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Executive Summary 

Traditional approaches to design and optimize a new system often do not 
consider how the operator will use this new system alongside the other existing 
systems. This “hand-off” between the designs of the new system and how this new 
system operates with the group of systems, leads to the sub-optimal performance of 
the new system when measured with respect to system-level objective. In the case of 
aircraft design, choices made to meet a set of requirements dictate the performance of 
the aircraft, and this aircraft performance in turn influences how the operator might use 
the aircraft. Further, the presence of uncertainties in predictions of the new aircraft 
performance and costs and uncertainties in the amount of payload / passenger to 
transport further exacerbate the problem of determining these requirements. Recent 
efforts have posed approaches to address this problem, but generally with a 
deterministic perspective.  

This research improves upon prior work by extending a prior developed 
subspace decomposition framework to enable capability that addresses multi-domain 
uncertainties.  The framework addresses uncertainties arising in one domain and its 
propagation to the next connected domain. The framework employs a 
Reliability-Based Design Optimization (RBDO) approach to address the uncertainties 
arising from the aircraft design optimization subspace and employs an Interval Robust 
Counterpart (IRC) formulation to address the uncertainty propagation from the design 
subspace to the allocation subspace.  

The research adopts a previously developed subspace decomposition 
approach and integrates features from robust / reliability based optimization to 
address the uncertainties and solves two application problems – a military and a 
commercial airline application. The military application involves an Air Mobility 
Command (AMC) fleet problem, and, the commercial airline applications reflects 
typical operations of a US based carrier. The framework demonstrates its ability to 
acceptably handle uncertainties arising from various domains. Results of application 
also demonstrates the ability of the framework to identify the design requirements for 
the new aircraft, and a posterior analysis indicates that the framework acceptably 
handles the uncertainties.  
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Technical Report 

Background and Introduction 

The ‘Better Buying Power 3.0’ (Kendall, F., 2014) document states: “Defining 

requirements well is a challenging but essential prerequisite in achieving desired 

service acquisition outcomes”.  Traditional acquisition processes focus on 

development of requirements at the system-level.  Current acquisition analyses of 

design alternatives are disjointed from considering operations (the way an end user 

operates these new systems alongside existing ones), resulting in inefficiencies at the 

higher aggregate level (Taylor, C., & de Weck, O., 2007, Mane et al., 2007). Typical 

design practice for new systems assumes a “handoff” between the design of the new, 

yet-to-be introduced system, and the operations on how the system impacts top-level 

performance.    

The authors proposed an approach that would include top-level requirements 

for a new system as decision variables in an optimization problem.  With the objective 

to maximize (or minimize) a fleet-level performance metric, then an optimization 

algorithm should determine the “right requirements” as part of finding the optimal set 

of decision variable values.  Using aviation examples, one can pose the optimization 

problem that included top-level requirements as decision variables along with new 

system design variables and operational decision variables.  The resulting formulation 

is a mixed-integer nonlinear programming problem that is very difficult if not 

impossible to solve in reasonable time.  The authors and their colleagues have 

developed a decomposition approach that allows solution of this problem, with a few 

minor modifications from the original problem.   

The initial efforts concentrated on demonstrating that solving the 

decomposition approach was practical and that the results were useful; however, 

those initial efforts could not address data uncertainties in the problem.  The recent 

work has identified and demonstrated how to include consideration for various types 

of data driven uncertainties as well. With the focus on aviation examples, the work first 

considered an application of the decomposition approach under uncertainty to military 
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air cargo transportation using actual data from the US Air Force Air Mobility Command 

(AMC) as the basis for a set of example problems.  Then, to explore the flexibility of 

the decomposition approach under uncertainty, data from the Bureau of 

Transportation Statistics provided the basis for another set of example problems 

representative of commercial airlines.   

This report presents how the approach applies to both military air cargo 

problems and to commercial airline problems and how the approach handles 

uncertainties in the aircraft design sub-problem, propagates those uncertainties to the 

allocation (commercial airline) or assignment (military air cargo) sub-problem, and 

additionally considers demand uncertainty in the allocation or assignment 

sub-problem.  While the overall decomposition framework can address these two 

different aviation problems under uncertainty, there are some specific modifications 

necessary to represent these two different problems.   

The approach is able to identify the best requirements for a new aircraft for both 

the commercial airline and military air cargo problems.  A posteriori analysis of the 

resulting design shows the advantages that the approach under uncertainty has over 

deterministic approaches to the same problems.   
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Methodology 

This section describes in detail the methodology that uses the previously 

developed subspace-decomposition approach (Crossley et al. 2004, Mane et al. 

2007). The approach serves as a ‘meta-algorithm’ framework within which specific 

choices in performance metrics and resource constraints can be made for each of the 

two problem instantiations we have solved (AMC and Commercial Airline) in prior 

work (Govindaraju et al. May, 2015, Roy et al. Jan, 2017). The description of each 

subspace and the information flow between subspaces appears in Figure 1 below.  

 

 

Figure 1. Overview of the sequential decomposition framework 
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Maximize Fleet level objective 

 

Design variables Design range   Top: MINLP 

    Payload carrying capacity                                       

Top-level subspace 

The top-level problem seeks to maximize the fleet-level objective of the 

operator, based upon the choice of the design requirement of the new 

yet-to-be-designed aircraft. These top-level requirements include design range, 

payload-carrying capacity etc. of the new yet-to-be-designed aircraft. This level is a 

small-scale Mixed Integer Non-Linear Programming (MINLP) problem and is solved 

either using an MINLP solver or by performing a pseudo enumeration.  

 

Aircraft sizing subspace 

The decision variables from the top level appear in the aircraft sizing sub-space 

as parameters. Starting from these top-level requirements, this subspace solves an 

aircraft design optimization problem with the objective that minimizes the design 

mission direct operating cost. The decision variables for this sub-problem are the 

variables that defines the wing geometry such as aspect ratio, taper ratio, sweep, etc. 

and the engine parameters like static thrust, bypass ratio, fan pressure ratio etc. 

Further, the portion of the aircraft conceptual design phase known as ‘aircraft sizing’, 

usually uses empirical equation and simplified physical models to predict the cost and 

performance of the aircraft. The limited knowledge available at this phase of the 

design process combined with the modeling fidelity results in high uncertainty. For 

instance, an aircraft is sized for its design mission based on a set of nominal values for 

operating conditions (e.g., cruise altitude). However, when evaluating the “operating 

missions” to determine block time and fuel consumed on the flight, there might be a 

variation in winds aloft, which would alter the block time and fuel consumed.  

Additionally, predictions of the aircraft performance and characteristics, like parasite 

drag, that use low-fidelity models will have associated uncertainty.  It is therefore 
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necessary to simulate the effect of uncertainties on the design parameters, in the 

absence of closed form mathematical expressions, for subsequent inclusion in the 

resulting aircraft sizing optimization problem. We employ a reliability-based design 

optimization (RBDO) formulation on the new aircraft that is subject to a collection of 

uncertain parameters. This sub-problem is Non-Linear Programming (NLP) problem 

that can be solved using a choice of NLP solver such as the fmincon function in 

MATLAB.  

Operations subspace 

Operations subspace seeks to solve how the operator uses the new 

yet-to-be-designed aircraft alongside the existing fleet of aircraft.  This is an allocation 

problem that allocates the new aircraft together with the existing aircraft with the goal 

to maximize the fleet-level objective. The strategy involves assigning or allocating the 

fleet on various routes. This sub-problem is posed as a Mixed Integer Linear 

Programming (MILP) problem with both integer (allocation variables) and the 

continuous (payload) type variables and is solved using the CPLEX solver available 

within the GAMS (Brooke et al., 1998) software package. This sub-problem is 

subjected to operational constraints such as aircraft utilization, demand etc. Further 

the demand in this subspace is uncertain. The amount of payload to carry across the 

various routes is an uncertain parameter. Thus, we have two levels of uncertainties 

that interact and need some strategies to address the propagation of uncertainty from 

one domain to the other.  The new aircraft coming out of the aircraft sizing subspace 

has uncertain performance and cost coefficients. Our approach employs an Interval 

Robust Counterpart (IRC) (Lin 2014) formulation to address this uncertainty 

propagation from the sizing sub-space to the allocation subspace. We size the aircraft 

at two cases of the uncertain parameters of the aircraft sizing subspace: a nominal 

         Minimize Design mission expected direct operating cost 

                                   

   Design variables Wing design variables 

                             Engine design variables                          Size: NLP 
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Maximize Expected Fleet-level objective 

  

Design variables Allocation (integer type) 

          Payload (continuous type)       Alloc: MILP 

  

                

               

case and a worse case and use the IRC formulation to enforce the worse-case 

performance and cost in the allocation constraints using some tolerance limit. An 

overview of the operations sub-problem (Alloc: MILP) appears below. 

In the following two sections, we detail application of the subspace 

decomposition approach for the case of setting optimal requirements for military air 

cargo, and, for commercial airline systems. We mainly highlight key differences in 

modeling approach for each subsection, to illustrate flexibility of the framework in 

accommodating unique problem characteristics of each case. 
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Applications of Subspace Decomposition Approach 

Case1 - Military Air Cargo 

We use the subspace decomposition approach to determine the optimal 

requirements of a new, yet-to-be introduced system (here, strategic airlift aircraft), 

which will operate alongside other strategic military airlift aircraft of the United States 

Air Force Air Mobility Command (AMC). The problem was motivated by the USAF 

AMC’s emphasis on reducing fleet wide fuel consumption. The objectives are to 

maximize expected fleet productivity and minimize expected fuel consumption. As 

these are competing objectives, the problem is posed in a multi-objective sense where 

fleet wide fuel consumption is minimized and a minimum acceptable fleet productivity 

level is set as a constraint that is varied to generate a series of non-dominated Pareto 

solutions. Data on cargo demand is obtained from the Global Air Transportation 

Execution System (GATES) dataset for the year 2006. Figure 2 illustrates the 

subspace decomposition of the AMC problem statement. 
 

 

Figure 2. Subspace decomposition strategy for the USAF AMC application 
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Top-level subspace  

The top-level optimization problem does not include any nonlinear constraints 

and only has bounds imposed on the top-level decision variables. Equations below 

describe the deterministic formulation of the top-level problem; the formulation 

incorporating uncertainty appears in latter subspaces. 

The objective function seeks to minimize the fleet-level fuel consumption using 

pallet capacity, range and cruise speed of the new, “yet-to-be-introduced” aircraft type 

X as decision variables. This subspace is subject to variable bound constraints. The 

values for the bounds were based on strategic airlift requirements, and characteristics 

exhibited by current cargo transport aircraft (Gertler, J. 2010, Graham, D., et al. 2003). 

Here, the design requirement decision variable describing payload capacity uses an 

integer number of pallets, while the design range and design speed decision variables 

are treated as continuous.  

Aircraft sizing subspace  

The conceptual phase of the aircraft design process relies upon semi-empirical 

equations and simplified physics models. The limited knowledge available about the 

system definition at this phase of the design process combined with the usage of 

low-fidelity modeling tools results in high uncertainty. Aircraft sizing typically 

determines the size, weight and performance of an aircraft to meet its design mission 

based on a set of nominal values on operating conditions (e.g. cruise altitude). 

However, when evaluating the “operating missions” to determine block time and fuel 

consumed on the flight, there might be a variation in assigned altitude, routing, speed, 

etc., which would alter the block time and fuel consumed. For instance, there is 

uncertainty in the prediction of the parasite drag coefficient.  

Minimize:   𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  (Fleet-level fuel consumption) 

 

Subject to 14 ≤  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑋𝑋 ≤ 38 

  2400 ≤  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑋𝑋 ≤ 3800           (Eq. 1) 
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Uncertainty in Design Parameters 

The effort here uses a scaling factor
DCk that follows a triangular distribution as 

appears in Figure 3 to represent the uncertainty in the parasite drag prediction, so that 

the “actual” coefficient relates to the “predicted” coefficient in the following manner: 
 

𝐶𝐶𝐷𝐷0,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑘𝑘𝐶𝐶𝐷𝐷 .𝐶𝐶𝐷𝐷0,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝                                             (Eq. 2) 

 

To address the uncertainty related to operations and predictions of the new 

aircraft performance in the aircraft sizing subspace with reasonable computational 

expense, the Analysis of Variance (ANOVA) technique - a sensitivity analysis method, 

determined the subset of the most important parameters that influence the outputs 

under consideration (Montgomery, D. C., 2008).  This investigation assumes 

triangular distributions (see Figure 3) for the scaling factors of identified parameters 

listed in Table 1. 

  

Figure 3.  The triangular PDF distribution of the aircraft design uncertain parameters 
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Table 1. Triangular distributions of the ANOVA identified uncertain parameters in the aircraft 
sizing subspace 

Uncertain Parameters (𝝃𝝃) Lower limit Mode Upper Limit 

𝐶𝐶𝐷𝐷0multiplier, 𝑘𝑘𝐶𝐶𝐷𝐷  0.90 1.0 1.10 

Specific Fuel Consumption, SFC [hr-1] 0.45 0.5 0.55 

Oswald efficiency multiplier, 𝑘𝑘𝑒𝑒0 0.95 1.0 1.05 

Cruise altitude [ft] 32000 35000 38000 

Pallet mass [lbs] 7200 7500 7800 

 
The aircraft sizing subproblem seeks to minimize the design mission fuel 

consumption of the new, yet-to-be-introduced aircraft for the values of design range 

(RangeX), pallet capacity (PalletX), and cruise speed (SpeedX) appearing as 

parameters from the top-level problem. With the top-level objective to minimize 

fleet-level fuel consumption, and the aircraft sizing objective to minimize the fuel 

consumed by the new aircraft for its prescribed design range, pallet capacity, and 

cruise speed, a slight disconnect exists between the objectives of these two levels.  

The difference in the objectives is that, at each aircraft sizing iteration, the 

minimization of fuel consumption uses a single combination of fixed values for design 

range, pallet capacity, and cruise speed—this is the typical case in aircraft design 

where these quantities are set as requirements for some ‘representative design 

mission’. However, the top-level optimization problem drives the question of ‘what 

requirements do we need to set in the first place?’ by searching through the decision 

space of the top-level variables to find aircraft requirements that optimizes fleet-level 

operational aspects of how the aircraft is used.  
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For example, consider the dimension of design range—as the top-level 

problem searches across values of range, this naturally changes the set of feasible 

routes that the new aircraft can fly, thereby changing how the fleet comprising of 

existing and new aircraft serves the overall route network. By doing so, the top-level 

problem seeks additional fleet-wide fuel savings that these operational aspects reflect 

as a function of the decision variables. Therefore, the aircraft sizing objective can be 

viewed as a subset of the top-level problem objective. Because the type of aircraft 

assigned on individual flight segments drives the total amount of fuel consumed by the 

fleet, an aircraft designed for minimal fuel consumption will lead to improved fleet 

utilization that reduces fleet-level fuel consumption, when compared to fleet 

operations using only the fleet of existing aircraft.  The approach in this work poses the 

aircraft design subproblem in the context of Reliability Based Design Optimization 

problem to account for uncertainty in the design phase. The Reliability-Based Design 

Optimization (RBDO) formulation (shown below) represents the aircraft design under 

uncertainty problem. 

Aggregating the outputs for each realization (sample) of the uncertain 

parameter, allows for the estimation of statistical measures such as expectation and 

probability, which the objective and constraint function evaluations require. The 

objective of the aircraft sizing subspace is to minimize the fuel consumption of the new 

aircraft X using the decision variables listed in Table 2. For each function evaluation of 

the top-level problem, the current values of PalletX, RangeX, and SpeedX become 

fixed parameters for the aircraft sizing problem. Table 2 summarizes the decision 

variables, constraints along with their bounds in the aircraft sizing optimization 

problem.  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀:𝐸𝐸(𝑥𝑥, 𝜉𝜉) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡:𝑃𝑃[𝑔𝑔(𝑥𝑥, 𝜉𝜉) ≤ 0] ≥ 𝑏𝑏𝑖𝑖    ∀ 𝑖𝑖 = 1,2, . . ,𝑚𝑚 

    

    

      

 

                  (Eq. 3) 
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Table 2. Decision variables and constraints limits in the aircraft sizing optimization problem 

Decision variables, (x) Lower Bound Upper Bound 

Wing Aspect Ratio, ARX 6.00 9.50 

Thrust-to-weight Ratio, (T/W)X 0.18 0.35 

Wing Loading [lb/ft
2
], (W/S)X 65.00 161.00 

Engine Bypass Ratio, BPRX 4.50 14.50 

Wing Leading Edge Sweep [deg], SweepX  10.00 35.00 

Wing Taper Ratio, TRX 0.10 0.40 

Performance Constraints Value 
 

Takeoff Distance [ft] ≤ 8500 
 

Landing Distance [ft] ≤ 5500 
 

Second segment climb gradient ≥ 0.025 
 

Top-of-climb rate [ft/min] ≥ 500 
 

  
The aircraft sizing sub problem includes performance constraints such as limits 

on take-off and landing distances, and also upper and lower bounds for the decision 

variables. The RBDO formulation optimizes the expected performance metric of 

interest and ensures that the probability of satisfying the performance constraints is 

greater than or equal to the user-defined reliability level, 𝑏𝑏𝑖𝑖 , considering the 

uncertainty present in this subproblem. 

Fleet operations subspace  

This subspace mathematically represents the AMC’s operations where the 

AMC fleet flies cargo missions to deliver pallets of supplies on an “as-needed” basis 

without a predetermined, long term schedule. The fleet assignment model here 

considers the multiple destination nature of the flight path for each aircraft, where an 

aircraft may fly from point A to B and then on to C – this in contrast is different to the 

airline case where airline aircraft are assigned to fly back and forth on specific 

segments points. This multiple destination travel path prompts the need to include 
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tracking of “tail numbers” in the fleet operations subspace. Furthermore, the 

unscheduled and uncertain nature of demand for cargo transportation includes 

unknown origin and destination pairs of trips as well – this is modelled using random 

sampling of starting points for aircraft where the random sample mimics the end of the 

previous day flight termination point of the aircraft. The Interval Robust Counterpart 

(IRC) formulation addresses uncertainty in parameters within AMC fleet operations 

model; in this case the uncertainty associated with the fuel consumption rate 𝐹𝐹𝐹𝐹� 𝑝𝑝,𝑘𝑘,𝑖𝑖,𝑗𝑗,  

and in the flight block hours 𝐵𝐵𝐵𝐵�𝑝𝑝,𝑘𝑘,𝑖𝑖,𝑗𝑗, on given routes in the service network. The 

optimization problem of the fleet operations model seeks to minimize the fleet level 

fuel consumption while enforcing a constraint on productivity. Mathematically, the 

formulation appears below. 

 
Minimize: 

, , , , , ,
1 1 1 1

P K N N

p k i j p k i j
p k i j

x FC
= = = =

×∑∑∑∑    (Fleet-level fuel consumption) (Eq.4) 

 

Subject to:  

( ), , , , , , , , ,
1 1 1 1

P K N N

p k i j p k i j p k i j
p k i j

x Speed Cap L
= = = =

× × ≥∑∑∑∑   (Fleet-level productivity limit)  (Eq.5) 

, , , , 1, ,
1 1

1, 2,3... ,

1, 2,3... , 1, 2,3...

N N

p k i j p k i j
i i

x x k K

p P j N

+
= =

≥ ∀ =

∀ = ∀ =

∑ ∑    (Node balance constraints)  (Eq.6) 

, , , , , ,
1 1 1

1, 2,3...
K N N

p k i j p k i j P
k i j

x BH B p P
= = =

× ≤ ∀ =∑∑∑    (Daily utilization limit) (Eq.7) 

, , , , , , ,
1 1
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, , ,
1 1

1 1,2,3... , 1, 2,3...
N N

p k i j
i j

x p P k K
= =

≤ ∀ = ∀ =∑∑    (Trip limit) (Eq.10) 

{ }, , , 0,1p k i jx ∈                         (Binary variable)   

 
Equation (4) is the objective function that seeks to minimize the fleet-level fuel 

consumption, where FCp,k,i,j indicates the fuel consumption coefficient of the kth trip for 

aircraft p from base i to base j. The equation has two parts; the first product inside the 

square brackets, xp,k,i,j × FCp,k,i,j, represents the fuel consumption of the existing fleet, 

while the rest of the terms inside the square brackets represents the fuel consumption 

of assigning the new, yet-to-be-designed aircraft. The fuel consumption 

characteristics of the new aircraft are a function of aircraft design variables (aspect 

ratio, thrust-to-weight ratio, etc.) and aircraft design requirements (pallet capacity, 

design range, and cruise speed). The term xp,k,i,j is a binary decision variable that 

takes a value of 1 if the kth trip of aircraft type p is flown from base i to base j, and it 

takes a value of 0 otherwise.  

Equation (5) accounts for the multi-objective nature of this problem. This forces 

the fleet-level productivity to be greater than a pre-defined limit, L; the limit is varied 

and the problem is re-solved for each varied value of the limit to generate a set of 

Pareto optimal solutions. The term, xp,k,i,j × FCp,k,i,j , in Equation (4) refers to the 

productivity (speed of payload delivered) of utilizing aircraft type p for the kth trip from 

base i to base j.   

Equation (6) is the balance and sequencing constraint that enables the (k+1) th 

trip of an aircraft out of a base, i, to occur only after the kth trip of that aircraft into base 

i. This constraint ensures that an aircraft needs is present at a base prior to completing 

a subsequent segment trip out of the same base.   

Equation (7) limits flights to only occur within the daily utilization limit, Bp (here, 

this uses an assumption of 16 hours per day to account for loading, unloading, 

servicing, maintenance, etc.) of the aircraft, where BHp,k,i,j indicates the block hour of 

the kth trip for aircraft p from base i to base j.   
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Equation (8) ensures that the carrying capacity of the combined trips meets or 

exceeds the pallet demand on each route, where Capp,k,i,j indicates the pallet carrying 

capacity of the kth trip for aircraft p from base i to base j.   

Equation (9) ensures that the first trip of each aircraft p originates at its initial 

location (this is considered the aircraft’s home or starting base for the day of 

operations); this initial location is randomly generated. Because the GATES dataset 

does not clearly indicate the starting location of aircraft each day, the problem 

formulation here uses a random distribution for each aircraft’s starting location. The 

term Op,i is a binary variable that indicates if base i is the initial location for aircraft p.  

Equation (10) ensures that each aircraft p flies at most one trip for its kth 

segment.  

The motivation for the “scheduling-like” formulation is to represent the 

scheduling and operations decisions made by Air Mobility Command; it does not 

explicitly consider pilot scheduling (this 16 hours per day of available aircraft time 

could represent this, in part) nor does it account for the prioritization of cargo (this is 

not addressed in this formulation). This formulation, using node balance constraints, 

allows individual aircraft to make multiple flight segments in one day (as long as these 

fit within a prescribed time limit), allows for pallets to be carried from their origin to 

destination on possibly multiple aircraft, and tracks each individual aircraft by “tail 

number”. These features more directly model AMC operations than some of the 

previous models of the authors and their colleagues when considering passenger 

airline transportation (Mane, et al., 2007, Govindaraju, P., et al., 2013). 

Uncertainty in Fleet Operations 

The uncertainty associated with the performance of the newly designed aircraft 

(type X) propagates to the fleet assignment subspace through the distributions of the 

new aircraft’s predicted fuel consumption, 𝐹𝐹𝐹𝐹�𝑝𝑝,𝑘𝑘,𝑖𝑖,𝑗𝑗, and flight block hours, 𝐵𝐵𝐵𝐵�𝑝𝑝,𝑘𝑘,𝑖𝑖,𝑗𝑗, on 

given routes in the network; only aircraft “tail numbers” p that are associated with type 

X aircraft have these distributions. Additionally, the AMC service network has inherent 

pallet demand uncertainty.  Hence, the fleet assignment problem now includes 

uncertainty in both the performance of the new aircraft and the pallet demand in the 
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service network.  In this paper, a hybrid formulation that combines the interval robust 

counterpart formulation (Lin, X., et al., 2004) for user-defined tolerance parameters 

(𝛿𝛿) , and the descriptive sampling technique (Saliby, E., 1990), solves the fleet 

assignment problem under uncertainty. 

Lin et al. proposed a robust optimization approach for bounded uncertainty to 

overcome the large computational expense incurred by scenario/sampling-based 

frameworks. Their approach produces “robust” solutions that are immune against 

uncertainties in both the coefficients and right-hand-side parameters of the inequality 

constraints of the Mixed Integer Linear Programming (MILP) problems. Lin et al. term 

a solution to be robust, if it satisfies the following conditions: 

• The solution is feasible for the nominal values of the uncertain parameters 

• For any value of the uncertain coefficients in the objective function and the 
uncertain parameters in the right-hand side of the constraints, the solution must 
satisfy the ith inequality constraint or, at worst, violate the constraint with an 
error of at most 𝛿𝛿 ×  max [1,|𝑝𝑝𝑙𝑙| ]. In this expression, 𝛿𝛿  is a user-selected 
infeasibility tolerance coefficient, and pl is the right-hand-side limit of the linear 
inequality constraint. 

 

Applying the interval robust counterpart model to the deterministic formulation 

of the fleet assignment subproblem described above results in two additional set of 

constraints, and a modified objective function where an auxiliary variable (Fleet fuel) is 

introduced to enable introduction of the original objective function represented by Eq. 

4 as a constraint – thereby making it amenable to robust optimization strategies. The 

reformulation of the original objective function (Equation 4) is now as follows: 
 

      Minimize Fleet fuel    (Eq.11) 

( ), , , , , ,
1 1 1 1

     1
P K N N

U
p k i j p k i j

p k i j
Subject to x FC Fleet fuel δ

= = = =

× ≤ +∑∑∑∑   (Eq.12) 

 
where, FCU

p,k,i,j is the upper bound of the fuel consumed by aircraft p on the kth trip from 

base i to base j. Evaluating the performance of the new aircraft for different samples of 

the aircraft sizing uncertain parameters (𝜉𝜉) generates distributions of the performance 



 

Acquisition Research Program 
Graduate School of Business & Public Policy - 19 - 
Naval Postgraduate School 

metrics such as the fuel consumption coefficient. The upper bound, FCU
p,k,i,j , is then 

determined from the distribution of the fuel consumption coefficient 𝐹𝐹𝐹𝐹�𝑝𝑝,𝑘𝑘,𝑖𝑖,𝑗𝑗 applied to 

only aircraft p that are of the newly-designed type X.  𝛿𝛿 is the user-defined, infeasibility 

tolerance parameter that can take values between 0 and 1. For example, setting 𝛿𝛿 to 

0.1 for a particular constraint indicates that 10% violation of the worst-case scenario of 

that constraint is acceptable. Using Eq. 12, if all of the uncertain fuel consumption 

coefficients for the new aircraft are at their upper bound (i.e., the aircraft burns the 

most possible fuel from the distribution, (𝐹𝐹𝐹𝐹�𝑝𝑝,𝑘𝑘,𝑖𝑖,𝑗𝑗), then the total fuel consumed by the 

fleet is no more than 10% above the user-defined limit for fleet fuel consumption. The 

daily utilization limit constraint (Equation 7) is modified as follows: 

 

( ), , , , , ,
1 1 1

1 1,2,3...
K N N

U
p k i j p k i j P

k i j
x BH B p P

= = =

× ≤ + ∀ =∑∑∑ δ   (Eq.13) 

 
where, BHU

p,k,i,j is the upper bound of the distribution of block hours of aircraft p 

(restricted to only aircraft of type X) on the kth trip from base i to base j. The 

deterministic robust counterpart fleet assignment problem now includes Eq. 11, 12, 

and 13 in addition to Eq. 4 - 10 from the original deterministic formulation of the fleet 

assignment problem. 

The interval robust counterpart model is also applicable for the demand 

constraint (Equation 8) in the deterministic formulation, but this leads to a very 

conservative (protected against the maximum demand scenario) solution, because 

the right hand side constraint limit, demi,j, is set to its upper bound or maximum value, 

demU
i,j, for each route as shown in Eq. 14 below. For this constraint, the GATES 

dataset provides the values for the upper bound of the pallet demand on each route. 

 

   (Eq.14) 
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Instead, because the AMC service network experience high fluctuations in 

pallet demand and the on-demand nature of military cargo transport, the approach 

here employs a descriptive sampling approach (Saliby, E., 1990) to incorporate the 

stochastic nature of the demand. The method of descriptive sampling involves a 

deliberate collection of sample values that closely describes the represented 

distribution. The descriptive sampling approach samples more values from regions of 

higher density and fewer values from regions of lower density. The purposeful 

collection of sample values at specific quantile levels helps to match closely the actual 

or reported discrete demand distributions using a reduced number of samples, thus 

reducing the computational expense.  

The deterministic robust counterpart formulation is solved times for each 

demand sample vector generated through the descriptive sampling approach. From 

these multiple solutions, the expected value of the fleet-level performance metrics 

(fleet-level fuel consumption and / or fleet-level productivity) now returns to the 

top-level optimization problem as the responses of interest. The robust counterpart 

formulation accounts for the propagation of uncertainty from the aircraft sizing to the 

fleet assignment subspace, while the descriptive sampling approach addresses the 

stochastic nature of pallet demand in the service network. 
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Problem Description: 25-Base Network Problem 

The section demonstrates how the subspace decomposition approach can 

identify the best new aircraft requirements and subsequent aircraft design to address 

fleet-level metrics under uncertainty for the AMC – Military application.  By treating this 

problem as a multi-objective problem, the approach can also generate tradeoffs 

between fleet-level metrics of interest; from these best tradeoff solutions, a 

decision-maker can also observe how the optimum design requirements for the new 

aircraft change for these different tradeoff opportunities. 

Network Description 

This study uses a subset of the AMC route network and fleet, comprising of 25 

bases and 219 directional routes, to demonstrate the approach. Figure 3 depicts the 

geographical locations and routes of the 25-base network. For the 25-base network, 

the existing fleet of AMC comprises of 28 C-5s, 44 C-17s, and 21 chartered 747-Fs. 

The existing fleet serves as a ‘baseline’ to measure the improvements due to the 

introduction of the new aircraft. This study assumes that five, new, 

yet-to-be-designed-aircraft (all of type X) are introduced into the fleet. This 

assumption reflects an external decision made by the user or the decision-maker that 

specifies the number of new aircraft that are added to the fleet.  

 

 
 

Figure 3: 25-base network (illustration generated using www.gcmap.com) 

http://www.gcmap.com/
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The 25 bases in the network are either the origin or the destination locations 

that transported the largest number of pallets in the AMC service network for the year 

2006. The routes span the continents of North America, Asia and Europe. Figure 4a 

shows the average and the minimum/maximum of the directional daily pallet demand 

for 50 routes in the network.  Figure 4b shows the distribution of the number of routes 

based on the average daily pallet demand. The histogram indicates that the demand 

distribution is right-skewed and that several of the routes have an average daily 

demand of less than 20 pallets. 

  

       
 (a) Directional daily pallet demand      (b) Histogram of average daily pallet demand 

 
Figure 4: Pallet demand characteristics of the 25-base network 

 

Result Summary 

Figure 5 shows the results from the multi-objective analyses of the 25-base 

network problem, using the subspace decomposition approach for the AMC case 

study (refer Figure 2).  The plot shows the normalized expected values of the 

fleet-level metrics. Using normalized fleet-level responses help to identify the trends, 

and help to show the relative variations in fleet-level responses for different solutions 

to the multi-objective optimization problem. The fleet-level responses have been 

normalized with respect to the lowest expected values from the results of the scenario 

labeled ‘Fleet with five new A/C’. Each point in the ‘Fleet with five new A/C’ scenario 

describes the optimal design of the new aircraft required to meet the specific 

fleet-level objectives. These results show the collection of optimal aircraft designs that 
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would meet the fleet’s operational needs at each level of permitted fuel consumption 

or at each level of required fleet-wide productivity.  

 

 

Figure 5. Results from multi-objective analyses of 25-base network problem 

 

For three different solutions from the ‘Fleet with five new A/C’ results, Figure 5 

contains callout boxes that describe the values of the new aircraft requirement 

decision variables along with the values of the aircraft design variables. The trends in 

the fleet-level responses are as expected, with fuel consumption increasing as 

productivity increases. There appears to be a trend in the ‘size’ of the optimal aircraft 

along the Pareto frontier for increasing productivity/fuel consumption values. For a 
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normalized expected productivity and normalized expected fuel consumption value of 

1.0, the optimal requirement decision variables of the new aircraft X are at the lower 

bounds for pallet capacity (16) and design range (3800 nmi). Moving from this point on 

the tradeoff plot towards solutions with increasing fleet-level productivity, the results 

suggest that larger pallet capacities for the new aircraft X can best meet the fleet-level 

objectives. There is not substantial evidence to determine whether these trends would 

generalize to other route networks or other similar design problems; however, the 

behavior is not unexpected, because the aircraft pallet capacity strongly drives the 

fleet-level productivity metric. Though it is intuitive that a larger aircraft would increase 

productivity, the optimal design features of the new aircraft X, such as, the aspect ratio 

(ARX), the wing loading ((W/S)X), the thrust-to-weight ratio ((T/W)X), etc., are reflective 

of the specific existing fleet and demand characteristics of the service network. For 

each solution in the plot, the assignments of the fleet of aircraft to routes are different 

to meet the actual demands better. The introduction of the five new aircraft (of type X) 

results in fleet-level fuel savings between 2.79% and 6.48% for the same normalized 

expected fleet productivity values, when compared to the case where only the existing 

fleet operates in the network. 

The solutions to multi-objective analyses present a way to perform “fuel/cost as 

an independent variable” type of trade-space analysis; this might be more obvious by 

switching the axes in the plot from Figure 5. These types of plots can help 

decision-makers/acquisition planners to analyze the trade-space and select the 

optimal requirements and design of the new aircraft that would achieve the desired 

level of fleet fuel consumption and productivity. For instance, a decision-maker can 

determine the level of fleet productivity available for a specific level of fleet fuel 

consumption; this fleet-level productivity value can then be translated to a specific (or 

bounded) level for the mobility airlift requirements that are set by the DoD in terms of 

tonnage of cargo transported per day. Having established the goals for the fleet-level 

productivity and fuel consumption, the collection of optimal aircraft designs required to 

achieve these fleet-level goals can be determined from plots such as those shown in 

Figure 5.  
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Posterior Analysis 

Figure 6 shows the results from a posteriori analysis (200 samples) of a few 

solutions from the multi-objective analyses of the 25-base network problem. The 

dispersion in fleet level fuel consumption does not show any discernible trend. 

However, the degree of dispersion in fleet-level productivity appears to decrease for 

solutions with increasing fleet productivity and fuel consumption values. 

Solutions with higher normalized fleet fuel consumption, in Figure 6, are more 

‘robust’ (less variance) in terms of fleet productivity. A possible explanation for this 

behavior is because the multi-objective analyses (using the e-constraint formulation) 

vary the limit value of the fleet productivity constraint, while minimizing fleet-level fuel 

consumption. If solutions that are more ‘robust’ (less variance) to fuel consumption are 

desired, then the multi-objective analyses should vary the limit on the fleet-level fuel 

consumption constraint, while maximizing fleet productivity. 

Decision-makers/acquisition planners can use such results to perform 

comprehensive exploratory analysis of the design space and identify regions in this 

design space that present significant viable or opportunities to reduce the fleet fuel 

consumption. For instance, AMC may need to incur “switching costs” (additional cost 

for training, maintenance and infrastructure due to the addition of a new aircraft type 

into the fleet) of integrating a new aircraft type into the fleet for relatively small 

Figure 6. A posterior analysis for 25-base problem 
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decrease in fuel burn; however, the trade-space analysis (Figure 6 can help identify 

promising designs and ‘inflection points’, if they exist, where the decision to acquire a 

new aircraft type could provide significant benefits. 
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Case 2 - Commercial Airline 

We apply the subspace decomposition approach, as a modified version of the 

AMC case, to the case of a commercial airline application. These modifications arise 

from the statistical differences in cargo demand between the AMC case study and 

passenger demand for a commercial airline, and, from the underlying business model 

where airlines will set and publish a schedule from which the traveling passengers 

select flights and purchase tickets. The highly uncertain nature of demand in the AMC 

case, versus the more symmetric and seasonal nature of demand in commercial 

applications, prompts different computational strategies within the approach 

presented here. The detailed subspace decomposition framework for the commercial 

airline application appears in Figure 7 below (also appears in Roy et al. 2017). For the 

commercial airline application, the fleet operation subspace is further sub-divided into 

two subspaces – airline allocation and a profit evaluation block.  

Top Level Subspace – Commercial Application 
 

The top-level optimization problem for the commercial airline application, seeks to 

maximize the expected fleet level profit of a representative airline based on the 

choices made about the design requirements for the new, yet-to-be designed aircraft; 

here, the range and passenger seating capacity are the design variables in this 

top-level problem. Like the AMC formulation, the top-level optimization problem is 

unconstrained except for bounds imposed on the decision variables. The following 

equations describe the formulation of the top-level problem; consideration for 

uncertainty, as reflected in the expectation of profit appears later in the aircraft sizing 

and airline operations subspace. 

 

Maximize
𝑥𝑥

:             𝐸𝐸[𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] 

 

 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡:           75 ≤ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑦𝑦𝑥𝑥 ≤ 250                (Eq.15) 
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The objective function here seeks to maximize fleet level profit using 

passenger seating capacity and range, of the yet-to-be-introduced aircraft type X, as 

decision variables. The two constraints describe the bounds for the top-level design 

variables of aircraft passenger seating capacity and range. The values for the bounds 

on these design variables were based on typical characteristics of current class of 

aircraft. Here, the design requirement decision variable describing passenger seating 

capacity and the design range are both integer variables. While the expectation term 

appears in the objective function of the top-level formulation, the source of uncertainty 

associated with the expectation term comes from the aircraft design and fleet 

allocation subspaces. Our discussion in these latter sections will make clear the 

evaluation of the expectation term for the top-level objective function. 
 

 

Figure 7. Subspace decomposition strategy for the commercial airline application 



 

Acquisition Research Program 
Graduate School of Business & Public Policy - 29 - 
Naval Postgraduate School 

Aircraft sizing subspace  

This subspace is similar to the AMC work as described before (see Eq. 3). 

However, to accommodate different number of seats as required by the top-level 

problem formulation for the commercial applications, the sizing code needs to vary 

the size of the fuselage and the tail using an empirical relation established using the 

existing aircraft data. For this work, the uncertain parameters of choice, as appears 

below in Table 3, are selected based on subject matter expert opinion for illustrative 

purposes. A more formal approach of identifying most relevant factors would involve 

an Analysis of Variances (ANOVA) and a Design of Experiments (DOE) approach to 

identify the most statistically relevant design parameters influencing the aircraft 

design. 

Table 3. Uncertain parameters in the commercial aircraft sizing optimization problem 

Uncertain Parameters (ξ) Lower Bound Default Upper Bound 

CD0 Multiplier [non-dim] 0.95 1 1.05 

Oswald Efficiency Factor Multiplier 
[non-dim] 

0.95 1 1.05 

Thrust Specific Fuel Consumption 
Multiplier [non-dim] 

0.95 1 1.05 

Passenger Weight [lbs] 90 165 220 

  

The RBDO formulation optimizes the expected performance metric of interest 

and ensures that the probability of satisfying the performance constraints is greater 

than or equal to the user-defined reliability level, considering the uncertainty present in 

this subproblem. Here, we assume a triangular distribution for the uncertainties in 

each parameter; this will facilitate demonstration of the method, but better 

characterization of these distributions would improve the quality of the results. The 

aircraft sizing sub-problem includes performance constraints such as limits on takeoff 

and landing distances, second segment climb gradient, top of climb rate and also 

upper and lower bounds for the decision variables. 
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As mentioned earlier, at the solution of the RBDO problem, the resulting 

aircraft design has uncertain responses because of the input uncertainties (Table 3).  

Of interest for the airline operations subspace – the cost to fly the new aircraft on any 

route, the block hours needed to fly any route, the maximum number of passengers 

that the aircraft can carry on each route, and the takeoff distance of the aircraft – all 

follow probabilistic distributions. 

Airline Operations  

This subspace mimics an airline’s operational behavior. The Interval Robust 

Counterpart (IRC) formulation recognizes and obtains the performance 

characteristics of the uncertain aircraft for the nominal and worst-case values of the 

uncertain aircraft design parameters of Table 3. We use these performance data in 

our allocation formulation to minimize the airline’s fleet-level direct operating cost, 

while satisfying maximum predicted passenger demand on the route network.  Here, 

the maximum predicted passenger demand comes from historical data available from 

the Bureau of Transportation Statistics; this provides a credible demand distribution 

for the problem, as if this historical demand were actually a prediction of future 

demand. Solving the allocation solution represents setting the airline’s schedule, and 

then the approach samples the uncertain passenger demand that would fly on the set 

schedule and evaluates an expected profit considering the uncertain demand. To 

further capture seasonal variation in passenger demand, we set four different 

quarterly allocations. The purpose of considering each quarter’s worth of data is to 

capture better the impact that seasonal fluctuations will have on the observed 

maximum number of passengers traveling on each route for a representative travel 

day.  Average profit (or the expected profit) over all sampled demand for all the 

quarters then returned to the top level and appears as the top-level objective function. 

A detailed description of the airline operations subspace appears below.   
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Airline Allocation via IRC 

The purpose of the fleet allocation problem is to determine the best allocation 

of the fleet’s aircraft (including existing aircraft along with the new aircraft) on routes in 

a way that minimizes fleet-level operational costs.  This includes pseudo-scheduling 

considerations of number of minimum number of flights required on each route, so as 

to capture the typical schedule conveniences that airline would offer to passengers. 

The allocation of aircraft is naturally subject to the performance constraints of the 

aircraft (e.g., range of aircraft dictates which routes can be serviced by various types 

of aircraft in the fleet). It becomes apparent here that the impact of setting design 

requirement values at the top-level optimization problem begins to manifest 

operational impacts at the allocation stage of the decomposition framework. 

Passenger Travel and Airline Network Data 

The allocation of the fleet assumes satisfying the need to carrying an estimated 

number of passengers on each route that is based on historical data. In our 

commercial application, we use data from the Bureau of Transportation Statistics 

(BTS) T-100 segment passenger data (Bureau of Transportation Statistics (BTS) 

n.d.); the data contains a full report of the number of passengers that directly travel 

between a given origin-destination point, and, contains number of flights, aircraft types 

operated, among other categories. In this report, we use data for the case of a 

thirty-one-route subset of the data that is representative of passengers travelling with 

a notional carrier on trips within the continental United States. Figure 8 shows the 

routes that we have selected for our concept problem, with Memphis being the central 

hub of notional airline service network. This network resembles a portion of the 

Northwest Airlines network before the merger with Delta. Figure 9 displays a map of 

the subset of the passenger travel data for the thirty-one-route network.  
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We use passenger demand data over the span of four years starting from 2004 

to build the passenger demand distributions. Example data for the Memphis-Los 

Angeles route appears in Figure 9. A more realistic application of this approach to 

determine the right new aircraft requirements for an airline and its network would have 

predicted future demand distributions on each route; without a readily available 

means to generate these predicted future demands, using the historical demands 

provides a credible distribution to demonstrate the approach.  The resolution 

available in the BTS T-100 data is monthly, and hence monthly bins appear in Figure 

9.  Effects of seasonal demand are evident in the near periodic appearance of high 

travel demand, and changes in schedule are also evident where there was no 

demand carried between MEM and LAX, indicated no direct flights operated those 

months. 

  

Figure 8. Notional thirty-one-route network with hub at Memphis (illustration generated using 
www.gcmap.com) 

http://www.gcmap.com/
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Aircraft Allocation Formulation 

In this work, we consider quarterly demand distributions to capture seasonality 

effects, resulting in four fleet allocation sub-problems that are solved – one for each 

quarter. The fleet allocation problem in this report is same as the AMC work and is 

posed as a mixed integer program (MIP) with a linear objective function and linear 

constraints. The Generic Algebraic Modeling System (GAMS) software package, 

accessed through a MATLAB® interface, is used to solve the allocation problem using 

the CPLEX solver option (Brooke, et al. 1998). Given the ability of the CPLEX solver to 

handle large-scale MIP problems with linear objective and linear constraints as in our 

case, this increase in the number of design variables, even in the case of considering 

four seasonal quarters, is computationally tractable.  

Because the cost and performance of the aircraft in the fleet are uncertain, like 

the AMC work, we adopt the IRC formulation to accommodate the uncertainty 

associated with the performance of the new aircraft (of type X). The resulting 

mathematical formulation of the fleet allocation problem for the commercial airline 

application appears as the following set of equations: 

 

Figure 9. Passenger demand characteristics for the MEM-LAX route 
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The airline has A different aircraft types flying on J different routes (J = 31) 

allocated for a representative day within each quarter of a year. The purpose of 

considering each quarter’s worth of data is to capture better the impact that seasonal 

fluctuations will have on the observed maximum number of passengers traveling on 

each route for a representative travel day. The objective function and first constraint of 

the fleet resource allocation problem seeks to minimize the fleet-level Direct 

Operating Cost (DOC) from all aircraft that are allocated to each route on the notional 

airline service network. Here, the accounting for uncertainty in the cost coefficients of 

flying aircraft type a on route j are included in the objective function, through 

introduction of an additional variable (DOC), and, relegation of the cost summation 

term to the first set of constraints (Eq.17a and 17b); such a strategy is common for 

introducing robustness in an objective function. The two constraints Eq.17a and 

Minimize DOC                                                                                                       (Eq. 16) 

 

Subject to: � � Costnominal,ajxaj ≤ DOC
J

j
                                                                             (Eq. 17a)

A

a
 

� � Costworst,ajxaj ≤ DOC(1 + δ)                                                                    (Eq. 17b)
J

j

A

a
 

� [xaj(BHnominal,aj + MHaj + Taj)]
J

j
≤ 12 × fleeta     ∀ a = 1,2, . . , A             (Eq. 19a) 

 

∑ paxajA
a = demj        ∀ j = 1,2, … , J                                                           (Eq. 18) 

 
� [xaj(BHworst,aj + MHaj + Taj)]

J

j
≤ 12 × fleeta(1 + δ)   ∀ a = 1,2, . . , A     (Eq. 19b) 

 paxaj ≤  xa,jCapnominal,a     ∀ a = 1,2, … , A;  j = 1,2, … , J                                     (Eq. 20a)    

paxaj ≤   xajCapworst,a(1 + δ)      ∀ a = 1,2, … , A;  j = 1,2, … , J                          (Eq. 20b)       

xa,j�TDnominal,a − RunwayLengthj� ≤ 0        ∀ a = 1,2, … , A; j = 1,2, . . , J       (Eq. 21a)   

xa,j�TDworst,a − RunwayLengthj(1 + δ)� ≤ 0    ∀ a = 1,2, … , A; j = 1,2, . . , J (Eq. 21b)    

 ∑ xaj ≥ FreqjA
a    ∀ j = 1,2, … , J                                                                                     (Eq. 22)      

 xaj ∈ ℤ+, paxaj ∈ ℤ+                                                                                                        (Eq. 23) 
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Eq.17b, represents the nominal and the worst-case scenario. Our uncertain aircraft 

has a distribution of its cost and performance characteristics due to the presence of 

uncertain aircraft parameters (Table 3). To recognize this uncertain aircraft in the 

allocation formulation, we then use the nominal and worst-case values of the 

uncertain aircraft parameters and evaluate the aircraft performance and cost at these 

two points, thereby obtaining two sets of cost and performance data as represented 

by Costnominal and Costworst. We use the same δ tolerance of 0.1 as the AMC work and 

relax the upper bound by this tolerance for the worst-case scenarios to account for 

robustness in the IRC formulation. The second constraint ensures the total number of 

passengers carried on a given route j equals total demand in that route (here, demand 

per quarter). The third set of constraints limits the number of hours available for each 

aircraft for service to meet the daily passenger demand (this includes block hours, 

maintenance hours and flight time) to a 12-hour work day schedule. The fourth set of 

constraints ensures that the number of passengers transported by any aircraft type on 

any individual route is less than the combined seating capacity of that aircraft type. 

The fifth set of constraints enforces the condition that take-off distances never exceed 

runway lengths due to the varying runway lengths at each airport. The sixth constraint 

ensures that the allocation problem allocates a minimum number of flights (as 

reported in the BTS database) for each route, and is reflective of frequency of service 

conditions. The last constraint ensures the variables x and pax are integer types. 

However, to reduce the computational runtime we have relaxed the integrality 

constraint on the pax variables and treated them as continuous.   

Initial Fleet Composition 

Figure below shows the initial fleet composition of the airline in our model. The 

red bar shows the number of new “yet-to-be-deployed” aircraft that the airline seeks to 

purchase. To obtain a better estimate of the current fleet composition, we use the 

“BTS T100 segment” monthly data to obtain the total number of departures scheduled 

by Northwest Airlines (representative airline in our model) with flights originating from 

Memphis in the span 2004 – 2007.  By doing this, we have assumed our airline serves 
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a 31-route network with a hub at Memphis, TN; this is much like our approach to 

extract a subset of Air Mobility Command routes from the GATES database. 

We then divide the number of departures by the total number of days in that 

month to obtain an estimate of the daily departure by each aircraft type present in the 

fleet. BTS also reports the ramp-to-ramp time for each aircraft type for a given city 

pair. We assumed in this study, ramp-to-ramp time closely represents the block hours 

of the aircraft for the route under consideration. With the daily departure data and the 

approximate block hours, we now can estimate the number of aircraft for a particular 

type using the following aircraft utilization equation.  

∑ 𝑥𝑥𝑘𝑘,𝑗𝑗. �𝐵𝐵𝐵𝐵𝑘𝑘,𝑗𝑗 + 𝑀𝑀𝑀𝑀𝑘𝑘,𝑗𝑗 + 1� ≤ 12.𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘
𝐽𝐽
𝑗𝑗=1                                     (Eq. 24) 

Evaluating the above equation for the monthly departure data obtained using 

BTS for the year 2004 to 2007, gives a plot similar to Figure 11. This figure shows the 

number of aircraft needed to meet the daily trips reported in the BTS data for which 

Northwest Airlines operated a Boeing 757-200 originating from Memphis. For our 

initial fleet size estimate, we pick the highest value from the plot and round it up to the 

next higher integer value to get an estimate of the number of that aircraft type. The 

highest bar in this plot shows just over 1.8. This value gives an estimate of the initial 
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Figure 10. Initial fleet composition of the airline with eight different aircraft types (includes the new 
"yet-to-be-deployed" aircraft) 
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number of B757-200 aircraft type present in the fleet. We carry out a similar strategy to 

obtain an estimate for the other aircraft types in fleet (see Figure 10). 

Figure 11. B757-200 monthly utilization by North West Airline (2004-2007) for flights 
originating from Memphis, TN 

Profit Evaluation 

An airline typically assigns aircraft to various routes and to corresponding 

schedules ahead of time, and then sells tickets for the seats on these aircraft to the 

public. The airline then executes various revenue management strategies to increase 

yield in selling the tickets and to capture passenger market share. We have a 

simplistic approach to capture this dynamics of “allocate-first then sell the seats” by 

separating the allocation and revenue management segments in our decomposition 

framework. First, the airline allocation problem seeks to minimize the fleet level costs 

by efficiently allocating the airline’s fleet of aircraft across the routes within the 

airline’s service network, given specific assumptions on demand data; this is 

reflective of the ‘allocate-first’ phase of planning the number of seats to be sold on a 

route. Here, the maximum observable demand on each route per quarter is used as 

the projected demand data for the fleet allocation phase. After performing the airline 

allocation problem, we then mimic the ‘revenue management’ portion of an airline’s 

operations. However, for this work, we have used publicly available average ticket 



 

Acquisition Research Program 
Graduate School of Business & Public Policy - 38 - 
Naval Postgraduate School 

prices on these 31 routes from the flightaware website‡. The ticket prices are kept 

constant for each route and there is no fare class distinction for a given departure.  

Here, there is a need to run scenarios of sampling various passenger demand 

conditions efficiently, and, under different aircraft performance conditions. Our 

strategy is to generate the fleet wide expected profit that results from a combination of 

realized demand samples and varying performance conditions, for each top-level 

optimization value of range and passenger capacity. The strategy involves the 

following steps: 
 
Step 1- Generate samples of demand realization ηij for each route. This is the 

uncertain passenger demand instance i that shows up on route j. 
Step 2- Use the allocation results x and pax to distribute this uncertain 

passenger demand ηij across various flights scheduled on route j. This 
gives as an estimate of the load factors on each flight. 

Step 3-   Obtain the cost coefficients for both new and existing aircraft at these 
  load factors. 

Step 4-  Evaluate fleet-wide profit for this instance of the sampled demand i. 
Step 5- Save current net profit resulting from Step 3-4 
Step 6- Repeat step 1-5 for N=500 samples. 
Step 7-  Calculate expected profit for current top-level selection of range and 

passenger capacity, as the average profit over all the N samples  
 

In the sampling phase of Step 1, each sample represents a realized value of 

the number of passengers traveling on each route, where each route has a set of 

pre-allocated aircraft. The cost of operating on each route, is dependent on the 

number of passengers travelling on each of the allocated aircraft on the route – 

therefore, there is a need to establish the exact number of passengers who travel on 

each aircraft. We adopt a weighted sum approach to allocate each sampled instance 

of passengers to aircraft on each route. The average load factor per departure is 

calculated as follows: 

 

                                                           

‡ http://www.flightaware.com/  

http://www.flightaware.com/
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 𝑃𝑃𝑃𝑃𝑥𝑥_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 =  𝑝𝑝𝑝𝑝𝑥𝑥𝑎𝑎𝑎𝑎
∑ 𝑝𝑝𝑝𝑝𝑥𝑥𝑎𝑎𝑎𝑎𝐴𝐴
𝑎𝑎

 . �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑗𝑗�                                       (Eq. 25a) 

 
        𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑟𝑟𝑎𝑎𝑎𝑎 = 𝑃𝑃𝑃𝑃𝑃𝑃_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎

𝑥𝑥𝑎𝑎𝑎𝑎 .  𝐶𝐶𝐶𝐶𝑝𝑝𝑎𝑎
                                                      (Eq. 25b) 

 
Eq. 25a calculates the total number of passengers carried by aircraft type a on 

the route j, and then Eq. 8b calculates the load factor for each trip made by aircraft 

type a on route j.  Using this average load factor per aircraft, and the cost look-up 

table, we then determine the cost coefficients of flying each aircraft type on each route 

in Step 3. The cost calculation includes consideration for available seat capacity on 

each route, as dictated by the aircraft’s payload-range diagram; the further the aircraft 

must travel above the nominal design range (designed with a load factor of 80%), the 

less it can carry due to physical limits imposed by flying further. Figure 12 shows the 

available seats for each aircraft type available in our notional example problem’s fleet 

on each route in the network.  In this plot, the routes appear as categories, so the 

horizontal axis does not use a scale of nautical miles. The curve for the DC-9-10, 

which has the shortest range in the fleet, has a slow drop in load factor up to the 

760-nmi route; this corresponds to the MTOW line in the payload range diagram.  

Then, there is an abrupt drop in available load factor from the 760-nmi route to the 

991-nmi route; this corresponds to the maximum fuel volume limit on the payload 

range diagram.  Several other aircraft, including the AC-X-New, also exhibit these 

tradeoffs at ranges within the values covered in this current network. The performance 

of the AC-X-New shown here corresponds to the aircraft from the results discussion 

that appears later in this report.  
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Figure 12. Available seats for each route and aircraft type 

Figure 13 shows the associated cost per seat for each route, again using the 

route distances as axis label categories rather than in linear scale of nautical miles.  

This uses our own cost predictions; the trends are credible, but these should not be 

viewed as exact predictions of cost.  In this figure, the lowest cost aircraft for each 

route will appear at the bottom of the plot.  As aircraft start to reach their 

passenger-carrying limits at MTOW, the cost per passenger begins to increase. For 

the few aircraft where the maximum fuel volume limit is active for some of the routes 

in the network, this cost per passenger makes a dramatic increase as the range 

increases.  As might be expected, the new AC-X-type aircraft, which uses models of 

current technologies, has the lowest cost-per-seat for a large number of the routes, 

until routes where the new aircraft would start to trade-off fuel for passengers at 

MTOW. 
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Figure 13. Cost per seat for each route and aircraft type 
 

Result Summary  

In this conceptual study, we used a pseudo-enumeration approach to address 

the top-level problem that uses the following range of discrete choices, as appears in 

Table 4. The interval values within the range for each of the variables is selected to 

more rapidly generate reasonable solutions at this stage of development in our 

approach – refinements in the grid space for the top-level enumeration scheme can 

be selected as required for more realistic problems. 
 

Table 4. Design variable values of top-level problem for enumeration 

Range [nmi] Seat Capacity 
500 75 
1200 150 
1900 250 
2600  

   
For each combination of design variables (4 range variables × 3 seat capacity 

variables = 12 enumerations points), we execute the overall subspace decomposition 

methodology shown in Figure 7. Figure 14 below shows the profit data for all possible 

combinations of the enumerated top-level design variables from Table 4. 
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The results show that the optimal seating capacity is 75 seats for the new 

aircraft, because the new aircraft is allocated on routes with average passenger 

demand of less than 110 passengers. Also, because the route distances of these 

routes in which the new aircraft is allocated are less than 1000 nmi (the longest route 

in the network is 1626 nmi), the optimal design range of the new aircraft corresponds 

to a distance of 1200 nmi. Further physical details of the optimal aircraft are retrieved 

from the aircraft design subspace problem that corresponds to the optimal range and 

passenger capacity values [1200nm, 75seats] and appear in Table 5 below. 
 

Table 5. Optimal aircraft design solution 

Range [nmi] 1200 
Passenger capacity 75 
Aspect ratio 12 
Taper ratio 0.3 
Thickness-to-chord ratio 0.095 
Wing sweep [deg] 10.43 
Wing area [sq.ft] 664.76 
Thrust per engine [lbs] 9351 

 

Figure 14. Expected fleet profit values for the combination (‘Test cases’) of the top-level design 
variables (green denotes baseline fleet with no new aircraft type X use) 
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Figure 15 below shows the utilization of each aircraft type in the fleet, over 

each quarter. In these plots, we note that most flights of the new aircraft design are 

allocated around the 500 nmi range to fill in the travel needs. Given the number of 

aircraft available for each aircraft type, it is desired (as seen from the allocation 

results) to have a 1200 nmi range aircraft, as it provides the option to be used on 

fewer long-range routes. 

 

Figure 15. Distribution of fleet allocation over routes per quarter 
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Posterior Analysis 

To validate the commercial application of our framework, we performed a 

posterior analysis with a different set of 1000 samples. To generate this set of 1000 

samples, we pick one sample for each uncertain parameter in the aircraft design 

subspace and performed an off-design mission analysis across all the routes in the 

network, keeping the aircraft design variables fixed to values obtain from the RBDO 

formulation. We then evaluate the performance characteristics of the aircraft and 

determine how many occasions these performance constraints are satisfied. Figure 

16 below shows out of these 1000 samples how many times the aircraft performance 

constraints are met. Take-off distance seems to violate the most, as 78 of the 1000 

samples did not meet the take-off distance criteria. The take-away from this plot is all 

the constraints are satisfied well within the 10% tolerance limit, set in the RBDO 

formulation at the time of designing the aircraft.  

 

It is important to note that even though we see few aircraft designs are 

infeasible, we do not see any reduction in the fleet-level profit as seen in Figure 17. 

This is because those infeasible aircraft design solutions do not get allocated on 

those routes for which these designs cannot meet any one or more of the 

performance constraints (see Eq. 21a). However, the allocation subspace allocates 

the aircraft (including the existing one) in way that does not affect the fleet-level profit. 

Figure 16. Percentage satisfaction of the aircraft performance constraints for the 1000 samples 
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The bigger question here, given the broad-level goal we seek to achieve, is the 

acquisition practitioner willing to take the risk of accepting a design that meets all the 

performance constraints over 90% of the time or should it re-solve the problem with a 

reduced tolerance limit to improve the percentage of constraint satisfaction?  

 

Figure 17. Expected profit comparison [Posterior analysis] 

 

The expected profit calculation uses one sample of demand for every route. 

This demand sample combined with the extrinsic sample of the aircraft design 

subspace, both drawn independently, constitutes one sample for the posterior 

analysis. We repeat this step a thousand times. Intuitively, one can say the expected 

profit from the posterior analysis should be around the same value as the original 

RBDO-IRC formulation run, if both of these methods handling the associated 

uncertainties well. This is confirmed in the plot below. We feel confident of our 

framework to address this type of problems, as attested via posterior analysis with 

1000 independent samples. 

Further, we compared these results (previous sections) based on our approach 

to a fully deterministic approach with no uncertainty included. Our comparison shows 

the value of our approach that incorporates uncertainties, relative to the current, 

deterministically driven decision-making process.  An overview of the deterministic 
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subspace decomposition approach, based on Crossley et al. 2004, Mane et al. 2007, 

appears in the Figure 18 below. 

The deterministic approach assumes nominal values for the uncertain 

parameters in the aircraft design subspace and solves a Nonlinear Programming 

(NLP) problem to design the new aircraft. The objective function for this deterministic 

case is the direct operating cost, subject to the aircraft performance constraints. The 

designed aircraft is then allocated along with the existing aircraft in the airline 

operations subspace with the objective to minimize the fleet-level direct operating 

cost, subject to the demands and operational constraints. Lastly, in the profit 

calculation block, passenger demand is represented by the mean demand value on a 

given route as a realization of the passenger demand on a given day. 

 

We now use this deterministically designed aircraft and then perform a 

posterior analysis with 1000 set of samples of the uncertain parameters to mimic a 

typical day of “uncertain operations”. The aircraft design parameters (the design 

variables in the aircraft design subspace) are kept fixed. However, the aircraft is 

“sized” for each different sample in the posterior analysis. It appears the aircraft 

designed using the deterministic approach is unable to meet the performance related 

constraints on several instances of the uncertain parameters. Figure 19 below 

compares the aircraft designed using RBDO-IRC approach (considers uncertainties) 

and the fully deterministic case (no uncertainties). The figure reveals the 

Figure 18. The deterministic approach without considering the uncertainties in the aircraft 
design and airline allocation subspace 
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deterministically designed aircraft is unable to meet the take-off field length constraint 

for more than 40% of the time.  

The above deterministic run assumes the nominal values of the uncertain 

parameters in the aircraft design subspace that leads to a design that cannot meet the 

performance constraints on several instances of the samples in the posterior analysis. 

Alternatively, one can overdesign by setting a high factor of safety margin to satisfy 

the performance constraints. However, such over-designed aircraft may lead to 

drastic reduction in the fleet-level profit. 

Summary of Subspace Decomposition Approach in USAF AMC vs. 
Commercial Airline Applications 

 

The main difference between the use of the subspace decomposition approach 

to the AMC and commercial airline cases are dictated by the nature of the payload for 

each aircraft type (pallets vs passengers), and, the statistical nature of the demand for 

transport (uncertainty, unstructured cargo vs. scheduled commercial flights). The 

details of differences in subspace modeling in both cases, and, as discussed in earlier 

subsections, are summarized in Table 6. 

  

Figure 19. Aircraft performance constraint satisfaction for the aircraft designed 
with and without considering uncertainties 
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Table 6. Comparison of subspace decomposition formulation between the AMC and the 
commercial applications 

  Subspace Decomposition Approach Application 

  USAF AMC - Military Cargo 

  

Commercial Airline 

  Subspace Level 

Top-Level 
Requirements are number of 
pallets, range and cruise speed of 
aircraft. 

Top level requirements are number of 
seats and range of aircraft 

  Use of Global Optimizer 
(NOMAD) to search design space 

Perform Pseudo enumeration to search the 
design space 

    

Aircraft Sizing Fuselage sizing rules based on 
number of standardized pallets 

Fuselage sizing rules based on number of 
seats 

   

Fleet Operations 
USAF AMC flight operations 
based on 'as needed' basis for 
demand for cargo transport 

Fleet operations based on BTS (BTS 2015) 
data to model future prediction of demand 
(assumes demand in symmetric) 

  

IRC formulation minimizes fuel 
consumption and enforces 
constraint on productivity. 
External demand sampling loop. 
Single IRC solution for each 
sampled demand set. Average fuel 
consumption of sampling returned 
to top level problem 

IRC formulation minimizes operating cost 
while meeting the ever recorded maximum 
demand on a route for travel 

  
Use of aircraft assignment that 
tracks 'tail numbers' of aircraft 

BTS data on historical airline data used to 
predict future demand distribution 

  
Demand sampling done by random 
sampling of starting locations for 
aircraft 

Scheduling done to meet maximum 
demand on all routes at same time 

  
 

Profit calculated through statistical 
sampling schemes on demand, and, 
includes ticket pricing model 

      

 

 



 

Acquisition Research Program 
Graduate School of Business & Public Policy - 50 - 
Naval Postgraduate School 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 

Acquisition Research Program 
Graduate School of Business & Public Policy - 51 - 
Naval Postgraduate School 

Conclusions and Recommendations 

In this report, we have presented application of a subspace decomposition 

approach, that better enables identification of design requirements of a new, 

“yet-to-be introduced” system (here, aircraft) towards improving fleet-wide 

performance metrics. The approach explicitly accounts for the impact that the new 

system will have on fleet wide performance, when used alongside existing systems 

within a fleet, and, also accounts for various data uncertainty that manifest in the 

problem. We have presented an application of the approach for commercial airline 

and military cargo airlift cases, demonstrating domain agnosticism of the approach. 

The approach is envisioned to be useful to relevant decision-maker within the general 

acquisition community (government, military, commercial) by enabling trade-off 

analyses between performance metrics of interest, and, under conditions of data 

uncertainty, thereby enabling a framework for robust decision-making on setting 

design requirements of a new, yet-to-be introduced system. Future work may 

encompass extension of the approach to include additional relevant forms of domain 

driven data uncertainty, and, further improvements in computational efficiency. 
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Outreach and Collaboration 

Work documented in this report has resulted in three conference publications 

at the 11th , 12th & 13th NPS Acquisition Research Symposium (2015, 2016 & 2017) 

(Govindaraju et al. May 2015, Govindaraju et al. May 2016 & Roy et al. May 2017). 

Resulting interactions have produced very valuable feedback on the merits of our 

current results and potential further development of the portfolio approach. The 

symposium especially allowed us to foster closer ties and exchanges with various 

members of the NPS community. The work in this report has also been presented at 

the SciTech 2016 Conference, January 7th - 11th, 2015 in Kissimmee, FL 

(Govindaraju et al. Jan, 2015) and at the SciTech 2017 conference, January 7th – 

11th, 2017 in Grapevine, TX (Roy et al. Jan, 2017). These conference presentations 

generated useful feedback from attending practitioners from operations research and 

financial engineering communities, focused on ways to improve and further develop 

the framework presented in this report. We also anticipate that the work proposed 

here, building upon our previous efforts, will result in an archival journal article 

describing the approach and its results for both the air cargo and commercial airline 

application 
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