smarter software that can improve repair forecasting and planning by predicting 
demand  

Future applications of PLM within the DoD can include automated inventory 

management, repair demand forecasting and planning based on parts conditions, 

integration of manufacturing across subtractive, equivalent, and additive processes, and 

4D component design and manufacturing that changes with time or environmental 

conditions, and the full integration of 3DST, manufacturing, and PLM. 

Forecasted Evolutions of the Three Advanced Technologies for 
Shrinking the Mountain 

Advanced technologies uses for shrinking the Mountain are expected to differ by 

location, that is, whether used at forward stations, in-theater repair facilities, or at U.S. 

depots. Forecasted applications of each technology in these three locations were 

developed for three temporal scenarios: current use (Table 3), use in the near future (5–

10 years; Table 4), and use in the distant future (more than 10 years; Table 5). Location 

vs. Technology tables with cells describe activities (e.g., maintenance, minor repair, 

overhaul, and diagnosis. 
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Table 3. Current Repair Applications of Three Advanced Technologies 

 

 
Table 4. Near-Future Repair Applications of Three Technologies 
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Table 5. Distant-Future Repair Applications of Three Technologies 
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Modeling Improved Processes to Shrink the Mountain 

We will use the knowledge value added methodology to structure the problem of 

forecasting the future value and cost reductions possible when the three technologies 

are in place to support shrinking the Mountain. In what follows, we will review the 

methodology and how it works.  

Knowledge Value Added Modeling (Based on Ford, Housel, Hom, & 
Mun, 2015) 

In the U.S. military context, the Knowledge Value Added (KVA) methodology is a 

new way of approaching the problems of estimating the productivity (in terms of return 

on investment [ROI]) for military capabilities embedded in processes that are impacted 

by technology. KVA addresses the requirements of the many DoD policies and 

directives by providing a means to generate comparable value or benefit estimates for 

various processes and the technologies and people that execute them. It does this by 

providing a common and relatively objective means to estimate the value of new 

technologies as required in the 

• Clinger–Cohen Act of 1996 that mandates the assessment of the cost benefits 
for information technology investments 

• Government Accountability Office’s Assessing Risks and Returns: A Guide for 
Evaluating Federal Agencies’ IT Investment Decision-Making, Version 1 
(February 1997) that requires that IT investments apply ROI measures 

• DoD Directive 8115.01, issued October 2005, that mandates the use of 
performance metrics based on outputs, with ROI analysis required for all current 
and planned IT investments 

• DoD Risk Management Guidance Defense Acquisition guidebook that requires 
alternatives to the traditional cost estimation be considered because legacy cost 
models tend not to adequately address costs associated with information 
systems or the risks associated with them 

 

KVA is a methodology that describes all organizational outputs in common units. 

This provides a means to compare the outputs of all assets (human, machine, 

information technology) regardless of the aggregated outputs produced. It monetizes 
the outputs of all assets, including intangible knowledge assets. Thus, the KVA 
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approach can provide insights about the productivity level of processes, people, and 

systems in terms of a ratio of common units of output (CUO). CUO produced by each 

asset (a measure of benefits) is divided by the cost to produce the output. By capturing 

the value of knowledge embedded in an organization’s core processes, employees, and 

technology, KVA identifies the actual cost and value of people, systems, or processes. 

Because KVA identifies every process required to produce an output and the historical 

costs of those processes, unit costs and unit values of outputs, processes, functions, or 

services are calculated. An output is defined as the end-result of an organization’s 

operations; it can be a product or service, as shown in Figure 8.  
 

Figure 8. Measuring Output in the Knowledge Value Added Approach 

 

For the purpose of this study KVA was used to measure the value added by the 

human capital assets (i.e., military personnel executing the processes) and the system 

assets (e.g., new sensor) by analyzing the processes performances. By capturing the 

value of knowledge embedded in systems and used by operators of the processes, KVA 

identified the productivity of the system-process alternatives. Because KVA identifies 

every process output required to produce the final aggregated output, the common unit 

costs and the common unit values were estimated.  
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The KVA methodology has been applied in more than 80 projects within the DoD, 

from flight scheduling applications to ship maintenance and modernization. In general, 

the KVA methodology was used for this study because it could  

 Compare alternative approaches in terms of their relative productivity 
 Allocate value and costs to common units of output 
 Measure value added by the system alternatives based on the outputs 

each produced 
 Relate outputs to cost of producing those outputs in common units 

KVA quantifies value in two key productivity metrics: Return on Knowledge 

(ROK) and Return on Knowledge Investment (ROI). Calculations of these key metrics 

are shown in Table 6 KVA Metrics. 

 
Table 6. KVA Metrics 

Metric Description Type Calculation 

Return on Knowledge (ROK)  Basic productivity, 
cash-flow ratio 

Function or 
process level 
performance ratio 

Outputs-benefits in 
common units/cost to 
produce the output 

Return on Investment (ROI)  Same as ROI at the 
sub-corporate or 
process level 

Traditional 
investment 
finance ratio 

(Revenue-investment 
cost)/investment cost 

  

Although ROI is the traditional financial ratio, ROK identifies how a specific 

process converts existing knowledge into producing outputs so decision-makers can 

quantify costs and measure value derived from investments in human capital assets. A 

higher ROK signifies better utilization of knowledge assets. If IT investments do not 

improve the ROK value of a given process, steps must be taken to improve that 

process’s function and performance (Figure 9). 
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Figure 9. Comparison of Traditional Accounting Versus Process-Based Costing 

 
 

Based on the tenets of complexity theory, KVA assumes that humans and 

technology in organizations add value by taking inputs and changing them (measured in 

common units of complexity) into outputs through core processes. The amount of 

change an asset within a process produces can be described as a measure of value or 

benefit. The following are additional assumptions in KVA: 

 KVA describes all process outputs in common units (e.g., using a 
knowledge metaphor for the descriptive language in terms of the time it 
takes an average employee to learn how to produce the outputs), which 
allows historical value and cost data to be assigned to those processes 
historically. 

 All outputs can be described in terms of the time required for a single point 
of reference learner to learn to produce them.  

 Learning time, a surrogate for procedural knowledge required to produce 
process outputs, is measured in common units of time. Consequently, 
units of learning time are proportionate to common units of output.  

 Common units of output make it possible to compare all outputs in terms 
of cost per unit as well as value (e.g., price) per unit, because value (e.g., 
revenue) can now be assigned at the sub-organizational level. 

 Once cost and revenue streams have been assigned to sub-organizational 
outputs, normal accounting and financial performance and profitability 
metrics can be applied (Rodgers & Housel, 2006; Pavlou et al., 2005; 
Housel & Kanevsky, 1995). 
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Describing processes in common units also permits, but does not require, market 

comparable data to be generated, particularly important for non-profits like the U.S. 

military. Using a market comparables approach, data from the commercial sector can 

be used to estimate price per common unit, allowing for revenue estimates of process 

outputs for non-profits. This also provides a common units basis to define benefit 

streams regardless of the process analyzed.  

KVA differs from other nonprofit ROI models because it can allow for revenue 

estimates, enabling the use of traditional accounting, financial performance, and 

profitability measures at the sub-organizational level. KVA can rank processes or 

process alternatives by their relative ROIs. This assists decision-makers in identifying 

how much various processes or process alternatives add value.  

In KVA, value is quantified in two key metrics: Return-on-Knowledge (ROK: 

revenue/cost) and ROI (revenue-investment cost/investment cost). The raw data from a 

KVA analysis can become the input into the ROI models and various forecasting 

techniques such as real options analysis, portfolio optimization, and Monte Carlo 

simulation.  

Scenarios for Knowledge Value Added Modeling 

The three advanced technologies investigated can help shrink the Mountain in 

three locations: forward stations, in-theater repair facilities, and U.S. depots and at the 

interactions and integration of repair work at those locations. Figure 10, Processes for 

Shrinking the Mountain, illustrates the repair process pathways modeled. In what 

follows, four scenarios were developed that demonstrated the potential cost/benefits of 

using the three technologies to shrink the Mountain at these three locations. 
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Figure 10. Processes for Shrinking the Mountain 

 

 
Four advanced technology adoption and use scenarios were developed based 

on these pathways for modeling the abilities of the three technologies to improve the 

shrinking of the mountain:  

• The As-Was Scenario reflects the traditional repair processes, in which  
o all equipment is retrograded from forward stations to U.S. depots, where it 

is diagnosed, repaired, and overhauled. The equipment is returned to 
forward stations.  

• The As-Is Scenario reflects the current processes, which uses the traditional 
process for some equipment but created Theater Sustainment Stocks (TSS) to 
provide Theater Provided Equipment (TPE) and in-theater MRO and apply the 
near-future evolution of the three advanced technologies (see Table 7 in next 
section).  

• The To-Be Scenario reflects near-future (5–10 years) processes, which will use 
the traditional processes for some equipment, Theater Sustainment Stocks (TSS) 
to provide Theater Provided Equipment (TPE) and in-theater repairs, and forward 
station repairs for some equipment, using a near-future evolution of the three 
advanced technologies (see Table 7 in next section). 

• The Radical To-Be Scenario reflects distant-future (more than 10 years) 
processes, in which all vehicles are diagnosed twice per year, mostly at forward 
stations and no diagnosis is done at U.S. depots. Simple repairs are performed 
at forward stations and complex repairs are performed at in-theater facilities. 
Overhauls are performed at both in-theater facilities and at U.S. depots.  
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The models were built using the up-armored HMMWV as an example from which 

extrapolations can be derived to represent the percentage cost/benefits of shrinking the 

Mountain. This vehicle was chose because of the relatively large quantity (23,800), their 

high use in operations (essentially 100% of fleet in Iraq and Afghanistan), and the 

availability of data. Six variables were used to describe the differences among the four 

scenarios in the quantitative KVA model, as follows:  

• The number of vehicles that the process was performed on each year at 
which locations (forward station, in-theater facility, U.S. depot): For each of 
the scenarios estimates were made of the fractions of vehicles requiring repair, 
requiring overhaul, and the fractions of those repairs and overhauls performed at 
forward station, in-theater, and at U.S. depots. In general, work moved from U.S. 
depots into in-theater facilities and some then to forward stations over time.  

• Number of times process performed each year per vehicle: The process 
frequency for diagnosis and repair at forward stations begins at zero and 
increases as technology provides means for performing these processes in 
increasingly difficult circumstances.  

• The average number of employees that performed the process: In general 
the average number of employees required to perform a task decreased with the 
application of advanced technologies.  

• The average time required to complete the process on a single vehicle: The 
average time required to complete a process decreased with the application of 
advanced technologies. 

• The fraction of the process that is performed using the advanced 
technologies: This fraction increased from the traditional to the current, to the 
near-future scenarios and was largest for the effected processes in the distant 
future scenario.  

• The cost of the advanced technologies: The cost of the advanced 
technologies is partially based on the fraction of automation based on the 
assumption that partial automation would occur with technology uses as some 
locations but not others, allowing costs to be controlled.  
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Results  

Returns on Knowledge and Returns on Investment 

Table 7 shows the simulated Returns on Knowledge (ROK) and Returns on Investment 
(ROI) of the four scenarios described in the Scenarios for Knowledge Value Added 
Modeling section above.  

 

Table 7. Returns of Simulated Scenarios of Repair of Army’s HMMWV Fleet3 

 
 

Table 7 also identifies processes that benefit more or less relative to each other. 

The table shows that the diagnosis process, whether performed at forward stations 

(process #1) or in-theater (process #9), benefits the most from the adoption and use of 

                                                           
3 NA – Not Applicable because the process is not used in the scenario 
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the three advanced technologies. The ROI for diagnosis increases from 90% in the As-

Was scenario and 95% in the current As-Is scenario to over 1400% when performed in-

theater in the Radical To-Be scenario.  

Table 8 shows the ROK and ROI improvement of the As-Is, To-Be, and Radical 

To-Be scenarios over the As-Was scenario and the ROK and ROI improvements of the 

To-Be and Radical To-Be scenarios over the As-Is scenario. 

Table 8. Differences in Returns on Investment (ROI) of Simulated Scenarios of Repair of 
Army’s Up Armor HMMWV Fleet4 

 

NA – Not Applicable because the process is not used in the scenario 

                                                           
4 NA – Not Applicable because the process is not used in the scenario  
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The positive variances in the bottom row of Table 8 indicate that the advanced 

technologies significantly improve equipment repair. More specifically, ROI increases 

95% from the traditional processes (As-Was) to the envisioned scenario (Radical To-

Be) and 73% from the current processes (As-Is) to the envisioned scenario (Radical To-

Be). Table 8 also shows losses for shipping equipment back to U.S. depots and back 

(processes #3, #4, and #12) as the three advanced technologies are increasingly 

adopted and used (moving right across the rows). This shows that the in-theater and 

forward station repairs allowed and facilitated by the three advanced technologies make 

returning equipment to the United States for repairs less attractive with advanced 

technologies.  

Estimating Cost Savings in Shrinking the Mountain 

Costs for the scenarios can be estimated using the definition of Return on Investment 

(ROI):  

ROI = (Benefits – Costs) / Costs 

which can alternatively be written as Cost = Benefits / (ROI + 1) 
 

The equation above was used with the benefits and Returns on Investment 

(Table 7) to estimate the costs of each scenario in millions of dollars. Benefits were 

estimated as the value of the up armor HMMWV fleet, specifically as 23,800 vehicles * 

$169,428/vehicle5 = $4,032,386,400. Results are shown in Table 9.  

  

                                                           
5 Cost estimates of a single up armored HMMWV range from $169,248 (DoS, xxxx) to $220,000 
(Keyes, 2011). 
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Table 9. Estimated Costs and Savings in Army’s Up Armor HMMWV Fleet of Four 
Scenarios  

 
 

The savings shown in Table 9 are consistent with or conservative when 

compared to the results reported by industry adopters of these technologies described 

previously in this report (e.g., >30% cost savings for 3DST alone and up to 80% for 

AM). The results suggest that the adoption of the current processes have saved almost 

$1.2 billion in the up armor HMMWV fleet over the traditional approach and that the 

additional adoption and use of the advanced technologies can save an additional $1.8 

billion or more.  

Potential savings of full implementation of an advanced technology strategy 

(Radical To-Be scenario) for multiple fleets can be estimated using the 45% of fleet 

value savings in Table 9. Accurate and consistent estimates of the value of U.S. Army 

equipment are difficult to obtain. However, order of magnitude savings can be estimated 

using available values. Banian (2013) estimated the value of U.S. Army equipment in 

Afghanistan to be $28.454 billion. In 2008 the GAO (2008) estimated that the $15.5 

billion of DoD materiel and equipment in Operation Iraqi Freedom is theater provided 

equipment that represents 80% of the total used in Iraq. These estimates suggest a 

materiel and equipment value of at least $47 billion (28.254+(15.5/.80)=47.7b) for the 

two operations. Potential savings for future operations of similar scale using the Radical 

To-Be savings estimate are $21.46 billion (=$47.7b * 45%). This estimate is based on a 

single fleet of vehicles. Savings could be larger because multiple fleets of equipment 

could share repair resources, such as hardware, software, and people, thereby reducing 

costs further.  
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Conclusions  

Three advanced technologies were examined for their capability to reduce the 

cost of shrinking the mountain of equipment generated by military operations. Three 

dimensional scanning technology, additive manufacturing, and product lifecycle 

management have evolved far enough to have demonstrated their potential benefits to 

diagnosis, repair, and overhaul processes. Forecasted evolutions of the technologies 

based on the literature were used to develop four realistic scenarios of their application 

to military equipment repair in the past, present, near future, and distant future. These 

four scenarios were then modeled using the Knowledge Value Added methodology to 

estimate returns on knowledge and returns on investment using the up armored 

HMMWV fleet as an example. The results indicate that the advanced technologies 

benefit repair operations and generate significant savings, especially by performing 

damage diagnosis in-theater and at forward stations. The results were used to estimate 

potential savings of more than $1.8 billion for the up armor HMMWV fleet and at least 

$21 billion for operations similar to the scale of those in Iraq and Afghanistan. 

We conclude that to capture the very large potential savings the DoD should 

accelerate its adoption of 3DST, AM, and PLM for equipment repair. That acceleration 

should include testing the use of these technologies for a broader spectrum of 

applications (e.g., parts types, processes), the expansion of their use in applications 

that have been demonstrated to provide benefits, and the revision of processes to 

exploit these technologies (especially reduce shipping to and from distant depots). 

Doing so will have important impacts on both practice and research. More military 

operations support will be located closer and at forward stations. Damage diagnosis and 

repair will occur much faster, more accurately, and be targeted. Demands on repair 

operations will be forecasted in real time based on data from embedded sensors that 

communicate equipment conditions to support units. Research will be needed to 

understand and develop effective and efficient processes for these new operations. First 

steps can include research that learns from existing technology applications and applies 

that knowledge across multiple equipment types, fleets, and services. 
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Military repair operations will experience growing pains as the adoption of 

advanced technology force operational and support changes. But these changes will 

result in very large cost savings and increased operational flexibility. By exploiting 

advanced technologies the DoD can accelerate and reduce the cost of shrinking the 

mountain, increase the value of that materiel, and improve the operational capability of 

U.S. military forces. 
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