
Acquisition Research Program
Graduate School of Business & Public Policy
Naval Postgraduate School

UCI-AM-18-029

ACQUISITION RESEARCH PROGRAM
SPONSORED REPORT SERIES

Cybersecure Modular Open Architecture Software Systems for

Stimulating Innovation

8 December 2017

Dr. Walt Scacchi
Dr. Thomas A. Alspaugh

Institute for Software Research

University of California, Irvine

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

Disclaimer: This material is based upon work supported by the Naval Postgraduate School Acquisition
Research Program under Grant No. N00244-16-1-0053. The views expressed in written materials or
publications, and/or made by speakers, moderators, and presenters, do not necessarily reflect the official
policies of the Naval Postgraduate School nor does mention of trade names, commercial practices, or
organizations imply endorsement by the U.S. Government.

Acquisition Research Program
Graduate School of Business & Public Policy
Naval Postgraduate School

The research presented in this report was supported by the Acquisition Research
Program of the Graduate School of Business & Public Policy at the Naval
Postgraduate School.

To request defense acquisition research, to become a research sponsor, or to print
additional copies of reports, please contact any of the staff listed on the Acquisition
Research Program website (www.acquisitionresearch.net).

http://www.acquisitionresearch.net/

Acquisition Research Program
Graduate School of Business & Public Policy - i -
Naval Postgraduate School

Executive Summary

This research investigated a new approach to stimulate innovation in the

acquisition, production and evolution of cybersecure modular OA software systems.

These systems increasingly incorporate Web-based, mobile, or low-cost

microelectronic devices. Systems of these kinds must combine best-of-breed

software components subject to agile, adaptive requirements of multiple parties,

while conforming to reusable software products lines. We seek to make this a

simpler, more transparent, and more tractable process. Our recent and continuing

line of research studies, publications and reports demonstrate how complex OA

systems can be designed, built, and deployed with alternative components and

connectors resulting in functionally similar system versions, to satisfy overall system

capability requirements as well as individual OA system component intellectual

property (IP) and cybersecurity requirements. These requirements are surfacing new

challenges that can decrease (or increase) software acquisition costs.

 Our next step addressed here was to initiate investigations the use of

smart contracts and associated technologies (e.g., cryptocurrency, domain-

specific blockchain transaction languages and computational tools) for specifying

shared agreements between multiple parties to acquisition efforts. We believe

smart contracts can be computationally enacted during the design, integration,

release, deployment, and evolution of cybersecure, modular open architecture

software systems in ways that can model, track and analyze the associated

contractual obligations and customer rights that drive costs and risks. Smart

contracts incorporate computational specifications (i.e., computer programming

script code) that enable formal and precise agreements between parties that can

entail costing constraints, and production or cybersecurity requirements, that are

associated with articulated OA system procurement obligations and rights. The

associated technologies for smart contracts are emerging capabilities that enable

computational protocols for tracking elemental transactions between multiple

parties to a shared contractual agreement. Such agreements can arise, for

example, when different commercial firms, non-profit enterprises, program

Acquisition Research Program
Graduate School of Business & Public Policy - ii -
Naval Postgraduate School

offices, and government agencies decide to share acquisition costs and risks in

order to more rapidly assemble, produce, deliver, or evolve innovative

cybersecure modular OA software systems. Our research results are

documented in this Final Report.

Last, our research results have been well received in presentations to

different audiences, including academic and industry research groups, the larger

Defense community, and the Federal Government more broadly. In particular,

throughout 2017 our research results have been presented to audiences at the

2017 Acquisition Research Symposium (Monterey, CA). Other project activities

that produced material results include multiple presentations at the new

Cybersecurity Policy & Research Institute based at the University of California,

Irvine. These presentations have included senior level executives from more than

80 industry and local government agencies, including law enforcement programs

now burdened with investigating cybercrimes that entail covert entry, data

exfiltration, and extortion based on legacy systems. As can been seen in these

chapters, common and differentiated research results found in the chapters

represent our efforts at reaching out to different audiences interested in our

research, and what advice or guidance it may offer to such audiences.

Acquisition Research Program
Graduate School of Business & Public Policy - iii -
Naval Postgraduate School

Acknowledgement

This report was supported by grant #N00244-6-1-0053 from the Acquisition

Research Program at the Naval Postgraduate School, Monterey, CA. No

endorsement, review, or approval implied. This paper reflects the views and opinions

of the authors, and not necessarily the views or positions of any other persons,

group, enterprise, or government agency.

Acquisition Research Program
Graduate School of Business & Public Policy - iv -
Naval Postgraduate School

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
Graduate School of Business & Public Policy - v -
Naval Postgraduate School

About the Authors

Walt Scacchi—is senior research scientist and research faculty member at

the Institute for Software Research, University of California, Irvine. He received a

PhD in information and computer science from UC Irvine in 1981. From 1981–1998,

he was on the faculty at the University of Southern California. In 1999, he joined the

Institute for Software Research at UC Irvine. He has published more than 200

research papers, and has directed 70 externally funded research projects. In 2011,

he served as co-chair for the 33rd International Conference on Software

Engineering—Practice Track, and in 2012, he served as general co-chair of the 8th

IFIP International Conference on Open Source Systems. [wscacchi@ics.uci.edu]

Thomas Alspaugh—is a project scientist at the Institute for Software

Research, University of California, Irvine. His research interests are in software

engineering, requirements, and licensing. Before completing his PhD, he worked as

a software developer, team lead, and manager in industry, and as a computer

scientist at the Naval Research Laboratory on the Software Cost Reduction, or A-7,

project. [thomas.alspaugh@acm.org]

mailto:wscacchi@ics.uci.edu
mailto:thomas.alspaugh@acm.org

Acquisition Research Program
Graduate School of Business & Public Policy - vi -
Naval Postgraduate School

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
Graduate School of Business & Public Policy - vii -
Naval Postgraduate School

UCI-AM-18-029

ACQUISITION RESEARCH PROGRAM
SPONSORED REPORT SERIES

Cybersecure Modular Open Architecture Software Systems for

Stimulating Innovation

8 December 2017

Dr. Walt Scacchi
Dr. Thomas A. Alspaugh

Institute for Software Research

University of California, Irvine

Disclaimer: This material is based upon work supported by the Naval Postgraduate School Acquisition
Research Program under Grant No. N00244-16-1-0053. The views expressed in written materials or
publications, and/or made by speakers, moderators, and presenters, do not necessarily reflect the official
policies of the Naval Postgraduate School nor does mention of trade names, commercial practices, or
organizations imply endorsement by the U.S. Government.

Acquisition Research Program
Graduate School of Business & Public Policy - viii -
Naval Postgraduate School

THIS PAGE LEFT INTENTIONALLY BLANK

Acquisition Research Program
Graduate School of Business & Public Policy - ix -
Naval Postgraduate School

Table of Contents

Executive Summary .. i

Research Overview .. 1

Cybersecure Modular Open Architecture Software Systems for Stimulating
Innovation .. 9

Problem ... 10

Solution ... 10

Approach ... 10

Why this approach? .. 10

Background: Blockchains, Smart Contracts and Software Supply Chains 13

Blockchains .. 13

Smart Contracts .. 15

Software Supply Chains and Ecosystems .. 16

Social, Technical, and Unintentional Cybersecurity Threats to Software Supply
Chains .. 21

Recent Cybersecurity Attacks on Software Supply Chains 21

Social and Technical Threats to OA Software Supply Chains 24

Social Threats to Software Supply Chains .. 25

Technical Threats to Software Supply Chains... 26

Other Unintentional Socio-Technical Threats .. 28

Countermeasures for Mitigating Cybersecurity Threats 32

Security Licenses as Smart Contracts for Specifying Software Cybersecurity
Rights, Obligations and Countermeasures ... 35

Some Possible Rights within Security Licenses for OA Software System
Components .. 36

Sample of Security Obligations within Security Licenses for OA Software
System Components ... 36

Exclusive Security Rights .. 37

Effectiveness, Manageability, Evolvability of Security Licenses 38

Blockchains and Smart Contracts for Installed Software Configurations 41

Ledgers of installed software configurations ... 41

Transactions for installed software configurations .. 43

Acquisition Research Program
Graduate School of Business & Public Policy - x -
Naval Postgraduate School

Smart Contracts for installed software configurations 44

An example ledger, transaction, smart contract implementation system 44

Blockchains and Smart Contracts for Managing Software Development and
Evolution Process Transactions ... 47

Continuous Software Development and Evolution Processes for Open
Architecture Software Systems ... 47

Ledger: what versions of what software components and connectors are
integrated in what OA configuration topology .. 48

Transactions: OA evolution steps .. 49

Smart Contracts: enforcing obligations for each OA evolution step 49

Case Study: OA C2/B Software System Evolution Process Updates 51

Discussion ... 63

Cyberattacks on software evolution, release, and update processes 63

Innovation for Acquisition Research ... 65

Recommendations: Future extensions and new research elaborations 67

Future research topic – cybersecurity threat meta-model formalization and
codification.. 67

Conclusions ... 73

References .. 75

Acquisition Research Program
Graduate School of Business & Public Policy - 1 -
Naval Postgraduate School

Research Overview

Introduction

The goal of this research was to investigate a new approach to stimulate

innovation in the acquisition, production and evolution of cybersecure modular Open

Architecture (OA) software systems [Kendall 2015]. We seek to make this a simpler,

more transparent, and more tractable process. Our recent research demonstrates

how complex OA systems can be designed, built, and deployed with alternative

components and connectors resulting in functionally similar system versions, to

satisfy overall system capability requirements as well as individual OA system

component intellectual property (IP) and cybersecurity requirements [DoDGSA 2015,

Scacchi and Alspaugh 2011,Scacchi and Alspaugh 2012, Scacchi and Alspaugh

2013a, Scacchi and Alspaugh 2013b, 20]. These requirements are surfacing new

challenges that can decrease (or increase) software acquisition costs [Scacchi and

Alspaugh 2014, Scacchi and Alspaugh 2015, Scacchi and Alspaugh 2016].

Our next step proposed here was to investigate the use of, and technical risks

for, blockchains [2017], smart contracts [2017], and associated technologies. The

associated technologies include distributed ledgers, cryptocurrency, domain-specific

blockchain transaction languages and computational tools [Ethereum 2017]) for

specifying shared agreements between multiple parties to acquisition efforts. We

believe smart contracts can be computationally enacted during the design,

integration, release, deployment, and evolution of cybersecure, modular open

architecture software systems [Scacchi and Alspaugh 2013b, Scacchi and Alspaugh

2015, Scacchi and Alspaugh 2016] in ways that can model, track and analyze the

associated contractual obligations and customer rights that drive costs and risks.

Smart contracts incorporate computational specifications (i.e., computer

programming script code) that enable formal and precise agreements between

parties that can entail costing constraints, and production or cybersecurity

requirements, that are associated with articulated OA system procurement

obligations and rights. The associated technologies for smart contracts are emerging

Acquisition Research Program
Graduate School of Business & Public Policy - 2 -
Naval Postgraduate School

capabilities that enable computational protocols for tracking elemental transactions

between multiple parties to a shared contractual agreement. Such agreements can

arise, for example, when different commercial firms, non-profit enterprises, program

offices, and government agencies decide to share acquisition costs and risks in

order to rapidly assemble, produce, deliver, or evolve innovative cybersecure

modular OA software systems [Scacchi and Alspaugh 2015,Scacchi and Alspaugh

2016].

Our efforts are also aligned to Better Buying Power (BBP) initiatives [DoD

2016, Kendall 2015] to: (a) use Modular Open Systems Architectures to stimulate

innovation; (b) strengthen cybersecurity throughout the (software system) acquisition

life cycle [DoDGSA 2015]; and (c) increase the use of (OA software system)

prototyping and experimentation. Beyond this, our investigation into smart contracts

and associated technologies could contribute to new ways or means to specify or

review acquisition contract incentives as well as tracking and improving contract

performance.

Research Scope

There is a significant need for sustained research that investigates the interplay

and inter-relationships between (a) current/emerging guidelines for the acquisition of

software-intensive systems (including contract management and software

development issues), and (b) how secure, reusable software product lines [Guertin,

Sweeney, Schmidt 2015, Mactal, Spruill 2012, Womble, Schmidt et al. 2011] that

employ a modular, cybersecure OA incorporating OSS/CSS component products

(e.g., widgets, apps, and mashups) and their production processes [Scacchi and

Alspaugh 2013b] are essential to stimulating innovation and improving the cost-

reduction effectiveness of software system acquisition efforts.

Our acquisition research efforts are related to and primarily aligned with BBP

initiatives that (a) use Modular Open Systems Architectures to stimulate innovation;

(b) strengthen cybersecurity throughout the (software system) product life cycle; and

(c) increase the use of (OA software system) prototyping and experimentation. As an

example,

Acquisition Research Program
Graduate School of Business & Public Policy - 3 -
Naval Postgraduate School

 “BBP 3.0 continues the emphasis on open systems architectures
and modularity, focusing on providing technical enablers and tools
that can be employed by the acquisition workforce and industry to
enhance technology insertion, particularly in the most rapidly
advancing areas of commercial technology (e.g. microelectronics,
sensors, and software)...Such approaches should be considered
for enabling competition for upgrades, facilitating reuse across the
joint force, easing technology insertion, and aiding adoption of
incrementally upgraded software” (emphasis added) [Kendall
2015].

Our research efforts address such concerns through cybersecure modular OA

software systems that adhere to five principles: (a) Establish an agile, adaptive

ecosystem environment for software component/system development and

deployment; (b) Employ modular OA software system design and reference

architectures that accommodate reuse of bespoke, licensed, or legacy software

components; (c) Designate open interfaces for bespoke, licensed, or legacy

OSS/CSS system components or subsystems; (d) Use open standards; and (e)

Certify conformance to contractual, cybersecurity, and intellectual property

requirements and customer rights. Research that advances the acquisition,

production, and evolution of cybersecure modular OA software systems—especially

those incorporating Web-based, mobile, or smart IoT devices—that follow these

principles is highly relevant to for-profit industries and non-profit organizations, as

well as to DoD and other government agencies.

Through our research, we seek to identify, track, and analyze acquisition

costs, and development practices, for Web-based OA systems, mobile and

emerging smart microelectronic IoT devices for use in enterprise software system

applications. Such systems commonly integrate components independently

developed by software producers using OSS or CSS, which then may be

integrated into complete systems by system integrators [George, Morris, and

O'Neil 2014, Reed, Benito, et al. 2012, Reed, Nankervis 2014, Scacchi and

Alspaugh 2014]. Program managers, acquisition officers, and contract managers

will increasingly be called on to review and approve cybersecurity measures

employed during the design, integration, deployment, and evolution of OA

systems [Scacchi and Alspaugh 2013b, Scacchi and Alspaugh 2013c].

Acquisition Research Program
Graduate School of Business & Public Policy - 4 -
Naval Postgraduate School

Our research effort focused on performance of four concurrent research

tasks. We briefly describe each research task then follow with an elaboration of

our research description and the acquisition research questions we address.

We seek to identify, track, and analyze ways and means for how to articulate,

tailor, and streamline the process for diverse acquisition scenarios for cybersecure

modular OA software systems that accommodate Web-based, mobile, and smart IoT

devices running software widgets, apps, and mashups. We seek to do so in ways

that focus on software cost drivers and that highlight smart contracting opportunities

for stimulating innovation that can realize cost reduction through modular

cybersecure OA software components or system configurations. This investigation is

therefore applicable to complex software elements used in many kinds of

component-based OA software-intensive systems within government agencies, such

as the DoD, as well as commercial firms and non-profit enterprises.

Realizing our research objectives and answering our research questions

entails that our investigation focused on four research tasks in our approach,

described in the next sub-section below. However, we propose that these four tasks

are most effectively and most efficiently engaged when performed concurrently,

rather than sequentially, due to the emergent nature of the proposed research line of

study. Such concurrency also enables us to take advantage of advances in scientific

knowledge or technological innovations that may appear during the course of our

research efforts and task performance.

List of Research Tasks

i) Investigate the interactions between blockchains, smart contracts, and

associated technologies with software system acquisition guidelines and processes,

and the cost consequences of alternative software system architectures

incorporating different mixes of OSS and CSS widgets, apps, mashups, and IoT

device components subject to shared acquisition agreements among multiple parties

that seek to produce assembled capabilities for C3CB applications using

cybersecure modular OA components and SPLs [Scacchi and Alspaugh 2013a,

Scacchi and Alspaugh 2013b, Scacchi and Alspaugh 2013c, Scacchi and Alspaugh

Acquisition Research Program
Graduate School of Business & Public Policy - 5 -
Naval Postgraduate School

2015, Scacchi and Alspaugh 2016]. This entails exploring the balance between

development, verification, and validation of software licenses and cybersecurity

rights during procurement contract enactment, as well as the software widget, app,

mashup, and IoT device component/license costs, while managing the development

and evolution of OA systems at design-time, build-time, release and run-time, and

post-deployment system evolution.

ii) Develop and/or refine formal foundations for establishing acquisition

guidelines, blockchain and smart contracting practices that program managers can

use in diverse acquisition scenarios for reduced cost software-intensive systems that

rely on development and deployment of secure modular OA systems using OSS

widgets, apps, mashups, and IoT devices, as well as SPL technology and processes

[Scacchi and Alspaugh 2011, Scacchi and Alspaugh 2012, Scacchi and Alspaugh

2013a, Scacchi and Alspaugh 2013b, Scacchi and Alspaugh 2013c, Scacchi and

Alspaugh 2014, Scacchi and Alspaugh 2015, Scacchi and Alspaugh 2016].

iii) Continue to develop concepts contributing to the emerging design of an

automated approach supporting acquisition of cybersecure, modular OA software

systems by (a) determining their conformance to acquisition guidelines/policies,

contracts, and related license management issues, and (b) giving future acquisition

workforce support and insights to properly review, approve, and manage the

acquisition of complex systems that incorporate cost-sensitive acquisition of

cybersecure OA systems composed from software widget/app or software-based IoT

device components [Scacchi and Alspaugh 2011, Scacchi and Alspaugh 2012,

Scacchi and Alspaugh 2013a, Scacchi and Alspaugh 2013b, Scacchi and Alspaugh

2013c, Scacchi and Alspaugh 2014, Scacchi and Alspaugh 2015, Scacchi and

Alspaugh 2016].

iv) Document the investigation, foundations, and results of the research in:

(a) a Technical Report delivered within 30 days of project completion to the

Technical Point of Contact at NPS; (b) a research paper to be presented at the

14th Annual Acquisition Research Conference, in Monterey, CA, May 2017; (c) a

progress report with the OSD sponsor via a video teleconference or other

Acquisition Research Program
Graduate School of Business & Public Policy - 6 -
Naval Postgraduate School

meetings at a time to be determined during the period of the award; and (d)

related research venues and publications, including periodic progress reports.

Relevance of Our Efforts to Acquisition Research and Practice

Overall, through this research effort, we continue to seek to identify, track,

and analyze ways and means for how to articulate, tailor, and streamline the

process for diverse acquisition scenarios for secure OA systems through use of

blockchains and smart contracts that accommodate OA system supply chains

that deliver Web-based and mobile devices running widgets, apps, and mashups.

We seek to do so in ways that focus on innovative opportunities emerging from

the potential introduction of blockchains and smart contracts in OA system

acquisition processes and ecosystems. This investigation is therefore applicable

to complex software elements used in many kinds of component-based OA

software-intensive systems within business and academic enterprises, other non-

governmental organizations, as well as DoD and other governmental

organizations. Furthermore, through these four tasks, this acquisition research

supports and advances a public purpose by investigating challenges arising from

the adoption and deployment of, which is a broad audience for our research

[Scacchi and Alspaugh 2014b, Scacchi and Alspaugh 2014c, Scacchi and

Alspaugh 2015, Scacchi and Alspaugh 2016, Scacchi and Alspaugh 2017a,

Scacchi and Alspaugh 2017b].

Finally, we note that academic institutions, government agencies, and

most large-scale business enterprises continually seek new ways to improve the

functional capabilities of their software- intensive systems through lower

acquisition costs. The acquisition of OA systems that can adapt and evolve

through replacement of functionally similar Web-based and mobile device-based

software components and SPLs is an innovation that can lead to lower cost

systems with more powerful, more agile functional capabilities. There is a

significant need for sustained research that investigates the interplay and inter-

relationships between (a) current/emerging guidelines for the acquisition of

software-intensive systems, and (b) how secure, reusable software product lines

Acquisition Research Program
Graduate School of Business & Public Policy - 7 -
Naval Postgraduate School

[Mactal and Spruill 2012, Womble, Schmidt, Arendt, Fain 2011] that employ an

OA incorporating OSS/CSS component products (e.g., widgets, apps, and

mashups) and their production processes [Scacchi and Alspaugh 2013b], are

essential to improving the buying power and cost-reduction effectiveness of

software-intensive program acquisition efforts.

OA system acquisition, development and deployment are thus an

approach to realizing better buying outcomes for lowering system costs while

jointly enabling more competition through the adoption of OA systems that utilize

standardized interfaces, utilize OSS components where appropriate, increase

small business roles and opportunities, use of technical development phase for

true risk reduction and rapid prototyping, as well as doing more without more

[Scacchi and Alspaugh 2014a, Scacchi and Alspaugh 2015].

Last, we are grateful for the support and funding we have received that

enabled our acquisition research to continue, and as documented in this Final

Report. We welcome any comments or questions regarding any materials or

concepts presented in this Report.

Acquisition Research Program
Graduate School of Business & Public Policy - 8 -
Naval Postgraduate School

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
Graduate School of Business & Public Policy - 9 -
Naval Postgraduate School

Cybersecure Modular Open Architecture Software
Systems for Stimulating Innovation

How might we stimulate the development of innovative approaches to

continuously assuring the cybersecurity of Open Architecture (OA) software system?

This is the acquisition research challenge we are addressing. In particular, we are

interesting in investigating innovations that represent either incremental

improvements or substantial departures in current acquisition practice of such

systems. We target our efforts to practical OA software system production,

deployment and sustainment for applications like command and control, or business

enterprise (C2/B) systems that are central to the mission and operations of military

or industrial enterprises. So we seek to stimulate significant innovations that employ

emerging concepts and technologies to problems observable with the acquisition,

development, and evolution of modern C2/B systems.

Our interest is to stimulate the development of innovative approaches to

continuously assuring the cybersecurity of Open Architecture (OA) software system.

We focus attention to exploring the potential for using blockchains and smart

contract techniques, and how they can be applied to support acquisition efforts for

software systems for OA command and control, or business enterprise (C2/B)

systems. We further limit our focus to examining the routine software system

updates to OA software configuration specifications that arise during the

development and evolution processes arising during system acquisition. We find that

there are new ways and means by which blockchains and smart contracts can be

used to continuously assure the cybersecurity of software updates arising during OA

software system development and evolution processes. We present a case study

examining software evolution process that updates an OA C2/B system, to describe

these details. We then discuss some consequences that follow for what emerges

from these innovations in expanding the scope of cybersecurity assurance of not just

the delivered OA C2/B software systems, but to the engineering processes which

create, transform or otherwise update technical data that is central to the acquisition

of OA software systems.

Acquisition Research Program
Graduate School of Business & Public Policy - 10 -
Naval Postgraduate School

Problem

The particular problem we investigate here is how best to develop and

demonstrate a new conceptual approach to providing continuous cybersecurity

assurance [cf. DoDGSA 2013] with OA C2/B software systems in response to

evolutionary updates to currently installed software configurations that routinely arise

during the technical development and maintenance, upkeep, and sustainment in the

field—what we call, software evolution [Scacchi and Alspaugh 2012, Scacchi and

Alspaugh 2017a].

Solution

The innovation we focus our attention to are the concepts, techniques, and

technologies that denote blockchains and smart contracts, along with how they can

be used to continuously assure the cybersecurity of software updates arising during

OA software system development and evolution processes that span software

supply chains.

Approach

Our efforts focus on an innovative utilization of blockchains and smart

contracts within the technical software development and evolution processes that

arise within the acquisition of complex, OA C2/B software systems. We are not

focusing attention at this time to software purchasing activities or financial

transactions, though blockchains and smart contracts are likely to stimulate

innovations in this aspect of OA software system acquisition.

Why this approach?

Based on prior studies of issues and challenges arising in the development

and evolution of OA software systems for C2/B system applications [Guertin,

Sweeney, Schmidt, 2015, Scacchi and Alspaugh 2012-2017, Womble, Schmidt,

Arendt, Fain 2011], we have already drawn attention to technical problems that arise

in the software engineering processes that software producers, system integrators,

and customer end-users (both enterprises and individuals therein) experience. But

Acquisition Research Program
Graduate School of Business & Public Policy - 11 -
Naval Postgraduate School

we recognize these processes are partially-ordered sets of activities whose

completion often entails technical data transactions like creation of digital system

design documents, composition and integration of software components (e.g.,

applications, mobile apps, plug-in widgets), and deployed software

executable/update packages that are stored, installed, and tracked in different online

repositories across a network environment. At present, these transactions often lack

a common or centralized repository for tracking these diverse transactions across

networked platforms that span an OA software system ecosystem (a supply chain

network from producers to system integrators to customer enterprises/individuals).

We believe blockchains are a candidate for this. These transactions similarly lack a

common and potentially reusable specification for how to manage and track such

software engineering transactions in forms that are open to independent validation

and audit. We believe smart contracts are a candidate to address this.

Acquisition Research Program
Graduate School of Business & Public Policy - 12 -
Naval Postgraduate School

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
Graduate School of Business & Public Policy - 13 -
Naval Postgraduate School

Background: Blockchains, Smart Contracts and
Software Supply Chains

Blockchains

Blockchains are a 21st Century computational mechanism for realizing the

equivalent of the traditional bookkeeping ledger utilized in finance and accounting.

Such ledgers record and track the assignment of incoming (budget authorization or

revenue) and outgoing (allocations and expenses) enterprise transactions and

denominated amounts, whether in a monetary currency, bartered trade, or some

other transactional resource (e.g., gold bullion, Bitcoins, original artworks) [DuPont

and Maurer 2015]. Such transactions are grouped in blocks, for example a set of

interrelated OA software system updates may be grouped together into a block that

denotes a transformation of the current system configuration into an evolved system

configuration.

Figure 1 shows a model for what a small blockchain may look like if visualized
as a chain-like structure.

Figure 1. Visual model of a simple blockchain, highlighting individual update transaction blocks
(squares), as well as the longest path of validated update transactions. Transaction blocks not on the

longest path are considered as no-longer-valid elements of the blockchain.

Both transactions and blocks are serialized, logged, timestamped, and

tracked in ways that are open to internal, external or independent verification and

audit by decentralized third-parties [Blockchain 2017]. Updates to the blockchain are

Acquisition Research Program
Graduate School of Business & Public Policy - 14 -
Naval Postgraduate School

allowed only by consensus of remote mechanisms and proofs of work by

anonymous, untrusted service providers (called miners) who collect a modest

execution fee for their efforts. The payment and deposit of an execution fee also

mitigates against the actions of unknown others who might act to corrupt the

blockchain state. Finally, blockchains can be realized as persistent databases or

cloud-based repositories [Blockchain 2017]. Such repositories might be utilized, for

example, to record and store a bill of materials detailing all software elements that

are composed into a specified software system configuration, as well as the itemized

serialization of the evolutionary updates to any of the software elements therein,

across the development and maintenance life cycle of an OA software system [cf.

Scacchi and Alspaugh 2017a]. Figure 2 displays a traditional centralized ledger

versus a decentralized blockchain ledger.

Figure 2: Traditional ledger network on left, decentralized blockchain ledger network on right.

Acquisition Research Program
Graduate School of Business & Public Policy - 15 -
Naval Postgraduate School

Blockchains operate as an append-only data structure or database

maintained by a decentralized collection of mutually distrusting computational nodes

participating in a peer-to-peer network. Blockchains are secure by design

[Blockchain 2017]. Blockchain ledgers are updated (appended) as a result of

recorded transactions, much like a personal bank account is updated through

deposit, withdrawal, credit or debit transactions made by the account holder, through

a third-party (the bank or transaction system processor), who may charge a fee for

transactions. Much like bank account transactions, blockchain update transactions

are distributed over a network, time-stamped, persistent, and verifiable. However,

the peer-to-peer network of blockchain nodes is a decentralized autonomous

authority without legal standing, compared to the centralized authority taken by a

bank or credit/debit card transaction processor.

Smart Contracts

Smart contracts denote the computational counterparts of traditional paper

contracts for how a group of interrelated transactions will be governed to assure

fulfillment of terms, conditions, rights and obligations. Within distributed ledger

applications and blockchain associated technologies, smart contracts are denoted

by software programs that can be automatically executed whenever blockchain

transactions occur. Such transactions, for example, may be associated with the

acquisition of a complex system or with the ongoing procurement of retail supply

purchasing agreements. These smart contracts denote networked software system

protocols that facilitate, verify, or enforce the negotiation or performance of a

specified contract, and thus which transactions to process (where, when, how, and

for what parties) in what order [Smart Contracts 2017]. They are realized using

computer based, formal specifications of transaction-based processes that can be

codified into executable computer programs. Such computational support allows for

modeling, analysis and simulation of transactions or processes that can be enacted,

verified and validated at Internet-time speeds, with precision and automated recall of

transaction details well beyond what enterprises traditionally have performed. Smart

contracts also allow for the establishment and operation of decentralized

Acquisition Research Program
Graduate School of Business & Public Policy - 16 -
Naval Postgraduate School

autonomous services that allow for cooperating parties to enact and fulfill the details

of a shared contract through just automated means. Next, smart contracts are

automatically enforced by the consensus mechanism associated with the

blockchain. Smart contracts are thus attractive to use to securely manage recurring

transactions between known or unknown parties, such as those associated with

updating the technical data, source code, repositories, and related artifacts

associated with software development and evolution processes associated with

large, long-term software acquisition efforts.

Software Supply Chains and Ecosystems

Software elements and configured system are developed by component or

system producers on the way to being adopted and deployed by customer

organizations or end-users. Many times, the software elements are subjected to

value-added system integration efforts which expand the scope and functional

capabilities of the resulting integrated system for deployment, or may otherwise

integrate these elements within legacy installed software systems. This ecosystem

of producers, system integrators, and customers form a network of relationships that

is commonly called a software supply network. Such a network may offer many

possible pathways that enable the flow of newly produced or integrated software

elements (e.g., new software products, apps, or widgets) in particular configurations

that are targeted to a specific type of software deployment platform, installation or

ecosystem niche [Scacchi and Alspaugh 2012]. Such a path from producers through

integrators to customers denotes a specific software supply chain. A generalized

abstract depiction of a software ecosystem as a software supply network is shown in

Figure 4.

Acquisition Research Program
Graduate School of Business & Public Policy - 17 -
Naval Postgraduate School

Figure 3. Software supply chain development processes [Al Sabbagh & Kowalski 2015].

Figure 4. An ecosystem model of a software supply network connecting software producers, system
integrators and consumers (customers/end-users) [cf. Scacchi and Alspaugh 2012, Scacchi and

Alspaugh 2017a].

Acquisition Research Program
Graduate School of Business & Public Policy - 18 -
Naval Postgraduate School

A small number of software supply chain researchers has sought to develop

models for software supply chains that can be visually rendered to aid in facilitating

understanding and communication. For example, researchers at the Software

Engineering Institute have sought to visualize software supply chains as directed

graphs [Ellison, et al 2010]. But such a model may somewhat obscure how software

elements move through a development process life cycle, especially when iterative

development processes are employed. Alternatively, others like Al Sabbagh &

Kowalski [2015] draw attention to explicit development process flows, as shown in

Figure 3. Such a representation can also incorporate annotations for denoting where

different kinds of social or technical risks to the integrity of the software supply chain

may arise, which provides both foundational and practical insights to which

processes maybe subject to different types of cybersecurity threats. Unfortunately,

such a process-centered rendering slights inter-relationships between different

participating producers, system integrators and customers.

Our view of a software ecosystem seeks to combine or unify these alternative

approaches to modeling and visualizing software supply chains, as have appeared

in our earlier efforts [Scacchi and Alspaugh 2012, Scacchi and Alspaugh 2016,

Scacchi and Alspaugh 2017a]. However, we note that at this point we do not have a

single visual representation that combines a software supply network and process

flow into a single rendering that may be complex and thus obscure, but instead rely

on multiple visualizations, one for the supply network, and others for OA software

configurations that result from different software development or evolution

processes. Said more simply, consider integrating the view from Figure 3 in place of

the “Architecture for Integrated Component or Application” box in the following

Figure 4. That is, one or more OA software system “Integrators” routinely enact

software supply chain development processes [Scacchi and Alspaugh 2013b,

Scacchi and Alspaugh 2017a].

The software ecosystem schema in Figure 4 represents the ecosystem

immediately connected to a particular component/application integrator. It is

recursive: a “producer” in the top row of the figure can itself be a software

ecosystem, determined by its own architecture and supplied by its own producers,

Acquisition Research Program
Graduate School of Business & Public Policy - 19 -
Naval Postgraduate School

for which the consumer is the architecture and integrator of the larger schema’s

product, and a “consumer” in the bottom row may be a software ecosystem for a

further component/application. The basic steps of the recursion in each direction are

(i) a consumer who is a user only, and (ii) a producer of a simple component, one

that is developed from scratch and makes use of no subcomponents. A typical large

OA system will contain a number of such simple components that act as shims or

scripts between larger components with related but nonidentical interfaces.

Blockchains are being extended to accommodate smart contracts that allow

for the formation of virtual, decentralized autonomous organizations (DAOs)

[Ethereum 2017] that can span diverse software ecosystems of different size,

connectivity, and complexity. DAO in turn can be designed to govern, enforce, and

assure the integrity and validity of complex or idiosyncratic blockchain update

transactions on supply chains of different types [Smart Contracts 2017]. In our case,

a software supply chain delivers software elements or systems through a DAO that

denotes a given configuration of participating software producers, system integrators

and customer organizations.

Our interest is focused on software supply chains that enable continuous flow

of developmental or evolutionary updates to software elements configured to

operate within an OA software system. In one acquisition scenario, this might entail

the procurement of pre-certified and secured software apps from a secured, online

app/component store [George, Galdorisi, et al. 2014, George, Morris, et al. 2014].

Alternatively, multiple independent Program Offices or independent enterprises may

seek to partner with other parties to share the cost of developing bespoke OA

software system apps or components. Figure 5 presents a notional depiction of two

alternative acquisition scenarios. Overall, multi-party agreements for coordinated

system acquisition can denote a kind of DAO whereby two or more Program Offices

or other enterprises can act to shared the procurement costs of a new C2/B system

application or component, of mutual interest to the participating parties [cf. Reed,

Benito, Collens, Stein, 2012, Reed, Nankervis, Cochran, Parekh, Stein, 2014,

Scacchi and Alspaugh 2015].

Acquisition Research Program
Graduate School of Business & Public Policy - 20 -
Naval Postgraduate School

Figure 5. Notional depiction of two alternative scenarios entailing “mobile reciprocity” or “multi-
party interactions” for acquisition of OA software system components, applications or integrated

system capabilities [Reed, Benito, Collens, Stein, 2012, Reed, Nankervis, Cochran, Parekh,
Stein, 2014, Scacchi and Alspaugh 2015].

No single participating Program Office or acquisition enterprise necessarily is

“in charge” of the overall shared acquisition, so all parties participate on the basis of

their ability or resources they contribute to realize the shared goal of a particular

DAO. Similarly, smart contracts can govern transactions between mutually

distrusting participants that are automatically enforced by automated consensus

mechanisms associated with blockchain updates. This capability thus provides a

mechanism for detecting, rejecting or preventing unauthorized update transactions

to the blockchain, as might be attempted via a cyber attack during OA software

system development or evolution. Accordingly, our interest is to investigate how

blockchains, smart contracts and related technologies can be utilized to improve

cybersecurity, specifically to manage and track software engineering development

and evolution processes that entail process transactions that update the

configuration of OA software systems.

So how might we utilize blockchains and smart contracts to innovate the

continuous development and evolution of OA systems? How can this be conceived

and applied in ways that are not specifically limited to financial transactions

commonly associated with system acquisition? Before we can answer such

questions, we need to more closely examine what kinds of cybersecurity threats to

software supply chains we want to defend against using blockchains and more.

Acquisition Research Program
Graduate School of Business & Public Policy - 21 -
Naval Postgraduate School

Social, Technical, and Unintentional Cybersecurity
Threats to Software Supply Chains

Recent Cybersecurity Attacks on Software Supply Chains

Coordinated international attacks on vulnerable software-intensive systems of

high value and controlling complex systems are becoming ever more apparent.

Security threats to software systems are multi-valent, multi-modal, and distributed

across independently developed software system components. Five recent attacks

illustrate these characteristics, and also a progression from attacks against systems,

to attacks against ecosystems that result in compromised systems developed in

those ecosystems, to attacks against tools used in multiple ecosystems that result in

compromised systems developed in any of those ecosystems. Consider the

following recent events that demonstrate different ways and means through which

software supply chains have become vulnerable to cybersecurity attacks.

Stuxnet: malicious code distributed via physical storage devices across a
virtual software supply chain

Stuxnet [Falliere, Murchu, Chien 2011] was a well planned attack of

cyberphysical systems used to control industrial system operations, including those

associated with nuclear materials processing. Stuxnet was discovered in July 2010,

but subsequent analysis indicated that thousands of industrial control system

software worldwide were eventually infected and subject to cybersecurity attacks

that utilized vulnerabilities exploited by Stuxnet. Stuxnet is thus a significant example

of a successful attack on an poorly perceived software supply chain—the virtual

network of mostly unconnected computers running the targeted software systems

(e.g., Supervisory Control and Data Acquisition (SCADA) software package). The

coordinated Stuxnet attack employed a bundle of attack/viral vectors and social

engineering tactics in order for the attack to reach strategic industrial control

systems that were isolated and walled off (“air gapped”) from public computer

networks. The Stuxnet attack entered through software system interfaces at either

the component, application subsystem, or base operating system level (e.g., via

Acquisition Research Program
Graduate School of Business & Public Policy - 22 -
Naval Postgraduate School

removable thumb drive storage devices), and its goal was to go outside or beneath

its entry context. Furthermore, the Stuxnet attack involved the use of corrupted

“certificates of trust” from approved authorities as false credentials that allowed

evolutionary system updates to go forward.

NotPetya: malicious code distributed through access to producer source code

NotPetya, discovered in June 2017, used the Ukrainian tax accounting

software M.E.Doc as an infection vector. Once installed, it attempts to propagate

across a network using any of four different exploits. It collects usernames,

passwords, and other confidential information and installs a backdoor giving the

attackers control of the machine. If commanded by the attackers, it destructively

encrypts files and, if administrator privileges are obtained, the master boot record,

rendering the files irretrievable and the computer unusable; this part of the attack

masquerades as ransomware but victims who pay ransom apparently do so

fruitlessly. The attackers injected a backdoor into a legitimate M.E.Doc module,

presumably with access to the source code; the compromised class methods were

then invoked when the software checked for updates [Cherepanov 2017, US-CERT

2017].

CCleaner: attack performed upstream of cryptographic signature and
distribution

A version of the widely-used and free CCleaner utility that was downloaded in

August and September 2017 was found to contain a backdoor with remote system

administration tools. The malware was piggybacked on valid CCleaner releases on

legitimate download servers, and cryptographically signed with a valid certificate

issued to Piriform, CCleaner’s producer. It appears that attackers gained access to

at least part of the CCleaner development or build environment [Brumaghin, Gibb, et

al. 2017, Menn 2017].

XCodeGhost: infected developer tools infect software they create

In late 2015, a fake version of Apple’s XCode development tools was placed

on unofficial sites for Chinese developers. The fake XCode tools injected

Acquisition Research Program
Graduate School of Business & Public Policy - 23 -
Naval Postgraduate School

XCodeGhost malware into apps developed using them, thus infecting supply chains

of software to which the attackers need not have access [Greenberg 2017].

Equifax: through a bug in widely used open source software component,
inserting persistent attack software and remote control of enterprise systems,
enabling prolonged systematic data exfiltration

In Spring 2017, Equifax, one of the three leading credit-reporting firms in the

U.S. was exposed to a remote attack through a known technical vulnerability in its

backbone software infrastructure (e.g., Apache Struts). As knowledge of the Struts

vulnerability and its software update repair was publicly disclosed, it was clear that

resolving this problem requires a concerted software update effort in any

organizational or infrastructural system configuration where it was installed. A

simple, pre-coded software patch was not available, nor was it appropriate, due to

the configurable data processing capabilities that Struts provides. While the social

and technical details of the Equifax breach are described in greater detail elsewhere

[Riley, Robertson, Sharpe 2017], it also appears that the attack was prolonged due

to unintentional conditions and events arising from contractual disputes between

Equifax and its third-party cybersecurity service provider regarding the efficacy of

contracted service performance. As a consequence of the threats and unintentional

conditions, the attack persisted for months, and that dozens if not more unauthorized

software updates to installed software configurations on different Equifax enterprise

systems were propagated across Equifax networks and multiple databases.

Remotely controlled system and data analysis tools were covertly installed that could

query accessible data assets to reveal their contents, as well as install other

secondary software tools that could covertly extract and encrypt appropriated data,

then disseminate gigabytes of acquired data over public networks over

combinatorially diverse paths (e.g., darknet torrents) to hidden/masked destinations

in other countries. The scale, sophistication, and continued covert software

installation suggests a state-sponsored attack enterprise utilizing multi-mode entry

and attack vectors, much like Stuxnet, rather than an individual or simple criminal

endeavor [Riley, Robertson, Sharpe 2017].

Acquisition Research Program
Graduate School of Business & Public Policy - 24 -
Naval Postgraduate School

Social and Technical Threats to OA Software Supply Chains

More generally, cybersecurity threat categories can be identified starting from

an interpretation of Wang et al. (2013) that is augmented with other constructs or

concepts from secure open architecture software systems found in papers by

Scacchi and Alspaugh [2008-2017]. The security threat meta-model identified below

is grouped into three sections, each beginning on a new page for clarity. This is

followed by diagrams and excerpts from the threat model by Wang et al. [2013]. The

social threats and technical threats from Wang et al. have been modified and

expanded to accommodate our concepts, and thus serve as a basis for developing a

security threat meta-model for open architecture software systems. What is needed

is an articulation of a security threat meta-model that incorporates concepts,

constructs, tools, and capabilities derived from blockchains, smart contracts,

software taggants, and smarter contracts (smart contracts that stipulate enactable

software security license obligations and rights).

Following Al Sabbagh and Kowalski (2015), software security

countermeasures need to address, for example, social threats when recipients of a

software product deny receiving it, a social countermeasure would be to legally

require a third-party notary (e.g., blockchain miner) to prove that recipients actually

received the software product (i.e., verification and non-repudiation of update

transaction). A technical countermeasure to deal with the same threat would be the

implementation of digital signatures using public-key cryptography (cf. software

taggants [Kennedy and Muttik 2011]). Another example of using counter-measures

is thwarting the threat of malicious code being injected into source code while

transmitted over the network. A social countermeasure would be implementation of a

third-party escrow (via blockchain), where a technical countermeasure would be

implementation of virtual private networks (blockchains). In future research effort, we

envision cybersecurity countermeasures (can be formally specifically) using OA

software system security licenses that are computationally enacted through smart

contracts that stipulate defensive, detective, or preventive cybersecurity

countermeasures.

Acquisition Research Program
Graduate School of Business & Public Policy - 25 -
Naval Postgraduate School

We provide an expanded and revised list of 30 social threats and 24 technical

threats informed by similar lists presented in Wang, Al Sabbagh, and Kowalski

(2013).

Social Threats to Software Supply Chains

ST1: Supplier of software product denies having sent the software product.

ST2: Ordered software products such as outsourced software components could not
arrive on time because of non-technical reasons such as delivery mistake.

ST3: Secret information (ex. hard-coded key, seed value) about the outsourced
software component is disclosed unintentionally by internal employee.

ST4: Like ST3, but intentionally because of bribery or some other reason.

ST5: Unauthorized people get access to the secret information of outsourced
software component through non-technical reasons such as spoofing.

ST6: Security weakness information about the sourced software product is disclosed
unintentionally by internal employee to unauthorized people.

ST7: Like ST6, but intentionally.

ST8: Unauthorized people get access to the security weakness information of
outsourced software component through non-technical reasons such as spoofing.

ST9: Secret information (ex. hard-coded key, seed value) about the software product
is disclosed unintentionally by internal employee to unauthorized people.

ST10: Like ST9, but intentionally.

ST11: Unauthorized people get access to the secret information of the software
product through non-technical reasons such as spoofing.

ST12: Security weakness information about the software product is disclosed
unintentionally by internal employee to unauthorized people.

ST13: Like ST12, but intentionally.

ST14: Unauthorized people get access to the security weakness information through
non-technical reasons such as spoofing.

ST15: Source code or installation package is destroyed unintentionally by internal
employee for authorized people.

ST16: Like ST15, but intentionally.

ST17: Malicious code is inserted into the source code or installation package
unintentionally by internal employee.

ST18: Like ST17, but intentionally by unauthorized people.

Acquisition Research Program
Graduate School of Business & Public Policy - 26 -
Naval Postgraduate School

ST19: Unauthorized people get access to the source code or installation package,
modify it or destroy it (NB: “evolution update transactions”) through non-technical
reasons such as spoofing.

ST20: (Un)authorized people can/cannot get access to the source code or
installation package because of non-technical reasons such as flooding.

ST21: Data storage facility for source code or installation package becomes
unavailable to Unauthorized people because of non-technical reasons such as
flooding.

ST22: User guide of the software product is modified or deleted (NB: “evolution
update transactions”) unintentionally by internal employee.

ST23: Like ST22, but intentionally.

ST24: Unauthorized people get access to the user guide of the software product,
modify it or destroy it (i.e., these are unauthorized OA software “evolution update
transactions”) through non-technical reasons such as spoofing.

ST25: Cannot get access to the user guide of the software product because of non-
technical reasons such as flooding.

ST26: Data storage facility for user guide becomes unavailable because of non-
technical reasons such as flooding.

ST27: Real software products are replaced by counterfeit (NB: “evolution update
transactions”)

ST28: Recipient (customer or staff working in the delivery process) denies the
receipt of the software product.

ST29: Internal employee destroys data media unintentionally.

ST30: Security mechanism (ex. length of the key) deployed within the software
product is not allowed by the applicable law of the end-customer.

Technical Threats to Software Supply Chains

TT1: Malicious code is inserted into open source tool by unauthorized people
through technical approach, which leads to security defects of the software product.

TT2: Secret information (ex. hard-coded key, seed value) about the outsourced
software component is obtained by unauthorized people through technical approach
such as hacking.

TT3: Unauthorized people get access to the security weakness information of
outsourced software component through technical approach such as hacking.

TT4: Unauthorized people insert malicious code into the outsourced software
component while it is in storage using technical approach such as hacking.

TT5: Malicious code is inserted into the outsourced software component by

Acquisition Research Program
Graduate School of Business & Public Policy - 27 -
Naval Postgraduate School

unauthorized people during delivery through technical approach.

TT6: Outsourced software component is destroyed by unauthorized people through
technical approach such as attacking the storage facility.

TT7: Unauthorized people get access to the security weakness information of the
software product through technical approach such as hacking.

TT8: Secret information (ex. hard-coded key, seed value) about the software product
is obtained by unauthorized people using technical approach such as hacking.

TT9: Malicious code is inserted by unauthorized people into the source code or
installation package when it is in storage through technical approach such as
hacking.

TT10: Malicious code is inserted into source code or installation package when it is
stored in the data media by unauthorized people during product delivery (physical
delivery).

TT11: Malicious code is inserted into source code or installation package of the
software product during network transmission by unauthorized people through
technical approach.

TT12: Source code or installation package is destroyed by unauthorized people
when it is in storage through technical approach.

TT13: Source code or installation package is destroyed by unauthorized people
during network transmission through technical approach.

TT14: Network access to the source code or installation package is destroyed by
attackers using technical approach such as DOS attack.

TT15: Data media is destroyed by unauthorized people through technical approach.

TT16: Unauthorized people get access to the user guide of the software product,
and modified it intentionally through technical approach such as hacking.

TT17: Unauthorized people get access to the user guide of the software product,
delete it or modify it to make it unavailable through technical approach such as
hacking.

TT18: User guide of the software product is damaged or modified during network
transmission through technical approach such as hacking during network
transmission.

TT19: User guide of the software product is modified through technical approach
such as session hijacking attack during network transmission.

TT20: Malicious code is inserted into patches by unauthorized people when it is in
storage through technical approach such as hacking.

TT21: Malicious code is inserted into patches during network transmission through
technical approach such as hijacking by unauthorized people.

Acquisition Research Program
Graduate School of Business & Public Policy - 28 -
Naval Postgraduate School

TT22: Patches are destroyed by unauthorized people when it is in storage through
technical approach.

TT23: Patches are destroyed by unauthorized people during network transmission
through technical approach.

TT24: Network access to the patches is destroyed by unauthorized people using
technical approach such as DOS attack.

Finally, Al Sabbagh and Kowalski [2015, Also see Wang, et al. 2013] provide

a visual model that seeks to associate where cybersecurity threats such as those

identified above may arise within different software development processes that

span software supply chains. Their model is shown in Figure 6 below.

Other Unintentional Socio-Technical Threats

Both social threats and technical threats identified above are amenable to

intervention, detection, or prevention via different kinds of cybersecurity mechanisms

or practices. However, there are also other unintentional socio-technical threats that

emerge through unexpected acts, conditions, or events identified as: mistakes,

errors, breakdowns, accidents, glitches, anomalous events, system outages, system

failures, system implementation failures, and the like. Such acts, conditions, or event

can create externalities or effects that temporarily defeat, reset, or bypass

cybersecurity system elements, configurations, or settings whose normal operation

can provide effective cybersecurity protections or assurances. Here we identify

examples of these threats.

– Mistakes may arise, for example, in mis-entering the values for the

configuration or update of configuration information used to assign security

protections following a Security Technical Implementation Guide (STIG).

Acquisition Research Program
Graduate School of Business & Public Policy - 29 -
Naval Postgraduate School

Figure 6. Al Sabbagh and Kowalski [2015] model for associating selected social and technical

threats identified earlier with software development processes spanning software supply chains.

– Errors may arise due to omission, commission, or miscalculation with

omission errors resulting from security values that are not entered or updated per

guidelines (e.g., ignoring instructions to reset the default password, or entering an

easily guessed very weak password). Errors of commission may denote those

arising from inadequate training of proper system operating conditions and user-

system interactions (e.g., “I didn’t know I was suppose to do that” or “I didn’t read the

manual”). Commission errors may also arise due to other forms of incompetent

system use, or where software system designers assume system users have certain

skills or think/act is certain ways regarding proper system use, which turns out not to

be the case. Errors of miscalculation entail usage conditions where users mistype or

mis-enter data, code, or formulae that otherwise look correct as plausible input,

which in turn may give rise to downstream calculations or outputs that modify system

data/operations, that in turn precipitate other unintentional conditions, events, or

actions.

Acquisition Research Program
Graduate School of Business & Public Policy - 30 -
Naval Postgraduate School

– Breakdowns can arise at any time when a workflow utilizes a software

component or application that for some reason, does not operate as expected,

freezes, “hangs” or suddenly stops and exits without warning, such that the

status/state of the attendant work-in-progress in unclear, garbled, or lost.

Breakdowns thus require some form or rework to recover from the breakdown.

– Accidents can take many forms, but include matters such as blunt object

falls/drops, or beverage/food/liquid spills, on computer keyboards or desktop

peripherals (e.g., removable disk drives) which may introduce electrical short circuits

that are misinterpreted by the computer as a user input or command sequence

invocation, that in turn may undo or bypass currently active security system

elements.

– Glitches are peculiar system behaviors that often denote hidden/latent

computational concurrencies that give rise to conditions like deadlocks, mutual

exclusion race conditions, infinite loops, memory leaks or spillover effects. Rectifying

such glitches often entails activities like restarting or shutdown-and-startup the

computer system, but without any knowledge of whether any security elements were

altered or unintentionally reconfigured by the glitch, and thus potentially

bypassed/disabled after the restart or reboot.

– Anomalous events or conditions are unpredictable, unrepeatable, and

sometimes unrecognizable. This is what makes them anomalous! Their direct or

indirect effects on software or security elements are determined only in hindsight, or

after repeated occurrence, in which case they are no longer anomalous. When

software or security system elements are configured to operate in a highly reliable

manner, then anomalous conditions are often ignored through use of system

breakpoints that are logged and recoverable back to last known point of reliable

operation via fast reboot or redundant coprocessors.

– System outages denote periods of time when an enterprise software system

in unavailable for routine use online (cf. authorized users denied system access for

lack of availability). Outages may be scheduled and notified in advance (e.g., for

hardware repairs or planned system upgrades), in which case they should not give

Acquisition Research Program
Graduate School of Business & Public Policy - 31 -
Naval Postgraduate School

rise to unintentional vulnerabilities. However, outages may arise unexpectedly for

reasons not visible to remote API or system users. Any of the unintentional

conditions or events listed here can give rise to unplanned system outages, as may

other sources of unreliable system operations. Generally, outages can be mitigated

through provision of hot-swap backup or redundant system configurations, but these

come at a cost. The ongoing profitability or revenue-positive condition of the

enterprise may determine whether or not outages are mitigated through redundant

system configurations.

– System failures can arise due to the emergence of any of the preceding

kinds of unintentional events or conditions that disrupt enterprise operations at an

individual, group, or business unit level [Loscocco, Smaller, et al. 1998]. These

failures generally require some form of human or organizational intervention, as well

as replanning and rescheduling of work in progress, as well as assessing whether or

how to recover system managed work products that were unintentionally modified or

corrupted as a result of the system failure. Systems failures can trigger

consequences like bypassing or resetting system security protections or capabilities

back to an earlier version that has already been updated and replaced, thus

potentially re-exposing known software vulnerabilities.

– System implementation failures denote the failure of an enterprise to

completely and properly install and transition to a new software system (or major

system version release). Implementation problems are commonly manifest over

longer periods of time, sometimes ranging from weeks to months or years. System

brought online or into production (or even pre-production) prior to implementation

completion may be configured to operate with/without extant enterprise

cybersecurity capabilities, policies, or methods in place and operational.

Vulnerabilities in such system configurations may allow attackers to covertly enter

the system perimeter and to hide/bury itself for an indefinite period until awoken by

remote control or system clock. While the inadequately implemented system itself

may be vulnerable, it may also simply be exploited as a covert gateway to other

enterprise systems of interest to attackers.

Acquisition Research Program
Graduate School of Business & Public Policy - 32 -
Naval Postgraduate School

Other unintentional socio-technical events, conditions, or acts may be

identified, as may their consequences for altering, corrupting, or unknowingly

reconfigured cybersecurity system elements, capabilities, or methods.

Overall, it is clear that unintentional socio-technical threats are recurring,

inherently difficult to prevent, and entail human-computer activities that are

commonly undocumented, not taught, and thus persist. Accordingly, managing

unintentional threats will always require vigilant practice by software system users,

maintainers, and administrators, as cybersecurity system capabilities and methods

cannot in general overcome these limitations.

Countermeasures for Mitigating Cybersecurity Threats

Software systems security mechanisms for implementing security

requirements and policies are often employed on an ad hoc basis rather than in a

scalable, organized, and effective manner. Convenient, interactive approaches

supported by automated evaluation and guidance are not available because there is

no formal basis connecting security requirements and policies with the security

mechanisms that are to fulfill them. What is available is a palette of disjoint

mechanisms or security countermeasures for implementing individual system

security features [Loscocco, Smalley, Muckelbauer et al. 1998, Spencer, Smalley, et

al. 1999] augmented by generalized practices and process standards, such as:

• mandatory access control lists;

• firewalls;

• multi-level security capability lists;

• authentication (certificate authorities, passwords, etc.);

• cryptographic support (e.g. public key certificates);

• encapsulation (including virtualization and hidden rather than public APIs),
hardware confinement (memory, storage, port, and external device isolation)
[Sun, Wang et al. 1999], and type enforcement capabilities;

• data content or control signal flow logging/auditing;

• honey-pots and traps;

• functionally equivalent but diverse multi-variant software executables [Franz
2010, Salamat, Jackson et al. 2011];

Acquisition Research Program
Graduate School of Business & Public Policy - 33 -
Naval Postgraduate School

• Security Technical Implementation Guides (STIGs) as user guides for
configuring the security parameters for applications [DISA 2011] and
operating systems [Smalley 2012];

• secure programming practices (secure coding standards, data type and value
range checking, etc.) [Seacord 2008];

• standards for development organization processes and practices rather than
system security policies [ISO/IEC 2005];

• anti-virus software that routinely search system repositories for known attack
viruses;

• deep data traffic monitoring within/between enterprise databases, websites,
portals, or specified client computers that log all data movements, transfers,
or updates for secondary analysis, using techniques like machine learning or
others;

• standards-based software taggants [Kennedy and Muttik 2011], used by
software producers that assert a secure, encrypted identity authentication and
provenance to a baseline software element release/version.

The reader will note that these mechanisms are software implementation

choices or software process choices rather than system architectural choices or

security requirements/policy choices. Between these mechanisms and a workable

concept of a comprehensive security policy for a system or its substantial

components is a gap, with no obvious way to bridge it.

• There is no common framework or conceptual basis with which to integrate
and evaluate mechanisms in combination. It is unclear how the various
security mechanisms are related and how one may contribute to or interfere
with another.

• Guidance is scant for analysts, architects, and developers who need to
decide which security mechanism to use where, when, how, and why; and
also for integrators and administrators who need to decide how to update the
selection of mechanisms and their configuration within a system as security
needs and policies evolve.

No satisfactory framework exists in which they can be assembled in

hierarchical patterns that can be designed and combined in a system architecture to

meet specific high-level security policies and requirements.

We believe there is an opportunity to address security requirements

challenges throughout a system architecture using computational security licenses,

licenses whose declared obligations and rights can be formally specified and

Acquisition Research Program
Graduate School of Business & Public Policy - 34 -
Naval Postgraduate School

computationally enforced through automated via executable software programs.

In our previous work [Alspaugh, Asuncion, Scacchi 2009, Alspaugh,

Asuncion, Scacchi 2011, Alspaugh and Scacchi 2009, Alspaugh, Scacchi, Asuncion

2010], we showed how software licenses for the components of a system can be

used to guide architectural choices and evaluate rights and obligations for the

system as a whole, even when components are governed by different licenses.

Using our approach, a system architect can work both down from the top,

propagating desired license rights for the system down to individual components to

see what license obligations are required to obtain those rights, and up from the

bottom, combining license rights and obligations for components and then

subsystems into the total rights and obligations for the system. In either direction,

our approach identifies any conflicts and mismatches among licenses in the

architecture.

We propose the same approach for security licenses. System architects and

analysts can select desired security rights, assign an expected security license to

each subsystem or component, and evaluate interactions between these choices at

every level from an individual component up to the entire system. Of course

assigning a security license to a component does not guarantee that the

component’s developer will make it satisfy its security obligations, any more than

accepting a component under GPL guarantees that the system’s stakeholders will

satisfy the GPL IP obligations. But assigning a license (whether security or IP) to

each component records the assumptions being made about that component and its

use, and evaluating those licenses in the context of the system’s architecture

identifies mismatches and conflicts among those assumptions for that architecture’s

design choices. When the evaluation is automated, as it is in our work [Alspaugh,

Asuncion, Scacchi 2011], it forms the foundation for design guidance with respect to

the issues raised by the licenses, and a means for combining the potentially

dissimilar licenses to evaluate their overall interaction and effect, and thus the

overall interaction and effect of the security mechanisms that are expected to satisfy

the obligations and of the security requirements and policies that the rights express.

Acquisition Research Program
Graduate School of Business & Public Policy - 35 -
Naval Postgraduate School

Security Licenses as Smart Contracts for Specifying Software
Cybersecurity Rights, Obligations and Countermeasures

In general terms, a security license is analogous to an ordinary software

license such as GPL (GNU General Public License) [FSF 2007]. Software licenses

consist of intellectual property (IP) rights granted by the licensor, in exchange for

corresponding license obligations imposed on the licensee. A license presents the

rights that are offered, and for each right enumerates the obligations that are

required in order for that right to be granted. Many of the actions required for the

obligations are related to the actions allowed by the rights. This is particularly so for

open-source licenses, for which fulfilling some of the obligations requires parts of the

rights that are granted. Also particularly for open-source licenses, the obligations

and rights are framed to take effect in an architectural context, with most obligations

taking effect with respect to either the component for which rights are granted or

component(s) determined by the connectors and architectural topology around that

component. Because software licenses are expressed in natural language, the rights

and obligations are often presented in an intermingled organization, and much of a

license may be devoted to defining terms, classes of entities referred to, and

conditions under which the various provisions take effect. But the conceptual

structure remains that of a list of rights offered, each in exchange for specific

obligations.

Our innovation is to similarly specify components’ security rights and

obligations, which we can then model, analyze, and support throughout the system’s

development and evolution, and use to guide its design and instantiation.

There is no “Securityright Act” analogous to the U.S. Copyright Act [US 2017],

or Berne Convention [Berne 1979], to define the exclusive security rights of system

stakeholders. We present these possible security rights and obligations as an

indication of what sorts of actions might be regulated by security licenses for data

organized into security compartments and code organized into components.

Acquisition Research Program
Graduate School of Business & Public Policy - 36 -
Naval Postgraduate School

Some Possible Rights within Security Licenses for OA Software System
Components

Access Rights

• The right to read data in compartment T.

• The right to add data to compartment T.

• The right to remove data from compartment T.

• The right to delegate security right R.

• The right to read the security license of component C.

Evolutionary Update Rights

• The right to replace component C with another component D.

• The right to update component C to newer version C′.

• The right to revert component C to older version C′.

• The right to add component C in a specified architectural configuration.

• The right to update component C in a specified architectural configuration.

• The right to alter the architectural topology of subcomponent B.

• The right to alter the architecture of system S.

• The right to add security mechanism M in a specified configuration.

• The right to update security mechanism M in a specified configuration.

• The right to remove security mechanism M from a specified configuration.

• The right to replace the security license L of component C with another
security license.

• The right to update security license L.

Sample of Security Obligations within Security Licenses for OA Software
System Components

Access (Control) Obligations

• The obligation for user U to verify his/her identity, by password or other
specified authentication process.

• The obligation for user U to have been vetted by authority A to exercise
security right R.

• The obligation for user U to be delegated a one-time right by authority A to
exercise security right R.

Acquisition Research Program
Graduate School of Business & Public Policy - 37 -
Naval Postgraduate School

Malicious Software Prevention Obligations

• The obligation for component C to have been vetted by authority A to
exercise security right R.

• The obligation for component C to have been vetted by authority A to be the
object of security right R.

• The obligation for each component connected to component C to allow it to
exercise security right R.

• The obligation for security license L to meet specified criteria.

• The obligation for security license L to be approved by authority A.

Exclusive Security Rights

If there could be legally defined and protected exclusive security rights, what

would they be? We nominate the following candidates for discussion:

• The right of the owner of a copy of a system to replace, update, or revert any
of its components.

• The right of the owner of a copy of a system to add or remove components or
otherwise alter its the architectural topology.

• The right of the owner of a copy of a system to replace or update the security
license of the system or any of its components.

• The right of the owner of a copy of a system to alter its user IO streams or
ephemeral data. (We envision that persistent data may fall into a different
category of protected entity.)

As with the exclusive copyright rights, the owner of a right may license all or

part of it to someone else in exchange for obligations, for example to allow a trusted

system provider to automatically install certain kinds of updates.

Overall, cybersecurity requirements or capabilities can be expressed in much

the same way as IP licenses: using concise, testable formal expressions of

obligations and rights. We found that rights and obligations sufficed to express all

the software IP licenses that we examined [Alspaugh, Scacchi, and Kawai 2012].

The lists above show example that express security rights and obligations, and in

ongoing work (Scacchi and Alspaugh 2017c) we present a model of cybersecurity

threats to support a representative set of security issues in OA ecosystems. We

envision that during architectural integration security licenses will be created to

Acquisition Research Program
Graduate School of Business & Public Policy - 38 -
Naval Postgraduate School

control how cybersecurity will be supported, as current and future releases of

components and applications from external producers are integrated.

OA ecosystems are too complex and fast-changing for a security regime that

is not automated to the greatest extent possible. Right-obligation licenses are

automatable, and security licenses can made enactable, for example by smart

contracts controlling blockchain transactions; in this way, as components evolve and

are attempted to be integrated into a new release of the system, the security

licenses can require that appropriate obligations are satisfied as an inseparable part

of exercising a security right.

In the process of software evolution of the multitudinous parts of the

integrated system, security licenses will control which versions are incorporated,

under whose authority, and when. This integration can take place as part of the

development process or as part of the management of a consumer’s installed

software configuration. Security licenses give a flexible, computational, extensible,

scalable approach to managing ongoing security concerns in a software ecosystem.

Effectiveness, Manageability, Evolvability of Security Licenses

Consider the case of the development of an open-architecture (OA) system

integrating proprietary and open-source components from a variety of producers,

most of whom do not coordinate their activities and none of whom are controlled by

the organization producing the OA system. From the point of view of ensuring

security, this is arguably the worst possible case, but it is an increasingly prevalent

development model [Alspaugh, Scacchi, Asuncion 2010]. The OA approach gives

access to a wide selection of complex components of high quality, and allows the

system to evolve as quickly as its integrators can find appropriate new versions or

new components and evolve their architecture and shim code to accommodate

them.

Since the producers do not coordinate, they are unlikely to use the same

security approaches, and indeed may not even publish what those approaches are.

To control security in the resulting system, each component is enclosed in a

Acquisition Research Program
Graduate School of Business & Public Policy - 39 -
Naval Postgraduate School

containment vessel [Scacchi and Alspaugh 2013] that isolates the component with a

hypervisor [Xen 2017] and mediates all communication with the component

(method/function calls, data streams, etc.) through shim code that monitors and

restricts it.

A typical current-day technique [Luom and Du 2011] for managing security

measures is to use capability lists to control each component’s access to resources

such as function calls and data compartments. Each access is delayed briefly while

the monitor checks the access against the accessing component’s capability list,

then blocked if the component was not granted the capability to access that

resource. In our experience, each capability list is a text file listing allowed and/or

forbidden capabilities, managed manually; new capabilities are typically added to the

end of the file. As there appears to be no formal model supporting relationships

among capabilities, interactions between capabilities are also identified and

managed manually. The text files are detailed, which is a positive aspect, but

therefore also long and mind-numbingly tedious, so errors inevitably creep in and

are not noticed. Because a capability list has no hierarchy or recursive structure,

managing them is not scalable.

A more sophisticated approach is possible using a declarative policy

language such as Ponder [Damianou, Dulay, et al. 2001] or an ontology-based

language such as KAoS [Uszok, Bradshaw, Johnson, et al. 2004] that groups

capabilities hierarchically, in (KAoS) ontologies or grouped by roles (Ponder).

However, they have no provision for organizing capabilities by software components,

combined hierarchically into system architectures, and no obvious connection to law.

We contrast the use of security licenses. In some ways, the approaches are

similar, in that our candidate security rights are reminiscent of capabilities, and

security licenses can also be used to identify and block disallowed operations

automatically. However, because many of the actions required for the security

obligations are related by subsumption to those granted by the security rights, and

many of the obligations are in the context of the component for which corresponding

rights are being granted, it is possible to automatically calculate the interaction of

Acquisition Research Program
Graduate School of Business & Public Policy - 40 -
Naval Postgraduate School

rights and obligations throughout the immediate neighborhood of each component,

the subsystem containing the component, and so on recursively on up to the system

as a whole [Alspaugh, Asuncion, Scacchi 2009].

Structuring cybersecurity rights, obligations and countermeasure (or

collectively, cybersecurity policies) as security licenses gives a form that is more

readily accessible to human readers, and helps convey intention and rationale by

relating each obligation to the right it contributes toward. Where the security licenses

assigned to the components in the architecture conflict or misalign, automated

support can identify the provisions in conflict, locate the conflict to the modules

involved, and provide explanations showing the architectural chain of effects that led

up to the conflict [Alspaugh, Asuncion, Scacchi 2011]. Perhaps most importantly,

such specification of cybersecurity licenses using smart contracts (or domain-

specific languages in which such licenses may be coded) supports automation of the

analysis of interactions between security measures and of the assessment of the

system’s overall degree and kind of security as a function of the measures taken for

each component, group of components, subsystem, and so forth recursively up to

the system as a whole.

Acquisition Research Program
Graduate School of Business & Public Policy - 41 -
Naval Postgraduate School

Blockchains and Smart Contracts for Installed
Software Configurations

How might we utilize blockchains and smart contracts to record, track and

verify updates to OA software system configurations as they evolve over time while

transitioning across software supply chains? We examine this question in this

section.

Ledgers of installed software configurations

We envision a new kind of ledger: one that records executable computational

updates to the specification of the current installed, operational configuration of C2/B

systems of interest. The executable computational updates are similar to scripts in a

declarative scripting language, like that used to direct the invocation of utilities on an

operating system, procedural scripts involved in building (compiling and integrating)

a targeted software executable, or for customizing the functional display and

navigation operations within a Web browser. We call the repository in which this

specification is recorded, the installed software configuration (ISC) ledger. The ISC

is the counterpart to a packaged software configuration (PSC). The PSC denotes the

collection of software elements (e.g., the collection of files and related software

execution scripts that will install an integrated mobile app that is ready to use)

configured for download and installation on a target software platform or run-time

environment. Installing a new PSC into the currently deployed ISC produces an

updated and evolved ISC. The ISC specification is therefore a kind of technical data

pertaining to the cybersecurity of an OA software system to be managed,

tracked/logged, updated, and maintained within an acquisition effort. Such data may

be readily managed using a database or other repository capable of organizing and

storing update transactions to a software bill of materials (BOM 2017), but with the

difference that we need a software BOM for both each PSC to be installed, and also

the accumulating, evolving ISC.

The ISC ledger records the transactions that update the software

applications, including their components, interconnections, interfaces, or licenses for

Acquisition Research Program
Graduate School of Business & Public Policy - 42 -
Naval Postgraduate School

such installed on each machine of interest, such as a desktop PC, smartphone, or

central computation server within a mission command or enterprise data center. The

installation is enacted via an installation (update) transaction, which may be enabled

using an “installation wizard” for a standalone PC application, or a ready-to-install

packaged software app acquired from an online app store. For each application

installed, the ledger lists the repository from which the software app or update was

acquired, the version of the application or update, and some information with which

to confirm/verify the version, such as the size of that version of the app, meta-data

about where it resides in storage on the machine, other information, or a

combination of these. How do we ensure that the repository’s copy is safe, has not

been unintentionally modified, and has not been attacked or unknowingly

compromised? How do we ensure that attacks are not falsely recorded in the

ledger?

In order for a ledger to be up-to-date, each approved installation must be

recorded there. How do we ensure this is the case for approved installations? If a

ledger is up to date, then an auditor can verify the approved installations by

examining the ISC specification for the machine of interest (e.g., a smartphone or

laptop PC). Furthermore and most importantly, the blockchain can be queried to

identify non-approved or non-compliant installations, whether these are apps or

updates that were innocently installed but not recorded in the ledger, or maliciously

injected software for some nefarious purpose, and thus such covert updates are not

recorded in the ledger. In either case, the auditor can then institute for each

application that does not match the ledger a rollback to a known safe ISC state

matching what has perviously been verified on the ledger.

The following issues must be managed appropriately for the ledger scheme to

succeed.

• How is it ensured that the origination or destination repository’s copy is
safe and has not been attacked? This is a separate concern, and one that
is equally problematic with or without a ledger system. We do not discuss it
further here, merely noting that it must be ensured for devices to remain
secure. But in normal operation, the ISC specification has a unique identifier,

Acquisition Research Program
Graduate School of Business & Public Policy - 43 -
Naval Postgraduate School

denoted by the hash code1 value associated with the current system when
last updated and subject to remote verification by anonymous miners who
may be unknown to the system integrators. This hash code may reveal
whether the ISC specification copy’s hash code matches the one checked
during audit or subsequent miner verification activities. If the hash code
values are different, then something has altered the copy, and thus it may be
rolled back to a prior verified state or ISC specification.

• How is it ensured that every approved installation or update is recorded
in the ledger? The ledger system must be integrated with whatever system
manages installations and updates for the machines in question. We note that
unapproved installations or updates can be automatically detected and can
be rolled back or reverted at the next audit point/event, so there will be a
strong motivation to ensure that desired transactions are recorded.

• How do we ensure that attacks are not falsely recorded in the ledger?
Obviously this is a key concern. As discussed below under Transactions,
changes to the ledger are validated by multiple autonomous parties (miners)
using several sources of information, and each particular copy of a ledger
competes with all others for accuracy as part of the blockchain scheme.

Transactions for installed software configurations

Each transaction in a ledger records an installation or update of an app on a

specific machine. How do we ensure that all valid installations or updates are

presented? Every time a new application is installed, or an existing application is

updated, the appropriate information is recorded in the ledger. If an application is

installed or updated without being recorded in the ledger, that installation or update

is recognized as unverified, and thus rolled back the next time the machine is

audited. Audits may simply involve checking a hash code value (a long, non-

guessable string of characters that is computationally generated within the

blockchain system), or a similarly unique software taggant hash code [Kennedy and

Mutitk 2011] associated with the current ISC specification on the target machine,

with the corresponding value in the blockchain--this is a simple match-checking

query that can be performed periodically, or by enterprise policy. When the audit

reveals a mis-match, then a roll-back may be triggered that reverts the ISC on the

1 A “hash code” is the result of a computation that invokes any hash function that can be used to map
data of arbitrary size to data of fixed size. The values returned by a hash function are called hash values,
hash codes, digests, or simply hashes. A cryptographic hash function allows one to easily verify that some
input data maps to a given hash value, but if the input data is unknown, it is deliberately difficult to
reconstruct it (or equivalent alternatives) by knowing the stored hash value. (cf. Hash Function, Wikipedia
2017).

Acquisition Research Program
Graduate School of Business & Public Policy - 44 -
Naval Postgraduate School

machine to a previously trusted ISC, and then remove, deprecate, or flag the

unverified ISC as suspect, along with distribution of notification to relevant parties of

such action following enterprise policy. But how do we ensure that only valid

installations or updates are presented? Transactions that would record an invalid

installation or update, fraudulently misrepresenting the repository’s version’s size or

hash or from an untrusted repository, are identified by comparison with the set of

trusted repositories, with the size and hash information recorded there for the

installation or update in question and for the data calculated from the destination

machine afterwards. Accordingly, we are acting to use blockchain techniques as

intended, but for a new kind of use case, namely that of ISC specification update,

verification and reconciliation.

Smart Contracts for installed software configurations

A smart contract works within the framework of the blockchain ledger and

transaction system, ensuring that the required obligations for each transaction are

met before the transaction is enacted, verified, and then recorded in the ledger.

These obligations are associated with those we have previously identified and

specified as security requirements for insuring access and update rights encoded in

a software system’s security license [Alspaugh and Scacchi 2012].

An example ledger, transaction, smart contract implementation system

Ethereum [2017] is being used used to implement smart contracts,

transactions, and a blockchain ledger. Ethereum is a set of technologies: a general-

purpose programming language, open application program interfaces (APIs), and an

open transaction/blockchain repository associated with the APIs. Ethereum uses a

cryptocurrency called ether, and users of Ethereum can transfer money, ownership,

or control of exchanged resources whose (fungible) value is denominated in the form

of ether between each other and to contracts to hold in escrow. Online currency

exchange markets can exist for converting ether to a traditional currency like US

dollars. Users of Ethereum send transactions to it in order to create contracts, invoke

existing contracts, and transfer ether. The transactions are public and permanently

Acquisition Research Program
Graduate School of Business & Public Policy - 45 -
Naval Postgraduate School

recorded in the blockchain, unless access to the blockchain is restricted/private to an

authorized set of known parties who must be granted permission to access or

update the blockchain.

Ethereum is decentralized, with a network of blockchains for which each

transaction is processed by a number of miners, possibly anonymous actors who

perform computations on the blockchain that collectively verify the validity of a

transaction of data/value between the participating parties. These miners are

mutually-untrusted peers who are paid fees (in ether) for the work of processing

each transaction and its contract provisions. A miner groups transactions into blocks

and performs a calculation (or “solves a puzzle”) that takes as inputs the previous

block in the blockchain and the transactions in the new block. A valid block, one

whose puzzle has been solved and which meets certain other conditions, can be

appended to the blockchain. The miner broadcasts the new valid block to the

network and receives the ether paid for each of the transactions by their originators.

In this way, Ethereum-based smart contracts are validated by decentralized miners.

These miners receive payment when contracted transactions they verify are

successfully appended by consensus to the blockchain.

A transaction may appear in a number of different blocks, produced by

different miners and appended to different blockchains. Ethereum pays miners

somewhat more to append a block to a longer blockchain, which has the effect over

time of converging the ledger to the blocks and thus transactions that the majority of

miners agree are valid.

Acquisition Research Program
Graduate School of Business & Public Policy - 46 -
Naval Postgraduate School

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
Graduate School of Business & Public Policy - 47 -
Naval Postgraduate School

Blockchains and Smart Contracts for Managing
Software Development and Evolution Process
Transactions

How might we utilize blockchains and smart contracts to manage software

development or evolution updates to OA software system configurations over time?

We examine this question in this section.

Continuous Software Development and Evolution Processes for Open
Architecture Software Systems

 In previous work, we have identified and substantiated seven types of

software evolution process update transactions, shown in Figure 7 below. We further

observe that a given software evolution process may entail either (a) one type of

transaction per update, or (b) multiple concurrent types of updates per transaction.

This may be due to current-to-evolved transformations where the evolved system

version of the OA configuration involves the replacement of more than one

component arising from the availability of a new technology that represents a

departure from the current system architecture, or that integrates functionally similar

capabilities through a new mix of components, interfaces and interconnections (e.g.,

when combining multiple widgets into mashups [Endres-Niggemeyer 2013]). The

purpose may be to reduce software maintenance complexity and extend the

sustainability of a deployed current (or legacy) system through adoption and

integration of remote (cloud-based) services that are functionally similar to the

capabilities formerly available in multiple components. For example, replacing legacy

office productivity applications (word processor, email, calendar) with browser-based

remote networked services (Google Docs, Microsoft Office 365), can provide end-

users with functionally-similar processing capabilities, but with fewer application

components installed on the end-user’s desktop PC system. Furthermore,

subsequent updates to remote services may by policy be integrated and deployed

automatically for minor functionally equivalent evolutionary updates (e.g., bug fixes),

or by deployed only by request or authorization when functionally similar system

Acquisition Research Program
Graduate School of Business & Public Policy - 48 -
Naval Postgraduate School

version updates are made available [Scacchi and Alspaugh 2013a, Scacchi and

Alspaugh 2015, Scacchi and Alspaugh 2016, Scacchi and Alspaugh 2017].

Ledger: what versions of what software components and connectors are
integrated in what OA configuration topology

A ledger records and defines through the design-time OA specification, the

ecosystem in which the OA is evolving [Scacchi and Alspaugh 2012]. The OA is

represented using an architecture description language, and successive ledger

entries record successive configurations of the OA system as it evolves. The ledger

as a whole presents the history of the OA’s evolution, and as long as the

components and connectors remain available from their repositories an instance of

any stage of the OA can be rebuilt as needed. At a minimum the ledger records

every release of the OA system.

Figure 7: Seven types of software evolution update transactions [Scacchi and Alspaugh 2012,

Scacchi and Alspaugh 2017a].

Acquisition Research Program
Graduate School of Business & Public Policy - 49 -
Naval Postgraduate School

If a machine on which the OA ISC is installed needs to be rolled back to an

earlier configuration, the desired version of the ISC can be rebuilt guided by the

corresponding ledger entry.

Transactions: OA evolution steps

Each transaction corresponds to one (or several) of the seven types of OA

evolution, stating which component, connector, or license is being changed or what

change is being made to the OA topology. In total, the sequence of all transactions

for an OA system represents the history of its evolution. The ledger summarizes the

system’s evolution, based on the transactions made to it, and presents each of the

versions that the evolution has proceeded through.

Not everyone can record a transaction with the ledger, and each actor that

can record a transaction may be restricted in precisely what sorts of transactions can

be recorded. These restrictions ensure that the OA ISC is evolved through steps that

preserve its security. It also accommodates actors who may or not have been vetted

and authorized, so that they are trusted to preserve the system’s security through

their transactions.

Smart Contracts: enforcing obligations for each OA evolution step

Smart contracts restrict the transactions that may occur to those believed to

preserve the OA system’s security as the system evolves. A transaction may only be

enacted if the actor doing so has been vetted and authorized for it, and has

presented credentials identifying himself appropriately; and also only if the current

state of the OA system development and the evolution step(s) proposed meet the

conditions imposed by a smart contract associated with the ledger. The smart

contract in essence states obligations that the actor, the evolution step, and the OA

system must meet in order for the transaction to occur; if the obligations are not met,

then the transaction cannot be performed, at least not with this smart contract. The

obligations declared in a smart contract indicate which parties or actors can

access/update what OA system elements or other technical data arising during

software development or evolution processes. As before, these process obligations

Acquisition Research Program
Graduate School of Business & Public Policy - 50 -
Naval Postgraduate School

are similar to those previously identified for controlling software system/data usage

obligations, along the rights to access and update the system/data provided to

developer, system integrators, or end-users [Alspaugh and Scacchi 2012].

It is possible that more than one smart contract may potentially allow a

specific transaction, each contract presenting a different set of obligations. But in

any case the transaction cannot proceed until a smart contract for the ledger allows

it to do so.

To help make clear what we are looking to accomplish through our efforts to

stimulate innovation in securing the development and evolution of OA software

systems, we now turn to present a case study focusing on updating the installed

software configuration of a deployed current OA C2/B software system.

Acquisition Research Program
Graduate School of Business & Public Policy - 51 -
Naval Postgraduate School

Case Study: OA C2/B Software System Evolution
Process Updates

In this case study, we describe how blockchains and smart contracts can be

employed to model and analyze cybersecurity requirements for OA software

systems that arise during software evolution processes. As described above, there

are seven types of software evolution process updates that take a current system,

transform it one of the seven ways, which produces an evolved system. This

evolution process iteratively cycles through software development processes that

build, release, and deploy [Scacchi and Alspaugh 2013b, Scacchi and Alspaugh

2017] installed software configurations once the development life cycle starts. The

process continues to (slowly) cycle over time, until the system is retired or

abandoned. Our focus further narrows to evolving OA C2/B systems that incorporate

multiple end-user computing platforms, such as smartphones, tablets, or other Web-

compatible “edge” devices [Zheng and Carter 2015], as we have addressed before

[Scacchi and Alspaugh 2015, Scacchi and Alspaugh 2016].

Blockchain ledgers serve to verify in a decentralized manner the proper

sequencing of valid transactions to user/device account. Such an account operates

like a personal bank account that can be used to deposit and withdraw funds, for

example, through use of account transactions associated with debit/credit card

bound to the account. The enterprise that manages accounts for users may charge a

fee for account transactions, though such fees may be assigned to a third-party

(e.g., party who receives a payment via a card that has been authorized to possess

sufficient funds balance to cover the payment in the future). The current “balance of

funds” in a software evolution process account indicates the name, size, and other

meta-data that identify executable software applications (including mobile apps,

plug-in widgets, or other installed software). At present, computing platforms or

devices do not maintain software process transaction accounts, but in our scheme

they would.

Acquisition Research Program
Graduate School of Business & Public Policy - 52 -
Naval Postgraduate School

Next, the blockchain ledger as a decentralized database would be distributed

across a (virtual private) network of computing systems, such as those with

restricted, authenticated access to a centralized C2/B system host/sub-network.

Said differently, if we have smartphones or mobile/laptop PCs that can roam in the

wild, and intentionally or unintentionally acquire software updates (e.g., known app

updates but with revised access rights; new social media apps; or cyber-penetration

attack vectors via misdirected access to a remote server), we want all such

evolutionary software update transactions to be reconciled and validated against a

the corresponding virtual private network’s blockchain ledger in ways that maintain

device/user autonomy, but reveals and can reject unvalidated evolutionary updates.

The ways and means for how valid or invalid transactions are revealed (externally

documented on the blockchain) or rejected (e.g., enforced automated uninstallation,

external network access blocked, or notify user of problematic update) are

determined by enterprise cybersecurity policies encoded into an associated smart

contract (a functional software program logically isolated from end-user application

software).

Let us consider the following usage scenario. Suppose we have a mission

platform like a ground-based command post (or remote enterprise business office)

assigned to operate within an international location. Such a location may be in a

region known to have a history of prior cybersecurity attacks on personal computers,

mobile, or Web-based devices that access the public Internet. Mission personnel are

restricted by policy from using their enterprise mobile devices outside the

cybersecurity perimeter of the mission platform. However, personnel may also

possess and use private personal devices, such as low-cost smartphones that are

used for non-mission purposes.

As anyone who possesses and routinely uses a mobile/edge device like a

smartphone or laptop PC now frequently experiences, software (evolution) updates

are common, sometimes one or more per week across the 30-60+ apps found on

such devices. Sometimes mistakes are made by personnel regarding which device

to use for accessing remote services like making phone calls to home, to informally

coordinate with friends in allied forces, to check for local restaurants offering

Acquisition Research Program
Graduate School of Business & Public Policy - 53 -
Naval Postgraduate School

interesting local cuisines, or to post data for sharing on social media. Access control

to some devices may be misconfigured due to a prior update or unintentionally left

open in an discoverable device pairing mode, so that other unknown devices or

remote computers can quietly/covertly make network connections that enable

data/files upload, download or remote control. Mobile or web-based edge devices

will be relentlessly targeted for cyber attack, so when a cyber attack vulnerability is

in the hands of opposing forces or hostile competitors, we assume they will seek out

and attack these vulnerabilities at some time and place. It is therefore these invalid

software evolution updates to installed software configurations that denote potential

cyber attacks that we seek to detect, isolate, trace, expunge or prevent, using the

capabilities of blockchains and smart contracts. In this way, our use of blockchains

and smart contracts is innovative, original, and not previously associated with

software evolution process transactions.

Consider a desktop PC with apps/widgets acquired from either a restricted-

access enterprise-specific app store, a Defense app store [George, Galdorisi,

Morris, O'Neil 2014, George, Morris, O'Neil 2014], or else from a public-access app

store or OSS component repository. A sample picture of such an ISC appears in

Figure 8. This ISC includes web browser-based apps like cloud-based word

processors, calendars, and email app services are frequently included in such

stores. However, open access app stores like those operated by Apple, Google,

Microsoft and others also offer free/low-cost apps that offer many other remote,

cloud-based services. In either situation, these remote service apps may operate

downloaded software code that runs within a platform-based Web browser that

accesses public or (virtual) private networks. Enterprise end-users with computer

programming expertise may even create and integrate multiple apps/widgets into

mashups as a kind of end-user software evolution process update [Endres-

Niggemeyer 2013, Scacchi and Alspaugh 2015]. These mashups may enable the

participating apps/widgets to interoperate, exchange or update local data, or transfer

data/files to/from remote networked repositories [Scacchi and Alspaugh 2015,

Scacchi and Alspaugh 2016].

Acquisition Research Program
Graduate School of Business & Public Policy - 54 -
Naval Postgraduate School

Figure 8. A sample view of a desktop PC within a C2/B installed software configuration supporting
multiple OA software system components or apps from an online store.

Next, the desktop PC system may itself by part of a larger integrated OA C2/B

system configured to operate within a local area network, connected to a wide-area

network supporting remote communications to other command or field operations

centers. An example of a such system integration is shown in Figure 9.

Figure 9. A view of an integrated OA C2/B system configured to operate as a Future Command
Center.

Acquisition Research Program
Graduate School of Business & Public Policy - 55 -
Naval Postgraduate School

If our mobile device is a laptop PC, its current (or legacy) OA software

configuration may include open source software (OSS) or proprietary closed source

software (CSS) versions of a common Web browser, word processor, email,

calendar, and more hosted on the PC’s operating system. For instance, a laptop

may have a Firefox web browser (OSS), AbiWord (OSS) or Microsoft Word (CSS)

word processor, Gnome Evolution (fOSS) or Outlook (CSS) for email and

calendaring, and host PC operating like a Fedora/Linux distribution (OSS), Microsoft

Windows (CSS), or Apple OSX (CSS and OSS). The deployed, run-time executable

version of this OA ISC system on the laptop PC may appear to an end-user as an

array of loosely-coupled applications, such as displayed in Figure 10 below. Now,

suppose a decision has been made to update this OA ISC system, to evolve it from

the current configuration to one where the word processor, email and calendaring

applications hosted on the laptop PC are to be replaced with functionally similarly

remote Web services that will operate within the existing Web browser. These

remote services thus entail reliance and usage of browser-based software

components that are hosted in the cloud and downloaded on user demand. This

transition can simplify and reduce the costs of corresponding software update

services associated with locally hosted applications (e.g., recurring license fees for

CSS elements). The resulting deployed and evolved laptop PC software system may

appear to the end-user as shown in Figure 13 below.

Each type of software evolution process update can have a smart contract

associated with it. Each such contract programmatically specifies what

computational actions need to be performed to complete the transaction with the

affected technical data and associated data repositories, and similarly what actions

need to be performed on the blockchain. Let us consider the following transformation

of a current ISC shown in Figure 10 to an evolved ISC seen in Figure 13. Figure 10

corresponds to its ISC model visualized in Figure 11, which is derived from its

specification in an architectural description language (ADL), as we have established

before [Alspaugh, Asuncion, Scacchi 2013a, Alspaugh, Scacchi, Asuncion 2010]. As

the current system, we assume for this moment, that it has previously been

submitted via an earlier transaction on the blockchain that was verified by miners

Acquisition Research Program
Graduate School of Business & Public Policy - 56 -
Naval Postgraduate School

and thus is now a recorded part of the blockchain. Thus we can determine the

provenance of the current ISC system and its specification. This blockchain contains

a record of the ISC specification and the results (e.g., blockchain hash code values)

that the miners computed and agreed by anonymous vote to denote the ISC

installed and operational on the target machine/platform. The transformation from

this current system to the evolved system thus entails enaction of the associated

smart contracts associated with a set of embedded evolution update transactions

that collectively denote what updates must be verified as a block for the evolved ISC

specification to be appended to the blockchain.

Figure 10: Current deployed OA C2/B ISC corresponding to Figure 11, utilized by end-users: Firefox
Web browser (upper left), Evolution calendar (lower-left), AbiWord word processor (upper right),

Fedora/Linux desktop operating system platform (lower right).

Acquisition Research Program
Graduate School of Business & Public Policy - 57 -
Naval Postgraduate School

Figure 11: The current ISC specification for an OA C2/B system within security containers at build-
time [Scacchi and Alspaugh 2013b], intended to denote a record on the blockchain for which

components need to be included during integration (and testing) of the software components and
code APIs within the released and deployed ISC.

Figure 12: The evolved OA C2/B ISC specification at build-time. Note how the topology of the ISC
has evolved, including where now legacy components have been deprecated.

Acquisition Research Program
Graduate School of Business & Public Policy - 58 -
Naval Postgraduate School

For example, we may elect to use a pre-defined smart contract (an

executable software script) whose transactions transform a component-based C2/B

system with a Web browser installed, into a remote service-based C2/B system,

where Web/cloud-based services provide functionally similar capabilities to end-

users. This might entail a smart contract that performs the following transactions

(described in English for simplicity): (1) check the ISC blockchain hash code value(s)

match those for the current system, if matching, then proceed; (2) deprecate and

replace designated software application components with remote service

apps/widgets; (3) replace deprecated component licenses with remote services

licenses (e.g, ToS); and (4) replace ISC interconnection topology with the evolved

ISC; (5) send request to miners to independently compute and verify the evolved

ISC specification hash code value on the target machine/platform denotes the ISC

and associated meta-data they independently build to compute the evolved ISC

hash code; (6) if miners vote independently verifies the ISC specification, then assert

into the blockchain the evolved ISC specification value as denoting the new current

ISC ready for use; (e) end of contract transactions. Many low-level details are not

described here, but would need to be in a smart contract. These details can include,

for instance, the installation parameter settings that are selected or configured by

either the end-user or installation script, in line with a security technical

implementation guide (STIG) for the targeted machine/platform.

The software evolution conveyed in the smart contract example will change

the topological configuration of software components found in the system integration

build specification, release, and deployed run-time architectures. Here we see that in

Figure 12, the configuration model of the evolved OA system still incorporates the

same kind of components as the current system model (shown above in Figure 11),

but now the topology of components interconnections and interfaces has been

updated to realize the deployed, run-time desktop software. Last, a transformation

from the current software components with their respective licenses, to the evolved

configuration will also entail an update to new licenses (e.g., Google Terms of

Service), and how these components will be secured (from end-user level assurance

Acquisition Research Program
Graduate School of Business & Public Policy - 59 -
Naval Postgraduate School

of locally installed components to end-user agreement with remotely provided

component security that is mostly invisible to end-users).

Figure 13: Evolved OA C2/B ISC corresponding to Figure 12, installed for utilization by end-users:
Firefox Web browser as before, Google Calendar (lower left), Google Docs (upper right), and

Fedora/Linux operating system platform as before.

The transformation of the current system in Figure 10 and Figure 11 to the

evolved system in Figure 12 and Figure 13 entails multiple types of software system

evolution updates. But now we must consider whether and how such evolution

process transactions potentially allow for introduction of cybersecurity vulnerabilities

or attack vectors. This can happen, for instance, in the following ways. If the current

system is trusted, because its components have individually had their security tested

for known vulnerabilities and have passed assurance checks, then evolution process

update transactions may introduce unintended vulnerabilities, either within the

components replaced, within the new topological configuration, via shifts in the

obligations or rights (added, subtracted, revised) in the new components, or via the

overall incorporation of all of these evolutionary updates. So we need to assure the

security of the update transactions acquired from the component producers and from

Acquisition Research Program
Graduate School of Business & Public Policy - 60 -
Naval Postgraduate School

the system integrators. This entails identifying and validating the software supply

network that provides the software components that are included in a new PSC for

installation, or as currently configured within a deployed ISC, as suggested in Figure

14. Similarly, when a planned and authorized PSC is to be installed into the evolving

ISC, its software supply network that supplies the new PSC for installation and

evolutionary update of the current ISC, then its network must also be recognized and

validated as the source for the updated OA software system components. A similar

example appears in Figure 15.

Figure 14. A software supply network for the ISC in Figure 10 and Figure 11.

As these transactions entail request-response transactions with remote

parties across a network, then they may be vulnerable to “man-in-the-middle”

attacks, as well as to mistakes made in selecting the appropriate component

versions for the specific edge device platform. So we want these transactions to be

coordinated and tracked using blockchains and smart contracts, so that we can

better trust the security of the evolution process updates. Said differently, we want

Acquisition Research Program
Graduate School of Business & Public Policy - 61 -
Naval Postgraduate School

any and all updates that affect the OA software system components,

interconnections and interfaces, or licenses to be mediated and verified by remote

parties via blockchain transactions. This entails that each edge device or system

platform must be able to periodically (e.g., daily, after an application program exits,

or by mission-specific policy) identify itself and assert the “value” of its current ISC

elements and configuration specification, in a way that can be reconciled against the

last known, corresponding verified values on the blockchain. If a discrepancy

between the value of the last known (and trusted) current system configuration, and

the system evolved configuration is detected, then some unknown evolution update

has occurred, such that system security is now unknown and may no longer be

trusted. Such a condition may then produce a notification of such discrepancy,

automatically revert to the last known trusted current system, or some other

intervention action, depending on the evolution process update security policies

expressed in the corresponding smart contract. Subsequently, we now have new

ways and means for assuring, detecting, or preventing authorized/unauthorized

evolutionary changes to an OA ISC during the software development and evolution

processes which occur routinely during a system acquisition effort.

Acquisition Research Program
Graduate School of Business & Public Policy - 62 -
Naval Postgraduate School

Figure 15. The alternative software supply chain given rise to the evolved ISC in Figure 12 and

Figure 13.

Overall, the purpose of this case study is to help describe and reveal that

common and widespread acquisition processes associated with the development,

usage, or evolution of OA software systems supporting C2/B mission applications is

not necessarily secure, and thus can allow for unknown or poorly understood

evolutionary updates that are intended or not. Our efforts begin to characterize the

need to continuously secure and assure these software engineering process

updates and their provenance. Such continuous assurance capabilities are needed

in addition to other techniques that focus on assuring the security and integrity of the

individual software components acquired from diverse producers or integrators

through software ecosystems that release deployable run-time software applications

or remote services.

Acquisition Research Program
Graduate School of Business & Public Policy - 63 -
Naval Postgraduate School

Discussion

There are three topics we find merit consideration, given what now appears

possible in the use of blockchains and smart contracts as mechanisms for assuring

software development and evolution process update transactions for OA C2/B

systems. These are (a) how cyberattacks that may potentially arise in traditional

software engineering processes can now be prevented, detected or marked for

action; (b) innovations in acquisition research that may follow; and (c) future

extensions of this line of research and study.

Cyberattacks on software evolution, release, and update processes

The types of software evolution updates in Figure 7 also classify comparable

types of software supply chain threats/attacks on OA systems during software

system development, build, deployment, and run-time processes [Scacchi and

Alspaugh 2013a, Scacchi and Alspaugh 2013b, Scacchi and Alspaugh 2013c,

Scacchi and Alspaugh 2017a, Scacchi and Alspaugh 2017b]. The difference being

that cyberattacks on software denote unauthorized or unverified updates from the

current ISC during design-time, build-time and deployment-time software

engineering activities, to an evolved ISC. This implies that covert software evolution

changes by an attacker may follow the same steps as those by a trusted software

producer or system integrator; namely replacement of a component by a newer

version or by a different component, access to a component through a different

interface, replacement of a connector, or replacement of the topological

configuration. (We are presently unaware of attacks involving replacement of a

component license, but such attacks that change/rewrite IP or security license

obligations and rights [Scacchi and Alspaugh 2012, Scacchi and Alspaugh 2015,

Scacchi and Alspaugh 2016] are clearly possible.) The result is a compromised

version of the system that is functionally similar to the current (trusted) ISC system,

but masquerading as one that is authorized, validated, and functionally equivalent

intended not to be recognized as something different.

Acquisition Research Program
Graduate School of Business & Public Policy - 64 -
Naval Postgraduate School

When the attack is made on a deployed instance of the ISC system, its

presence can be identified by the change in the size or hash code value of the

compromised system, compared to the current system’s provenance or software

taggant values already established and validated in the blockchain. The window of

time during which the attacked system may take effect is limited by the frequency

with which the edge device’s software is compared with what the blockchain ledger

recorded as being installed, as after any change is discovered the edge system’s

software can be rolled back to its (prior, now current) trusted configuration.

The process is more complex for intentional but covert attacks during

development, build, and deployment, because the context is more complex, as

indicated in our examination of recent social and technical threats/attacks software

supply chain identified earlier in this report. Specifically, we wish to prevent insecure

components, connectors, and configurations from being incorporated into the OA

system; but an OA system is by its nature typically the result of a distributed,

decentralized development, with components coming from other projects and

developed and evolved by parties distant and often unknown to the OA system’s

integrators. We foresee the use of blockchains for PSC/ISC update transactions that

are subject to smart contracts within DAO software supply networks to record each

component and connector’s provenance, vetting, and authorization. Smart contracts

restrict the possible transactions (evolution steps) to those believed to preserve the

OA system’s security. When an unexpected change is discovered in an edge device

system’s software, it is rolled back to a safe version; when a security fault is

discovered in a version of the system, a process that may be much more involved,

the components, connectors, and topology involved may be rolled back to a trusted

safe version, and the smart contracts through which the fault was introduced may be

updated to prevent a “similar” evolution in the future. This may be done either by

withdrawing authorization from actors involved, by blacklisting a component

repository whose vetting was careless, or by similar means. The blockchain ledger

records the information needed to take such steps.

This points to two further areas of research. First, the blockchain ledger

system now becomes a locus against which attackers will wish to operate, and

Acquisition Research Program
Graduate School of Business & Public Policy - 65 -
Naval Postgraduate School

further study is needed to examine how to resist such attacks, isolate their effect,

and to the extent possible reject them through the blockchain and transaction

mechanism itself. Second, can the ledger be used as a database of information for

effectively distinguishing fraudulent or corrupted evolution steps? Further research

will be necessary.

The only allowed OA evolution updates of the secure system are those that

are first verified as valid updates, from known trusted parties, and that satisfy a

contract for the blockchain ledger. In cases where a vulnerable or corrupted

component, connector, or topology successfully runs this gauntlet, the ledger

provides a means for rolling back transactions to a secure version of the system that

can be deployed in place of the insecure later version.

We note that in contrast to a procedural programming language such as the

Solidity language used for Ethereum contracts, a declarative scripting language

mitigates against recently discovered vulnerabilities of smart contract technologies

such as those found for the Ethereum run-time interpreter [Atzei, Bartoletti, Cimoli

2016].

Innovation for Acquisition Research

The work prior to this paper in software cybersecurity is primarily focused on

making a particular version of the software system itself, as a product, secure. In this

paper, we are expanding our view to include the ecosystem within which the system

evolves, the software architecture specification that defines and constrains that

ecosystem, the evolution of the components and connectors that are integrated into

the system, and the OA evolution process by which any OA system evolves from

version to version. To this, we are adding the ability to record, track, verify, and

maintain the security of the OA system throughout its development and evolution

processes.

We are proposing the use of blockchains and smart contracts to assure the

security of software engineering process update transactions. We are not at this time

investigating how blockchains and smart contracts may be used as potential

Acquisition Research Program
Graduate School of Business & Public Policy - 66 -
Naval Postgraduate School

mechanisms that support the financial transactions or new business models for

purchasing the services or products associated with a OA software system

acquisition [Scacchi and Alspaugh 2016]. That is a topic for future research.

Similarly, though blockchains and smart contracts are relatively new, they also entail

their own set of vulnerabilities associated with their different technological

implementations [Atzei, Bartoletti, Cimoli 2016] that must be addressed. Whether or

how such vulnerabilities may manifest within acquisition processes is also a topic for

future research.

Acquisition Research Program
Graduate School of Business & Public Policy - 67 -
Naval Postgraduate School

Recommendations: Future extensions and new
research elaborations

We have discussed the application of a blockchain system for coordinating

and steering the evolution of an OA software system that is produced or integrated

by a single party. But a blockchain system is by its nature a distributed system, and

though its distributedness does not in itself give extra benefit in multi-producer, multi-

integrator software ecosystems, clearly it is as effective in recording evolution and

provenance in them, and is already adapted to the challenges of interactions with

many parties.

Future research topic – cybersecurity threat meta-model formalization
and codification

First, the social and technical threats and unintentional acts indicated earlier

in Section 2.3 can form a basis for an OA software cybersecurity threat meta-model,

based on the kinds of threats presented earlier in the examination of social, technical

and unintentional threats to software supply chains. Here we summarize the outline

of such a meta-model based on a comparative analysis of the three kinds of threats

identified across more than kinds of identified software supply chain threats: threats

of unauthorized access, threats of denial of authorized access, and threats of

malicious software.

– Recognizing and Preventing Unauthorized Access Opportunities

These threats can enable the release, exposure, or exfiltration of data, user

guides, software products, security access control mechanisms such as keys and

licenses, and other secret or restricted information. The release may be intentional

or unintentional, and may involve bribery, identity spoofing, hacks, man-in-the-

middle attacks, updates, backups, and other technical or non-technical means.

OA software cybersecurity threat meta-model construction (unauthorized

access):

disclosure/granted-access to unauthorized people of:

Acquisition Research Program
Graduate School of Business & Public Policy - 68 -
Naval Postgraduate School

• information (secret; security weakness)

• user guides

• software products
 permission to use; modify; redistribute

o Note, these can result from IP/Security License evolution updates

• data storage (facility; repository; media)

• security access control mechanisms (keys; lists; containers; virtual machines;
licenses)

intentionally or unintentionally, because of:

• non-technical reasons
 delivery mistake or repudiation
 bribery (coerced actors)
 identity spoofing

• technical reasons (“evolution update transactions”)
 hacking (unauthorized updates)
 insertion of malicious code
 man-in-the-middle delivery interception attack
 denial of service attack
 deletion/destruction
 modification or destruction of security mechanisms or capabilities

o data access control, backup, and transfer
o software update access control and transfer

– Recognizing and Preventing Opportunities for Denial of Authorized User
Access

These threats involve all the aspects of unauthorized access threats, but

invert their perspectives by denying access to the same sorts of information and

control to authorized people.

OA software cybersecurity threat meta-model construction (denied authorized

access):

non-disclosure/denied-access to authorized people of:

• information (secret; security weakness)

Acquisition Research Program
Graduate School of Business & Public Policy - 69 -
Naval Postgraduate School

• user guides

• software products
 unable to use; modify; redistribute

o Note, these can result from IP/Security License evolution updates

• data storage (facility; repository; media)

• security access control mechanisms (keys (exceed local legal limit); (lists;
containers; virtual machines (modified/destroyed)); licenses)

• software product delivery/acceptance confirmation receipts

intentionally or unintentionally of because of:

• non-technical reasons
 delivery mistake or repudiation
 bribery (coerced actors)
 identity spoofing

• technical reasons (“evolution update transactions”)
 hacking (unauthorized updates)
 insertion of malicious code
 man-in-the-middle delivery interception-modification attack
 denial of service attack
 deletion/destruction
 modification or destruction of security mechanisms or capabilities

o data access control, backup, and transfer
o software update access control and transfer

– Recognizing and Preventing Opportunities for Introduction of Malicious
Software

The final category of threats involve malicious software elements including

source code, externally sourced components, libraries and middleware, software

connectors such as APIs and protocol handlers, build and packaging scripts,

operating system protection mechanisms, storage devices and removable media,

and corrupted or counterfeit data. They may be accomplished through the same

technical and non-technical means as the first two categories of threats, and involve

introduction, modification, or deletion of the elements in question.

Acquisition Research Program
Graduate School of Business & Public Policy - 70 -
Naval Postgraduate School

OA software cybersecurity threat meta-model construction (introduction of malicious
software):
disclosure/access to authorized people of

• malicious/corrupted software elements (counterfeit; unauthorized-modified
(malicious code insertion)) via infection site:
 application source code
 outsourced or open source software components

o standalone software systems (executable binaries; source code)
o apps
o widgets
o build/packaging scripts
o mashups

 software libraries/middleware
 software connectors

o application program interfaces (APIs)
o operating system/utility scripting
o protocol handlers
o database management systems
o storage repositories
 application (files; file systems)
 software source/binary code (files; file systems (e.g., GitHub;

SourceForge))
o software buses

 software containers
o common software installation packages
 Note, this also applies to compliance/validation testing

software/data sets
o packed (compressed), encrypted code for installation, unpacking and

execution in computer memory
o operating system protection mechanisms/capabilities (e.g., SELinux,

SEAndroid-- security enhanced Linux, Android, from NSA)
o virtual machines
o storage devices
o removable media

Acquisition Research Program
Graduate School of Business & Public Policy - 71 -
Naval Postgraduate School

 corrupted/malicious licenses (IP/Security)
o can also allow for corrupted/counterfeit data (facility; repository; media)

elements
intentionally or unintentionally because of:

• technical reasons (“evolution update transactions”)
 hacking (unauthorized updates)
 insertion of malicious code
 man-in-the-middle delivery interception or hijacking attack
 denial of service attack
 deletion/destruction
 modification or destruction of security mechanisms or capabilities

o data access control, backup, and transfer
o software update access control and transfer

Future research topic – formalizing a domain-specific language and
processing environment for specifying cybersecurity threat models and
defensive security licenses as enactable smart contracts

In our prior research, we have called for a declarative domain-specific

language (DSL) for specifying the obligations and rights incorporated into IP and

security licenses for OA software [Alspaugh and Scacchi 2012, Scacchi and

Alspaugh 2013a]. Now we see that such a DSL can be extended to incorporate

software engineering process transactions using process modeling language like

PML [Noll and Scacchi 2001, Scacchi 2001] or a similar notation, and that such

extension is advantageous for managing OA software security system and

engineering process challenges. The design and incorporation of these extensions

into the DSL is thus a next step for us to research, develop and refine.

Next, we have also called for research and development of software

obligations and rights management systems (SORMS) as a core capability for the

DoD, government agencies, and other enterprises to help manage and improve their

OA software system buying power [Scacchi and Alspaugh 2015, Scacchi and

Alspaugh 2016]. We envision a SORMS that interprets and evaluates DSLs for

software licensing as an essential tool for enterprises that manage OA software

Acquisition Research Program
Graduate School of Business & Public Policy - 72 -
Naval Postgraduate School

systems, such as found in most large organizations in industry, government, and

Defense. Such DSL interpretation and execution will manipulate transactions to

software bill of materials (BOM) technical data for the accumulating and evolving

ISC, as well as for each PSC that is to be added/integrated via OA system evolution

updates. Such transactions are intended to be subject to the rights, obligations, and

countermeasures stipulated in OA software system licenses that conform to new

cybersecurity meta-models outlined above.

As noted earlier, unauthorized updates to an ISC, whether the result of a

social, technical or unintentional software supply chain threat, would be detected

and defended against by the design of the SORMS that interprets system security

licenses as smart contracts. These computational contracts would need to run

continuously whenever a OA software system is being used in normal operations, as

well as when the system is being intentionally updated. Such an approach is similar

to the operation of any remote network/web server with a database management

back-end server that normally operates continuously by design. The computational

burden for such server operations is anticipated to be very modest, since the

continuous computations are primarily checking ISC hash code values posted and

maintained in the software BOM repository associated with the ISC. If/when

intentional PSC updates are planned and executed, then remote validation of before

and after ISC hash code functions reveal either accepted matches (thus valid

update) or otherwise unaccepted or mismatch (indicating invalid update, thus the

PSC is not installed, or the current ISC is marked as suspect, and identified as a

candidate to be rolled back to a known valid ISC, perhaps indicating an unauthorized

ISC update).

Thus, we call for effort to add capabilities that extend the SORMS to

accommodate blockchain ledgers that manage and store software BOM repositories

for both PSC to be installed and for accumulating and evolving ISCs, as

decentralized or centralized databases, on which are enacted security licenses as

smart contracts for automated handling software development and evolution process

update transactions.

Acquisition Research Program
Graduate School of Business & Public Policy - 73 -
Naval Postgraduate School

Conclusions

We sought to stimulate the development of innovative approaches to

continuously assuring the cybersecurity of Open Architecture (OA) software system.

We focused attention to exploring the potential for using blockchains and smart

contract techniques, and how they can be applied to support acquisition efforts for

software systems for OA command and control, or business enterprise (C2/B)

systems. We further limited our focus to examining the routine software system

updates to OA software configuration specifications that arise during the

development and evolution processes arising during system acquisition. Our efforts

described through our case study and related efforts thus denote a promising line of

work in progress.

Much remains to be done, but the direction forward appears robust,

productive, and likely to stimulate new innovations as a result of future research

opportunities that we have recommended. We welcome questions and comments

that identify possible oversights, as well as suggest complementary capabilities that

enhance the potential of blockchain and smart contract tools, techniques, and

technologies for continuously assuring the cybersecurity of software supply chains

that support the development and evolution of modular, open architecture software

systems as installed software configurations.

Acquisition Research Program
Graduate School of Business & Public Policy - 74 -
Naval Postgraduate School

THIS PAGE INTENTIONALLY LEFT BLANK

Acquisition Research Program
Graduate School of Business & Public Policy - 75 -
Naval Postgraduate School

References

Al Sabbagh, B. & Kowalski, S. (2015). A Socio-Technical Framework for Threat
Modeling a Software Supply Chain, IEEE Security and Privacy, July-August,
30-39. Also see, X. Wang, B. Al Sabbagh, and S. Kowalski, “A Socio-
Technical Framework for Threat Modeling a Software Supply Chain,” Proc.
Dewald Roode Workshop on Information Systems Security Research, IFIP
WG8.11/WG11.13, 2013, article 17.

Alberts C, Holler J, Wallen C. and Woody C. (2017). Assessing DoD System
Acquisition Supply Risk, CrossTalk: The Defense Software Engineering
Journal, 30(3), 4-9, May-June.

Alspaugh T.A, Asuncion H, and Scacchi W. (2013). The Challenge of
Heterogeneously Licensed Systems in Open Architecture Software
Ecosystems, in S. Jansen, S. Brinkkemper, and M. Cusumano (Eds.),
Software Ecosystems: Analyzing and Managing Business Networks in the
Software Industry, Edward Elgar Publishing, 103-120, Northampton, MA.

Alspaugh TA, Asuncion HU, and Scacchi W. (2009). Intellectual property rights
requirements for heterogeneously-licensed systems. In 17th IEEE
International Requirements Engineering Conference (RE’09), pages 24–33,
2009.

Alspaugh TA, Asuncion HU, and Scacchi W. (2011) Presenting software license
conflicts through argumentation. In 23rd International Conference on Software
Engineering and Knowledge Engineering (SEKE 2011), pages 509–514,
2011.

Alspaugh TA and Scacchi W. (2009). Heterogeneously-licensed system
requirements, acquisition, and governance. In Second International Workshop
on Requirements Engineering and Law (RELAW’09), pages 13–14, 2009.

Alspaugh TA and Scacchi W. (2012). Security Licensing, Proc. Fifth Intern.
Workshop on Requirements Engineering and Law, 25-28, September 2012.

Alspaugh TA, Scacchi W, and Asuncion HA. (2010). Software Licenses in Context:
The Challenge of Heterogeneously Licensed Systems, J. Assoc. Info.
Systems, 11(11), 730-755.

Alspaugh TA, Scacchi W, and Kawai R. (2012). Software licenses, coverage, and
subsumption. In Fifth International Workshop on Requirements Engineering
and Law (RELAW’12), pages 17–24, 25 Sep. 2012.

Atzei N, Bartoletti M, Cimoli T. (2016). A Survey of Attacks on Ethereum Smart
Contracts, Cryptology ePrint Archive, Report 2016/1007,
http://eprint.iacr.org/2016/1007

http://eprint.iacr.org/2016/1007

Acquisition Research Program
Graduate School of Business & Public Policy - 76 -
Naval Postgraduate School

Berne (1979). Berne Convention for the Protection of Literary and Artistic Works,
1979.

Blockchain (2017). https://en.wikipedia.org/wiki/Blockchain, accessed 15 March
2017.

BOM (2017). Software Bill of Materials,
https://en.wikipedia.org/wiki/Software_bill_of_materials accessed September
2017.

Brumaghin E, Gibb R, Mercer W, Molyett M, and Williams C (2017). CCleanup: A
vast number of machines at risk. Cisco TALOS Blog, 18 September 2017.

Cherepanov A. (2017). Analysis of Telebots’Cunning Backdoor.
WeLiveSecurity.com, https://www.welivesecurity.com/2017/07/04/analysis-of-
telebots-cunning-backdoor/

Damianou N, Dulay N, Lupu E, and Sloman, M. (2001). The Ponder policy
specification language. In Int. Workshop on Policies for Distributed Systems
and Networks, pages 18–38, 2001.

(DISA) Defense Information Systems Agency. Android 2.2 (Dell) Security Technical
Implementation Guide (STIG), 2011.

(DoD) Department of Defense, Better Buying Power, http://bbp.dau.mil/ accessed 25
May 2016.

(DoDGSA) Department of Defense and General Services Administration (2013).
Improving Cybersecurity and Resilience through Acquisition, November 2013,
accessed June 2015.

DuPont, Q. and Maurer, B. (2015). Ledgers and Law in the Blockchain, King’s
Review, 23 June 2015. http://kingsreview.co.uk/articles/ledgers-and-law-in-
the-blockchain/

Ellison RJ, et al., (2010). Evaluating and Mitigating Software Supply Chain Security
Risks, tech. report CMU/SEI-2010-TN-016, Software Eng. Inst., Carnegie
Mellon Univ., 2010.

Endres-Niggemeyer B. (2013). The Mashup Ecosystem, in Semantic Mashups:
Intelligence Reuse of Web Resources, Springer, 1-50.

Ethereum (2017). https://en.wikipedia.org/wiki/Ethereum, accessed 15 March 2017.

Falliere N, Murchu LO, and Chien E. (2011). W32.Stuxnet dossier. Technical report,
Symantec, 2011.

Franz M. (2010). E unibus pluram: Massive-scale software diversity as a defense
mechanism. In 2010 Workshop on New Security Paradigms (NSPW ’10),
pages 7–16, 2010.

https://en.wikipedia.org/wiki/Blockchain
https://en.wikipedia.org/wiki/Software_bill_of_materials
https://www.welivesecurity.com/2017/07/04/analysis-of-telebots-cunning-backdoor/
https://www.welivesecurity.com/2017/07/04/analysis-of-telebots-cunning-backdoor/
http://bbp.dau.mil/
about:blank
about:blank
http://www.defense.gov/news/Improving-Cybersecurity-and-Resilience-Through-Acquisition.pdf
http://kingsreview.co.uk/articles/ledgers-and-law-in-the-blockchain/
http://kingsreview.co.uk/articles/ledgers-and-law-in-the-blockchain/
about:blank
about:blank

Acquisition Research Program
Graduate School of Business & Public Policy - 77 -
Naval Postgraduate School

(FSF) Free Software Foundation (2007). GNU General Public License version 3,
2007. http://www.gnu.org/licenses/gpl-3.0.html

George A, Galdorisi G, Morris M, and O'Neil M. (2014). DoD Application Store:
Enabling C2 Agility?, Proc. 19th Intern. Command and Control Research and
Technology Symposium, Paper-104, Alexandria, VA, June 2014.

George A, Morris M, and O'Neil M. (2014). Pushing a Big Rock Up a Steep Hill:
Lessons Learned from DoD Applications Storefront, Proc. 11th Annual
Acquisition Research Symposium, Vol. 1, 306-317, Naval Postgraduate
School, Monterey, CA.

Greenberg A. (2017). Software has a serious supply-chain security problem. Wired,
Sept. 2017.

Guertin NH, Sweeney R, and Schmidt DC. (2015). How the Navy Can Use Open
Systems Architecture to Revolutionize Capability Acquisition: The Naval OSA
Strategy Can Yield Multiple Benefits. Proc 12th Annual Acquisition Research
Symposium, Monterey, CA, NPS-AM-15-004, May 2015.

Guertin N and Womble B. (2012). Competition and the DoD Marketplace, Proc. 9th
Acquisition Research Symposium. Vol. 1, 76-82, Naval Postgraduate School,
Monterey, CA.

Henning, E (2011). Attack of the computer mouse. The H Security, 2011. http://h-
online.com/-1270018 .

ISO/IEC (2005). International standard 27001.

Kendall F. (2015). Implementation Directive for Better Buying Power 3.0, 9 April
2015.

Kennedy M and Muttik I. (2011). IEEE Taggant System,
https://standards.ieee.org/develop/indconn/icsg/taggant.pdf . Also see
Software Taggant (2017). https://en.wikipedia.org/wiki/Software_taggant ,
accessed September 2017.

Loscocco PA, Smalley SD, Muckelbauer PA, et al. (1998) The inevitability of failure:
The flawed assumption of security in modern computing environments. In
21st National Information Systems Security Conference (NISSC’98), 1998.

Luo T, and Du W. (2011). Contego: Capability-based access control for web
browsers. In 4th International Conference on Trust and Trustworthy
Computing (TRUST’11), 2011.

Mactal R & Spruill N. (2012). A Framework for Reuse in the DoN. Proc. 9th
Acquisition Research Symposium, Vol.1, 149-164, Naval Postgraduate
School, Monterey, CA.

http://www.gnu.org/licenses/gpl-3.0.html
http://h-online.com/-1270018
http://h-online.com/-1270018
http://www.acq.osd.mil/fo/docs/betterBuyingPower3.0(9Apr15).pdf
https://standards.ieee.org/develop/indconn/icsg/taggant.pdf
https://en.wikipedia.org/wiki/Software_taggant

Acquisition Research Program
Graduate School of Business & Public Policy - 78 -
Naval Postgraduate School

Menn J (2017). Hackers compromised free CCleaner software, Avast’s Piriform
says. Reuters, 18 September 2017.

Noll J & Scacchi W. (2001). Specifying Process-Oriented Hypertext for
Organizational Computing, J. Network and Computer Applications, 24(1):39-
61.

Reed H, Benito P, Collens J, and Stein F. (2012). Supporting Agile C2 with an Agile
and Adaptive IT Ecosystem, 17th Intern. Command and Control Research and
Technology Symposium (ICCRTS), Paper-044, Fairfax, VA, June 2012.

Reed H, Nankervis J, Cochran J, Parekh R, and Stein F. (2014). Agile, Adaptive IT
Ecosystem: Results, Outlook, and Recommendations, Proc. 19th Intern.
Command and Control Research and Technology Symposium (ICCRTS),
Paper-011, Arlington, VA, June.

Riley M, Robertson J, and Sharpe A (2017). The Equifax Hack has the Hallmarks of
State-Sponsored Pros, Bloomberg Businessweek, 29 September 2017,
https://www.bloomberg.com/news/features/2017-09-29/the-equifax-hack-has-
all-the-hallmarks-of-state-sponsored-pros

Salamat, B, Jackson T, Wagner G, Wimmer C, and Franz, M. (2011). Runtime
defense against code injection attacks using replicated execution. IEEE
Transactions on Dependable and Secure Computing, 8(4):588–601, 2011.

Sawers P. (2011). US Govt. plant USB sticks in security study, 60% of subjects take
the bait. The Next Web (TNW), 2011.

Scacchi W. (2001). Redesigning Contracted Service Procurement for Internet-based
Electronic Commerce: A Case Study, J. Information Technology and
Management, 2(3), 313-334.

Scacchi W and Alspaugh TA. (2011). Advances in the Acquisition of Secure
Systems Based on Open Architectures, Proc. 8th Acquisition Research
Symposium, Vol. 1, Naval Postgraduate School, Monterey, CA.

Scacchi W and Alspaugh TA. (2012) Understanding the Role of Licenses and
Evolution in Open Architecture Software Ecosystems, J. Systems and
Software, 85(7), 1479-1494, July.

Scacchi W and Alspaugh TA. (2013a) Advances in the Acquisition of Secure
Systems Based on Open Architectures, in Journal of Cybersecurity &
Information Systems, 1(2), 2-16, February 2013.

Scacchi W and Alspaugh TA. (2013b). Processes in Securing Open Architecture
Software Systems, Proc. 2013 Intern. Conf. Software and System Processes,
126-135, San Francisco, CA, May 2013.

Scacchi W and Alspaugh TA. (2013c). Challenges in the Development and Evolution
of Secure Open Architecture Command and Control Systems, Proc. 18th

https://www.bloomberg.com/news/features/2017-09-29/the-equifax-hack-has-all-the-hallmarks-of-state-sponsored-pros
https://www.bloomberg.com/news/features/2017-09-29/the-equifax-hack-has-all-the-hallmarks-of-state-sponsored-pros

Acquisition Research Program
Graduate School of Business & Public Policy - 79 -
Naval Postgraduate School

Intern. Command and Control Research and Technology Symposium, Paper
098, Alexandria, VA, June 2013.

Scacchi W and Alspaugh TA. (2014). Achieving Better Buying Power through Cost-
Sensitive Acquisition of Open Architecture Software Systems. Proc 11th
Annual Acquisition Research Symposium, Monterey, CA, NPS-AM-14-
C11P07R01-036, May 2014.

Scacchi W and Alspaugh TA. (2015). Achieving Better Buying Power through
Acquisition of Open Architecture Software Systems for Web and Mobile
Devices. Proc 12th. Annual Acquisition Research Symposium, Monterey, CA,
NPS-AM-15-005, May 2015.

Scacchi W and Alspaugh TA. (2016). Achieving Better Buying Power for Mobile
Open Architecture Software Systems Under Diverse Acquisition Scenarios.
Proc 13th Annual Acquisition Research Symposium, Monterey, CA, SYM-AM-
16-033, 163-183, May 2016.

Scacchi W and Alspaugh TA. (2017a). Issues in Development and Maintenance of
Open Architecture Software Systems, CrossTalk: The Defense Software
Engineering Journal, 30(3), 10-15, May-June.

Scacchi W and Alspaugh TA. (2017b). Cybersecure Modular Open Architecture
Software Systems for Stimulating Innovation, Proc. 14th Annual Acquisition
Research Symposium, SYM-AM-17-062, 316-334, Monterey, CA, April 2017.

Scacchi W and Alspaugh TA. (2017c). Identifying and Analyzing Cybersecurity
Threats to Software Supply Chains. Technical Report, Institute for Software
Research, UC Irvine, (in progress).

Scacchi W and Alspaugh TA.(2017d). Security Licenses as Smart Contracts for
Securing the Software Supply Chains. Technical Report, Institute for Software
Research, UC Irvine, (in progress).

Seacord RC (2008). CERT C Secure Coding Standard. Addison-Wesley, 2008.

Smalley S (2012). The Case for Security Enhanced (SE) Android. Android Builder’s
Summit.

Smart Contracts (2017). https://en.wikipedia.org/wiki/Smart_contract, accessed 25
May 2017.

Spencer R, Smalley S, Loscocco P, Hibler M, Andersen D, and Lepreau J (1999).
The Flask security architecture: System support for diverse security policies.
In 8th. USENIX Security Symposium (SSYM’99), pages 11–11.

Sun K, Wang J, Zhang F, and Stavrou A (2012). SecureSwitch: BIOS-assisted
isolation and switch between trusted and untrusted commodity OSes. In 19th
Network and Distributed System Security Symposium (NDSS 2012), 2012.

https://en.wikipedia.org/wiki/Smart_contract
https://en.wikipedia.org/wiki/Smart_contract

Acquisition Research Program
Graduate School of Business & Public Policy - 80 -
Naval Postgraduate School

(UKCSA) UK Government Chief Scientific Adviser (2016). Distributed Ledger
Technology: Beyond Block Chain. Government Office for Science, London.
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file
/492972/gs-16-1-distributed-ledger-technology.pdf

US-CERT (2017). Petya ransomware. Alert TA17-181A, 28 July 2017,
https://www.us-cert.gov/ncas/alerts/TA17-181A

Uszok A, Bradshaw JM, Johnson M, et al. (2004). KAoS policy management for
semantic web services. IEEE Intelligent Systems, 19(4):32–41, 2004.

Wang X, Al Sabbagh B, and Kowalski S (2013). A Socio-Technical Framework for
Threat Modeling a Software Supply Chain, Proc. Dewald Roode Workshop on
Information Security Research, IFIP WG8.11/WG11.13, Paper 17.

Womble B, Schmidt W, Arendt M, and Fain T. (2011). Delivering Savings with Open
Architecture and Product Lines, Proc. 8th. Acquisition Research Symposium,
Vol. 1, 8-13, Naval Postgraduate School, Monterey, CA.

Xen (2017). Xen Hypervisor. http://xen.org/products/xenhyp.html .

Zheng D and Carter W. (2015). Leveraging the Internet of Things for a More Efficient
and Effective Military, Center for Strategic & International Studies.
Washington, DC, September 2015.

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://www.us-cert.gov/ncas/alerts/TA17-181A
http://xen.org/products/xenhyp.html

Acquisition Research Program
Graduate School of Business & Public
Policy
Naval Postgraduate School
555 Dyer Road, Ingersoll Hall
Monterey, CA 93943

 www.acquisitionresearch.net

	Executive Summary
	Research Overview
	Introduction
	Research Scope
	List of Research Tasks
	Relevance of Our Efforts to Acquisition Research and Practice

	Cybersecure Modular Open Architecture Software Systems for Stimulating Innovation
	Problem
	Solution
	Approach
	Why this approach?

	Background: Blockchains, Smart Contracts and Software Supply Chains
	Blockchains
	Smart Contracts
	Software Supply Chains and Ecosystems

	Social, Technical, and Unintentional Cybersecurity Threats to Software Supply Chains
	Recent Cybersecurity Attacks on Software Supply Chains
	Social and Technical Threats to OA Software Supply Chains
	Social Threats to Software Supply Chains
	Technical Threats to Software Supply Chains
	Other Unintentional Socio-Technical Threats

	Countermeasures for Mitigating Cybersecurity Threats
	Security Licenses as Smart Contracts for Specifying Software Cybersecurity Rights, Obligations and Countermeasures
	Some Possible Rights within Security Licenses for OA Software System Components
	Sample of Security Obligations within Security Licenses for OA Software System Components
	Exclusive Security Rights

	Effectiveness, Manageability, Evolvability of Security Licenses

	Blockchains and Smart Contracts for Installed Software Configurations
	Ledgers of installed software configurations
	Transactions for installed software configurations
	Smart Contracts for installed software configurations
	An example ledger, transaction, smart contract implementation system

	Blockchains and Smart Contracts for Managing Software Development and Evolution Process Transactions
	Continuous Software Development and Evolution Processes for Open Architecture Software Systems
	Ledger: what versions of what software components and connectors are integrated in what OA configuration topology
	Transactions: OA evolution steps
	Smart Contracts: enforcing obligations for each OA evolution step

	Case Study: OA C2/B Software System Evolution Process Updates
	Discussion
	Cyberattacks on software evolution, release, and update processes
	Innovation for Acquisition Research

	Recommendations: Future extensions and new research elaborations
	Future research topic – cybersecurity threat meta-model formalization and codification
	Future research topic – formalizing a domain-specific language and processing environment for specifying cybersecurity threat models and defensive security licenses as enactable smart contracts

	Conclusions
	References

