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Abstract 

We describe two-stage sequential experiments that are used in building and 

testing valid simulation models. In the first stage, preliminary samples are taken to 

estimate performance and inform the parameters for the experiments in the second 

stage. These two-stage experiments can be mapped to test and evaluation (T&E) by 

having the first stage be applied to developmental test and evaluation (DT&E) and 

the second stage applied to operational test and evaluation (OT&E). By considering 

DT&E and OT&E as part of a combined two-stage experiment, we can better 

leverage the results of DT&E to inform OT&E. 
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Introduction 

Statistical experimentation in test and evaluation is critical to obtaining clear, 

valid results and recommendations regarding the quality of a system being tested. 

We refer to test and evaluation (T&E) of a system, where a system can be a 

weapon, computer program, piece of machinery, and so forth. While much of the 

methodology for T&E has been developed, there is still much room for improvement 

in terms of ensuring widespread knowledge and implementation of statistical 

methods. Hill (2017) states, “The current T&E workforce, while very competent in the 

engineering domain and mechanics of test, will benefit by improving their baseline 

level of statistics, their statistical fluency, thus firming up their overall knowledge 

base.” (p. 123). 

This research develops two-stage statistical procedures that use 

developmental test and evaluation (DT&E) data to design and conduct operational 

test and evaluation (OT&E) plans. Two-stage procedures rely on data collected in a 

first stage to estimate key parameters that are needed to determine what types of 

future tests should be run to answer a research question. In a T&E setting, these 

estimated parameters have some uncertainty given that testing conditions may be 

limited in the first stage or approximated using simulation. This uncertainty can be 

used to determine what tests and statistical parameters to use in the second stage. 

For example, if DT&E reveals strong performance in some areas and weaker 

performance in others, we can design OT&E tests that allocate more effort to 

quantifying the effect of the weaker performance areas on overall system 

sustainability.  

Two-stage statistical procedures are commonly used in analyzing simulation 

models. The first stage runs some preliminary experiments to estimate key 

parameters, like the variance and distribution of the output. Then, second-stage 

experimental parameters are chosen and the results from the second experiment 

contribute to the final assessment of the system. This research draws on two-stage 

procedures by mapping first-stage methods to DT&E, where simulation or less-costly 
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experimental methods are available. The second-stage method is then mapped to 

OT&E with an emphasis on the fact that these experiments may be much more 

costly.  

Examples of highly cited two-stage procedures include Chick and Inoue 

(2001) and those reviewed in Goldsman and Nelson (1998). These methods use the 

first-stage samples to estimate the variance, among other parameters, of multiple 

systems. Estimation of system variance is critical to determining the details of an 

OT&E experiment. Giadrosich (1995) describes how an estimate of the standard 

deviation can be used to choose the sample size, and sequential sampling methods 

that rely on this variance estimation are presented in Singham (2014). We note that 

much of the simulation literature now focuses on fully sequential sampling rather 

than two-stage sampling, but these fully sequential methods may not always be 

appropriate for T&E because of high sampling costs and potential for bias. 

DT&E and OT&E 

DT&E and OT&E each pose their own set of unique challenges. DT&E is 

often performed under highly controlled or even simulated environments, so there 

are limitations on how much this data can be extrapolated to estimate performance 

under operational conditions. Modeling and simulation (M&S) can help quickly obtain 

initial data sets, perform sensitivity analysis, and drive additional testing questions. 

M&S can be a cost-effective method when there are limits on physical 

experimentation, though it should not replace operational testing (Marine Corps 

Operational Test & Evaluation Activity [MCOTEA], 2013). Simulation methods can 

be integrated with a test process, especially in developmental phases before a final 

assessment is made, and can be especially important in DT&E (T&E Management 

Guide, 2005).  

DT&E can usually inform the types of experiments run in OT&E. DT&E plays 

a major role in evaluating a potential system and its ability to meet the capabilities 

requirements. In order to ensure that a proposed system meets the requirements, a 

detailed DT&E process is needed to test system capabilities, limitations, costs, and 

safety. The data carefully collected in these experiments provides a wealth of 
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information that can be used to inform efficient OT&E exercises. Because the 

questions used to design an operational test plan are motived by the results of 

DT&E, there is a unique opportunity to leverage two-stage statistical methods to 

efficiently answer questions about whether the capability requirements have been 

met. 

DT&E experiments should be carefully designed to obtain the best possible 

information to prepare for a successful OT&E exercise. For example, DT&E can be 

used to screen potential tests that may be unnecessary in OT&E because it is 

deemed that certain configurations of a system are likely to have poor operational 

performance and no further effort should be wasted on these settings. While Design 

of Experiments (DOE) is often considered a critical part of OT&E, using it in DT&E 

can only enhance the types of experiments that could be run in OT&E. Ortiz and 

Harman (2016) argue for the use of DOE in DT&E in addition to OT&E because 

randomization, replications, and blocking can be more easily implemented. Such 

experiments in DT&E can narrow the space of possible feasible configurations to 

test in OT&E. This is part of the “shift-left” mentality to do more analysis in earlier 

stages of development to save costs and improve results throughout the entire 

acquisitions process.  

Because OT&E assesses the performance of a system under more realistic 

conditions, testing can be much more expensive and constrained. Thus, it is even 

more important to design a test plan that is able to obtain the best information 

possible given constraints on the overall testing budget across the two stages. 

Additionally, the research questions and decisions that need to be made may have 

changed as a result of DT&E. Understanding integrated testing and evaluation is 

critical to efficient implementation of modeling and simulation results (United States 

Marine Corps [USMC], 2010). Because of the flexibility in conducting large-scale 

simulation experiments, many two-stage procedures have been developed in 

simulation contexts.  
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Objective 

These results exploit two-stage statistical procedures to provide a better link 

between statistical methods used in DT&E and OT&E testing. This research 

addresses the unique challenges present within a T&E environment, such as 

specific capabilities requirements, limited budgets, and risk associated with an 

incorrect evaluation. These challenges are considered in designing statistical tests 

that can be used to provide the best information to determine whether the 

requirements have been met. 

Two-stage procedures are able to quantify the relative allocation of effort in 

the second stage to different configurations based on first-stage performance. OT&E 

often requires a much higher budget due to the operational nature of the testing. 

Thus, the information from the first-stage is critical in determining where effort should 

be focused in the second stage. However, in some cases, sophisticated simulation 

models can be employed for integrating testing, combining aspects of developmental 

and operational testing. For example, Allen (2010) describes the Boeing Engineering 

Development Simulator in its ability to replicate many operational settings while 

testing the enhanced capabilities of the aircraft, saving costs by using a simulated 

environment. We use a comprehensive simulation model to test our procedures. 

This report describes aspects of statistical two-stage experiments, and 

presents a procedure that can be used to analyze the results of a first-stage DT&E 

experiment for use in OT&E. Next, we present a case study using a model for 

sensors designed to monitor targets in a large area of operations and apply the two-

stage procedure to this model to choose a sensor configuration that meets a 

requirement. The results of the model provide an example for how the allocation of 

effort in the second stage can be improved by using the results from the first stage.  
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Technical Background 

Confidence Intervals 

Confidence intervals are commonly used to assess the risk associated with 

the system by evaluating mean performance. Here we give a brief summary of 

confidence intervals to define notation and introduce key parameters. A confidence 

interval is collected from n samples of system performance results to estimate the 

mean of the system μ using 𝑋𝑋� as the centerpoint. The half-width on either side of the 

centerpoint defines the confidence interval 

 
 

where σ2 is the variance estimate for the data. If the data is normally distributed and 

the variance is known, then the confidence interval can be estimated exactly using 

standard z-tables. If the variance of normal data is estimated, then t-tables are used. 

The two key parameters we study are the variance estimate, which is critical to 

understanding the risk associated with an estimate, and the sample size n, which is 

often controllable by the user. A larger variance estimate leads to a larger 

confidence interval. If the variance is underestimated, the confidence interval will be 

too narrow and there will be more certainty (than there should be) in the result. The 

sample size n is critical for estimating the variance, and it also determines the width 

of the confidence interval. More samples are better for reducing uncertainty in 

estimates, but often come at high cost in a T&E setting.  

Choosing the Sample Size 

Sequential methods for generating confidence intervals have been studied 

most recently in Singham and Schruben (2012) and Singham (2014). These 

methods increase the sample size until a confidence interval with a half-width 

smaller than some pre-specified level can be generated. They have traditionally 

been studied in the context of simulation models where large numbers of samples 

can be collected.  
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Suppose the estimate of the standard deviation is s, and we have some 

desired precision in our confidence interval δ, which is the half-width of the interval. 

Then, the sample size that guarantees (for independent and normally distributed 

data) that the confidence interval for μ has a half-width smaller than δ is 

 
 
 

and this can be used to choose the sample size. Johnson, Freeman, Hester, and 

Bell (2014) study sequential methods for estimating ballistic resistance of armor, and 

notes that the methods used by the Department of Defense (DoD) have not changed 

recently. The methods can be simple to implement and do not require much 

statistical analysis, and the authors conduct simulation experiments to determine 

which tests are most effective at estimating different percentiles for the probability 

that the armor is perforated. Such tests are often used as part of Lot Acceptance 

Testing to determine whether a production item is acceptable. We note that many 

tests rely on an estimate of the variance, and the number of samples required by the 

tests is too small to obtain a valid variance estimate.  

Two-Stage Procedures 

Two-stage procedures are often used instead of single stage procedures 

because initial data collected in the first stage can be used to enhance the efficiency 

and quality of results in the second stage. A main example of this is using the first 

stage of an experiment to estimate the variance of the system. The variance is 

usually unknown ahead of time, yet is a crucial part of estimating confidence 

intervals or other measures of performance. A poor variance estimate can lead to 

low validity of statistical results. Results from DT&E can be used to estimate the 

variance of the system, which in turn helps decide how many runs are needed in 

OT&E. For example, if the variance of the system is high, then more runs will be 

needed in OT&E to assess the feasibility of the system. If the variance of the system 

appears low, perhaps fewer runs will suffice. 
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Given a set of n independent and identically distributed (i.i.d.) samples of 

system performance estimates, then  

 
 
 

is used as the variance estimate. When the data is dependent and is normally 

distributed, we can quantify the dependence using autocorrelation with lag h, which 

is a measure of dependence between sample Xi and Xi+h. If the output data of a 

series has positive dependence, we hope that this dependence decreases over time 

as h increases, so that observations far apart are relatively independent. There are a 

number of important points to note if there is dependence between the samples 

collected in the first stage. If dependence exists, then the variance estimate 

collected using the above formula will be inaccurate. If the dependence between 

samples is positive, the variance estimate will be smaller than it really is. This means 

that the risk in the system will be underestimated, and we would proceed to OT&E 

with more certainty in performance than what actually exists.  

Positive dependence between samples can exist for many reasons. For 

example, if a machine is not completely reset and recalibrated between samples, 

then the state left by the previous run can affect future runs. If the same operator 

tests the machine or weapon for each run, there may be correlation between outputs 

based on the habits or practices of the operator. In reality, there may be more 

variance in an operational setting because there will be many different people using 

the equipment. Thus, it is important to ensure independence between samples in the 

first stage. It may be useful to employ a confidence interval for the variance: 

 
 
 

where the chi-squared term is the relevant quantile of the chi-squared distribution 

with n-1 degrees of freedom. This means that we can assess the uncertainty in the 

variance estimate based on the number of samples taken in the first stage, and 

inflate our estimate of the variance in the second stage using the upper confidence 

level of the variance estimate. Inflating the value of the variance estimate will 
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encourage more samples to be taken in OT&E and will protect against the potential 

underestimation of risk resulting from a too-low variance estimate.  

Ranking and Selection 

Ranking and selection procedures attempt to determine the best system 

inputs when the system configurations are discrete options that can be listed. There 

is uncertainty ahead of time about the actual performance of the system, and the 

feasibility of the system to meet some constraints. Figure 1 shows the potential 

layout from the first stage of a ranking and selection experiment. The x-axis 

measures the feasibility of the system, while the y-axis measures the performance 

along the main objective or measure of effectiveness (MOE). The goal is to select 

the system with the best objective that is feasible. Based on the figure, it makes 

sense to invest more time in the second stage on the “Feasible, good objective” 

system and the “Infeasible, best objective” systems. It is possible the latter system 

may actually be feasible if we tested more, or it’s possible the former system may 

actually be the best system. In any case, it probably does not make sense to spend 

resources in the second stage on the “Feasible, poor objective” and the “Infeasible, 

poor objective” systems.  
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Figure 1: Comparison of system configurations by feasibility and objective function. 

Subset Selection/Screening 

A number of subset selection procedures exist that screen out potential 

system configurations that are deemed suboptimal or infeasible. The first stage 

takes some initial number of samples from each system in the hopes of obtaining 

information that can be used for a more efficient second stage. In some cases, many 

system configurations can be eliminated from consideration in the second stage. 

This is something that occurs naturally in the transition between DT&E and OT&E; 

we do not usually bother to test options in OT&E that clearly did not work in DT&E.  

One such subset selection procedure is Singham and Szechtman (2016), 

which uses information in the first stage to estimate the variance of the system and 

then allocate effort to second stage accordingly. Systems with higher variance obtain 

a higher allocation of effort because they have more uncertainty. Similar methods 

can be used as in Figure 1 to allocate sampling effort to systems close to the 

feasibility boundary, or close to optimality. Then, in the second stage, a subset of the 

systems is chosen which is likely to contain the best systems with high probability.   



Acquisition Research Program 
Graduate School of Business & Public Policy - 10 - 
Naval Postgraduate School 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 
  



Acquisition Research Program 
Graduate School of Business & Public Policy - 11 - 
Naval Postgraduate School 

A Two-Stage DT&E/OT&E Integrated Procedure 

We now describe a two-stage statistical procedure that can be mapped to the 

stages of DT&E and OT&E. There are many different contexts to consider, but here 

we study the case where DT&E experiments allow for an arbitrary number of trials. 

For example, computer simulation experiments can often be used to test the 

potential readiness of a system and it can be easy to run many replications. 

Technical Procedure 

This section describes the two-stage procedure used, and in particular, the 

details of the first-stage DT&E needed to calibrate the second stage OT&E. 

The goal of the experiment is to determine which systems meet the 

requirements for performance, and, if more than one system meets the 

requirements, determine which one is the best, or most cost-efficient, option. There 

are two main objectives of the first stage. The first is to screen out any system 

configurations that are highly likely to fail in OT&E, thus saving valuable 

experimentation resources. The second objective is to allocate resources to the 

remaining systems so that in OT&E the best system determination can be made. As 

in Figure 1, more resources would go to systems that are close to the feasibility 

boundary for meeting performance. Additionally, systems that display a high 

variance in the first stage would receive more samples in order to reduce their 

confidence intervals to make an operational suitability determination. 

First, we present the overall structure of the experiment.  

1. Define critical issues and specific objectives for the system. 
2. Develop DT&E experimentation parameters to answer objectives. 

a. Control factors. 
b. Choose factor combinations and sample sizes depending on 

budget. 
3. Run first-stage DT&E and analyze results. 

a. Estimate the mean and variance for each system configuration. 
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b. Reassess critical issues and specific objectives for the system, 
screen out factors and configurations. 

c. Incorporate additional uncertainty due to constraints on DT&E and 
differences from reality. 

d. Determine the budget allocation for the second stage based on 
first-stage results by comparing outcomes to the threshold 
objectives. 

4. Run second-stage OT&E and analyze results 
a. Estimate performance results, incorporating additional variability 

due to differences from reality. 
b. Determine whether the requirements and objectives have been 

met. 

Next, we present the same steps but with the details of the two-stage 

statistical experiment. We run the first-stage experiments to estimate the mean and 

variance. These are used to calculate p-values, which are used to determine which 

systems can be eliminated from contention as worse than the threshold. Then, an 

inflated variance estimate is used to assign sample sizes to each system. This 

inflated estimate is used to account for potential model error resulting from the 

simulation setting being different from an operational setting.  

1. The objective is to select the best alternative system that performs at least 
as well as the benchmark system, which determines the 
feasibility/capability requirements.  

2. Develop DT&E experimentation parameters to answer objectives. 
a. For example, when analyzing performance of a sensor, two factors 

are (1) the coverage area of the sensor and (2) the location and 
number of sensors. 

b. Given the first stage is a simulation stage, we can run a large fixed 
number of replications of each system configuration to estimate the 
variance. However, to illustrate the effect of variance estimation in a 
limited budget, we run 30 replications of each configuration. 

3. Run first-stage DT&E and analyze results. 

a. Estimate the mean 𝑋𝑋�𝑖𝑖 and variance 𝜎𝜎�𝑖𝑖2 for each system 
configuration i, including the benchmark system. Call the 
estimated mean for the benchmark  and, if the capabilities 
threshold for the benchmark is known, then its mean is fixed at μ.  
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b. Reassess critical issues and specific objectives for the system, 
screen out factors and configurations if possible. 

i. Calculate p-values for each system for comparison to the 
system mean. Let n be the number of samples, and 𝐹𝐹𝑡𝑡𝑛𝑛−1 be 
the cumulative distribution function of the t distribution with n-1 
degrees of freedom. If the benchmark is estimated then 
replace μ with  (see Singham and Szechtman, 2016, for an 
example of this type of calculation).  

 
 

 

ii. Use p-values to determine which systems to eliminate. These 
systems have a low probability of having performance that is 
better than the benchmark. For example, if 

 
  

then typically for 0 ≤ 𝛼𝛼 ≤ 0.1, eliminate the system from 
contention for having a mean performance level that is so 
small to be unlikely to be better than the benchmark μ. This 
will remove systems that have a small mean relative to μ while 
also having a relatively a small variance because we are fairly 
certain these systems will perform poorly.  

c. Using confidence intervals for the sample variance, we can choose 
the upper confidence limit to deal with uncertainty associated with 
future OT&E experiments giving a conservative performance 
estimate. 

 
 
 

d. Determine the budget allocation for the second stage based on 
first-stage results by comparing outcomes to the threshold 
objectives. 

i. Calculate the sample size needed for each system to compare 
it to the threshold using properties of absolute and relative 
precision sampling as determined in Singham (2016, 2017). 

 
 
 

ii. We need to do a similar calculation for the benchmark system 
if its true performance μ is not known. We decide a precision 
δ>0, which is the allowed deviation from μ that would be 
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acceptable in a confidence interval estimate of the benchmark. 
Then, the second stage number of samples for the benchmark 
is 

 
 

iii. Rescale the sample sizes to be proportions for the second 
stage given a total budget N, and S total systems under 
testing. 

 
 
 
 

iv. If the unscaled 𝑛𝑛𝑖𝑖 values are much too large for OT&E, then 
run 𝑛𝑛𝑖𝑖 samples for system i in DT&E to obtain further 
information and repeat the screening Step 3.b.ii above to 
remove additional systems that appear unlikely to beat the 
benchmark. 

4. Run second-stage OT&E and analyze results. 

a. Run experiments on the potential subset using 𝑛𝑛�𝑖𝑖 sample sizes for 
each system i.  

b. Determine whether the requirements and objectives have been met 
by comparing the final results to the threshold. A similar p-value 
calculation to the one above can be used to determine if a system 
is significantly better or worse than the threshold. 

What will most likely occur is that the first-stage experiment will determine a 

large number of samples 𝑛𝑛𝑖𝑖 that will be needed to test each system. If these sample 

sizes are too large for OT&E, then we recommend running these experiments in 

DT&E to obtain as much information as possible and repeating Steps 3 and 4. The 

idea is that with enough samples, the difference |𝑋𝑋�𝑖𝑖 − 𝜇𝜇| becomes large relative to 

𝜎𝜎�𝑖𝑖/�𝑛𝑛𝑖𝑖 so that a clear determination can be made whether system i is better or 

worse than the benchmark μ. This can be used to screen out systems that are worse 

than the benchmark, and determine the allocation of effort toward systems better 

than the benchmark. Afterwards, if the number of samples is still too high for OT&E 

and there is a total budget N for samples, the rescaling can be done to allocate the 

budget towards systems that require more samples to make a determination. 
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In some cases, the T&E analyst may want to further reduce the subset from 

those that appear better than the benchmark for OT&E. For example, if seven out of 

10 configurations are in the selected subset, the analyst may only choose the top 

three for consideration in OT&E to determine the best one.  

Case Study—Unmanned Sensors for Intelligence Collection 

To illustrate the procedure, we use a simulation experiment designed to test 

the performance of sensors for tracking targets such as pirates or smugglers. These 

sensors are designed to report information on potential targets of interest in large 

unpatrolled areas of water. Different sensors have different properties. For example, 

some have larger areas of coverage, while others may be more accurate and have a 

higher probability of detecting a target. The goal is to determine whether a particular 

sensor configuration can achieve the performance needed to be successful in 

finding targets, while balancing the cost and number of sensors to be purchased. 

We employ a simulation model to test the performance of the sensors with 

different configuration parameters. Obviously, physical tests are needed to confirm 

the sensors actually work as specified in the area of operation, but here we focus on 

estimating the sensor’s performance in a situational context given that the physical 

specifications are met. 

The simulation model has been built by the author and colleagues and is part 

of ongoing research being conducted at the Naval Postgraduate School. The full 

theoretical model details are available in Nunez, Singham, and Atkinson (2017). The 

model simulates numerous target paths given intelligence about the target’s 

trajectory. Sensors can then be placed, and the number of target paths that they 

successfully observe recorded. Experiments can be run to determine a number of 

objectives; for example, which configuration is the best, or how often does a 

particular setup successfully observe the target. Again, we note that in this study we 

do not consider whether physical specification requirements are met, but rather 

focus on whether the particular system can meet operational requirements.  
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Cheng (2016) studied different sensor configurations using this model to 

compare their performance. The benchmark given was Lynx multi-mode radar, 

which has a range of 80km (about 0.72 degrees), and an endurance of 48 hours. 

The Lynx radar system delivers high quality results but can be quite expensive 

(close to $7 million each). Thus, we want to determine if we can obtain similar 

performance results using two cheaper unmanned sensors that may have smaller 

coverage areas. We use the sensor simulation model as the model to test the two-

stage procedure. The model is flexible and allows for infinite input possibilities, and, 

as it is a computer simulation model, it is relatively inexpensive to run multiple 

replications to collect data.  

Experimental Results 

The experiment runs by simulating multiple potential target paths based on 

intelligence. Sensors are placed at the beginning of the run to attempt to locate the 

target as it passes through the area, and the simulation records the number of paths 

that intersect the sensor coverage areas. The number of paths that intersect the 

coverage area determines the performance of the sensor placement configuration. 

Alternatively, the proportion of paths that intersect the coverage area can be used to 

measure the probability of successfully observing the target. There will be variation 

each time the experiment is run due to randomness in the simulated paths. Thus, it 

is important to run multiple replications to estimate the potential error in the 

estimated probability of success.  

We place sensors along the central expected path of the simulated target to 

obtain the maximum probability of success. Figure 2 shows the benchmark sensor 

placement for a target that is predicted to depart off the coast of South America 

towards the western coast of Mexico (red box). The blue heatmap shows the relative 

likelihood of the target’s location given the intelligence at hour 25, with a higher 

probability in the middle. The Lynx sensor is positioned to anticipate observing the 

target at hour 50, but there is a high probability the target will not pass through the 

sensor and will remain undetected. 
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Figure 2: Benchmark Sensor Placement (Red Box) and Target Distribution (Blue Heatmap).. 

The alternative systems to the benchmark include those with two sensors with 

smaller coverage areas. We place the sensors to anticipate where the target will be 

at hours 35 and 70. While these sensors are smaller, there are two of them so the 

second sensor may capture targets that remained undetected by the first sensor.  

 
Figure 3: Dual Configuration: Alternative Sensor Placement With Two Smaller Sensors. 
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We conduct first-stage experiments to compare different alternative 

configurations against the benchmark. The results of these experiments decide 

which systems have the potential to be better than the benchmark, and how to 

allocate second-stage experiments in OT&E. We note that sensors with smaller 

coverage areas are assumed to be cheaper and are preferred. A second-stage 

experiment could consist of more comprehensive simulation runs, or operational 

testing of the sensor in practice to see how it performs. Table 1 summarizes names 

of the system configurations, with the benchmark, dual sensor configurations, and 

their coverage widths. 

Table 1: Names and Coverage of System Configurations 

System Configuration Coverage Width (each 
sensor, degrees ) 

Lynx (single) benchmark 0.72 
Dual20 0.20 
Dual30 0.30 
Dual35 0.35 
Dual37 0.37 
Dual38 0.38 
Dual39 0.39 
Dual40 0.40 
Dual50 0.50 

 

All of the sensors in the dual configuration have much smaller coverage 

widths than the Lynx. We apply the algorithm to a series of first-stage experiments 

as described above by running 30 replications of the experiment for each 

configuration and saving the mean and variance of the proportion of targets 

detected. Each replication simulates 200 target paths based on intelligence. We use 

these values to calculate p-values relative to the benchmark, and then eliminate 

systems who have p-values smaller than α=0.05, as these are unlikely to be better 

than the benchmark. For the remaining systems still in contention, we calculate the 

upper bound on σ2 to determine the number of replications needed to distinguish the 

system from the benchmark mean. Table 2 summarizes the results of the 

experiment. 
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Table 2: First Stage Experiment Performance 

System 
Configuration 

First 
Stage 
Mean 

p-
value 

Number of 
Samples 

Proportion of Samples 
for Second Stage 

Lynx (single) 
benchmark 

0.1457 --- 35 9% 

Dual20 0.0408 0 --- --- 
Dual30 0.0892 0 --- --- 
Dual35 0.1155 0 --- --- 
Dual37 0.1273 0 --- --- 
Dual38 0.1407 0.17 220 58% 
Dual39 0.1543 0.96 65 17% 
Dual40 0.1542 0.97 57 15% 
Dual50 0.2235 1 2 1% 

 

We require a precision of 1% on the estimate of the benchmark, so the 

allowable deviation in the estimated performance of the benchmark is 1%. The 

systems with two sensors with small coverage areas (Dual20, Dual30, Dual35, 

Dual37) all have estimated performance significantly below that of the benchmark, 

so the p-value is 0. We can eliminate these systems from consideration in the 

second stage. It is apparent that Dual50 has the best performance by far, with 

Dual38, Dual39, and Dual40 having performance close to that of the Lynx single 

sensor system. Depending on the requirements, we may want to choose the sensors 

with the smallest coverage width if they are cheaper. 

We use the algorithm to calculate the number of samples needed in the 

second stage for the remaining systems and the benchmark. The Lynx system 

requires 35 samples to estimate the mean performance down to 1% absolute error. 

The Dual50 system only requires 2 samples, mainly because its performance is 

much higher than the benchmark, so little additional testing is needed to distinguish 

it as an improvement. The Dual38 system requires 220 samples because its 

performance is closest to that of the benchmark, so many more samples are 

required to distinguish whether or not it is better. Dual39 and Dual40 require 65 and 

57 samples, respectively, to ensure they are better than the benchmark.  

The last column shows the percentage of effort needed for each system. If 

the second stage cannot complete the recommended sampling effort because of 
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cost or operational constraints, the last column shows the relative effort that should 

be expended on each system, with 58% of the effort going to Dual38. At the end of 

the second stage, we hypothesize that Dual39 is the “cheapest” system that has 

performance at least as good as the benchmark, where the smaller coverage area 

sensors are cheaper. However, we still must expend significant effort on Dual38 

because it could be better or indistinguishable from the benchmark.  

We conduct a second-stage experiment, which is meant to represent a more 

expensive operational setting but still involves a simulated model. Each replication 

now simulates 20,000 independent target paths (instead of 200 in the first stage) so 

it results in a more accurate estimate. In reality, the second-stage experiments 

would be in an operational setting where real information could be obtained.  

Table 3: Second Stage Experiment Performance 

System 
Configuration 

First 
Stage 
Mean 

p-
value 

Lynx (single) 
benchmark 

0.1437 --- 

Dual38 0.1404 0 
Dual39 0.1473 1 
Dual40 0.1542 1 
Dual50 0.2279 1 

 

The second-stage results in Table 3 show clearly that Dual38 does not 

perform as well as the benchmark, while Dual39, Dual40, Dual50 are superior to the 

benchmark. Thus, the conclusion is that Dual39 is the cheapest system that 

performs at last as well as the benchmark, meaning two sensors with coverage 

width of 0.39 would perform at least as well as one sensor with width 0.72. However, 

the analyst could still choose Dual38 if she or he felt it was close enough to meeting 

the requirements. We note that the first stage required 270=9x30 total replications, 

while the second stage required 379 total replications. By eliminating some systems 

after the first stage and reallocating effort, we are able to focus effort on obtaining 

the best system. This saves effort over continuing to employ equal allocation over all 

systems in the second stage.   
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Conclusion 

This report presents two-stage statistical methods that can be used to link 

experimental parameters in DT&E and OT&E experiments. The first-stage 

experiments can be used in DT&E to estimate the performance of different systems. 

These results can be analyzed to determine which system configurations to test in 

OT&E and how to allocate effort in the second stage. Typically, more effort should 

be allocated towards systems with high variance or those close to the feasibility 

boundary or capabilities requirement, which can be determined by a benchmark or 

other metric. We apply the algorithm to a model designed to compare different 

sensor configurations.  
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