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Abstract 

Each year, the Department of Defense (DoD) fiscal calendar starts on October 1 

and ends on September 30. Once a fiscal year (FY) begins, weapon system program 

offices, agencies, and other divisions throughout the DoD serve as the stewards for their 

budgets. In this role, these offices are tasked with the responsibility of ensuring that 

congressionally appropriated funding is allocated efficiently over the entirety of the 12-

month FY cycle. Furthermore, the DoD financial execution process operates under use-

or-lose budgetary regulations. As the calendar moves closer to the end of the FY, 

September 30, DoD offices undergo a FY closeout review. Dollars that are not adequately 

spent are at risk of being pulled-back or “swept-up.” In other words, funding can be taken 

away from an office that is underspending and essentially removed from their FY 

appropriated budget. During the FY closeout process each year, considerable time and 

energy is invested in assessing cash utilization levels (disbursements) across the DoD 

and then implementing where necessary the required “sweep-up” actions. In this 

research, we investigate the construct of using a learning algorithmic approach known as 

approximate dynamic programming (ADP) for modeling use-or-lose budgetary systems. 

ADP is a prescriptive analytics approach used to model sequential decision-making 

problems under uncertainty. In the context of use-or-lose budgets, we look to leverage 

ADP in order to generate an efficient month-to-month cash allocation policy in order to 

minimize the amount of both underspending and overspending that occurs during the FY 

closeout period. The research presents a framework for modeling and simulating use-or-

lose budgets using ADP and discusses the computational complexity and the implications 

for leveraging the ADP approach in practice. 
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1.0 Introduction 

Over the course of a fiscal year (FY) cycle, Department of Defense (DoD) 

weapon system program offices are required to make quality cash allocation 

determinations. As the FY moves forward in time, a program office must decide which 

projects to fund and how much funding a project should receive. If a weapon system 

program office allocates more funding to a project than what that project can utilize, it 

runs the risk of overfunding the effort and having these dollars taken during a FY 

closeout process. If a weapon system program office allocates insufficient funding for 

the project, it risks underfunding the effort, which can result in a work stoppage or other 

delays.  

As with most public sector organizations, DoD money that is managed by 

weapon system program offices contains an expiration point. Dollars not spent or 

utilized within a defined time frame are taken away and are no longer available as a 

resource for paying for support projects or activities. Organizations that manage money 

with this type of constraint are operating with what is informally referred to as a use-or-

lose budget. Functioning under this framework, weapon system program managers and 

their financial officers must consider how to strategically allocate funding over an annual 

time horizon that balances between the immediate day-to-day cash allocation decisions 

and the aggregate long-term impact these decisions will have on the program office’s 

FY financial closeout position.  

There is ample evidence to indicate that a sizable portion of the DoD budget 

expires each year. The National Defense Authorization Act of 2014 (FY2014 NDAA) 

required that the DoD’s financial statements undergo a full audit in FY2018. As a result 

of that audit, the DoD’s Office of Inspector General (DoD OIG) reported that there was a 

total of $27.7 billion of expired department funding in FY2018. These dollars represent 

funds that went unutilized over a five-year time span that started in FY2013. 

 Furthermore, while analyzing FY2012 DoD budget data, Conley, Dominy, 

Kneece, Mandelbaum, and Whitehead (2014) pointed out that the rate of spending as 

measured by expenditure rates across the DoD was declining for several years prior. 
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The report highlights how spending benchmarks issued by the Office of the Secretary of 

Defense (OSD) are based on 30 years of financial execution history. Theoretically, this 

means that DoD spending benchmarks are correlated to the work schedules and 

associated spending patterns that are emblematic of the acquisition efforts within a 

typical DoD weapon system program office. However, the actual acquisition experience 

for each weapon system program is unique and always evolving, compounding the 

difficulties faced by weapon system program managers, business financial managers, 

and their staff.  

Serving as additional evidence that there are cash flow problems within the DoD, 

a 2013 Defense Acquisition University (DAU) study by Tremaine & Seligman (2013) 

provides a summary of survey results from 229 DoD personnel who responded to 

questions regarding the top challenges they see as factors impeding cash flow and 

hindering the ability of a program office to meet the OSD’s spending benchmarks.  The 

report highlighted a myriad of growing challenges and endogenous issues that DoD 

personnel working in a weapon system program office contend with on a routine basis. 

The following is a short list of standard problems that are impediments and bottlenecks 

to efficiently allocating and spending money in a timely manner: 

• The more routine use of continuing resolution authorities (CRAs) by Congress to 
issue yearly budgets through multiple installments  

• Congressional marks or program cuts 

• Delays in contract negotiations and awards 

• A high volume of contract modifications related to warfighter requirement 
changes 

• Constant rotation or shortages of key program office personnel 

• Complications with getting funding documents issued and approved in a timely 
manner 

• An inability to obtain timely data on contractor outlays or expenditure positions 

Also, it is reasonable to assume that given the pressure to adequately meet end-

of-year spending benchmarks and as the FY closeout period draws nearer, program 

offices will look to quickly allocate funding to unnecessary and wasteful endeavors that 

are able to quickly spend the dollars and artificially elevate financial performance 
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statistics. The annually recurring news headlines during the FY closeout month of 

September suggests that this is a common problem and that the DoD continues to have 

problems with efficient cash allocations (Mehta, 2018; Moritz-Rabson, 2018). 

We look to the use of ADP as a solution approach to the financial execution 

problem for weapon system program offices. Fundamentally, the financial execution 

problem is a dynamic sequential resource allocation problem, where the resource 

variable in question is the amount of cash that is committed to projects on a daily basis. 

Although use-or-lose budget resource problems are not explicitly addressed, there are a 

number of publications that highlight ADP’s applicability to solving other various types of 

resource allocation problems.  ADP contains a number of features that make it an 

attractive tool for the financial execution challenges associated with use-or-lose 

budgets. First, ADP is a well-established prescriptive analytical tool. It is also designed 

to create a sequential decision-making policy. In the case of the financial execution 

problem, a program office must consider a cash allocation policy over a fiscal year that 

provides an appropriate level of funding installments to projects that minimizes the 

amount of vulnerable end-of-year money. Second, ADP “learns” a financial execution 

policy by iteratively interacting with the decision environment. Lastly, the ADP 

methodology can be adjusted to incorporate the uncertainty and stochastic information 

of separate program offices. In this manner, ADP can be specialized for individual 

program offices to more readily account for their unique financial challenges and 

circumstances.  
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2.0 Literature Review of ADP 

Dynamic programming has a history as a mathematical tool for modeling and 

solving sequential decision-making problems that traces back to the 1950s and early 

1960s. A number of the seminal works at this time that set the foundations for dynamic 

programming include publications by Bellman (1954), Bellman (1957), Howard (1960), 

and Bellman and Dreyfus (1962). Since then, the dynamic programming field has grown 

to include newer techniques such as ADP that address the inherent difficulties with 

using traditional dynamic programming solution approaches and the complexities of 

real-world problem structures. Unfortunately, as pointed out by Powell (2009), the 

various sub-communities working to advance dynamic programming concepts use 

different vernacular and notional symbols to express essentially the same fundamental 

ideas. For further discussion on relationships between ADP and artificial intelligence, 

see for example Powell (2010), Tsitsiklis (2010), and Gosavi (2009). 

As a point of comparison, there are a number of publications in the field of ADP 

that address resource allocation problems. Dell’Olmo & Lulli (2004) leveraged dynamic 

programming as part of their model that examines an application for managing the 

resources of a transshipment container terminal. The Aerospace Corporation provided a 

project selection model called SWORD that leverages a combination of optimization 

approaches including dynamic programming (Crawford et al., 2003). Another DoD ADP 

application model was presented by Davis, Robbins, and Lunday (2017).  In this 

research effort, ADP was used as the primary analytical tool for managing missile 

defense interceptor fire controls. Powell, Shapiro, and Simão (2002) used ADP as an 

alternative to a relaxed linear programming approach for handling the large-scale 

problem of assigning drivers to trucks for a freight transportation application. Lastly, 

Powell et al. (2012) offered an ADP resource allocation model for energy resource 

management. Although each of these examples is outside the scope of examining use-

or-lose budgets, they each offer a perspective on how ADP was used to examine a 

resource allocation problem. Furthermore, to the best of our knowledge there are 

currently no publications within the ADP literature that have looked at an application for 

analyzing and tracking use-or-lose budgetary systems.   
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3.0 Overview of DoD Financial Execution 

A program office acquisition environment is interwoven with a number of 

important schedules and critical timelines. The more prominent time-oriented processes 

that a program manager (PM) must adhere to include: (1) a schedule for budget 

preparation, review, submission, and approval; (2) the timeline for prime contract 

awards or modifications, which can include periods for request for proposals (RFPs), 

time for proposal preparations and responses to proposal questions, review and 

assessment of submitted proposals, and time for resolving a possible bid protest after a 

contract award is announced; (3) the fiscal year calendar that involves mid-year 

financial reviews, end-of-year closeout reviews, and even possible monthly spending 

benchmark reviews; (4) programmatic schedules with well-defined milestone review 

thresholds. Unfortunately, these separate process schedules do not always complement 

one another or align cohesively in a streamlined method that facilitates the delivery of a 

weapon system platform.  

“It’s tough to manage an event-driven program in a schedule-driven budget.” 

 - William T. Cooley (Cooley & Ruhm, 2014) 

The FY calendar includes important start dates (October 1) and stop dates 

(September 30) that are necessary for comptrollers and budgetary personnel to track 

and manage funding that supports the acquisition of a weapon system. However, the 

fact that the fiscal year calendar starts on October 1 and ends on September 30 has 

little to do with timing for parts, materials, test events, and other programmatic activities 

necessary for fielding a weapon system. Nonetheless, the reality is that these dates 

have considerable influence on when funding is available and the timing of financial 

commitment actions or cash allocation decisions a program office is likely to take. In the 

remainder of this section, we take a closer look at different aspects of the DoD financial 

execution environment: stages of a transaction, appropriation categories, and spending 

timelines and benchmarks.  



Acquisition Research Program 
Graduate School of Defense Management - 8 - 
Naval Postgraduate School 

3.1 Stages of a Transaction 

Once a cash determination is made to allocate money for a particular project, the 

transaction moves through formal DoD financial execution stages. The flowchart in 

Figure 1 from the Army’s financial management operations field manual provides the 

order of execution stages. This financial execution process is the standard used 

throughout the DoD. The first step is the authorization of a funding transaction. After the 

appropriate authorization documentation is completed and signed, the funding is said to 

be committed. Committing dollars is an important first step in the execution process that 

occurs prior to the actual movement of money to a recipient. This initial stage serves as 

a cross-check that helps to avoid antideficiency violations that result when funding is 

issued to a contractor or service provider in excess of what is available. Committed 

dollars are then used to prepare formal and legal contractual obligations between the 

weapon system program office and a hired vendor. The obligation creates a legal 

reservation of funds and represents the allocated funds that are available for paying for 

a project. As work is performed on the project, expenses are accrued. A vendor then 

provides invoices to the program office for which payment is issued. Once payment is 

received by the vendor or contractor, the funding is considered disbursed. The terms 

outlays and expenditures can also be used to refer to disbursed funding. Throughout 

the course of a fiscal year, the financial execution status of a weapon system program 

office is routinely tracked and assessed. The basis of measurement used to evaluate 

fiscal year execution is the amount of overall budget that currently resides in each of 

these respective stages. However, significant attention is paid particularly to the 

obligation and expenditure positions of a weapon system program. To highlight the 

magnitude of the amount of funding that moves through this process each year, the 

Defense Finance and Accounting Service (DFAS) reported for FY2017 that it paid out 

$554 billion in disbursements and for FY2018 that it paid out $558 billion in 

disbursements. 
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Figure 1: Stages of Transaction 

3.2 Appropriation Categories 

An additional factor that contributes to the complexity of financial execution at the 

DoD is the agency’s use of different appropriation categories. When creating a budget 

for a weapon system program office, similar types of projects or work are categorized 

together in the same appropriation category. Furthermore, the activities of the separate 

appropriation categories are funded with unique types of money, or with what is more 

commonly referred to as different “colors”-of-money. These categorizations of activities 

and funding allow regulators, comptrollers, and other oversight officials to have better 

insight on how money is spent and on what activities constitute most of the defense 

budget. However, weapon system program managers and their financial staff are now 

encumbered with the additional responsibility of managing their programs to correct 

appropriation categories and must account for these delineations when making 

decisions related to budget preparations, funding requests, and cash allocations. The 

following is a short summary of the more common appropriations: 
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- Military Personnel (MILPERS): Funds salary and benefits of military 
personnel, including active duty, reserve, and DoD government civilian 
employees.  

- Research, Development, Test, and Evaluation (RDT&E): Funds projects and 
initiatives that support program research, technology development, 
engineering development, manufacturing development, and programmatic 
test events.  

- Procurement: Funds the purchase of military equipment and weapon 
systems, including the production and fielding costs associated with the 
assets.  

- Operation and Maintenance (O&M): Funds activities directly related to the 
operations, servicing, and upkeep of fielding military systems and platforms.  

- Military Construction (MILCON): Funds construction projects related to 
buildings, facilities, and property improvement efforts that directly support the 
operations and maintenance of a fielded weapon system.  

3.3 Spending Timelines and Benchmarks 

Each of the DoD’s appropriation categories are subject to guidance regarding the 

amount of time allowable for moving money through the different stages of a transaction 

described in Section 2.1. Particular attention is paid to the rate at which funding is 

obligated and disbursed. Within DoD financial execution, regardless of the appropriation 

category, money exists in two possible periods: (1) the current period and (2) the 

expired period. Weapon system program offices must ensure all new obligation actions 

occur during the current period. The length of the current period is different for each 

“color”-of-money or appropriation category. O&M and MILPERS have the shortest 

current period at one year, RDT&E funding has a two-year current period timeframe, the 

current period for procurement funding can range between three to five years, and 

military construction has the longest current period at five years. Once the current 

period for an appropriation has lapsed, the funding moves into an expired period. 

Regardless of the appropriation, the expired period lasts for five years once the current 

period is over. During the expired period, no new obligations are allowed. However, 

funds that were already obligated during the current period can be expensed and 

recorded as an outlay. Once the expired period has lapsed, the funding is considered 

canceled and can no longer be used for obligations or expenditures.  
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The current period and expired period set strict cash flow stopping points; 

however, the cash flow performance of a weapon system program office is judged on a 

continual basis. If for any reason it appears that a program office is falling too far behind 

in its ability to effectively issue and spend money, it runs the risk of being perceived as 

having too large of a budget for its mission. Comptroller officials and leadership at a 

more senior level to the program office have the authority to reallocate funding from 

underperforming program offices to other program offices or activities. Thus, there is an 

imperative for program offices to maintain constant vigilance of their financial execution 

position and to make quality cash allocations to contracts and vendors that will 

expeditiously accrue and expense their funding allotments.  

From the perspective of purely protecting funds in a use-or-lose environment, the 

sooner money moves through the complete stages of a transaction, the better it is for 

the program office. Unfortunately, programmatic activities and acquisition initiatives that 

require funding are not always conveniently timed or necessarily ready to receive funds 

in a manner that allows program offices to keep pace with the spending benchmarks in 

Figure 2. Furthermore, if a program office expends funding too quickly, it runs the risk of 

running over its budget before the fiscal year is over. Much like underutilizing funds, 

overrunning a budget is another financial execution position that a program office needs 

to avoid and must take into consideration when making cash allocation determinations.  
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Figure 2: DoD Spending Guidance by Appropriation 

Figure 2 provides DoD spending guidance that serves to assist program offices 

with determining whether their cash flow performance is maintaining an adequate pace. 

A close examination of the information in Figure 2 reinforces the concept that there are 

different benchmark spending expectations for the different “colors”-of-money. Not 

shown on the chart is MILPERS. Since this appropriation is primarily for salaries, its 

expenditure cycle occurs at a relatively predictable and standard pace. Also, 

procurement funding does not show a monthly expenditure rate. Since procurement is 

used to buy and support the purchase of large weapon systems and platform end items, 

its expenditures often occur in single large sums, as opposed to small monthly 

incremental allotments. However, the remaining three appropriations—RDT&E, O&M, 
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and MILCON—represent initiatives that a program office could fund and receive outlays 

against in relatively smaller installment amounts to projects. Figure 2 reveals that after 

the first year of availability, the expectation is that RDT&E funds will be 55% expended, 

O&M funds will be 75% expended, and MILCON funding will be 14% expended. It is 

these appropriations that are of interest for use in an ADP approach for financial 

execution management. ADP is ideal for either appropriation categories or specific 

projects where a program office would consider issuing staggered multiple allotments of 

cash or commitment actions to pay for the activity. This cash allocation approach is one 

where the program office is attempting to determine whether the contractor or vendor 

will spend the current funds allotted to it before another installment of money is 

provided.  
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4.0 A Financial Execution Management Model 

The following section provides a mathematical formulation for the financial 

execution problem of weapon system program offices. We define critical variables of the 

financial execution system and adopt them to a dynamic programming formulation. 

At the start of the fiscal year, a budget of 𝑏𝑏𝑏𝑏𝑚𝑚𝑖𝑖 is allocated to each of a finite 

number 𝐼𝐼of projects 𝑚𝑚 = 1, … , 𝐼𝐼. During each of a finite number of time periods 𝑡𝑡 =

1, … ,𝑇𝑇, each project 𝑚𝑚 has a (random) disbursement need 𝐷𝐷�𝑖𝑖,𝑡𝑡, which must be satisfied 

from the current “inventory” of funds that have been committed and have become 

available to project 𝑚𝑚 by period 𝑡𝑡. 

The agency’s objective is to allocate funds in a way that tracks the actual 

disbursements as closely as possible. This is reflected in the model as follows. For 𝑡𝑡 =

1, … ,𝑇𝑇, let 𝑏𝑏𝑖𝑖,𝑡𝑡𝑐𝑐  denote the total amount committed to project 𝑚𝑚 by the end of period 𝑡𝑡. In 

particular, 

 
 𝑏𝑏𝑖𝑖,𝑡𝑡𝑐𝑐 =  �𝑥𝑥𝑖𝑖,𝑠𝑠

𝑡𝑡

𝑠𝑠=1

 (1) 

where 𝑏𝑏𝑖𝑖,𝑠𝑠𝑐𝑐 = 0 for 𝑠𝑠 ≤ 0. Moreover, we assume that at the start of each period, the 

agency has a cumulative disbursement schedule 𝑏𝑏�𝑖𝑖,𝑡𝑡𝑑𝑑 = [𝑏𝑏�𝑖𝑖,𝑡𝑡𝑑𝑑 (1), … , 𝑏𝑏�𝑖𝑖,𝑡𝑡𝑑𝑑 (𝑇𝑇)] for each 

project 𝑚𝑚, where 𝑏𝑏�𝑖𝑖,𝑡𝑡𝑑𝑑 (𝑛𝑛) denotes the current (i.e., at the end of period t) projected amount 

of money that project 𝑚𝑚 will need during time 𝑛𝑛. Once the actual disbursement 

requirement 𝐷𝐷�𝑖𝑖,𝑡𝑡 for project 𝑚𝑚 during period 𝑡𝑡 is revealed, the disbursements for each 

project 𝑚𝑚 are updated according to a given function 𝐹𝐹𝑑𝑑 , so that 

 �𝑏𝑏�1,𝑡𝑡+1
𝑑𝑑 , … , 𝑏𝑏�𝐼𝐼,𝑡𝑡+1𝑑𝑑 � =  𝐹𝐹𝑑𝑑��𝑏𝑏�1,𝑡𝑡

𝑑𝑑 , … , 𝑏𝑏�𝐼𝐼,𝑡𝑡𝑑𝑑 �, �𝐷𝐷�1,𝑡𝑡, … ,𝐷𝐷�𝐼𝐼,𝑡𝑡��. (2) 

At the start of each period 𝑡𝑡 = 1, …𝑇𝑇, and for each project 𝑚𝑚, the agency must decide on 

a total amount 𝑥𝑥𝑡𝑡 to commit. This amount is allocated to the 𝐼𝐼 projects based on fixed 

allocation rules and is subject to constraints that depend on the cumulative 
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commitments 𝑏𝑏𝑖𝑖,𝑡𝑡𝑐𝑐  and current disbursement schedule 𝑏𝑏�𝑖𝑖,𝑡𝑡𝑑𝑑  for each project 𝑚𝑚. Given 

𝑏𝑏𝑖𝑖,𝑡𝑡𝑐𝑐 , … , 𝑏𝑏𝐼𝐼,𝑡𝑡𝑐𝑐  and 𝑏𝑏�1,𝑡𝑡
𝑑𝑑 , … , 𝑏𝑏�𝐼𝐼,𝑡𝑡𝑑𝑑 , let 

 𝜒𝜒(𝑏𝑏𝑖𝑖,𝑡𝑡𝑐𝑐 , … , 𝑏𝑏𝐼𝐼,𝑡𝑡𝑐𝑐 , 𝑏𝑏�1,𝑡𝑡
𝑑𝑑 , … , 𝑏𝑏�𝐼𝐼,𝑡𝑡𝑑𝑑 ) (3) 

denote the corresponding set of feasible total commitment amounts 𝑥𝑥𝑡𝑡. If the agency 

elects to commit 𝑥𝑥𝑡𝑡, the cumulative commitments for each project 𝑚𝑚 are updated 

according to a given function 𝐹𝐹𝑐𝑐(describing a given allocation rule), so that 

 �𝑏𝑏1,𝑡𝑡+1
𝑐𝑐 , … , 𝑏𝑏𝐼𝐼,𝑡𝑡+1𝑐𝑐 � =  𝐹𝐹𝑐𝑐��𝑏𝑏1,𝑡𝑡

𝑐𝑐 , … , 𝑏𝑏𝐼𝐼,𝑡𝑡𝑐𝑐 �, 𝑥𝑥𝑡𝑡�. (4) 

If the agency commits 𝑥𝑥𝑡𝑡 at time 𝑡𝑡, its associated “cost” for that time period is the 

absolute difference between the cumulative amount committed by the end of time 𝑡𝑡, and 

the cumulative projected disbursements by the end of time 𝑡𝑡 + 𝛼𝛼𝑖𝑖 (which is when 𝑥𝑥𝑡𝑡 first 

becomes available for disbursement), that is,  

 �∑ 𝑏𝑏𝑖𝑖,𝑡𝑡−1𝑐𝑐 + 𝑥𝑥𝑡𝑡 −  ∑ 𝑏𝑏�𝑖𝑖,𝑡𝑡𝑑𝑑 (𝑡𝑡 + 𝛼𝛼𝑖𝑖)𝐼𝐼
𝑖𝑖=𝐼𝐼

𝐼𝐼
𝑖𝑖=1 �. (5) 

The term 𝛼𝛼𝑖𝑖 is a project specific sensitivity parameter. The choice 𝛼𝛼𝑖𝑖 reflects the 

number of time periods beyond the current time period 𝑡𝑡 that a program office wants to 

provide an incremental amount of funding that will sufficiently cover project 𝑚𝑚 costs 

occurring between time periods 𝑡𝑡 and 𝑡𝑡 + 𝛼𝛼𝑖𝑖. 

4.1 Formulation as a Dynamic Program 

To formulate the agency’s sequential decision problem as a dynamic program, 

we need to specify the state variables, the decision variables, the exogenous 

information processes, transition function, and the objective function. 

State Variables: For 𝑡𝑡 = 1, … ,𝑇𝑇, the state 𝑆𝑆𝑡𝑡 at the start of period 𝑡𝑡 is a pair that 

includes, for each project 𝑚𝑚 𝜖𝜖 {1, … , 𝐼𝐼}, the values 𝑏𝑏𝑖𝑖,𝑡𝑡−1𝑐𝑐  (i.e., the cumulative commitment 

to project 𝑚𝑚 by the end of time t-1) and 𝑏𝑏�𝑖𝑖,𝑡𝑡−1𝑑𝑑  (i.e., the projected disbursement schedule 

for project 𝑚𝑚 as of the end of period 𝑡𝑡 − 1), that is,  

 𝑆𝑆𝑡𝑡 = ��𝑏𝑏1,𝑡𝑡−1
𝑐𝑐 , … , 𝑏𝑏𝐼𝐼,𝑡𝑡−1𝑐𝑐 �, �𝑏𝑏�1,𝑡𝑡−1

𝑑𝑑 , … , 𝑏𝑏�𝐼𝐼,𝑡𝑡−1𝑑𝑑 ��. (6) 
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Decision Variables: For 𝑡𝑡 = 1, … ,𝑇𝑇 and 𝑚𝑚 = 1, … , 𝐼𝐼 the decision variable 𝑥𝑥𝑡𝑡 denotes the 

amount that the agency commits at the start of time 𝑡𝑡. If the state at the start of period 𝑡𝑡 

is 𝑆𝑆𝑡𝑡, then 𝑥𝑥𝑡𝑡 is constrained to satisfy 

 𝑥𝑥𝑡𝑡  𝜖𝜖 𝐴𝐴(𝑆𝑆𝑡𝑡) ≔ 𝜒𝜒�𝑏𝑏1,𝑡𝑡
𝑐𝑐 , … , 𝑏𝑏𝐼𝐼,𝑡𝑡𝑐𝑐 , 𝑏𝑏�1,𝑡𝑡

𝑑𝑑 , … , 𝑏𝑏�𝐼𝐼,𝑡𝑡−1𝑑𝑑 �. (7) 

Exogenous Information Process: There is a single exogenous information process 

�𝐷𝐷�𝑖𝑖,𝑡𝑡�𝑡𝑡=1
𝑇𝑇  

associated with each project 𝑚𝑚, where each 𝐷𝐷�𝑖𝑖,𝑡𝑡 are simulated actual disbursement 

requirements for each project 𝑚𝑚 during period 𝑡𝑡. 

Transition Function: Suppose that at the start of period 𝑡𝑡, the state is 𝑆𝑆𝑡𝑡. If the decision 

𝑥𝑥𝑡𝑡 = (𝑥𝑥1,𝑡𝑡, … , 𝑥𝑥𝐼𝐼,𝑡𝑡) is made, and the exogenous information for that period is 𝐷𝐷�𝑡𝑡 =

(𝐷𝐷�1,𝑡𝑡, … ,𝐷𝐷�𝐼𝐼,𝑡𝑡), then the state at the start of period 𝑡𝑡 + 1 is 

 𝑆𝑆𝑡𝑡+1 = 𝑆𝑆𝑀𝑀(𝑆𝑆𝑡𝑡,𝑥𝑥𝑡𝑡 ,𝐷𝐷�𝑡𝑡) (8) 

    = ��𝑏𝑏1,𝑡𝑡
𝑐𝑐 , … , 𝑏𝑏𝐼𝐼,𝑡𝑡𝑐𝑐 ��𝑏𝑏�1,𝑡𝑡

𝑑𝑑 , … , 𝑏𝑏�𝐼𝐼,𝑡𝑡−1𝑑𝑑 �� 

   = �𝐹𝐹𝑐𝑐 ��𝑏𝑏1,𝑡𝑡−1
𝑐𝑐 , … , 𝑏𝑏𝐼𝐼,𝑡𝑡−1𝑐𝑐 �, 𝑥𝑥𝑡𝑡� ,𝐹𝐹𝑑𝑑 ��𝑏𝑏�1,𝑡𝑡−1

𝑑𝑑 , … , 𝑏𝑏�𝐼𝐼,𝑡𝑡−1𝑑𝑑 �, �𝐷𝐷�1,𝑡𝑡, … ,𝐷𝐷�𝐼𝐼,𝑡𝑡���. 

where 𝐹𝐹𝑐𝑐 and 𝐹𝐹𝑑𝑑 are defined by the total amount committed calculation and 

disbursement schedule updates provided in Equation 1 and Equation 2 respectively. 

Figure 3 depicts the relationship that exists between the state variables 𝑆𝑆𝑡𝑡, decision 

variables 𝑥𝑥𝑡𝑡, and exogenous information process 𝐷𝐷�𝑡𝑡. At the beginning of a time period t, 

the financial execution status of a program office is captured by 𝑆𝑆𝑡𝑡 which includes the 

cumulative commitment amounts and project disbursement schedules for each project 𝑚𝑚. 

At this point, exogenous information 𝐷𝐷�𝑡𝑡 regarding the previous time period’s 

disbursements is revealed. The decision process utilizes information from the state 

position 𝑆𝑆𝑡𝑡 and exogenous information 𝐷𝐷�𝑡𝑡 to select a commitment action 𝑥𝑥𝑡𝑡 regarding 

the amount of additional incremental funding to allocate to each project 𝑚𝑚. This 

commitment action 𝑥𝑥𝑡𝑡 along with our knowledge regarding the current actual project 

disbursement amounts 𝐷𝐷�𝑡𝑡, allows our decision system to step forward one time period 

and into the next state position 𝑆𝑆𝑡𝑡+1, which contains updated information regarding our 

program office’s cumulative commitment amounts and project disbursement schedules. 
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The process continues forward for a predefined limited number 𝑇𝑇 of time periods or 

decision periods.  

 
Figure 3: State-to-State Transitions 

Objective Function: Suppose that at the start of period 𝑡𝑡, the state is 𝑆𝑆𝑡𝑡 and the 

decision 𝑥𝑥𝑡𝑡 is made. Then the corresponding contribution of period 𝑡𝑡 is  

 
�̂�𝐶(𝑆𝑆𝑡𝑡,𝑥𝑥𝑡𝑡) ∶=  − ��𝑏𝑏𝑖𝑖,𝑡𝑡−1𝑐𝑐  

𝐼𝐼

𝑖𝑖=1

+ 𝑥𝑥𝑡𝑡 −�𝑏𝑏�𝑖𝑖,𝑡𝑡−1𝑑𝑑
𝐼𝐼

𝑖𝑖=1

(𝑡𝑡 + 𝛼𝛼)�. (9) 

The objective is to find a policy that maximizes the expected total contribution over the 𝑇𝑇 

periods, that is, a policy that maximizes 

 
𝔼𝔼 ���̂�𝐶(𝑆𝑆𝑡𝑡, 𝑥𝑥𝑡𝑡)|𝑆𝑆0

𝑇𝑇

𝑡𝑡=1

�. (10) 

4.2 Cash Allocation Example 

We now consider the simple case of allocating funding for a single project with a 

total project budget 𝑏𝑏𝑏𝑏𝑚𝑚1 = $24 million.  We define the time period 𝑡𝑡 as a month and 

consider the cash allocation process for this single project over a fiscal year horizon 𝑇𝑇 =

12 months. The choice of 𝑡𝑡 reflects the frequency of how often a program office wants to 

assess its financial execution status and make an allotment of funding decision 𝑥𝑥𝑡𝑡 

across all the projects within its budget. Additionally, we’ll select 𝛼𝛼 = 2, to indicate that 

the program office wants to consider funding allotments in amounts that cover three-

month timeframes. When the decision system reaches a month whereby there are 

fewer than three months remaining in the fiscal year, at 𝑡𝑡 = 11 or 𝑡𝑡 = 12, we can adjust 

the future allotment consideration for a two-month or single-month time frame 

respectively and update the 𝛼𝛼 term to either 𝛼𝛼 = 1 or 𝛼𝛼 = 0. An initial cumulative 
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disbursement schedule 𝑏𝑏𝑖𝑖,𝑡𝑡𝑑𝑑  is created from either a direct vendor quote, similar work 

completed in the past, or from any other viable technique available to the program office 

that can be used to create an initial spend plan forecast. For our single project, we’ll 

assume the following cumulative disbursement schedule in millions of dollars: 

𝑏𝑏�1,1
𝑑𝑑 = [0,0,0,2,4,6,10,13,16,19,22,24]. 

This disbursement profile represents a project that starts work in the fourth month of the 

fiscal year, January, and is forecasting a demand of cash for $2 million per month for 

months 𝑡𝑡 = 4, 5, and 6, a demand of $4 million per month for month 𝑡𝑡 = 7, a demand of 

$3 million per month for months 𝑡𝑡 = 8, 9, 10, and 11, and last, a demand of $2 million for 

the final month 𝑡𝑡 = 12.  

Let’s consider a case where the decision system arrives at time period 𝑡𝑡 = 4, 

January, with 𝑆𝑆𝑡𝑡 = (2, [0,0,0,2,4,6,10,13,16,19,22,24]). At this point, $2 million are 

committed to the project and $0 million are disbursed. The decision system makes a 

commitment action according to Equation 3. Given that 𝛼𝛼 = 2, the next allocation of 

funding will attempt to bring the current total committed funding level 𝑏𝑏1,4
𝑐𝑐  up to a level 

that matches as closely as possible the estimated cumulative disbursement amount for 

March (time period 𝑡𝑡 + 2). In our example, we’ll assume that the choice for the next 

allotment of funding is $4 million. The decision system moves into the next time period, 

𝑡𝑡 = 5, February. At this point, exogenous information is revealed regarding actual 

disbursements that occurred in time period 𝑡𝑡 = 4. This information is then used to create 

an updated cumulative disbursement schedule. For example, if the actual disbursement 

amount in January was only $1 million as opposed to the anticipated $2 million that was 

expected, an updated disbursement schedule might look like the following  

𝑏𝑏�1,5
𝑑𝑑 = [0,0,0,1,3,6,10,13,16,19,22,24]. 

The implication is that the contractor supporting the work fell behind schedule during the 

month of January; however, the updated cumulative disbursement schedule indicates a 

belief that the contractor will be able to make up the additional work over the next two 

time periods and still require the full $24 million total budget to pay for the project prior 

to the end of the 12-month period. 
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4.3 Curse of Dimensionality—Single Project Case  

One drawback of using the dynamic programming formulation for solving the 

financial execution problem is that it suffers from the “curse of dimensionality,” which is 

a common issue for many optimization modeling approaches. Using the single project 

scenario described in Section 4.2, we can consider the computational demands of our 

decision system based on the size of the action space 𝑥𝑥𝑡𝑡 and state-space 𝑆𝑆𝑡𝑡. In order to 

determine these dimensions, we’ll first need to make an assumption about the 

discretized amount with which our project receives and disburses dollars. For simplicity, 

we assume money is received and spent to the nearest $1 million increment. However, 

examples of other viable increments include $5 million, $2 million, $0.5 million, $0.25 

million, $0.1 million, and so on. Additionally, we need to make another assumption 

about the range of variability that can occur with our simulated exogenous data 𝐷𝐷�1,𝑡𝑡. In 

this case, we’ll assume that disbursements can occur with variability of +$2 million to -

$2 million, above and below the forecasted amount for a given time period 𝑡𝑡. Given 

these parameters, we can now calculate both the sizes of the action-space and state-

space. 

Given that the project receives money to the nearest $1 million increments, this 

means that for each time period 𝑡𝑡, there are 25 possible commitment or de-commitment 

actions to our $24 million project. De-commitment actions are allowed as long as 

sufficient funding remains committed to the project to cover all expenses 

(disbursements) that have occurred to date. The state-space is defined as the 

combination of our cumulative commitment amount 𝑏𝑏1,𝑡𝑡
𝑐𝑐  and disbursement schedule 𝑏𝑏�1,𝑡𝑡

𝑑𝑑 . 

For the $24 million project, there are 25 possible values for the scalar 𝑏𝑏1,𝑡𝑡
𝑐𝑐 . Furthermore, 

since we are anticipating disbursements to occur in nine months out of our 12-month 

timeframe, there are 59 possible vectors combinations for 𝑏𝑏�1,𝑡𝑡
𝑑𝑑 , and when combined with 

the 25 possible values of 𝑏𝑏1,𝑡𝑡
𝑐𝑐  means that there are nearly 50 million state-space 

possibilities. Even for this single project situation, to model all possible outcomes for all 

the possible state-action pairings is computationally intractable. This difficulty is further 

exacerbated when we consider budget scenarios that examine multiple projects 

simultaneously. 
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As an alternative, we consider using an approximate dynamic programming 

(ADP) modeling approach to the financial execution problem. ADP allows us to estimate 

a “good” decision-making solution without having to explicitly enumerate and calculate 

the values of all possible action-outcome pairings. Rather, it provides a means of 

approximating state-space values through the use of Bellman’s formula. The 

expectation form of Bellman’s equation is 

 𝑉𝑉𝑡𝑡(𝑆𝑆𝑡𝑡) = max
𝑥𝑥𝑡𝑡

��̂�𝐶(𝑆𝑆𝑡𝑡,𝑥𝑥𝑡𝑡) + 𝛾𝛾𝔼𝔼{𝑉𝑉𝑡𝑡+1(𝑆𝑆𝑡𝑡+1)|𝑆𝑆t}�. (11) 

Bellman’s formulation contains two components. It retains the contribution from 

the previously stated objective function, �̂�𝐶(𝑆𝑆𝑡𝑡, 𝑥𝑥𝑡𝑡), and combines with it a discounted 

expected value of the state the decision system arrives at as a result of the action 𝑥𝑥𝑡𝑡 

taken at time period 𝑡𝑡. Through the use of simulation, the ADP approach allows us to 

approximate or “learn” the values of state-spaces in our decision system. As a result, 

the ADP algorithm can generate a cash allocation policy that directs a program office to 

allocate funding during each time period 𝑡𝑡 to successively move the decision-maker 

from one high valued state-space (financial execution position) to another high valued 

state-space position. Therefore, the cash allocation policy generated by the ADP 

algorithm will balance between allocation decisions taken earlier in the FY with those 

generated later, creating a sequential cash allocation policy that limits that amount of 

over-committed funding without shortchanging the projects in the future.  

4.4 Curse of Dimensionality—Multiple Project Case 

Unfortunately, both state-space and action space challenges increase as 

additional projects are introduced into the system. When more projects are added, we 

now have to consider generating optimal cash allocation policies across two or more 

projects simultaneously. Consider the following initial cumulative disbursement schedule 

for two projects stated in millions of dollars ($ million): 

𝑏𝑏�1,1
𝑑𝑑 = [0,0,0,0,0,3,7,11,14,14,14,14] 

𝑏𝑏�2,1
𝑑𝑑 = [0,0,0,0,0,0,2,5,8,10,10,10] 
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In this case, we have two projects in our budgetary system. Again, the total available 

budget that needs to be executed over the 12-month period is $24 million. However, the 

total budgetary amount is divided between two projects, where the budget for project 

one is 𝑏𝑏𝑏𝑏𝑚𝑚1 = $14 million and the budget for project two is 𝑏𝑏𝑏𝑏𝑚𝑚2 = $10 million. 

Additionally, the month-to-month forecasted spending schedule is different for both 

projects. The planned start month for project one is March, 𝑡𝑡 = 6, and the completion 

date is at the end of June, 𝑡𝑡 = 9. For the second project, the planned start month is 

April, 𝑡𝑡 = 7, and the completion date is planned for July, 𝑡𝑡 = 10. For simplicity, we’ll 

continue to assume that projects will receive and spend money in $1 million discretized 

increments and that the range of variability that can occur with our simulated exogenous 

data [𝐷𝐷�1,𝑡𝑡 𝐷𝐷�2,𝑡𝑡] is +$2 million to -$2 million, above and below the forecasted amount for a 

given time period 𝑡𝑡 for both projects. Again, we have large state-space considerations 

for both projects. For project 1, we are anticipating a demand for funds across four time 

periods and that any time period can assume one of five possible values. Also, given 

that project 1 has 15 possible commitment values for the scalar term 𝑏𝑏1,𝑡𝑡
𝑐𝑐 , this means 

that there are 9,375 possible state-space values. Project 2 also has five possible values 

for funding needs across four time periods, and since there are only 11 possible values 

for the scalar term 𝑏𝑏2,𝑡𝑡
𝑐𝑐 , this means that there are a total of 6,875 possible state-space 

values for project 2. When combined together, this equates to over 64 million possible 

state-space combinations.  

As multiple projects are added to the decision system, the action-spaces takes 

on an additional computational complexity problem. Although project 1 has 15 possible 

commitment actions and project 2 has 11 possible commitment actions, the decision 

system in aggregate when the two projects are combined has only 25 possible cash 

commitment actions. The challenge is determining for any given time period 𝑡𝑡 the proper 

disbursement of funds between the two projects given a system-level commitment 

decision. For example, if a program office chooses to commit zero dollars ($0.0 million) 

during any given time period, then the allocation between the two projects is trivial and 

each project receives zero funding ($0.0 million). However, if the system level action is 

to commit $1.0 million dollars, then there are two possible ways to distribute this down 
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to the two projects: (i) either project 1 receives $1 million and project 2 receives $0.0 

million or (ii) project 1 receives $0.0 million and project 2 receives $1 million. In this 

situation, the question becomes determining which of the two projects should receive 

the $1 million. Furthermore, the problem becomes more complicated as the system-

level commitment action under consideration increases. For example, if the system-

level commitment action is increased to $2 million, then there are now three possible 

combinations for allocating this funding across the two projects: (i) project 1 receives $2 

million and project 2 receives $0.0 million, (ii) project 1 receives $0.0 million and project 

2 receives $2 million, and (iii) project 1 receives $1 million and project 2 receives $1 

million. In order to determine the appropriate allocation for a given system-level 

commitment action, we define a fairness property that establishes the rules governing 

the distribution of system-level commitment funds to the individual projects. 

4.5 The Resource Allocation Fairness Property 

In this section, we describe a viable fairness property rule to determine how an 

agency level commitment action 𝑥𝑥𝑡𝑡 is allocated to create the n-tuple of individual 

commitment actions (𝑥𝑥1,𝑡𝑡, … , 𝑥𝑥𝐼𝐼,𝑡𝑡). A weapon system program office or agency may 

choose an alternative allocation process; however, the following implementation offers 

one approach to defining the function 𝐹𝐹𝑐𝑐 referenced in Equation 4. 

In an incremental funding environment where a weapon system program office 

has limited access to its total obligation authority budget level throughout the year, the 

fairness property dictates that priority for funding goes to projects with the largest and 

most immediate demand. However, smaller projects with an immediate demand will 

also receive primacy. The idea is to prevent a situation whereby for a given time period 

𝑡𝑡, when there is a limited system-level commitment action amount 𝑥𝑥𝑡𝑡, that this funding is 

allocated to a project 𝑚𝑚 that does not have a positive forecasted demand for funding until 

several time periods into the future, leaving no funding or very little funding available to 

provide to a project that does possess a positive forecasted cash demand within the 

immediate time periods. In this regard, the fairness property considers the magnitude of 

a time period’s disbursement demand ∥ 𝑏𝑏�𝑖𝑖,𝑡𝑡𝑑𝑑 (𝑛𝑛) ∥ as well as the number of time periods 𝑛𝑛 

that the demand is beyond the current time period 𝑡𝑡. 
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We consider an example using the data from our two-project case. Let’s assume 

that we arrive at time period 𝑡𝑡 = 6 and using Equation 6 define the system state position 

containing the financial execution position of the two projects as follows: 

𝑆𝑆𝑡𝑡 = [(6,1), (0,0)] 

We interpret our system state 𝑆𝑆𝑡𝑡 as having $6 million of funding committed to project 1 

and $1 million committed to project 2 as of the end of February, 𝑡𝑡 − 1. At this point in 

time neither project has started their effort, therefore both projects have zero dollars, 

$0.0 million, currently disbursed. The decision system has just arrived in March, time 

period 𝑡𝑡, and must select a commitment action 𝑥𝑥𝑡𝑡 . Since spending has not commenced 

on either project, no new information regarding actual disbursements has been 

introduced into the system and the initial forecasted disbursement schedule for both 

projects remains valid. 

𝑏𝑏�1,1
𝑑𝑑 = [0,0,0,0,0,3,7,11,14,14,14,14] 

𝑏𝑏�2,1
𝑑𝑑 = [0,0,0,0,0,0,2,5,8,10,10,10] 

Given that $6 million is currently committed to project 1, without any further funding 

project 1 is predicted to run short of cash starting in time period 𝑡𝑡 = 7. The unfulfilled 

demand for funding in time period 𝑡𝑡 = 7 is $1 million. Furthermore, in the next time 

period, 𝑡𝑡 = 8, the unfulfilled demand increases by $4 million and in the next time period, 

𝑡𝑡 = 9, it increases by an additional $3 million. At the end of February and for the start of 

March, project 2’s current commitment level is $1 million. Without any additional 

funding, project 2 will fall short of its demand for cash starting in time period 𝑡𝑡 = 7 by $1 

million. For time period 𝑡𝑡 = 8, the forecasted demand increases by $3 million. In time 

period 𝑡𝑡 = 9, it increases by an additional $3 million and for 𝑡𝑡 = 10, the demand 

increase is another $2 million.  

The fairness property dictates that the project with the largest and most 

immediate demand for funding will receive funding until its demand for cash is the same 

as another project in the same time period. At this point, if there is any unallocated 

funding remaining, the two projects, which now both have the highest demand for cash, 

will receive funding equally until their demand is equivalent to a third project’s demand 
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for cash. Then, if there is any unallocated funding remaining, the three projects will all 

receive funding evenly until their demands are equivalent to a fourth project with cash 

demands in the same time period. Now, all four projects will receive funding evenly. The 

process continues until all demands for all projects with cash demands in the current 

time period are met. If there is still any remaining unallocated funding, the fairness 

property moves one time period forward and with the remaining available cash begins to 

fulfill the needs of the project with the largest demand for cash in time period 𝑡𝑡 + 1. This 

project’s demands for cash in the updated time period are satisfied until the demand is 

the same as a project with the second highest demand for cash also in time period 𝑡𝑡 +

1. Now, both projects’ demand for cash is satisfied evenly until it is equivalent with a 

third project’s demand in time period 𝑡𝑡 + 1, at which point the three projects will receive 

funding evenly. The process continues as it did for time period 𝑡𝑡. If there is still 

unallocated funding remaining after all demands for all projects in time period 𝑡𝑡 + 1 are 

met, the allocation scheme steps forward one more time period to 𝑡𝑡 + 2 and repeats the 

same process. The fairness allocation process continues to step forward in time fulfilling 

the cash needs of projects with the highest demand until the full amount of the 

commitment action 𝑥𝑥𝑡𝑡 is completely distributed across each of the projects 𝑚𝑚.  

Leveraging the fairness property, we can examine how a commitment action 𝑥𝑥𝑡𝑡 = 

$8 million made in March is allocated between projects 1 and 2. The largest and most 

immediate demand for cash is $1 million, which is the time period’s 𝑡𝑡 = 7 remaining 

cash demand amount for both projects. Since there are sufficient funds to cover both $1 

million demands, the allocation scheme starts by giving $1 million to each project and 

then examining demands of the next time period. In time period 𝑡𝑡 = 8, project 1 has the 

largest demand of $4 million as opposed to project 2 with only a $3 million demand. 

Therefore, a $1 million allocation is given to project 1. Now, both project 1 and project 2 

have the same demand for cash of $3 million. However, there is only $5 million of 

unallocated funding remaining. Projects 1 and 2 will receive funding evenly at this point, 

which translates into both projects receiving at least an additional $2 million worth of 

funding. At this point, there is only $1 million remaining of unallocated funding, yet both 

projects have the same unmet demand for cash of $1 million remaining for time period 

𝑡𝑡 = 8. In this situation, there is a tie between projects regarding which one possess the 
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largest demand in the most immediate time period. Furthermore, there is only $1 million 

remaining of unallocated funding, which is an insufficient amount to satisfy the 

remaining demands of both projects evenly. In such circumstances, unless there is a 

rationale for prioritizing one project over another, the final $1 million can be distributed 

randomly to any of the projects with the remaining highest demand. Clearly, the random 

choice is only implemented under this special situation at the end of the fairness 

distribution process when there is a tie among projects with the largest remaining 

demand, and the nature of how funding allocations are discretized (in this case $1 

million increments) prevents these demands being satisfied evenly. Assuming in our 

scenario that project 1 randomly receives the remaining $1 million increment of funding, 

we now have the following defined commitment action for the month of March:  

𝑥𝑥6 = $8.0𝑀𝑀 

�𝑥𝑥1,6, … , 𝑥𝑥𝐼𝐼,6� = ($5.0𝑀𝑀, $3.0𝑀𝑀)  
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4.6 Algorithm for the Resource Allocation Fairness Property 

The algorithm shown in Figure 4 summarizes the steps of the resource allocation 

fairness property. 

______________________________________________________________________________ 

 Initialization 
1: Initiate for time period 𝑡𝑡 
2: 𝑥𝑥�𝑖𝑖 = 0       ∀ 𝑚𝑚 ∈ 𝐼𝐼  
3: 𝜗𝜗 = $1.0𝑀𝑀 # set curly theta equal to the discretization allowance 
 Select system level action 𝒙𝒙𝒕𝒕 according to Bellman’s Equation 12 
4: 𝑥𝑥𝑡𝑡 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑎𝑎𝑥𝑥𝑥𝑥𝑡𝑡��̂�𝐶(𝑆𝑆𝑡𝑡,𝑥𝑥𝑡𝑡) + 𝛾𝛾𝔼𝔼{𝑉𝑉𝑡𝑡+1(𝑆𝑆𝑡𝑡+1)|𝑆𝑆0}� 
5: 𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚𝑐𝑐𝑛𝑛𝑡𝑡_action = 𝑥𝑥𝑡𝑡  # stores value of the selected commitment action 
 Fairness property implementation 
6:  PMD = 1  # PMD defined as project with the maximum demand 
7:  for 𝜃𝜃 = 𝑡𝑡 𝑡𝑡𝑐𝑐 𝑇𝑇 
8:   for 𝑚𝑚 = 2 𝑡𝑡𝑐𝑐 𝐼𝐼 
9:    if 𝑏𝑏�𝑃𝑃𝑀𝑀𝑃𝑃,𝜃𝜃

𝑑𝑑 (𝜃𝜃) − 𝑥𝑥𝑃𝑃𝑀𝑀𝑃𝑃,𝑡𝑡 + 𝑥𝑥�𝑃𝑃𝑀𝑀𝑃𝑃 >  𝑏𝑏�𝑖𝑖,𝜃𝜃𝑑𝑑 (𝜃𝜃) − 𝑥𝑥𝑖𝑖,𝑡𝑡 + 𝑥𝑥�𝑖𝑖  
10:    PMD = PMD 
11:   else 
12:    PMD = i 
13:   end if 
14:   end for 
15:    𝑥𝑥�𝑃𝑃𝑀𝑀𝑃𝑃 = 𝑥𝑥�𝑃𝑃𝑀𝑀𝑃𝑃 + 𝜗𝜗   
16:   𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡 − 𝜗𝜗 
17:   if 𝑥𝑥𝑡𝑡 = 0 
18:    Stop 
19:   end if 
20:  end for 
 Return system and project commitment actions 
21:  return  (𝑥𝑥�𝑖𝑖)       ∀ 𝑚𝑚 ∈ 𝐼𝐼             
22:  𝑥𝑥𝑡𝑡 = 𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚𝑐𝑐𝑛𝑛𝑡𝑡_𝑎𝑎𝑐𝑐𝑡𝑡𝑚𝑚𝑐𝑐𝑛𝑛 
23:  𝑥𝑥𝑡𝑡 = (𝑥𝑥�1, 𝑥𝑥�2, … , 𝑥𝑥�𝐼𝐼)   
______________________________________________________________________________ 

Figure 4: Fairness Property Algorithm 
 

4.7 An Alternative Integer Programming (IP) Formulation for the Resource 
Allocation Fairness Property 

We can leverage the structure of a binary knapsack optimization model as an 

alternative implementation of the fairness property described in Section 4.5. Consider 

the following knapsack problem formulation.  
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CAKP 𝑀𝑀𝑎𝑎𝑥𝑥 𝑧𝑧 =  −���𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝜐𝜐𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖∈𝐾𝐾 𝑖𝑖∈𝐽𝐽𝑖𝑖∈𝐼𝐼

 (12) 

 𝑠𝑠𝑏𝑏𝑐𝑐ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 ���𝜐𝜐𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽
𝑖𝑖∈𝐾𝐾 𝑖𝑖∈𝐽𝐽𝑖𝑖∈𝐼𝐼

  

 

 𝜐𝜐𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1}  

We will refer to the optimization problem provided in Equation 12 as the commitment 

allocation knapsack problem (CAKP). For Equation 12, we have objective function 

coefficients 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖, a resource constraint variable 𝛽𝛽, and decision variables 𝜐𝜐𝑖𝑖𝑖𝑖𝑖𝑖. Solving 

Equation 12 after structuring the coefficient 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 and 𝛽𝛽 terms appropriately will provide 

the inputs needed to generate the same n-tuple project level cash allocations 𝑥𝑥𝑡𝑡 =

(𝑥𝑥�1, 𝑥𝑥�2 , … , 𝑥𝑥�𝐼𝐼 ) that was derived using the fairness property algorithm described in Figure 

4. Once we have the solution values 𝜐𝜐𝑖𝑖𝑖𝑖𝑖𝑖∗  for our CAKP, we can create the project level 

allocation amounts 𝑥𝑥�𝑖𝑖 using the following expression, 

 𝑥𝑥�𝑖𝑖 = ��𝜐𝜐𝑖𝑖𝑖𝑖𝑖𝑖 + 2 ∗ 𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎
−

(0)
𝑖𝑖∈𝐾𝐾𝑖𝑖∈𝐽𝐽

 (13) 

where 𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎
−

(0) represents a de-commitment factor for projects that have the option to 

decommit some of their currently allocated committed amount 𝑏𝑏𝑖𝑖,𝑡𝑡𝑐𝑐  and have the 

decommitted funds possibly transferred to another project or projects to pay for 

shortfalls.  

Creating the CAKP objective function coefficients requires the use of the 

information from the cumulative disbursement schedule 𝑏𝑏�𝑖𝑖,𝑡𝑡𝑑𝑑  in Section 4.0. By 

leveraging this information, we can create a fairness allocation schedule 𝑏𝑏�𝑖𝑖,𝑡𝑡𝑎𝑎  for each 

project 𝑚𝑚.  

 𝑏𝑏�𝑖𝑖,𝑡𝑡𝑎𝑎 = [𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎 (0),𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎 (1),𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎 (2), … , 𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎 (𝑁𝑁 − 1)] (14) 

The number of elements in 𝑏𝑏�𝑖𝑖,𝑡𝑡𝑎𝑎  is determined by the choice of 𝛼𝛼 that was used in the 

contribution function defined in Equation 9 where 𝑁𝑁 = 𝛼𝛼 + 3. The structure of 𝑏𝑏�𝑖𝑖,𝑡𝑡𝑎𝑎  aligns 

with the fairness property rules that prioritize funding to the largest project demands for 

cash in the earliest time period. The variable 𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎 (0) represents project 𝑚𝑚 demands for 
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cash from the previous time period 𝑡𝑡 − 1. Also, 𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎 (1) represents the demands for cash 

of project 𝑚𝑚 in the current time period 𝑡𝑡 and 𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎 (2) represents demands for cash in time 

period 𝑡𝑡 + 1, that is one month or time period into the future. The sequence continues 

through the remaining terms in 𝑏𝑏�𝑖𝑖,𝑡𝑡𝑎𝑎  where the next term continues to represent the 

successive demands for cash for the next time period. The final term 𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎 (𝑁𝑁 − 1) 

captures all the remaining demands for cash of project 𝑚𝑚 across all the remaining time 

periods not yet accounted for up to and including the final time period T.  

We’ll use the following formulation to create the fairness allocation schedule: 

 
𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎 (𝑛𝑛) = �

0
𝑏𝑏�𝑖𝑖,𝑡𝑡𝑑𝑑 (𝑛𝑛 + 1) −�𝑏𝑏𝑖𝑖,𝑡𝑡−1𝑐𝑐

𝑖𝑖

 
𝑓𝑓𝑐𝑐𝑎𝑎 𝑡𝑡 =  1 

𝑓𝑓𝑐𝑐𝑎𝑎 𝑡𝑡 >  1
 (15) 

The term ∑ 𝑏𝑏𝑖𝑖,𝑡𝑡−1𝑐𝑐
𝑖𝑖  can be thought of as the cumulative commitment of funding allocated 

through time period 𝑡𝑡 − 1 intended to meet the cumulative disbursement demands 

𝑏𝑏�𝑖𝑖,𝑡𝑡𝑑𝑑 (𝑡𝑡 − 1) that have already occurred. 

For 𝑛𝑛 = 0, it is possible that the allocation schedule term 𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎 (0) is negative. This 

represents a situation where at time 𝑡𝑡 − 1 there exists more cumulative funding 

committed to a project than the total amount disbursed. Therefore, there is the option to 

decommit funding from project 𝑚𝑚 at time period 𝑡𝑡 and allocate it elsewhere. The counter 

situation is when 𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎 (0) is positive. In this case, we have a must fund situation where 

the cumulative commitment level in time period 𝑡𝑡 − 1 is less than the total 

disbursements. Therefore, at a minimum a sufficient allocation of funding 𝑥𝑥�𝑖𝑖 must be 

allocated to project 𝑚𝑚 in time period 𝑡𝑡 to cover the shortfall. Also available is an 

alternative strategy to address this shortfall, which is to leverage some of the potential 

decommit funding and redistribute these dollars to the projects currently running 

shortfalls. We can isolate those projects that are running a surplus from those that are 

running a shortfall by creating two variables that are derived from 𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎 (0). That is, we can 

create 

 𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎
−(0) = 𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎 (0) 𝑓𝑓𝑐𝑐𝑎𝑎 𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎 (0) < 0 , 𝑐𝑐𝑡𝑡ℎ𝑐𝑐𝑎𝑎𝑒𝑒𝑚𝑚𝑠𝑠𝑐𝑐 𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎

−(0) = 0  (16) 
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 𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎
+(0) = 𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎 (0) 𝑓𝑓𝑐𝑐𝑎𝑎 𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎 (0) ≥ 0 , 𝑐𝑐𝑡𝑡ℎ𝑐𝑐𝑎𝑎𝑒𝑒𝑚𝑚𝑠𝑠𝑐𝑐 𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎

+(0) = 0 (17) 

  

where 𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎
−(0) represents the amount of possible negative commitments or de-

commitment amounts available by project 𝑚𝑚 and 𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎
+(0) are the shortfall amounts. Now 

that we have isolated our shortfall projects from our currently overfunded projects, we’ll 

update the fairness allocation schedule 𝑏𝑏�𝑖𝑖,𝑡𝑡𝑎𝑎  to remove all negative values.  

 𝑏𝑏�𝑖𝑖,𝑡𝑡𝑎𝑎 = ��𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎 (0)�,  𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎 (1), 𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎 (2), … , 𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎 (𝑁𝑁 − 1)� (18) 

Lastly, we’ll note the maximum value contained in our updated fairness allocation vector 

𝑏𝑏�𝑖𝑖,𝑡𝑡𝑎𝑎  and refer to it as the maximum demand increment, or mdi.  

 𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝑛𝑛

 𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎 (𝑛𝑛) (19) 

We can now define both the decision variables and the objective function 

coefficients of the CAKP problem. For our binary variables 𝜐𝜐𝑖𝑖𝑖𝑖𝑖𝑖 and integer coefficients 

𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖, we define the subscripts 𝑚𝑚, 𝑗𝑗, and 𝑘𝑘 as follows: 

     i = 1 , 2, … , I     project i  
    j = 0, …, n, …, N – 1   allocation demand period n in 𝑏𝑏�𝑖𝑖,𝑡𝑡𝑎𝑎  
    k = 1, 2, …., K   incremental demand units 

The subscript 𝑚𝑚 refers to project 𝑚𝑚. The subscript 𝑗𝑗 refers to an allocation demand period. 

For example, j = 2 will refer to the variable 𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎 (2) from the allocation schedule 𝑏𝑏�𝑖𝑖,𝑡𝑡𝑎𝑎  which 

is referencing the disbursement demands in the period 𝑡𝑡 + 1. Lastly, the subscript 𝑘𝑘 is a 

reference to the demand increment of a given project 𝑚𝑚 within a given demand period 𝑗𝑗. 

Furthermore, the largest value in the sequence 𝑘𝑘 is 𝐾𝐾 = 𝑚𝑚𝑚𝑚𝑚𝑚 =  max
𝑛𝑛

 𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎 (𝑛𝑛). To simplify 

the structure of our CAKP we can reorder the values of 𝑗𝑗 from 𝑗𝑗 = 0, …, n, …, N-1 to 𝑗𝑗 =

1, 2, … , 𝐽𝐽 where 𝐽𝐽 = 𝑁𝑁.  

We now have the following interpretation for our decision variables 𝜐𝜐𝑖𝑖𝑖𝑖𝑖𝑖 and 

objective function coefficients 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖. If a decision variable 𝜐𝜐𝑖𝑖𝑖𝑖𝑖𝑖 = 1 this means that a 

discretized unit (e.g., $1 million) of the resource parameter 𝛽𝛽 will be allocated to satisfy 

the 𝑘𝑘𝑡𝑡ℎ increment of demand from the 𝑗𝑗𝑡𝑡ℎ time period of the allocation schedule for 
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project 𝑚𝑚. The values for the objective function coefficient 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 are created from a function 

that leverages the fairness allocation schedule 𝑏𝑏�𝑖𝑖,𝑡𝑡𝑎𝑎  and the value 𝐾𝐾 as inputs. 

 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑓𝑓(𝑏𝑏�𝑖𝑖,𝑡𝑡𝑎𝑎  ,𝐾𝐾)  (20) 

The function shown in Equation 20 will dictate that 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 will be assigned the 

lowest values to the largest demand increments in the earliest time periods and 

systematically decrease these values as the demand increment lessens. The 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 values 

will continue to decrease further for demand increments that exist in later time periods 

of the fairness allocation schedule 𝑏𝑏�𝑖𝑖,𝑡𝑡𝑎𝑎 . The total number of objective function 

coefficients is equal to 𝐼𝐼 ∗ 𝐽𝐽 ∗ 𝐾𝐾. If a demand increment for a given project in a given time 

period does not exist, the coefficient will take on a very large positive value 𝑀𝑀. A 

coefficient value that is equal to M will push the corresponding decision variable 𝜐𝜐𝑖𝑖𝑖𝑖𝑖𝑖 out 

of consideration in our CAKP. For example, if 𝑏𝑏2,𝑡𝑡
𝑎𝑎 (2) = 4 and 𝐾𝐾 = 6 then both the 

coefficient terms 𝑐𝑐2,3,5 and 𝑐𝑐2,3,6 will not exist and therefore will take on the value 𝑀𝑀. The 

coefficient term 𝑐𝑐2,3,5 represents the value associated with the 5𝑡𝑡ℎ demand increment of 

project 2 in the 3𝑟𝑟𝑑𝑑 period of the allocation schedule (i.e., one time period into the 

future). However, since the total demand for cash of project 2 one time period in the 

future is only 𝑏𝑏2,𝑡𝑡
𝑎𝑎 (2) = 4, this means that there can be no demand for a 5𝑡𝑡ℎ increment of 

cash by project 2 at this time. Similarly, there can also be no demand for a 6𝑡𝑡ℎ 

increment of cash at this time as well. Therefore, we will set both 𝑐𝑐2,3,5 and 𝑐𝑐2,3,6 equal to 

the large positive value, big 𝑀𝑀. 

The final term to define is 𝛽𝛽, which represents the resource constraint for our 

CAKP. The 𝛽𝛽 term can take on any integer value such that ∑ 𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎 (0)𝑖𝑖 < 𝛽𝛽 ≤ ∑ ∑ 𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎 (𝑛𝑛)𝑛𝑛𝑖𝑖  

and is dependent upon the system level commitment action 𝑥𝑥𝑡𝑡 . Since 𝑥𝑥𝑡𝑡 can potentially 

take on negative values we will normalize our CAKP resource constraint term 𝛽𝛽 such 

that 𝛽𝛽 is nonnegative. That is, 

 
𝛽𝛽 = 𝑥𝑥𝑡𝑡 + �𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎 (0)

𝑖𝑖

− ��𝑏𝑏�𝑖𝑖,𝑡𝑡𝑑𝑑

𝑖𝑖

(𝑡𝑡 − 1)  −�𝑏𝑏𝑖𝑖,𝑡𝑡−1𝑐𝑐

𝑖𝑖

� 
(21) 
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If we have a situation where the term 𝑏𝑏𝑖𝑖,𝑡𝑡𝑎𝑎
−

(0) is zero for all values 𝑚𝑚, then the CAKP 

resource constraint variable 𝛽𝛽 = 𝑥𝑥𝑡𝑡 .  

Given the definitions of the decision variables 𝜐𝜐𝑖𝑖𝑖𝑖𝑖𝑖, the coefficient variables 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖, 

and the resource constraint variable 𝛽𝛽, we now have the ability to leverage the CAKP 

formulation in Equation 12 along with the decision variable transformation in Equation 

13 as an alternative mechanism for implementing the fairness resource allocation 

property. These types of alternative allocation formulation considerations such as the 

CAKP are important given the potentially large computational expenses involved when 

scaling the ADP approach to consider actual weapon system program office budgets 

that may contain hundreds of projects and are managing budgetary dollars that are in 

the millions. 
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5.0 “Learning” with ADP  

Simulation is the method used for training the financial execution system to 

“learn” a good cash commitment policy decision. Slightly modifying the structure of 

Bellman’s equation in Equation 11, we can summarize the process for training the 

financial execution process with the following state-space sampling and update 

equations. 

  𝑣𝑣�𝑡𝑡𝑛𝑛(𝑆𝑆𝑡𝑡𝑛𝑛) = 𝑀𝑀𝑎𝑎𝑥𝑥𝑥𝑥𝑡𝑡[(𝐶𝐶(𝑆𝑆𝑡𝑡𝑛𝑛, 𝑥𝑥𝑡𝑡) + 𝛾𝛾 𝑉𝑉�𝑡𝑡𝑛𝑛−1(𝑆𝑆𝑡𝑡
𝑛𝑛,𝑥𝑥)] (22) 

 𝑉𝑉�𝑡𝑡−1𝑛𝑛 (𝑆𝑆𝑡𝑡−1
𝑥𝑥,𝑛𝑛 ) = (1 − 𝛼𝛼𝑛𝑛−1)𝑉𝑉�𝑡𝑡−1𝑛𝑛−1(𝑆𝑆𝑡𝑡−1

𝑥𝑥,𝑛𝑛 ) + 𝛼𝛼𝑛𝑛−1(𝑣𝑣�𝑡𝑡𝑛𝑛(𝑆𝑆𝑡𝑡𝑛𝑛)) (23) 

Throughout the ADP “learning” process, the simulation will continually iterate 

between selecting a sample state-space variable 𝑣𝑣�𝑛𝑛𝑡𝑡(𝑆𝑆𝑡𝑡𝑛𝑛) from Equation 22 and then 

using the stochastic smoothing or updated Equation 23 to slowly “train” the previous 

period’s state-space value represented by the variable 𝑉𝑉�𝑡𝑡−1𝑛𝑛 (𝑆𝑆𝑡𝑡−1
𝑥𝑥,𝑛𝑛 ). For example, we can 

consider a decision system that has 𝑇𝑇 = 12 total time periods where each time period 𝑡𝑡 

represents a single month. Assuming that the start of the simulation process is aligned 

to the beginning of the fiscal year, 𝑡𝑡 = 1 represents the month of October. Therefore, 

when 𝑡𝑡 = 5 and 𝑛𝑛 = 500, the simulation process is in the middle of its 500th simulation 

iteration and is currently in the month of February. At the start of each time period 𝑡𝑡, the 

model generates a sample state-space value by solving the maximization operand in 

Equation 22. The objective function in Equation 22 consists of two parts: (a) the one-

step contribution 𝐶𝐶(𝑆𝑆𝑡𝑡𝑛𝑛, 𝑥𝑥𝑡𝑡) defined in Equation 9 and (b) the current value of the 

discounted state-space position 𝑉𝑉�𝑡𝑡𝑛𝑛−1(𝑆𝑆𝑡𝑡
𝑛𝑛,𝑥𝑥) which the simulation process arrives at by 

selecting the action 𝑥𝑥𝑡𝑡 that solves the objective function in Equation 22. The one-step 

contribution represents the immediate cost that is incurred to the decision system by 

taking an action 𝑥𝑥𝑡𝑡 from state 𝑆𝑆𝑡𝑡. The value 𝑉𝑉�𝑡𝑡𝑛𝑛−1(𝑆𝑆𝑡𝑡
𝑛𝑛,𝑥𝑥) represents the currently “trained” 

and stored value of the state-space 𝑆𝑆𝑡𝑡
𝑛𝑛,𝑥𝑥 at the point when the simulation process has 

reached its (𝑛𝑛 − 1)𝑠𝑠𝑡𝑡 iteration. Before the ADP simulation process begins, the value of 

each state-space is initialized at 𝑉𝑉�0(𝑆𝑆0,𝑥𝑥) = 0. Each time a state-space is visited during 

the simulation, the average estimate of its state-space value is continually refined and 
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updated until we reach an acceptable approximation of the estimate of the state-space’s 

true value. 

5.1 Step-Size Properties 

Equation 23 provides a stochastic smoothing process that is rooted in the 

algorithm structure of Robbins and Monro (1951). In this equation, the sample state-

space value 𝑣𝑣�𝑛𝑛𝑡𝑡(𝑆𝑆𝑡𝑡𝑛𝑛) calculated in Equation 22 is used to update the stored state-space 

value 𝑉𝑉�𝑡𝑡−1𝑛𝑛 (𝑆𝑆𝑡𝑡−1
𝑥𝑥,𝑛𝑛 ) of the state that the decision system was in during the previous time 

period 𝑡𝑡 − 1. The successive value of a state has a direct impact on the value of the 

previous state. It is this recursive structure of the ADP “learning” process that allows the 

model to capture the long-term impact of taking an action 𝑥𝑥𝑡𝑡 . Once the “learning” and 

update process is complete, the approximated state-space value 𝑉𝑉�(𝑆𝑆𝑡𝑡𝑥𝑥) captures not 

only the value of being in state 𝑆𝑆𝑡𝑡𝑥𝑥, but the value of all the future states that the decision 

system can arrive at as the simulation process moves forward in time.  

The stochastic smoothing process in Equation 23 requires the use of an alpha-

decay or step-size parameter 𝛼𝛼𝑛𝑛−1. Although there are numerous viable and effective 

choices for alpha-decay, each must satisfy the following three convergence criteria for a 

given iteration sequence 𝑛𝑛 = 1, 2, … ,∞: 

a) 𝛼𝛼𝑛𝑛−1 ≥ 0  

b) �𝛼𝛼𝑛𝑛−1

∞

𝑛𝑛=1

= ∞ 
 

c) �(𝛼𝛼𝑛𝑛−1)2 <
∞

𝑛𝑛=1

∞ 
 

The ADP literature offers a number of different strategies for the choice of alpha-

decay. For example, the alpha-decay parameter of 𝛼𝛼𝑛𝑛−1 = 1
𝑛𝑛
 will satisfy the three criteria 

above and thus will provide a sequence that converges. However, this step-size is 

generally not used in practice since its convergence rate is very fast, giving little room to 

train the decision system’s state-space values. As an alternative, Powell (2007) 

provides a Polynomial alpha-decay learning rate and a Generalized Harmonic alpha-
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decay learning rate. Also, Gosavi (2003) and Darken, Chang, and Moody (1992) 

recommend the use of an Adapted Deterministic Harmonic alpha-decay learning rate. 

Figure 5 provides a graphic for each of these learning rates.  

 
Figure 5: Types of Alpha-Decay (Step-Sizes) 

The four figures shown previously show how the alpha-decay process moves 

from a value of 1 to a value of 0 at various learning rates. During the earlier part of the 

simulation the alpha-decay value is near 1, meaning that the stochastic smoothing 

process will emphasize the value of the initial samples of each state-space 𝑣𝑣�𝑡𝑡𝑛𝑛(𝑆𝑆𝑡𝑡𝑛𝑛). As 

the learning process progresses, the alpha-decay value decreases and shifts the focus 

of the stochastic smoothing process from the sampling values of 𝑣𝑣�𝑡𝑡𝑛𝑛(𝑆𝑆𝑡𝑡𝑛𝑛) to the trained 

state-space values of 𝑉𝑉�(𝑆𝑆𝑡𝑡𝑥𝑥).  

In considering the four possible learning rates above, both the 1/𝑛𝑛 step-size and 

the Polynomial step-size approaches have relatively fast learning rates. That is, it only 

takes relatively few iterations for the alpha-decay process to drop from 1 to 0. However, 
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the Polynomial alpha-decay property does possess a tuning parameter 𝛽𝛽 ∈ �1
2

, 1� that 

can be modified to adjust the rate of alpha-decay. The risk of using a faster alpha-decay 

process is that it can provide the illusion of convergence, when in reality the simulation 

system hasn’t collected enough sample data points 𝑣𝑣�𝑡𝑡𝑛𝑛(𝑆𝑆𝑡𝑡𝑛𝑛) to provide a good 

approximation of state-space values. The other two step-size functions, Generalized 

Harmonic and Adapted Deterministic Harmonic, possess a much slower rate of 

convergence. For these two step-sizes, the alpha-decay value remains relatively high 

before descending to 0. In each of these two cases, the learning rate will spend more 

time on collecting sampling data on state-space values. However, collecting this 

additional information involves a higher computational cost. For the examples provided 

in Figure 5, both the Generalized Harmonic and Adapted Deterministic Harmonic 

required over a thousand iterations before the alpha-decay rate expired. Granted, 

similar to the Polynomial alpha-decay rate, the Adapted Deterministic Harmonic and 

Generalized Harmonic rates each contain tuning parameters 𝑎𝑎 and 𝛽𝛽 respectively that 

can be leveraged to speed up or slow down the learning rate. Nonetheless, regardless 

of the choice of 𝑎𝑎 or 𝛽𝛽, the Generalized Harmonic and the Adapted Deterministic 

Harmonic will still be slower than the 1/𝑛𝑛 and Polynomial learning rates. 

5.2 Exploration and Exploitation 

In addition to determining an appropriate alpha-decay property, another 

consideration to assess when using ADP is the appropriate mix of simulation iterations 

dedicated to either exploration or exploitation. One of the problems with using the form 

of the ADP process provided by Equation 22 and Equation 23 is that due to the 

minimum operand, the simulation process will always favor the selection of the lowest 

value state-spaces. As a result, there is a danger that on each iteration of the 

simulation, the ADP methodology will always select the same or similar actions 𝑥𝑥𝑡𝑡 and 

repeatedly visit the same states-spaces 𝑆𝑆𝑡𝑡. This can lead the model to continually train 

the values of the same states and miss “learning” about alternatively “good” states. In 

order to prevent the simulation process from cycling on the same state-space values, an 

exploration technique is implemented that causes the simulation process to randomly 
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select actions as it moves through the decision system. The exploration phase can be 

expressed by changing the expression in Equation 22 as follows: 

 𝑣𝑣�𝑡𝑡𝑛𝑛(𝑆𝑆𝑡𝑡𝑛𝑛) = 𝑅𝑅𝑎𝑎𝑛𝑛𝑚𝑚𝑐𝑐𝑚𝑚𝑥𝑥𝑡𝑡[(𝐶𝐶(𝑆𝑆𝑡𝑡𝑛𝑛, 𝑥𝑥𝑡𝑡) + 𝛾𝛾 𝑉𝑉�𝑡𝑡𝑛𝑛−1(𝑆𝑆𝑡𝑡
𝑛𝑛,𝑥𝑥)] (24) 

Equation 24 forces the ADP simulation to select non-optimal actions 𝑥𝑥𝑡𝑡 and to sample 

the value of states that it would otherwise not visit. The use of an exploration phase 

requires that a select number of the initial simulation iterations 𝑛𝑛 are dedicated to taking 

a random sample of state-space values. Once the model has executed its allotment of 

exploration iterations, the model transitions to an exploitation learning phase as defined 

by the earlier sampling process in Equation 22 for the remaining 𝑁𝑁 − 𝑛𝑛 iterations of the 

ADP model. The stochastic update process described in Equation 23 is the same for 

both the exploitation and exploration phases, only the nature of how the sample-state 

𝑣𝑣�𝑛𝑛𝑡𝑡(𝑆𝑆𝑡𝑡𝑛𝑛) is determined is different. 

 

Figure 6 provides an example of how the iterations can be distributed across 

exploration and exploitation. In this graphic the simulation is using an Adapted 

Deterministic Harmonic alpha-decay process whereby roughly the first 500 iterations 

are dedicated to exploration where the states are selected randomly. The remaining 

2,000 iterations are then dedicated to exploitation, and the state-space values are now 

being sampled through the use of the maximization operand.  
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Figure 6: Exploration and Exploitation 

5.2 ADP Stopping Criteria 

An additional question to consider when implementing the ADP approach is 

determining how many total ADP simulation iterations 𝑛𝑛 are needed to train the decision 

system model. One statistic that is commonly used to assist with determining the 

simulation stopping criteria is the Mean Square Error (MSE). Taken from Powell (2007), 

Equation 25 is the MSE calculation for the ADP approach. 

 𝑀𝑀𝑆𝑆𝐸𝐸𝑛𝑛 = (1 − 𝛼𝛼𝑛𝑛−1)𝑀𝑀𝑆𝑆𝐸𝐸𝑛𝑛−1 + 𝛼𝛼𝑛𝑛−1�𝑉𝑉�𝑡𝑡−1𝑛𝑛−1(𝑆𝑆𝑡𝑡−1
𝑥𝑥,𝑛𝑛 ) − 𝑣𝑣�𝑡𝑡𝑛𝑛(𝑆𝑆𝑡𝑡𝑛𝑛)�

2
 (25) 

The structure of the MSE equation is similar to the stochastic smoothing equation 

of Equation 23. The formula can leverage the same alpha-decay (i.e., step size) term 𝛼𝛼 

defined in Section 5.1. The formula consists of smoothing the stored MSE term from the 

previous iteration 𝑀𝑀𝑆𝑆𝐸𝐸𝑛𝑛−1 with the squared difference between the value of the currently 

sampled state-space 𝑣𝑣�𝑡𝑡𝑛𝑛(𝑆𝑆𝑡𝑡𝑛𝑛) with the stored value of the previous time period’s state-

space position 𝑉𝑉�𝑡𝑡−1𝑛𝑛−1(𝑆𝑆𝑡𝑡−1
𝑥𝑥,𝑛𝑛 ); the same two variables that were leveraged in Equation 23. 

Figure 7 provides an example of how the MSE statistic might work for a basic allocation 

model simulated for nearly 4,500 iterations.  
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Figure 7: Mean Square Error Calculations 
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Conclusion 

This paper presents a framework for integrating ADP as a solution approach to 

DoD financial execution management. At the end of each FY, millions of unspent dollars 

are returned by weapon system program offices to DoD comptrollers as a result of use-

or-lose budget environments. Currently, traditional FY cash allocation strategies 

implemented by program offices are myopic and risk projects receiving more funding 

than what can be spent within the FY calendar. ADP offers an alternative analytical tool 

that creates a sequential cash allocation plan balancing between the current allotment 

of funding to a project and the final end-of-year financial position of a project.  

The next steps of this research involve testing the ADP algorithm in a theoretical 

DoD financial execution construct. ADP is a solution approach that contains flexibility 

allowing its structure to be modified to accommodate different parameters and facets 

that are unique to separate program offices. Further work will focus on experimenting 

with these different structures and facets of the ADP formulation and determining how 

they can be customized to capture realistic scenarios.  

First, we will consider how different definitions of the epoch period 𝑡𝑡 will impact 

the effectiveness of our model. In the example provided, 𝑡𝑡 represented making a cash 

allocation decision, 𝑥𝑥𝑡𝑡, every month. Other options for 𝑡𝑡 can include weekly or daily 

epochs. One rationale for changing the definition of 𝑡𝑡 is to be able to better align it to the 

actual decision periods used by program offices. Another reason would be to evaluate 

to what extent making more cash allocation or fewer cash allocation decisions over a 

FY has on the objective of reducing the total amount of vulnerable end-of-year 

overcommitted funding.  

Another feature to closely examine is the sensitivity variable 𝛼𝛼. The value 𝛼𝛼 is a 

parameter that establishes how many time periods, 𝑡𝑡, into the future the current 

allotment of cash will be able to pay for project disbursements. Realistically, this value is 

dynamic and not static; its value would be dependent on the point in time in the FY in 

which a cash allocation decision is being made. If it is early in the FY, the program office 

may be comfortable with setting 𝛼𝛼 at a larger value given that the contractor has a 
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longer time period before the end of the FY to utilize the money. Then, the program 

office may implement a strategy that slowly reduces the parameter 𝛼𝛼 as the FY calendar 

starts to approach the end of the year. Another strategy to use is if the program office is 

operating under a CRA is to set 𝛼𝛼 to the length of time of the CRA. Under this scenario, 

program offices are aligning a project’s cash allocation with the CRA timeframe.  

Lastly, we look to consider different ways of defining the exogenous data 𝐷𝐷�𝑡𝑡. At 

the start of each time period 𝑡𝑡, the ADP model simulates a sample of exogenous data 

𝐷𝐷�𝑡𝑡 and uses the information to define the current period’s state-space 𝑆𝑆𝑡𝑡. The variable 

𝐷𝐷�𝑡𝑡 represents both the expenses (i.e., disbursement information) that occurred for a 

project in the previous time period along with the strategy for how this information is 

used to update the cumulative disbursement schedule 𝑏𝑏�𝑖𝑖,𝑡𝑡𝑑𝑑 . To provide more fidelity to 

the ADP model, 𝐷𝐷�𝑡𝑡 can be uniquely defined for each project. For example, 𝐷𝐷�𝑡𝑡 would 

take into consideration any available historical spending data on the project as well as 

subject matter expert input specifically related to the execution management of the 

project.  

As part of this research effort, an initial exploratory and coordination review of the 

ADP model formulation was conducted with the Enterprise Analytics Leadership Team 

within the Office of the Under Secretary of Defense (Comptroller) (OUSD[C]) in 

Washington, DC. The team is currently in development of a big data enterprise platform 

called ADVANA. Among other analytic efforts, the ADVANA platform will be leveraged 

as part of the DoD’s Dormant Account Review—Quarterly (DAR-Q) process, which 

investigates the status of unliquidated obligation and other funds at risk of expiring. In its 

current form, the analysis provided by the ADVANA platform is primarily descriptive. 

The ADP approach presented in this research provides a potential roadmap for 

enhancing the ADVANA effort by adding a predictive and prescriptive capability to its 

already existing descriptive analytic features. Furthermore, the ADVANA platform will 

include a cloud computing capability that can facilitate access to computers with greater 

computational capacity and therefore potentially serve as a mitigation strategy for 

dealing with some of the curse of dimensionality and computational complexity 

challenges of the ADP model. It is anticipated that continuing research efforts on this 



Acquisition Research Program 
Graduate School of Defense Management - 43 - 
Naval Postgraduate School 

ADP approach for tracking use-or-lose budgets will be conducted in conjunction with 

OUSD(C)’s Enterprise Analytics Leadership Team.  
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