
 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 1=
k^s^i=mlpqdo^ar^qb=p`elli=

 

Approved for public release, distribution unlimited. 
 

Prepared for: Naval Postgraduate School, Monterey, California 93943 

NPS-AM-10-053 

mol`bbafkdp==
lc=qeb==

pbsbkqe=^kkr^i=^`nrfpfqflk==

obpb^o`e=pvjmlpfrj==
qeropa^v=pbppflkp==

slirjb=ff=

 

Acquisition Research 

Creating Synergy for Informed Change
May 12 - 13, 2010 

 

Published: 30 April 2010 

 

bu`bomq=colj=qeb



 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 2=
k^s^i=mlpqdo^ar^qb=p`elli=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The research presented at the symposium was supported by the Acquisition Chair of the 
Graduate School of Business & Public Policy at the Naval Postgraduate School. 
 
 
To request Defense Acquisition Research or to become a research sponsor, please 
contact: 
 
NPS Acquisition Research Program 
Attn: James B. Greene, RADM, USN, (Ret.)  
Acquisition Chair 
Graduate School of Business and Public Policy 
Naval Postgraduate School 
555 Dyer Road, Room 332 
Monterey, CA 93943-5103 
Tel: (831) 656-2092 
Fax: (831) 656-2253 
E-mail: jbgreene@nps.edu  
 
Copies of the Acquisition Sponsored Research Reports may be printed from our website 
www.acquisitionresearch.net  



 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 536=
k^s^i=mlpqdo^ar^qb=p`elli=

A Technique for Evaluating Complex System of 
Systems Designs 

Stephen Blanchette Jr.—Stephen Blanchette, Jr. is the Deputy Chief Engineer for Army programs 
at the Carnegie Mellon Software Engineering Institute in Pittsburgh, Pennsylvania, where he 
specializes in acquisition improvement initiatives. He has over 23 years’ experience in the defense 
industry as a software engineer and manager, including prior positions with United Defense, Stanford 
Telecommunications, and McDonnell Douglas. He is an associate fellow of the American Institute of 
Aeronautics and Astronautics and a senior member of the Institute of Electrical and Electronics 
Engineers. Mr. Blanchette earned a BS in Computer Science from Embry-Riddle Aeronautical 
University and an MA in Diplomacy from Norwich University. 

Mr. Stephen Blanchette, Jr. 
Acquisition Support Program 
Software Engineering Institute 
4500 Fifth Avenue 
Pittsburgh, PA 15213 USA 
412-268-6275 (voice) 
412-268-5758 (fax) 
sblanche@sei.cmu.edu 

Steven Crosson—Steven Crosson is the Associate Director (Acting) for Software in the Army’s 
Program Executive Office Integration. He has been with the Army for 6 years and the federal 
government for 7 years. He has held several project lead and chief engineer positions including the 
Combat Net Radio and United States Message Text Format software testing projects for the 
Communications-Electronics Life Cycle Management Command Software Engineering Center as well 
as being the chief software engineer for PM Future Combat Systems. Mr. Crosson earned a BS in 
Computer Engineering from the University of Delaware, and an MS in Software Engineering from 
Monmouth University. 

Mr. Steven Crosson 
United States Army – Program Executive Office Integration 
6501 E. 11 Mile Road 
SFAE-FCS-E/MS: 515 
Warren, MI 48397 USA 
steven.crosson@us.army.mil 
 

Abstract 
Complexity is the hallmark of most modern military systems. The desire to have 

legacy systems interoperate with new systems, and especially the mounting interest in 
developing “systems of systems” (SoS) solutions, drive ever-more complexity into weapon 
systems. Complexity is further compounded by the increasing reliance on software to enable 
these systems. Existing forms of schedule- or event-driven reviews are inadequate to 
address the needs of software development in a complex SoS environment. What is needed 
is a true, evidence-driven, SoS-level evaluation capable of providing an overall assessment 
of, and insight into, the software development effort in that context. The Lifecycle 
Architecture anchor point is a technique used, typically, to evaluate the designs of single 
systems. This paper examines how, with some adaptation, the precepts of the Lifecycle 
Architecture anchor point can be scaled and applied to the system of systems domain. 
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Introduction 
Modern military systems are complex undertakings. The desire to have legacy 

systems interoperate with new systems, and especially the mounting interest in developing 
“systems of systems” (SoS) solutions, drive ever-more complexity. The problem is 
exacerbated by the reliance upon software to accomplish much of the underlying 
functionality; indeed, software often is the integrating element of an SoS. This complexity 
challenges the ability of engineers, managers, and users to achieve a solid understanding of 
an SoS during its development. Frequently, the SoS stakeholders (apart from the software 
developers themselves) have a very limited understanding of software or its contribution to 
the overall SoS. Yet, understanding an SoS during development is crucial to managing the 
development effort efficiently and to delivering quality products to the warfighter within 
schedule and budget.  

Traditionally, schedule- or event-driven reviews have been a crucial element of most 
major development projects. From a software perspective, such reviews tend to focus on 
different aspects of development: producibility reviews focus on the ability to produce the 
software within available resources; capability reviews focus on the services being provided 
by the software; integration and test reviews focus on the readiness of the software to enter 
or transition between those phases of the development life cycle; schedule reviews focus on 
the development effort’s adherence to planned timelines; and so on. Although these 
different types of reviews provide valuable insights into the software development project at 
various stages of the lifecycle, the sum of these reviews is not sufficient to address the 
needs of software development in a complex SoS environment. 

Most overall-systems reviews concentrate mainly on the functional definitions of 
system artifacts, and often treat evidence that the artifacts described will meet the system’s 
key performance parameter requirements comparatively lightly. Further, in order to support 
the needs of manufacturing planning and long-lead purchasing, such reviews tend to occur 
at points in the system development lifecycle ahead of the majority of the software 
development work. The resulting gap between maturity of SoS constituent systems and 
maturity of SoS software leads to uncertainty about the sufficiency of the overall SoS 
solution at a time when commitments must be made. Thus, traditional review approaches 
simply are inadequate when used as a means for understanding and evaluating software at 
an SoS level. How can stakeholders have confidence in an SoS that relies heavily upon 
software, when production commitments must be made well before completion of that 
software? 

Prior to its 2009 cancellation, the US Army’s Future Combat Systems program faced 
just such a dilemma. Needed was a true SoS-level evaluation capable of providing an 
overall assessment of, and insight into, the software development effort in that context—one 
that could provide a review/assessment of how the developed software capability enabled 
the program’s required operational capability. As a solution, the program hypothesized that 
something like a Lifecycle Architecture anchor point review (often referred to simply as 
LCA), conducted at the SoS level, could answer the question. Originally a software 
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development notion in the Rational Unified Process (RUP), the LCA marks the conclusion of 
the elaboration phase of software development, when the requirements baseline is set and 
the architecture is complete (Kroll & Kruchten, 2003; Boehm, 1996). As extended to systems 
engineering in works by Richard Pew and Anne Mavor (2007) and Barry Boehm and Jo Ann 
Lane (2007), the goal of anchoring events such as the LCA is to assess program risk by 
examining evidence provided by the developers that a system developed to the architecture 
can satisfy the requirements. The LCA, in particular, strives to ensure that a system, as 
architected, can be constructed while also meeting planned cost and schedule targets. 

This paper reports on the extension of the Lifecycle Architecture anchor point 
concept to the SoS level and describes its application to the software and computing 
elements of the former Future Combat Systems program. 

The Lifecycle Architecture Anchor Point 
Nominally, the LCA anchor point occurs at a stage in the development lifecycle 

where stakeholders evaluate the work that has been completed through the elaboration 
phase (the phase in which requirements and architecture models are largely complete) and 
assess the risks of moving forward into the construction and transition phases (the phases 
in which design, implementation, and testing/validation are performed). The name LCA 
derives from the nature of the review: it is a look-ahead through the lifecycle, conducted at a 
point where the architecture is sufficiently mature to allow reasoning about the relative risks 
of continuing to the construction phase of development. It is a foundational event, one where 
project stakeholders come together and agree to move forward, hence the term “anchor 
point”. The LCA differs from traditional milestone reviews such as preliminary design reviews 
(PDRs) and critical design reviews (CDRs), which tend to focus superficially on voluminous 
system description data, in that the LCA is a risk-based assessment focused on the 
feasibility of proceeding with work. 

Central to the LCA is the notion of feasibility rationale, which documents evidence, 
provided by the developers, that the proposed architecture can be implemented to satisfy its 
requirements within the defined schedule and project budget. To justify the confidence of all 
stakeholders in moving forward into the latter phases of the development life cycle, the 
evidence must be both objective and internally consistent. The LCA is not just a technical 
assessment, but also a programmatic one. Successful completion of the LCA anchor point 
represents a commitment by all stakeholders to proceed with the program, based on 
objective evidence that the risks of doing so have been identified and sufficiently mitigated 
to provide a reasonable chance of project success. In contrast, insufficient or highly 
subjective evidence will not engender the confidence among stakeholders needed for them 
to commit to further development. Importantly, risks are addressed at a time when they are 
handled more easily and inexpensively than if they are allowed to propagate to later 
development stages. 

The LCA feasibility rationale is relatively straightforward in the context of a traditional 
system development project. For a complex system of systems program, the feasibility 
package becomes less clear. Simply rolling up results from the LCA anchor points of 
constituent systems, for example, is not a sufficient approach because important inter-
system and SoS implications might easily be missed. The feasibility of executing each 
individual software package/system does not necessarily correlate to the feasibility of 
executing the entire SoS. 
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Extending the LCA Process For The FCS SoS 
Prior to its cancellation, the Future Combat Systems (FCS) program extended the 

notion of a Lifecycle Architecture anchor point to the SoS level as a means of evaluating on-
going software development activities across the lifecycle in terms of risk with respect to 
meeting the program’s Key Performance Parameters (KPPs).  

The first step was to set up a team of experts from the Software Engineering 
Institute, the University of Southern California, and the Fraunhofer Center for Experimental 
Software Engineering at the University of Maryland (hereinafter referred to as the SoS LCA 
Team), with representatives from the Army providing guidance and representatives from the 
program’s Lead System Integrator (LSI) facilitating access to program artifacts and 
personnel. Team members brought a range of programmatic and technical expertise to the 
effort, including a deep understanding of the usual LCA process for software. They also 
brought the degree of independence necessary to assure both the LSI and the Army of an 
unbiased result. 

The SoS LCA Concept 

In defining the SoS LCA review process, the SoS LCA Team followed a few key 
guidelines set by program management: 

• Answer the following questions: 

− Can what is planned to be built really be built? 

− Will the various pieces add up to the desired whole? 

− Are the risks clearly identified and mitigated? 

• Base answers on evidence rather than unsupported assertions. 

• Discover issues early so that they can be fixed sooner rather than later. 

• Build the confidence needed in the software/computing system development 
plans for a successful Milestone C decision for the overall program. 

Rather than finding fault and assigning blame, the goal of the SoS LCA was to 
surface problems as early as possible so that they could be fixed at minimum cost. Equally 
important for FCS was the building of confidence in the software and computing system 
development plans, since an entire build of software would not yet have been developed at 
the time of the program’s planned Milestone C review. 

The FCS program had been executing traditional LCA reviews at the supplier and 
first-tier integration levels; however, simply rolling-up the results of these lower level reviews 
would have invited missing critical subtleties in the cross-system relationships that are the 
essence of an SoS. Also, the lower level LCA reviews focused narrowly on specific builds, 
often at different points in time. The SoS-level LCA was required to assess feasibility across 
future builds. Further, while other FCS software reviews focused on the plans for the 
immediately upcoming phase of a given build, the SoS LCA had to consider existing data 
and results from prior builds as well. The SoS LCA Team had to construct an SoS LCA 
evaluation process that had as its foundation the best-available facts and data as the basis 
for projecting forward. 



 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 540=
k^s^i=mlpqdo^ar^qb=p`elli=

As shown in Figure 1, the FCS SoS LCA process extrapolated, from what was 
known through what was expected and planned, the likelihood of reaching the desired 
endpoint within a tolerable level of risk. In the case of FCS, the desired endpoint was an 
acceptable implementation of software Build 3 Final (B3F) to support a successful Milestone 
C decision (consequently, the SoS LCA results were a key feeder into the program’s SoS 
PDR). 

 
The SoS LCA Assesses the Likelihood of Achieving an Acceptable Outcome 

Without waiting for tests on the final implementation, the SoS LCA sought to 
determine if FCS software could be built and if it would satisfy program needs. The basis of 
the extrapolation was objective evidence: facts and data in addition to other artifacts. Facts 
took the form of test results and demonstration outcomes for software that already had been 
built. Data consisted of simulation results that predicted operational performance of planned 
designs as well as the results of various technical assessments. The remaining artifacts of 
interest included the various plans, designs, schedules, and so on, that formed the basis of 
the work yet to be done. Engineering work products were evaluated for completeness and 
adequacy, as well as for consistency with other work products and plans. The SoS LCA 
focused on test data and results (as well as software producibility analysis) to evaluate the 
current capability of FCS software and to project the ability to meet program needs. The 
goal was to determine if development was on an acceptable trajectory or if deviations of 
sufficient significance required adjustments to development planning or execution.



 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 541=
k^s^i=mlpqdo^ar^qb=p`elli=

Scope 

On a very large SoS program such as FCS, there is no practical way to review all of 
the data one might wish to analyze in order to draw conclusions. Such a detailed effort might 
require thousands of labor hours spread over many months. While the cost alone would be 
a significant deterrent, the time factor also would be of concern. The longer it takes to 
complete the examination of all the evidence, the higher the risk that analyses performed 
early in the process will be invalidated by ongoing development work  (due to prior problems 
or unknowns being resolved or new issues being introduced). 

On FCS, program management had decided to limit the scope of the SoS LCA to the 
software and computer-processing elements of the program, but even that limitation left the 
range of investigation too broad. It quickly became apparent to the SoS LCA Team that 
executing a traditional LCA at the SoS level, even one constrained to the software and 
computing system elements of the program, would not be feasible. Merely coordinating an 
effort of that magnitude would become a project unto itself. Such an LCA would be too large, 
too complex, and too resource-intensive to be managed successfully. Instead, the team had 
to determine what a modest-sized team with limited resources could reasonably accomplish. 
The result was a focus on high-payoff areas for the program. These focus areas were not 
necessarily risk areas, but rather crucial areas to successful development of the FCS 
software: 

1. ability to meet schedules within and across increments 

1. ability to meet budgets within and across increments 

2. ability to integrate across Integrated Product Teams (IPTs) and suppliers 
(including adequacy of requirements, architectural consistency, and so on) 

3. ability to achieve/maintain interoperability among independently evolving 
systems (including Current Force platforms) 

4. ability to coordinate multiple baselines for the core program, spin outs, and 
experiments 

5. ability to manage co-dependencies between models, simulations, and actual 
systems 

6. feasibility of meeting required performance levels in areas such as safety and 
security 

7. maturity of technology considering scalability requirements 

8. supportability of software 

9. adequacy of commercial-off-the-shelf (COTS) evaluations and mitigations 

A review of the results from lower level LCAs showed that these focus areas were 
commonly cited as problems, thus validating the list. With the scope bounded, the SoS LCA 
Team next worked on developing a process model for the SoS LCA. 

An SoS LCA Process Model—First Cut 

Figure 2 shows the initial SoS LCA process model. As envisioned, several analysis 
teams, consisting of the experts from the SoS LCA Team as well as representatives from 
the government, LSI, and the program’s suppliers (referred to as One Team Partners, or 
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OTPs), were to be formed. Each team would tackle a single focus area, examining the 
relevant facts, data, evidence, and plans and developing conclusions based on those 
examinations. The results from each analysis team would be collected, summarized, and 
reported on by the SoS LCA Team, with a final report that detailed findings and 
recommendations serving as input to the program’s SoS PDR. The SoS LCA final report, 
combined with results from the SoS PDR, would provide the basis for management decision 
making regarding any corrective actions. 

 
Figure 1. The Initial SoS LCA Process Model 

Although the process model seemed to be straightforward, team members’ 
experiences indicated that piloting the SoS LCA process on a small scale would be a wise 
first step. A pilot would allow the team to figure out the details of executing the process and 
discover any invalid assumptions and process inefficiencies. 

The SoS LCA Pilot 

Key considerations in planning for the SoS LCA pilot effort were its scoping and 
timing. It was important to limit the scope of the pilot to be executable relatively quickly, 
while at the same keep it broad enough to be useful as a test run for the larger effort. 
Equally challenging was scheduling the pilot. On a program with so many separate but 
interacting aspects, it seemed as if there was always a conflicting event to draw time, 
attention, and resources away from the SoS LCA pilot. As the pilot was not part of the 
original program plan, the need to minimize disruption to ongoing program activities served 
as yet another complication. 

As it happened, the lead of the C4ISR1 team volunteered his area of responsibility to 
participate in the SoS LCA pilot because he saw value in having some independent review 

                                                 
1 C4ISR stands for command, control, communications, computers, intelligence, surveillance, and 

reconnaissance. 
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of the work being performed by his team. The C4ISR area, however, was quite sizeable with 
many interdependent elements, which was good from the perspective of piloting the process 
but challenging in terms of completing the pilot in a short timeframe. The SoS LCA Team 
negotiated with the C4ISR team lead to adjust the pilot scope to be achievable yet still 
worthwhile. The negotiated scope included a subset of the 10 SoS LCA focus areas, 
coupled with the C4ISR lead’s principle areas of concern. The timing of the pilot also aligned 
well with a previously planned review cycle for the C4ISR team. 

After first socializing the notion of the pilot among the C4ISR team members so that 
expectations on both sides were clear, the SoS LCA Team next set about gathering data. 
Team members divided the focus areas among themselves based on their respective 
backgrounds and expertise. The Team spent about three weeks gathering evidence from 
existing C4ISR plans and technical documents; no new documents were to be created for 
the purposes of the pilot. 

Almost immediately, the pilot began serving its purpose. One early discovery was 
that SoS LCA Team members were not in full agreement about the goals or method of 
conduct of the pilot. Thus, the pilot was an invaluable experience both from the perspective 
of checking and refining the process and from the point of view of developing a common 
mission understanding within the SoS LCA Team. 

Another revelation was the considerable amount of misunderstanding between the 
SoS LCA Team, the C4ISR team, and its various performer organizations (despite efforts to 
set clear expectations at the outset). Documentation and evidence furnished by the C4ISR 
team generated more questions than answers, requiring numerous follow-up 
teleconferences and requests for additional documents. The documents provided often had 
timestamps differing by several months and frequently made what appeared to be 
incompatible assumptions. Trying to resolve these inconsistencies without interrupting the 
performers’ work gave the SoS LCA Team an appreciation of the difficulty to be expected 
when performing a complete assessment. 

The SoS LCA Team found little documentation to support an independent conclusion 
that the C4ISR plans and approach were feasible. This outcome was not because the 
C4ISR team had not done its job; on the contrary, there was ample evidence of significant 
engineering effort. However, there was no contractual obligation for suppliers to 
demonstrate the feasibility of their work, per se, outside of customary test and validation 
methods, which placed a heavier burden on the analysis team in trying to understand how 
completed work related to future work. Since the crux of the LCA is reliance upon evidence 
rather than verbal accounts and assurances, the SoS LCA Team realized that the full 
assessment would require extra time for data gathering and a deeper probe of the available 
evidence in order to ensure the veracity of findings. 

Despite the noted difficulties, the pilot generally was a success in that it helped clarify 
the SoS LCA Team’s thinking about conducting the full-scale SoS LCA. It demonstrated that 
program personnel would be too busy to participate significantly in gathering and examining 
feasibility evidence, which would necessitate a larger effort on the part of the analysis team. 
It also demonstrated the need to set expectations among developers and management 
continually to ensure their ongoing support of the process. The pilot also highlighted the 
need to review emerging findings with stakeholders to ensure accuracy. Meanwhile, the 
C4ISR Team also benefitted from the pilot by being able to raise issues that had been of 
concern to them for management attention, with the added weight of independent analysis 
to support them. 
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Some Process Refinements 

As a result of the SoS LCA pilot and other program activities, the SoS LCA Team 
made some adjustments both to the focus areas and to the process model. 

First, in consultation with program management, the SoS LCA Team modified the 
focus areas. The initial list proved to be too vague and overly oriented toward programmatic 
(e.g., non-technical) considerations. The modified list represented the essential FCS 
capabilities, the "non-disposable" elements of the program. These elements (see Table 1) 
were ones that had to work in order to ensure that the program could produce a viable SoS 
capability for the Warfighter. 

Table 1. Final SoS LCA Focus Areas 

Focus Area Description 
Fusion and Data Distribution Includes: 

Distributed Information Management–effectiveness of data 
communications among platforms and systems over a network, 
analysis of data reliability, latency, etc. 

Distributed Fusion Management–effectiveness of utilizing several 
sources to gather and distribute fusion data, including network 
usage, data reliability, latency, etc. 

Rapid Battlespace Deconfliction–effectiveness of providing, 
recognizing, and utilizing battlespace deconfliction data passed 
among Brigade Combat Team  (BCT) platforms 

Quality of Service (QoS) Analysis of message prioritization effectiveness, delivery rates, 
methods of prioritization, etc. 

Information Assurance (IA) & 
Security 

Review of the status of efforts to develop and test FCS IA 
components, and a determination of the attainment of necessary 
functional capabilities 

Software Performance Analysis of the projected ability of fielded FCS software (e.g., 
algorithms) to enable planned capabilities in a comprehensive, 
end-to-end operational environment 

Display Management and Task 
Automation/Task Integration 
Networks (TINs) 

Analysis of the performance, usability, and automation capabilities 
demonstrated in Warfighter Machine Interface (WMI) displays 

Key Battle Command Systems Includes: 

Network Management System (NMS)–review of current status of 
development of the Network Management System (NMS)  system, 
as well as analysis of the current state of general network 
management issues 

Integrated Computer System (ICS)–assessment of the 
development and issues related to the various versions of the ICS 
system. Determination of the ICS' ability to meet FCS design 
needs 

Centralized Controller (CC)–analysis of the current state of the CC 
and its ability to meet necessary functional capabilities 

The results of investigations into these focus areas formed the detailed technical 
basis for the final report to management. 
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Second, the realities of personnel availability necessitated slight adjustments to the 
process model. Figure 3 shows the changes, which were encapsulated entirely within 
analysis team formation (i.e., inside the red oval denoted by the gray arrow on the left-hand 
side of the diagram).  

 
Figure 2. SoS LCA Process Model Showing Refinements 

As shown in Figure 3, instead of several analysis teams, there was only one, which 
was composed entirely of technical experts from the SoS LCA Team, although Army 
representatives provided guidance and an LSI representative facilitated access to 
documentation. Suppliers were unable to participate in the analysis process at all, although 
they were called upon to provide data and, occasionally, clarification of the data. The SoS 
LCA Team divided the focus areas among themselves; in each area, typically one or two 
team members had responsibility for identifying the types of artifacts needed for evaluation, 
reviewing them, and rendering recommendations based on review findings. The entire 
analysis team reviewed results as they emerged and briefed status to program management 
at frequent intervals. 

Capstone Analyses: Tying It All Together 
While detailed technical analyses are the foundation of the SoS LCA, they are 

inadequate for communicating status and risk to stakeholders who may have limited 
expertise in those technical areas. In particular, the highest levels of program management 
need to be able to relate the SoS LCA findings to overall program outcomes in order to 
make informed decisions about risk mitigation. Further, the thread to tie the focus areas 
together in a meaningful way was missing. Needed was a means of looking at the results in 
a holistic manner and interpreting them in way that would be relevant to management 
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decision-making. The solution involved two capstone analysis efforts, one from a technical 
perspective and the other from a cost and schedule perspective. The end-state design 
analysis summed up the findings of the technical focus areas in a way that made the 
technical findings relevant for management decision-making. The software producibility 
analysis looked at the feasibility of developing the remaining software within allocated 
schedules and budgets based on a cost/schedule analysis of the completed builds cross-
compared to the relative risks that emerged from the end-state design analysis. Taken 
together, these two capstone efforts summarized the overall SoS LCA findings in terms of 
program performance, not simply software performance, providing management with the 
“so-what” in a report that was otherwise highly technical. 

End-State Design Analysis 

The capstone technical analysis was an examination of the overall “end-state” design 
– the software design as it was expected to exist at the completion of the development 
program. The analysis sought to determine if the end-state software design would truly meet 
operational needs of the program. The analysis was an ambitious undertaking; there had 
never before been an attempt to understand the FCS SoS software design to such a depth. 
Two problems popped up immediately: 1) how to characterize operational needs in terms of 
software and 2) how to tie the analysis to those needs. 

Rather than recast the program’s operational needs in software terms, a more logical 
approach to the first problem was to analyze the software contributions to the definitive 
characterization of the program’s operational needs—the SoS key performance parameters 
(KPPs). That realization made the analysis approach obvious. The SoS LCA Team applied 
assurance cases to analyze the SoS end-state software design with respect to the KPPs. 

Assurance Cases 

An assurance case is nothing more than a structured set of arguments, supported by 
a body of evidence, that justifies belief that a given claim is true. To make one’s “case,” one 
argues that certain evidence supports (or does not support) a given claim. One constructs 
an assurance case by starting with an overarching claim and then iteratively decomposing it 
into constituent claims, which, at the lowest level, are supported directly by evidence. Figure 
4 depicts the concept. 



 

=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= 547=
k^s^i=mlpqdo^ar^qb=p`elli=

 
Figure 3. The Basic Structure of an Assurance Case 

The logic of an assurance case is straightforward. If all the evidence shown in Figure 
4 is sufficient, then belief in sub-claims 1, 3, and 4 is justified. Belief in sub-claims 3 and 4 
justifies belief in sub-claim 2, which, combined with belief in sub-claim 1, justifies belief in the 
top-level overall claim.2 

Applying Assurance Cases—An Example 

For the FCS SoS LCA, the end-state design analysis approach was to use each of 
the program’s KPPs as a main claim and demonstrate how well the SoS software and 
computing system designs supported them. (In one case, software and computing systems 
played no role in satisfying a KPP; developing a partial assurance case confirmed that 
suspicion.) The findings from the focus area analyses served as primary sources of 
evidence, augmented with additional analyses and artifacts as necessary. 

Figure 5 presents an oversimplified example (note that it is not an actual FCS 
analysis). 

                                                 
2 A more complete discussion on the use of assurance cases for analyzing SoS software designs can 
be found in “Assurance Cases for Design Analysis of Complex System of Systems Software” 
(Blanchette, 2009). 
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Figure 4. Oversimplified Example of an Assurance Case Using Focus Area  

Findings as Evidence 

The example shown is based on the Net Ready KPP, a common KPP among DoD 
systems that exchange information. As shown by the context bubble, Ctx1, the KPP 
definition is taken from the Chairman of the Joint Chiefs of Staff Instruction (CJCSI) 
6212.01E (Chairman of the Joint Chiefs of Staff, 2008) rather than on a specific FCS 
program requirement. The figure shows the main claim, labeled C1, is supported by three 
sub-claims, labeled C2, C3, and C4. For purposes of illustration, each sub-claim is shown to 
be supported directly by findings from the SoS LCA focus areas (Ev1, Ev2, and Ev3).3 An 
actual analysis would be far more extensive, with many sub-claims and possibly multiple 
sources of evidence supporting the claims at the lowest level. 

For purposes of communicating findings to management, it is useful to speak in 
terms of risk (i.e., risk of not meeting a KPP). A common management practice is to 
associate a color code with different risk levels, such as red to indicate a high level of risk, 
yellow to indicate a moderate level of risk, and green to indicate a low level of risk. The 
relative risk levels are then rolled up according to predetermined rules to establish a level of 
confidence about the supported claims. A sample rule set for this example is shown in Table 
2. 

                                                 
3 In this sample case, assumption A1 helps to justify the use of the QoS focus area findings in support 
of claim C4 since the connection might not have been obvious. 
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Table 2. Sample Rules for Rolling Up Risk 

Green (low risk) All lower level claims and supporting evidence are green. 

Yellow (moderate risk) Some lower level claims and supporting evidence are a combination of yellow 
and red. 

Red (high risk) All, or an overwhelming majority of, lower level claims and supporting evidence 
are red. 

To further illustrate the assurance case concept, the authors have arbitrarily 
assigned one of each color-coded risk level to the evidence bubbles. Applying the rule set to 
the example, the findings for key battle command systems indicate a high risk within the 
focus area (Ev1), so the claim supported by that evidence is also rated as high risk (or, more 
correctly, low confidence that the claim is true). Applying the rule set to the remaining 
elements of the example yields the results shown. Since none of the sub-claims in the 
example is rated any better than moderate risk (indeed, C2 is high risk), the main claim C1 
can be no better than moderate risk and, therefore, there is only moderate confidence in 
satisfying the Net Ready KPP in this example. 

A full analysis, of course, would identify the specific issues that led to the risk 
assignments as well as corresponding recommendations for addressing them. Given such 
information, a program manager could decide if the moderate risk of not meeting the KPP 
was acceptable or, if not acceptable, decide on one or more courses of action for reducing 
the risk/increasing confidence. Although this example is deliberately negative, it should be 
clear that strong evidence in support of all claims would lead to a high level of confidence 
that a given KPP was well supported; this situation is, of course, the ideal. 

For FCS, the use of assurance cases provided a way to report the technical findings 
from the SoS LCA to program management in a way that related directly back to program 
goals without requiring a detailed understanding of software and computing systems. Each 
KPP had its own assurance case, and the findings from the technical focus areas were used 
as evidence to support one or more of those assurance cases. This approach tied both 
issues and strengths in the software to the overall program goals, providing a view of 
program risk that was vertically integrated within each KPP and horizontally integrated 
across the technical focus areas. 

Producibility Analysis4 

The second capstone, producibility analysis, concerned the programmatic aspects of 
the FCS SoS software development effort. Apart from technical feasibility, the producibility 
analysis sought to demonstrate the feasibility of developing the SoS software and computing 
systems within cost and schedule targets. 

Estimating software producibility presented some special challenges. Unlike 
hardware, which is typically built to completion before testing, the FCS software was being 
implemented in a series of increments or builds, which is a fairly common approach for large 
development programs. In such cases, the software producibility costs for later development 
increments tend to increase due to breakage in previous increments as well as increased 
integration and test costs.  

                                                 
4 Dr. Barry Boehm of the University of Southern California is the principal author of this section. 
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Breakage in previous increments has several sources. One source is errors 
discovered in the earlier increments that must be fixed within the budgets and schedules of 
later increments, which then increases development workload, while the integration and test 
burden for later increments is already larger due to the software product becoming more 
complete. Other sources of breakage include revisions of earlier-increment software to 
support later-increment needs or changes, and adaptation of the software to changes in 
COTS or external-software interfaces. 

The magnitude of these Incremental Development Productivity Decline (IDPD)5 
effects varies due to several factors, such as the degree of coupling to other parts of the 
software or the rate of requirements or interface changes. Thus, using constant-productivity 
estimates for future software increment producibility projections would lead to severe 
underestimation. 

Further, FCS was in a unique position in that there were no predecessor projects of 
equivalent scope and scale from which to predict accurately its software producibility rates. 
The estimation parameters and knowledge bases of current software estimation tools are 
generally good for stable, standalone, single-increment development of the kind of software 
being developed at the lower system levels by the FCS suppliers. However, such tools 
generally fail to account for the degrees of program and software dynamism, incrementality, 
coordination complexity, and system of systems integration that were faced by FCS. These 
phenomena tend to decrease software productivity relative to the cost model estimates, but 
it is difficult to estimate by how much. 

To calibrate software estimates involves measurement of producibility data from 
early increment software deliveries. For FCS, the best available relevant data was from the 
System of Systems Common Operating Environment (SOSCOE) software because it 
underpinned most other mission software packages and thus had several early releases; 
consequently, there were four increments upon which to base the magnitude and evolution 
of its IDPD factor. SOSCOE was not fully representative of the mission software, however, 
leaving uncertainties about its use to predict the IDPD factors of the mission software 
increments. Similarly, mission software from other programs was not representative of the 
unique system of systems aspects of FCS. Thus, data from both sources (SOSCOE and 
other programs) were used to perform a sensitivity analysis of the amount of software that 
could be produced within the available budget and schedule. 

Research Results 
Existing software reviews had specific artifacts and criteria to examine, but their 

scope was necessarily limited. By defining appropriate and relevant criteria at the SoS level, 
the SoS LCA provided the opportunity to independently assess broader areas that were 
critical to FCS success. Anchoring the evaluation results with facts and data from early 
software builds provided a powerful and objective basis for judging the realism of plans for 
future builds, both from technical and productivity perspectives. Findings were refutable if 
engineers were able to supply evaluators with additional evidence that had not been 

                                                 
5 IDPD refers to the phenomenon in which software developer productivity tends to decrease during 

the later increments of an incremental development project due to a larger code base that 
must be maintained and integrated in addition to producing new code for the current 
increment (Boehm, 2009). 
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considered;6 indeed, there was one instance in which evaluation findings were revised 
based on evidence that had not been provided previously. Equally important, the evidence 
basis of the SoS LCA protected against pessimistic appraisals. In the end, program 
engineers were largely in agreement with the SoS LCA Team’s findings. 

The producibility and end-state design capstone analyses (which included roll-ups of 
findings from the technical focus areas) indicated several places where key changes needed 
to be made to the FCS SoS software development effort. What is more, regular reports of 
preliminary findings helped management make adjustments to the program or, in some 
cases, to the in-progress evaluations. Gaps in design, architecture, and requirements 
coverage that were unlikely to have been uncovered through other types of reviews were 
identified and prioritized for correction, providing a path to reach necessary capability levels 
in time to support a Milestone C decision. Equally important, the SoS LCA provided a 
mechanism to report technical, cost, and schedule risks, clearly tied to overall program 
goals, at an appropriate level of detail for senior program management, thereby enabling 
their understanding and supporting their decision-making processes. 

The FCS SoS LCA experience was extremely valuable in providing insights into 
processes better fitted to the DoD’s future systems of systems programs. For example, it 
has stimulated several improvements to the DoD version of the Incremental Commitment 
Model (ICM), initially defined by Pew and Mavor (2007) as a process model for DoD human-
intensive SoS. The resulting upgrade expressed in its draft DoD version changes the name 
of the pre-development phase from “Architecting” to “Foundations” (including plans, 
budgets, schedules, and contract provisions as well as architecture), and changes the name 
of its phase end-gate from “Lifecycle Architecture” to “Development Commitment Review” 
(Boehm & Lane, 2008). The SoS LCA also stimulated extension of the ICM process to 
include guidance for planning, executing, and earned-value managing the development of 
feasibility evidence as a first-class deliverable. Complementary process improvement 
initiatives for systems of systems are underway at the SEI. 

Some Lessons 
FCS conducted the SoS LCA prior to its SoS PDR, which was a good fit for the 

program; it enabled software to have a relevant voice during an event that otherwise would 
have been dominated by system and SoS concerns. Had the program continued, the 
authors believe that a follow-up SoS LCA would have been advantageous prior to the 
planned CDR as well.7 In fact, the Brigade Combat Team Modernization (BCTM) program, a 
follow-on to FCS, is exploring how best to utilize another SoS LCA. In general, the SoS LCA 
approach described here could be applied at either or both points in the development 
lifecycle as shown in Figure 6; the key determining factors are the maturity of the SoS 
architecture and designs, and the availabililty of early implementations to provide an 
analysis baseline. 

                                                 
6 Note that such evidence had to have been in existence at the time of the evaluation, not created 

after the fact to defend against the findings. 
7 In theory, it should be possible to execute a similar type of analyses milestone (called an Initial 

Operational Capability anchor point in the RUP), again scaled to the SoS level, at the 
conclusion of the construction phase of development but still prior to initial operational testing, 
although the need for doing so and the impact of the outcomes are subjects for further 
research. 
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Figure 5. The SoS LCA Can Be Employed Prior to Traditional Milestone Reviews 

Obtaining contractual commitment to have the feasibility evidence produced and the 
independent evaluation8 performed is essential. Without such commitment, the SoS LCA 
Team’s requests for data simply did not have sufficient weight when balanced against other 
program priorities. Once the SoS LCA became a contractual requirement, it was easier for 
program management at all levels to prioritize requests for information appropriately. In 
addition, management commitment is indispensable to achieving benefit from an SoS LCA. 
The true value of the SoS LCA is in being able to make informed program decisions based 
on facts and data. While the intent is always to conduct an SoS LCA in a way that facilitates 
decision-making, without true management support the effort (like many other program 
reviews) is at risk of becoming a “check the box” exercise, where the event is held in order 
to claim completion on a schedule without regard for the evaluation’s effectiveness. Here 
also, contractual provisions and incentives for developers to plan for and produce feasibility 
evidence as a first-class deliverable are important elements. 

                                                 
8  Technically, there is no requirement for independent parties to conduct an LCA evaluation. 

For the FCS program, using independent experts allowed the SoS LCA to be inserted into the 
development effort with minimal cost and disruption (such as for training staff). Had the SoS 
LCA been part of the program plans from the outset, independent experts might not have 
been needed as program staff could have been trained to produce and evaluate the 
necessary feasibility rationale. 
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To facilitate inclusion of an SoS LCA in a contract, standards for feasibility evidence 
should be developed. Such standards would make clear to all parties the kinds of evidence 
and levels of detail that would be acceptable, enabling the developers to produce it and 
evaluators to assess it. The FCS program had done this for its lower-level LCA reviews, 
making the standards a contractual obligation on suppliers. However, the relatively late idea 
to perform an SoS-level LCA left no time to develop appropriate standards at the SoS level. 
While this problem was overcome through deeper subject matter analysis, having agreed 
upon standards would have lessened the burden on the team performing the analyses. 
Exactly what those standards ought to be is not clear. Surely, the lessons from FCS could 
be applied to the follow-on BCTM program, but there likely is a generic set of standards that 
could be extrapolated to fit many different types of SoS. 

Gathering artifacts took much longer than anyone had anticipated, during both the 
pilot and the formal SoS LCA. Part of the difficulty lay in communicating exactly which 
artifacts were needed and which were available. While the SoS LCA Team believed it 
communicated its needs clearly, differences in interpretation between the team and program 
personnel providing the artifacts caused confusion and slowed the process. Another 
difficulty was that, owing to the sheer size of the program, just finding the custodian who had 
access to needed information often took a long time. 

Keeping management informed of progress and emerging results is essential, but 
doing so must be managed carefully. As findings became available, status updates to 
management became more frequent, which in turn led to a decrease in analysis due to the 
need to spend time to prepare and rehearse briefings and provide read-ahead material in 
advance of the actual update meetings. Management updates should be scheduled at set 
points during SoS LCA execution as part of the process. 

“Socializing” the process among stakeholders and management in advance is crucial 
to setting expectations. Many people initially found the SoS LCA concept obscure. Indeed, 
the term “Lifecycle Architecture” caused a great deal of confusion among managers and 
project personnel when applied in an SoS context. The word architecture, in particular, sets 
incorrect expectations that the event will be nothing more than an architectural review, which 
is neither the intent of an LCA review (at any level) nor, as explained earlier, feasible at the 
SoS level due to the differing development stages among the constituent systems. For this 
reason, a name other than “LCA” (e.g., Development Commitment Review as used in the 
Incremental Commitment Model) should be considered while still maintaining the principles 
embodied in the SoS LCA concept. 

Lastly, while the FCS program applied the SoS LCA to software and computing 
systems only, it should be possible to use the technique on a broadened technical scope 
encompassing hardware and system issues as well. As a practical matter, it is nearly 
impossible to ignore such issues even with a limited focus on software. 

Conclusion 
Extending the concept of an LCA review process to the SoS level was an effective 

means of evaluating the FCS SoS software and computing system designs. Both the depth 
and breadth of analysis of this software review far exceeded other software-specific reviews 
on the program. The broad, multi-build SoS view, in conjunction with the individual build 
reviews provided an excellent assessment of the state of the FCS software development 
effort and its potential for achieving program objectives. The technique provided insight into 
areas of the software development program that had never had an in-depth review. 
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Overall, the SoS LCA was a success both as a review technique and, more 
importantly, in providing a solid understanding of the functional baseline for FCS software 
leading into the SoS PDR. The analyses not only helped discover problem areas, but also 
recognized software packages that were meeting or exceeding expectations. This latter 
category was particularly important, as it provided guidelines for recommended paths 
forward for other software packages. Recommended changes to program processes and 
evaluations were proposed and being developed for inclusion in the follow-on BCTM 
program. Rather than mere action items to be tracked to answer specific questions, the SoS 
LCA provided more details and greater program benefit, including new direction for certain 
program areas. 

The key element of the SoS LCA was the ability to report technical, cost, and 
schedule risks in a coordinated fashion relative to program goals and at an appropriate level 
of detail for senior program management, thereby facilitating their understanding and 
supporting their decision-making processes. 

The success of the effort suggested possible follow-up activities had FCS continued, 
including performing one or more “delta” SoS LCA reviews to re-evaluate areas where the 
highest risks were found and inserting a similar type of effort before a program CDR to gain 
deeper insights into the development efforts at that stage of the program. While these 
specific actions were not tried on FCS, it seems reasonable to conclude that they would 
have been beneficial. This idea is consistent with the concept that shortfalls in feasibility 
evidence are uncertainties and risks, and should be covered by risk mitigation plans. 

The FCS SoS LCA activity also has been a valuable learning experience for 
preparing and conducting future DoD SoS milestone reviews and acquisition processes.
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