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Abstract 

The DoD’s evolutionary acquisition policy is directed against project risk, but 

bears inherent risks of its own. The DoD policy for evolutionary acquisition mandates 

multiple product releases via spiral (i.e., amorphous & unplanned) or incremental 

(i.e., defined & deferred) development methodologies for all programs. All 

amorphous spirals eventually become definitive increments. Incremental 

development entails the deliberate deferral of work to a subsequent phase. 

Computational organizational modeling using systems dynamics reveals that this 

methodology introduces more concurrency during development, and more variety in 

production. The result is earlier delivery of the first increment, but with later and 

more costly delivery of subsequent increments than if conducted via a single-step 

methodology. Curtailments of scope by the exclusive use of mature technology 

enable more effective delivery of the first increment, further illustrated by two case 

studies. Duplication, rework, transaction costs, decision backlog and error are 

causes of inefficiency in the successive increments. Production variety and mixed 

configurations produce obvious implications for logistical supportability, training, 

failure causality, compatibility and interoperability, etc. Further, certain attributes of 

hardware products might help determine the suitability of this development 

methodology. Products that are nearly immutable, which have binary requirements 

for key capabilities, require man-rating, or are maintenance-intensive may not be 

good candidates for incremental development. Mutable products with costless 

production, continuous requirements, low maintenance, or time criticality are more 

likely to reap advantages from this development approach. While modular open 

systems architecture facilitates system adaptation, modularity itself does not 

necessarily create evolutionary advantages, due to relative modular 

interdependency. Program managers must be aware of the inherent risks of these 

agile acquisition methods and take additional steps to balance them with appropriate 

planning and resources, disciplined change-control measures, organizational 

accommodations and accountability for configuration management. 
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Executive Summary 

Our purpose in this research was to discover what spiral development really 

is, observe it in past programs, model it, and make predictions and 

recommendations for program managers. Program managers typically seek stability, 

in requirements, funding, system design, and production configuration. But it seems 

the only constant is change. Like the aspects of being temporary and unique, 

progressive elaboration is a project characteristic, and also a technique for 

incremental discovery of requirements and product utility.  

Background 
There are many new DoD terms for project management and product 

development methods. DoD promulgated evolutionary acquisition (EA) as policy in 

2000, and soon after, spiral development for the preferred acquisition strategy of all 

materiel. EA’s goal is to phase requirements and provide capability sooner. But there 

has been confusion over terms, despite further elaboration and even codification in 

statute, and it still persists today, along with a lack of full understanding of many 

policy implications – especially some inherent risks. EA operationally means there 

will always be multiple product releases of an item. 

The policy thrust is primarily about the reduction of product cycle time within 

an uncertain environment, by exclusively using mature technology. DoD’s 

requirements process has also followed with “evolutionary” requirements documents 

– a new idea. Uncertainty is the usual realm of program managers, especially in 

defense systems, and is usually dealt with by seeking best information. Earlier 

reform initiatives were aimed at overcoming information gaps and technology lag. 

For example, the 1990’s Integrated Product and Process Development (IPPD) 

initiative was about gaining collective wisdom for early and complete requirements 

realization. However, the current paradigm is to allow uncertainty in requirements to 

resolve over time and endeavor only what is immediately achievable. The GAO has 
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also urged the DoD to move toward Knowledge-Based Acquisition, with Technology 

Readiness Levels (TRL) as the rubric for program initiation (advanced development). 

Thus, the heart of EA is the exclusive use of mature technology to reduce project 

scope.  

Questions about Policy Implications 
EA outcomes are as yet unknown, and some authors have already had 

insightful strategic and institutional concerns. We have also had tactical 

(implementation) concerns about excessive decision bureaucracy, organizational 

challenges from multiple and concurrent development efforts, old technology at 

release, funds forecasting, transaction costs, and maintenance of subsequent 

increment priority.  

Spiral development as a one-size-fits all strategy may not be appropriate. 

Variety adds complexity in production and is costly, for hardware owners and 

manufacturers alike. Both concurrency and variety are elements of program 

complexity and risk. Traditional views about late design changes are negative, 

except for producibility enhancements and savings. But market consumers often 

need items in rapid cycle times and appreciate product differentiation. In support of 

EA policy, the GAO has used product examples such as commercial vehicles, which 

ignore the aspect of ownership.  

Control measures are used to manage risk. One way of coping with the 

complexities of variety in ownership is via organizational and individual 

accountability, and we use examples of these with illustrations of recent small arms 

variety and Rickover’s nuclear Navy. Many other useful theorems on systems 

complexity, change and control exist.  

More questions about spiral development include whether certain product 

characteristics determine spiral development method applicability. Mutability 

simplifies change, and spiral development was conceived for the most malleable of 

products: “soft” ware, which is virtually costless in production. This approach was to 
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allay software project risk. And that idea can be extended in the case of DoD 

projects. Time criticality and life-saving dependency, as opposed to user hazard 

levels (safety & man-rating), might influence design approaches. We believe this is 

why space experts say they’ll not use spiral development with NASA’s new Crew 

Exploration Vehicle project. Regarding product size or production quantity, we find 

no evidence that either precludes use of spiral development – as with space vehicles 

and large ships -- though support considerations do arise with variety that could 

greatly affect total costs of ownership. Regarding “range of requirement attainment,” 

binary key performance parameters could fall upon the critical path, making division 

into capability increments less beneficial. Increment phasing (the amount of 

concurrency) and cycle time (lead time) affect program complexity, budgeting, 

organizational stress, etc. Simon’s views on complexity and evolution of systems 

involved hierarchy and modularity within architecture, but fail to emphasize modular 

interdependency. We cannot yet model these product attributes, but can illustrate 

most of them with examples from our case studies. 

Development Case Studies 
One of the most recent monographs we have found on emerging results of 

evolutionary acquisition is by RAND – on five immature, non-man-rated space 

systems. Space systems are somewhat different (in quantities, space environment, 

front-end investment, and extended technology development periods). RAND also 

found that policy confusion persists, and that EA added program complexity and 

uncertainty, especially with regard to budgeting. Extending their findings to non-

space DoD programs, RAND highlighted the EA challenges of programmatic flux. 

They feel, and we agree, that EA presents the opportunity for typical PM challenges 

to be even more formidable.  

Two missile programs were used as case studies for analysis and to illustrate 

planned and unplanned change. The Army Tactical Missile System (ATACMS) used  

both incremental and spiral strategies for product development. The program 

skipped its technology development phase by employing mature technologies for a 
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leap-ahead capability in range. It arrived on budget and schedule, with several 

successive variants, pre-planned and unplanned. One instance of production 

change caused missile failure and costly refit of already produced missiles – 

underscoring the need for more thorough design specification and configuration 

management accountability.  

Javelin used the single-step-to-full-capability approach to product 

development. The program embarked upon advanced development with immature 

technologies in several critical areas, causing significant cost and schedule 

overruns. It also has experienced subsequent design changes and product variety, 

more so as running production changes than as product variants.  

Synthesis of these cases conveys that as an approach oriented primarily for 

reduction of product cycle time, spiral development can successfully be used when 

developing mature technologies first. But that a system’s physical properties like 

mutability, along with other factors such as time criticality (user risk), and modular 

interdependency will drive spiral development applicability. And key capabilities may 

in fact depend upon the least mature technologies or even binary requirements, 

which we describe as attained/unattained (versus continuous). An “open,” or at least 

elegant, architecture is key to form a basis for modular variety, and thorough design 

specification and configuration management accountability is essential for managing 

the complexity of multiple product releases. All amorphous spirals will eventually 

become defined increments, and even then may be popularly termed as “spirals.” 

Other well-known programs have used a spiral approach over their long product life 

spans, but often having rather successive (versus highly concurrent) phasing of their 

development increments.  

Computational Modeling of Spiral Development 
Using system dynamics, our computational modeling of spiral versus a single-

step methodology yields results that illustrate our implementation concerns. Spiral 

development can provide the initial increment delivery with some (but not all) 
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requirements satisfied earlier than single-block development. However, spiral 

development takes more time and costs more to satisfy all requirements than single-

block development. Spiral development has a high risk of not satisfying all 

requirements by the time single-block development can satisfy all requirements. 

The concurrent use of multiple development blocks in spiral development 

significantly increases the number of development phases and activities that must 

be managed and coordinated at any given time compared to single-block 

development. This increases the project management needs for successful 

acquisition in spiral development projects when compared to single-block projects.  

As in single-block development, progress in spiral development requires the 

identification and understanding of progress bottlenecks. The concurrence and 

resulting complexity of development in spiral projects causes the types and locations 

of bottlenecks to vary widely and be more difficult to identify and address than in 

single-block development. Causal paths of the drivers and constraints on project 

performance and progress bottlenecks pass through multiple types of resources, 

development processes, and move across both development phases and 

development blocks. These causal paths vary widely for different performance 

measures. They also change as projects evolve. This makes the drivers of and 

constraints on spiral acquisition project performance more difficult to identify than in 

single-block development projects. Progress bottlenecks can cause counterintuitive 

behavior, such as reductions in project cost by adding resources at a bottleneck. 

Understanding and exploiting the opportunities provided by these behaviors requires 

a deep understanding of the project structures and dynamic interactions that drive 

and constrain progress. Our modeling results indicate that spiral development is a 

significantly different approach to acquisition than single-block development, and 

requires different planning, resourcing, and management. 
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Observations and Assessments 
Evolutionary acquisition seeks to spread out the technical risk over more 

development and process time via incrementing. We have shown with simulation 

that this can potentially improve risk management performance initially, but with 

higher overall costs and longer subsequent development durations.  Our 

computational modeling indicates that incremental development costs more and 

requires more time to provide the same requirements than single step development. 

With regard to project risk, the increased complexity in a project using an 

incremental or spiral approach makes the isolation and effective management of 

progress bottlenecks more difficult than in single-step development. 

The policy change is that spiral development now includes undefinitized 

increments and prescribes incremental development instead of single step 

development. All amorphous spirals will eventually become defined increments – in 

effect mini-programs. In years past they have often been implemented as sequential, 

separate, and successive product upgrades (such as the CH-47, UH-60, C-130, B-

52 program examples). But current policy expresses these as more concurrent, 

frequent and continuous. Such concurrency adds complexity to development 

models, with attendant risks of over allocation of work, noise, error, duplication, and 

other inefficiencies from work deferral and divided effort in project management 

organizations. Additional oversight, reviews, contracting, testing, etc. will also likely 

affect transaction costs. If all requirements are known and an incremental approach 

is used, then there is a deliberate deferral of work to later increments and there will 

be a resultant increase in total development costs and durations for these same 

reasons. 

Recommendations for Practice 
1. Project managers need to be aware of the inherent risks of spiral 

development and take necessary precautions to balance those risks. 
Many tools and control measures are currently developed and 
available to assist project managers in balancing the risks of spiral 
development, such as technology readiness levels, configuration 
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management, technology performance management, real options, 
project phasing, risk management, earned value management and 
organizational design.  

2. Incremental and spiral development projects provide additional 
opportunities for managing development risks that are inherent in the 
project design. These include project planning decisions about the 
number and concurrency of development blocks, and the requirements 
and associated technologies and design components to be included in 
specific blocks. This planning provides opportunities to anticipate 
where critical progress bottlenecks may occur and design how to best 
monitor and respond to them.  

3. Product attributes may help determine the suitability of spiral 
development. PMs should consider such characteristics as: mutability, 
time criticality, man-rating, modular interdependency, key parameters 
of capability versus range of requirement attainment (i.e. binary vs. 
continuous), and the relative amount of concurrency among 
increments.  

4. Progress bottlenecks in incremental and spiral development often 
oscillate between process constraints (e.g. availability of work due to 
upstream progress) and resource constraints (e.g. developer or project 
management quantities or productivities). Successfully addressing a 
constraining progress bottleneck often shifts the progress constraint to 
a different location in the project. Therefore, a structured and 
interdisciplinary practice of identifying and addressing bottlenecks can 
improve performance.  

5. Configuration management accountability must be assigned and kept 
to maintain supportability, failure mode identification and causality and 
prevent the variety generated by evolutionary acquisition from reducing 
total product performance. 

Discussion  
Boehm’s latest book on software development advocates balancing 

disciplined (more rigid) and agile (more flexible) methods to capitalize on the 

benefits of both. Discipline is needed as a control mechanism to avoid risk, but 

agility is needed to respond quickly to customer needs. Saying, “One size fits all is a 

myth,” he advocates a balanced approach based upon risk. Consistent with our 

findings, he also advocates the more disciplined, risk-averse approaches for projects 

that are mission/safety critical, larger in size, and have more stable requirements.  
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Although today’s policy of evolutionary acquisition is prescribed as a 

development methodology, it is actually focused more upon what -- not how -- we 

develop. As such, it is about doable scope, reducing risk via exclusive use of mature 

technology.  The Cost As an Independent Variable and other requirement-limiting 

initiatives (i.e. elimination of MILSPECs) were earlier attempts to accomplish this, by 

encouraging product performance trades to keep cost estimates fixed. Like CAIV, 

this likely means trading performance requirements for earliest deploying 

increments. 

Conclusions 
It could be summarized that spiral development was at its inception and is at 

its extension all about risk. Paradoxically, it is an agile method envisioned to reduce 

risk, and yet can potentially add its own. On the one hand, a spiral or incremental 

approach allays risk by reducing scope to render only the highest priority capabilities 

with the exclusive use of mature technology, and obtains early and continuous 

feedback from the environment for follow-on developments. On the other hand, it 

introduces concurrency during advanced development and adds variety in 

production, with all their attendant management challenges.  

We’ve suggested that a one-size-fits-all methodology for DoD system 

development may not be appropriate, and have offered for consideration several 

product attributes that might help determine the applicability of the spiral approach. 

We speculate that spiral development may serve better than single step 

development for initial capability when products are mutable, time critical, non-

maintenance intensive, and have continuous (vs. binary) or uncertain requirements, 

short cycle times (less knock-on effects), sequentially phased development, and 

modular independence. In contrast, spiral development may not be appropriate 

when there are safety or man-rating concerns and have attributes opposite to those 

above.  In particular, program managers should understand the nature of their 

product requirements with regard to their range of attainment and relative to key 

parameters of capability, and vis-à-vis the readiness level of their enabling 
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technologies. Some key features may indeed be binary, and others may have 

significant ramifications of partial attainment – such as propagated change across 

the entire product componentry (as in weight reduction), versus a more independent 

modular modification. 

Open design standards will not always be incorporable, and product variety 

will emerge, with and without backward compatibility, interoperability, etc. Variety is 

both an asset (for end users) and a liability (for manufacturers, owners and 

supporters). As such, to compensate for product variety risk, we posit that acquirers 

must “own” the design and emphasize configuration management, keeping or 

assigning responsibility for that function, and maintaining accountability for it. 

Our title – “from amorphous to defined” – alludes not only to product 

specification, but also to risk realization in spiral development. Spiral development 

has inherent challenges, both strategic and tactical, of which PMs must be aware. 

We’ve highlighted and illustrated them here, as well as showing that spiral 

development can indeed work – especially for technically mature and mutable 

products with open or elegant architecture. Program managers must be aware of 

these inherent risks, and take necessary precautions to balance them with tools that 

we have mentioned.  

Finally, stability is the quest in all things programmatic – for funding, 

requirements, design, production configuration, etc. But in an unstable world, and 

with the future being necessarily uncertain, the tension between control and change 

is probably unending. PMs do have some tools for coping, and being forewarned is 

being forearmed. PMs are used to concurrency and change, as they are largely what 

make project management what it is – a balancing act. Mechanisms for control of 

risk include many well-known project management tools. Organizational and cultural 

factors such as leadership, trust and accountability play a significant role as well. 

Successful use of these tools to balance control and risk in projects with a high rate 

of change and concurrency is an area for our further research, in order to improve 

our understanding and use of evolutionary acquisition.  
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Introduction—The Inevitability of Change 

We are told in Diogenes Laertius's Lives and Opinions of Eminent 

Philosophers (early 3rd century) that the Greek philosopher Heraclitus (c.535 - 475 

BC) was the first to observe and say, “Everything flows; nothing stands still,”—the 

popular derivation of which is, “The only constant is change.”  Indeed, everything 

does seem to change, evolve and give rise to variety in the world.  Since his work in 

the 1830s, Charles Darwin receives much of the credit for furthering a theory of 

biological evolution.  While not the first to have the idea, he associated observations 

of species variety on the island of Galapagos with species environment, and 

suggested that nature selected the variations that were the fittest (Darwin, 1859). In 

its time (and even since), the idea was considered radical and a threat to the 

religious and social order of things. Mere variety itself can be controversial, since, 

paradoxically, variety is appreciated in some domains (Cowper, 1731-1800)1 and 

abhorred in others (Neave, 2000, March 2).2 At the core of the subject of 

evolutionary acquisition are ideas and phenomena about variety and change. As a 

policy for system development, it is controversial too. As with Darwinian concepts, 

product evolution involves information transfer, interaction with the environment and 

unpredictability of change outcomes. But unlike evolutionary biology, product 

variations and selections occur frequently and are non-random. Much of what the 

authors have found in their following research on spiral development and project 

management is about how managers must cope with product variety and change. 

Using case study analyses, review of current subject literature, and computational 

modeling, the focus of our research was to ascertain the acquisition management 

implications of spiral development, obtain lessons learned in past programs as 

                                            

1 See also: Kerr (1979, p. 65) about the basic human need for variety and complexity. Ashby’s Law of 
Requisite Variety states that the internal regulatory mechanisms of a system must be as diverse as its 
environment in order to cope with the variety of challenges imposed by it (Ashby, 1960).  
2 “Variation is nasty: it makes things difficult, unpredictable, untrustworthy: bad quality.” “In a big way, 
bad quality means too much variation, good quality means little variation.” 
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applicable to future development efforts, model and simulate projects using different 

acquisition approaches, derive predictions and make recommendations to project 

managers for the effective and efficient harnessing and implementation of spiral 

development. 

Projects have long been defined as unique and temporary enterprises, as 

opposed to common and ongoing operations. The latest (2004) version of the 

Project Management Body of Knowledge (PMBOK) increased its emphasis upon the 

term “progressive elaboration” to describe a third fundamental characteristic of all 

projects. It means, “developing in steps and continuing by increments; worked out 

with care and detail; developed thoroughly” (PMBOK, 2000; PMBOK, 2004, p. 6). 

This term relates to project uncertainty and describes the eventual realization of 

project scope only after multiple iterations of planning. The PMBOK asserts that 

progressive elaboration is both a necessary characteristic of projects (occurring 

throughout their lifecycles), as well as a technique for development of product 

specifications. It is accomplished via the learning that takes place over time as 

project ambiguity resolves, so that project scope becomes more explicit and detailed 

(as opposed to “requirements creep” which is considered uncontrolled change). The 

PMBOK later asserts that change in the course of projects and products is 

inevitable, and mandates the need for a disciplined change-control process to 

control its impacts—from inception to completion (PMBOK, 2004, p. 119). 
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New Terminology and a Mandate for Variety 

The Department of Defense has also put into effect new terminology in recent 

years pertaining to project management and product development methodologies, 

with often vague or subtle differences in meaning from older terms. Examples are: 

phased acquisition, agile acquisition, iterative design, rapid prototyping, pre-planned 

product improvement (P3I), product-improvement program (PIP), evolutionary 

acquisition, spiral development, incremental development/capability, planned 

upgrades, and modernization through spares. Others have used related expressions 

such as Rational Unified Process Framework, successive limited comparisons, and 

even “muddling through” (Sylvester & Ferrara, 2003)3 

In the year 2000, the Defense Department promulgated the term “evolutionary 

acquisition” (EA) in its policy documents governing the strategy for acquisition of 

materiel, and mandated such strategies as the preferred approaches (USD(AT&L), 

2000, October 23). Later elaborated as spiral and incremental strategies, these 

approaches contrast in principle to others that utilize more serial, sequential or 

singular efforts to arrive at a product solution (though not necessarily precluding the 

use of iterative planning/designing processes). They are often termed as: single-

step-to-full-capability, grand design, big bang, technological leap, waterfall, rational-

comprehensive, and the unified development method (Mooz, Forsberg, & 

Cotterman, 2005, p. 354).  The overarching goals and principles of the DoD’s 

evolutionary acquisition were explained as follows: 

To ensure that the Defense Acquisition System provides useful military 
capability to the operational user as rapidly as possible, evolutionary 
acquisition strategies shall be the preferred approach to satisfying operational 

                                            

3 Even social scientists have espoused the advantages of incremental progress in decision-making 
such as in Lindblom’s famous 1959 public administration classic, The science of muddling through: 
Lindblom, C. E. (1959). Public Administration Review, 19 (Spring), (Reprinted (1977). In F. A. Kramer 
(Ed.), Perspectives on Public Bureaucracy (2nd ed.) (pp. 132-150). Cambridge, Massachusetts: 
Winthrop Publishers). 
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needs. Evolutionary acquisition strategies define, develop, and 
produce/deploy an initial, militarily useful capability ("Block I") based on 
proven technology, time-phased requirements, projected threat assessments, 
and demonstrated manufacturing capabilities, and plan for subsequent 
development and production/deployment of increments beyond the initial 
capability over time (Blocks II, III, and beyond). (USD(AT&L), 2000, October 
23; emphasis added)  

See Figure 1. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Incremental Capabilities (adapted from Lumb, 2004)  

The DoD later defined an “increment” the following way: 

An increment is a militarily useful and supportable operational capability that 
can be effectively developed, produced or acquired, deployed and sustained. 
Each increment of capability will have its own set of attributes and associated 
performance values with thresholds and objectives established by the 
sponsor with input from the user. (Chairman of the Joint Chiefs of Staff, 2003, 
June 24) 
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Initially, however, the DoD’s definitions of spiral development were imprecise, 

and were exceedingly so for the next two years.  “Spiral development” had been 

used since 1985 in the software community, coined by Dr. Barry W. Boehm, Chief 

Scientist of TRW’s Defense Systems Group (Boehm, 1985, pp. 22-42).  He also 

served from 1989-1992 as the DoD’s Director of the DARPA Information Science 

and Technology Office, and as Director of the DDR&E Software and Computer 

Technology Office. When “spiral development” was rolled out by the DoD in 2000, it 

was first described as a development process within product increments, for 

example: 

Spiral Development is an iterative process for developing a defined set of 
capabilities within one increment. Each increment will include multiple spirals. 
This provides interaction among user, tester, and developer throughout 
system development. In each spiral, requirements are refined and allocated to 
the design. Then coding, fabricating, and integration is accomplished, either 
physically or via modeling. The system or model is then tested and results 
assessed. The learning from this spiral is then applied to the next spiral. This 
process is repeated until we have fully developed a system concept, then a 
development baseline, and finally, a capability that meets warfighter needs. 
(AFIT, 2007; Hawthorne & Lush, 2002, August) 

Boehm’s earlier work had pointed out that not only could software developers 

demonstrate functionality in an incremental way, but management could also commit 

corporate resources in an incremental way.  But “rapid” and “evolution” are terms 

that don’t go effectively together. And confusion continued in the acquisition 

community throughout 2003—when definitions emerged in midyear and were 

published in the next revision of DoDI 5000.2 in an attempt to clarify the difference 

between spiral and incremental development as similar but different processes 

within an evolutionary acquisition strategy (Washington Technology):  

3.3.2. The approaches to achieve evolutionary acquisition require 

collaboration between the user, tester, and developer. They include:  

3.3.2.1. Spiral Development. In this process, a desired capability is 

identified, but the end-state requirements are not known at program initiation. 
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Those requirements are refined through demonstration and risk management; 

there is continuous user feedback; and each increment provides the user the 

best possible capability. The requirements for future increments depend on 

feedback from users and technology maturation. 

3.3.2.2. Incremental Development. In this process, a desired capability 

is identified, an end-state requirement is known, and that requirement is met 

over time by developing several increments, each dependent on available 

mature technology. (USD(AT&L), 2003b, May 12) 

Furthermore, of the two approaches to evolutionary acquisition strategy, spiral 

development was declared the preferred process for execution (USD(AT&L), 2003a, 

May 12). In 2003, the Congress sought to define these terms as well, perhaps so 

that completely new development efforts or programs could not be disguised as 

incremental spirals or product improvements. 

(g) Definitions.- In this section: “(1) The term ‘spiral development 

program’, with respect to a research and development program, means a 

program that - “(A) is conducted in discrete phases or blocks, each of which 

will result in the development of fieldable prototypes; and “(B) will not proceed 

into acquisition until specific performance parameters, including measurable 

exit criteria, have been met. (US Code, Title 10, 2002)  

For the acquisition workforce today, some confusion still persists with 

the DoD’s terminology, and certainly with the broader implications of the 

policy and its tactical implementation (Lorell, Lowell, & Younossi, 2006). To 

fully differentiate between old and new terminology and process criteria, the 

instructional and leadership arms of USD (AT&L) distributed the table below 

(Figure 2) in several presentations during 2003-2004 (Bruns, 2003, July 30).  
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YesYesNoNoMultiple iterations 

NoNoNoYesAll capabilities 
required in initial 
increment 

Developmental 
process when full 
requirements not
defined at outset

Developmental 
process when full 
requirements defined 
at outset

Achieves increased 
capability from 
maturing technology 
with architecture in 
place

Used as the 
traditional 
acquisition 
strategy

Other characteristics

YesYesNoNoUser feedback from 
earlier iterations 
used to define final 
requirement

YesYesYesNoUseful intermediate 
capabilities

NoYesYesYesFull requirements 
defined at outset

Evolutionary Acquisition
Incremental                   Spiral
Development            Development

Pre-planned Product 
Improvement (P3I)

Single Step 
to Full 

Capability

Acq Strategy or
Dev Process

Criteria

Development Strategy Comparison Table

  
Figure 2. Development Strategy Comparison Table 

As illustrated, what this all means in the simplest of terms is that we now have 

a mandate for all programs to have multiple product releases, some of which will 

have defined requirements while others are more amorphous. For the incremental 

development approach, this involves the deliberate deferral of work to a later project 

phase. Future adaptability is an inherent development objective for spiral and 

incremental approaches. However, if we look at programs over their extended 

lifecycles, it could be argued that many, if not all of them, have all been developed 

with (initially unplanned) continual spirals or increments of refreshment and 

improvement (such as the CH-47, UH-60, C-130, B-52 aircraft programs). 
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Reducing Cycle-time and a Move toward 
Evolutionary Requirements 

The policy for evolutionary acquisition strategy was aimed at improving all 

parameters of program success, but clearly and explicitly, its single most important 

objective was to reduce long product cycle-times to deliver operationally useful 

equipment. The attainment of agility or flexibility in what had been a very rigid 

requirements process was an implicit objective within the concept, but was 

nonetheless important from an implementation perspective. Commensurately, the 

Joint Capabilities Integration and Development System (JCIDS) process was 

changing in parallel with the DoD 5000 series revisions and appeared in five 

different editions between August 1999 and May 2005. As one of its principal 

modifications, it prescribed a series of three evolving requirements documents to 

describe attainable capabilities from initial conception, through design, to production 

(Chairman of the Joint Chiefs of Staff, 2005, May 11).4 

As previously mentioned, project management differs from operations 

management in that all projects are unique and exist for a limited amount of time, 

and with significant uncertainty. Uncertain events or conditions that can negatively 

affect project objectives operationally define risk (PMBOK, 2004, p. 5). Activity 

concurrency is a necessary aspect of projects for efficiency of execution, but only to 

the extent that the total scope is accomplishable. Otherwise, technical performance 

risks, as well as schedule and cost risks, emerge. Like others who operate in a 

strategic realm, project managers see themselves within an environment of volatility, 

uncertainty, complexity and ambiguity. Nevertheless, they are expected to predict 

project outcomes in terms of cost, schedule and performance. Project risk (typically 

schedule, budget and technical performance risk) is often viewed in terms of 

                                            

4 These requirements documents are the Initial Capabilities Document (ICD), Capability Development 
Document (CDD) and Capability Production Document (CPD), approved in support of Milestones A, 
B, and C respectively. 
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adequacy of available information about the project environment and the potential 

effects of management actions (Pich, Loch, & De Meyer, 2002, August 8).  Large 

defense systems are very complex, consisting of diverse hardware and software 

sub-systems, multiple suppliers, numerous interfaces, etc. Worse, the current 

environment of rapid technological change has become particularly problematic for 

such projects with long product cycles. Because of this “churn,” it is proving more 

and more difficult to fully define technical specifications—or even the complete set of 

system functional characteristics and operational capabilities—before commencing 

advanced development. Project uncertainty and risk seem to be increasing. 

Earlier (1990s-era), DoD acquisition reform initiatives took aim at such 

ambiguity and uncertainty and sought purposefully to reduce the product cycle by 

alleviating the information gap and technology lag via measures such as: alpha 

contracting, advanced concept technology demonstrations, pursuit of commercial-

off-the-shelf products, and Integrated Product and Process Development (IPPD).5 

During this era, it was thought that insufficient involvement of numerous and diverse 

project stakeholders, particularly early in the program’s life, led to project changes 

later on that were more costly to implement. IPPD was adopted as a management 

process (Perry, 1995, May 10) to encourage cross-functional teamwork and promote 

collective wisdom.  Employment of IPPD was specifically to facilitate meeting cost 

and performance objectives, as well as to field products sooner, via the continuous 

collaboration within Integrated Product Teams (IPT). But in the main, it was about 

early and complete requirements capture 6 through collaboration.  

As concerns over DoD acquisition program costs and cycle-times continue in 

the current mid-2000s era, the DoD has not abandoned the use of IPPD.  But by 

                                            

5 Of 63 named 1990s-era acquisition reform initiatives, many sought to reduce bureaucracy, 
modernize and streamline processes, and reap a resultant reduction in overall cycle-time. However, 
these four as mentioned appear directly oriented against technology uncertainty and inadequate 
information. 
6 See Bruce, M. & Cooper, R. (2000). Creative product design. West Sussex, England: Wiley & Sons, 
for an extended coverage of requirements capture management. 
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embracing evolutionary requirements and acquisition, it has acknowledged that 

information will never be complete, either from stakeholders or with regard to ever-

changing technology. It now implicitly concedes that developers will learn about their 

design over time (“requirements realization”), and users will accretively gain 

knowledge about how they can better use the new capability (“product discovery”).7 

Thus, a major paradigm shift for product development has occurred in the DoD: from 

a collaborative quest to capture and address all requirements early on, to an 

allowance of eventual requirements discovery with full attainment only after 

visualization, feedback and environmental changes occur along the way.  

                                            

7 The authors’ terminology for what has so often been observed from their experiences. Most of us 
have long known that full realization of requirements and visualization of the product often takes 
multiple iterations of design, with feedback loops from modeling and testing activities.  And 
sometimes the customer doesn’t fully realize what can be done with the product until it is in hand. We 
call that product discovery, and the authors can cite several examples of this in both commercial and 
defense applications (i.e., cell phones as improvised explosive device triggers, etc.). 
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The Enabler: Mature Technology Reduces Risk  

This is not to say, however, that the DoD has in its policy embraced 

technological uncertainty for the commencement of advanced development. Quite 

the contrary—for at the very heart of the evolutionary acquisition strategy is the 

requirement for the exclusive use of mature technology to reduce project risk. The 

impetus for this undoubtedly lies in the body of work by the Government 

Accountability Office (GAO) over the last ten years,8 which has obviously and greatly 

influenced the DoD 5000 series. The GAO encourages the use of knowledge-based 

processes and specifically separates technology development from product 

development. It characterizes three knowledge points in the course of product 

development as:  

Knowledge Point 1 Matching of resources and needs (time, funding, 
technology, and requirements)—at the point of 
program initiation (corresponding to DoD’s Milestone 
B). 

Knowledge Point 2 Stable product design (typified by having 90% of 
component drawings complete)—midway through 
advanced development (DoD’s System Development 
and Demonstration Phase) at the point of system-
level critical design review (corresponding to the 
DoD’s Design Readiness Review). 

Knowledge Point 3 Mature production processes: proven products with all 
key manufacturing processes in statistical control and 
meeting cost, schedule, and quality targets. 
Described by the GAO as the start of production 
(corresponding to the DoD’s Milestone C—though 
some might argue that such knowledge is not 
completely realized until Full Rate Production9). 

                                            

8 See in particular: GAO/NSIAD-98-56; GAO/T-NSIAD-98-123; GAO/NSIAD-99-162; GAO/T-NSIAD-
99-116; GAO/T-NSIAD-00-137; GAO-01-288; GAO-02-701; GAO-03-57; GAO-04-53. 
9 Statement by US Army Colonel (Ret.) Mike Boudreau, former PM for the Family of Tactical Wheeled 
Vehicles (FMTV), in correspondence with GAO authors, May 19, 2006. 
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The GAO has claimed that genuine assessments of program knowledge 

acquired at these control points will reveal whether the programs and their requisite 

investments should proceed or be halted. They argue that shorter product cycle-

times are the hallmark of program success and, therefore, should be limited to five 

years for more frequent introduction of new technologies into weapon systems, 

speeding them to the warfighter. We note that this is not much longer than the 

average development time for a new model of automobile—typically 3-4 years—

which occurs in a very mature and cyclical industry (Kim, 2002, June). This target 

may ignore the significantly greater amount of technology development required in 

many DoD projects compared with most automobile development projects.  

Most emphasized by the GAO (in the many reports reviewed by these 

authors) is the aspect of technology maturity before commencement of advanced 

development. The Office applies a 1-through-9 rating scale of technology readiness 

levels (TRL) that was developed by the National Aeronautics and Space 

Administration, adopted by Army and Air Force research laboratories, and recently 

implemented in the DoD 5000 series (in particular, the Defense Acquisition 

Guidebook—formerly DoD 5000.2R). Until recently, the DoD had no specific 

requirements for use of TRLs, but levels 6 and 7 now satisfy its guidelines for 

technology maturity at Milestone B. TRL 6 states that the technology has been 

demonstrated in a relevant environment (simulating the key aspects of the 

operational environment), and TRL 7 is its demonstration in an operational 

environment (that which addresses all operational requirements and specifications 

required of the final system, to include platform/packaging). The GAO clearly prefers 

TRL 7 as the level of technology maturity that will represent a low and satisfactory 

risk for starting product development (GAO, 2005, November 15). The Office 

acknowledges that users may not initially receive the ultimate capability under this 

approach, but that the initial capability will arrive predictably sooner and cheaper 

(GAO, 2005, November 15). (See Figure 3.) 
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Figure 3. DoD Technology Readiness Levels (GAO, 1999, July 30) 

In some respects, developing only mature technology as a fundamental 

program requirement is similar to an earlier attempt to constrain project scope. Cost 

As an Independent Variable (CAIV) was an acquisition reform initiative that emerged 

in 1995 as a means of trading scope, or system performance, to achieve cost 

objectives. It was one of very few initiatives that were oriented on what, not how (i.e., 

processes) the DoD acquires its materiel.10 To date, its actual savings benefit has 

been difficult to quantify, and qualitative measures have shown mixed results 

                                            

10 Some may also assert that the moratorium against MILSPECS was similar in its thrust to reduce 
unnecessary scope of work, but we believe many specifications to be as much prescriptive (i.e., 
“how”) as they are descriptive.  
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(RAND, MG291, 2005). The practice of using requirement attainment objectives and 

thresholds was another way to facilitate performance trades for cost. 

When fully realized, it is the exclusive use of mature technology in system 

development programs that is the key enabler of evolutionary acquisition strategy, 

facilitating the rapid transformation of applied technology to end-item capability. 

Thus, it is the third of three principal observations, all of which are paradigm shifts, 

that we have recently observed: (1) that the DoD would now mandate program 

strategies for all programs to have multiple product releases of the same item, (2) 

that requirements would be deferred or allowed to evolve over time, and (3) that high 

levels of technological maturity would be requisite for commencement of advanced 

development, with an intended reduction of technical risk (and thus, project 

schedule) (USD(AT&L), 2003a, May 12, Enclosure—Additional Policy E1.14).  
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Policy Concerns 

But there are questions and concerns about these major shifts that several 

authors have raised. While still a relatively new policy, observations and realizations 

about the outcomes of evolutionary acquisition and spiral development are only just 

beginning to emerge, until at least several major programs go through their entire 

lifecycle in this way. One of the first histories and analytical descriptions of 

evolutionary acquisition policy formulation came from Sylvester and Ferrara, in their 

2003 discourse on Conflict and Ambiguity Implementing Evolutionary Acquisition 

(Sylvester & Ferrera, 2003). This piece gave some insight into the challenges and 

obstacles of evolutionary acquisition implementation—not from program office 

level—but from the perspective of strategic policy makers and subscribers at the 

Office of the Secretary of Defense (OSD) level, during their struggle to adopt the 

policy. In short, the authors explained the aforementioned confusion and ambiguity 

of the policy as it evolved from 1983 toward final promulgation in 2000, and then 

described the conflict areas caused by shifts in power among the organizational 

fiefdoms in the OSD and other affected institutions (i.e., Congress and the defense 

industry). In particular, they exposed the following major stakeholder communities 

and their respective areas of concern about evolutionary acquisition: 

Congress loss of control over DoD programs via specific and 
informed authorization and approval; the inability 
to keep the DoD accountable; unknown 
implications of requirements and budget flexibility 
required for evolutionary acquisition. 

Military Departments need to protect own acquisition programs and 
share of the DoD budget; retention of funding for 
follow-on capability increments; increased 
oversight; downstream logistics of multi-
configuration products. 

Defense Industry disruptions to commercial processes and 
traditional approaches to business; competition for 
follow-on increments; lower-rate production runs 
after shorter R&D efforts. 
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Comptroller controlling programs and holding them 
accountable; unknown implications of 
requirements and budget flexibility required for EA 
(program and budget “gaming” by services); “full 
funding” policy11 versus open-ended requirements 
and fund streams. 

Requirements/Users sub-optimum capability; priority of what is needed 
versus what is currently attainable; loss of follow-
on increments.  

Test and Evaluation loss of discipline and assurance of operational 
effectiveness & suitability; lack of comprehensive 
testing before several low-rate production 
configurations are released. 

Sylvester and Ferrara’s list of these policy concerns was not meant to be all-

inclusive, nor does it take into account other communities, like program managers 

and logisticians, who also have issues about evolutionary acquisition 

implementation. But their essay about strategic conflicts within the emergent policy 

does provide valuable insight into some of the challenges of effective tactical 

implementation. 

                                            

11 The authors explain the dual meanings of this term later in this discussion. 
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Implementation Concerns 

The authors of this discussion have also been attentive during the policy’s 

turbulent progression. As researchers and former practitioners, we’ve had our own 

concerns about spiral development from both strategic as well as tactical 

standpoints, and with regard for its efficiency and effectiveness in application:  

• We previously noted the significant increase in OSD-level program 
decision reviews under the new acquisition framework (Dillard, 2005), 
and suggested such additional centralization of control might work 
counter to the stated policy’s innovation-fostering goals. Reviews serve 
as control gates where decision makers can stop, extend or grant 
permission for projects to proceed into the next phase.  Program 
reviews, major-milestone or otherwise, at the OSD level have a 
significant impact on program offices as off-core activities.  Much 
documentation must be prepared and many preparatory meetings are 
conducted enroute to the ultimate review.  And while non-milestone 
reviews are generally considered to require less preparation effort, a 
considerable amount of effort managing the decision process is still 
expended. The latest DoDI 5000.2 prescribes that, “In an evolutionary 
acquisition program, the development of each increment shall begin 
with a Milestone B, and production resulting from that increment shall 
begin with a Milestone C” (USD(AT&L), 2003b).  Thus, program 
managers can expect to undergo the reviews determined appropriate 
for the initial increment of development in their program, as well as 
reviews specified for all of the follow-on increments. And our concern 
follows that the added time and effort expended on such control 
activities and added transaction costs might actually delay the arrival of 
capability (Franck, Melese, & Dillard, 2006) (see Figure 4).  

• There will likely be significant organizational impacts of concurrent 
development and production within program management offices. Of 
concern is that the first increment’s operational testing and production 
effort may now run parallel to the follow-on development effort for the 
next increment, presenting additional management challenges to the 
program manager. If designers are truly freed from development of the 
initial increment, they can be gainfully employed in the successive 
effort. But, if system components need to be re-worked as a result of 
incomplete realization of requirements or incomplete implementation of 
the technology in the first increment, there will be organizational stress 
and division of effort from the added concurrency. In either case, there 
will likely have to be duplicative or additional management elements 
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employed in the organization as it is executing production and 
development at the same time. It would indeed be an unfortunate 
consequence to have two increments to achieve one set of capabilities 
take longer and cost more than it would have in a project structured to 
just one increment (Dillard, 2005) (see Figure 4). It is these 
phenomena that we have modeled with computational organizational 
design tools, which will be discussed later. 
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Figure 4. Comparison of 1996 and 2003 Acquisition Framework Models 

• The GAO compiled a large body of convincing evidence that 
technology maturation efforts during advanced development have 
lengthened programs, with a resultant delay in capability arrival and 
substantial cost growth. Under the new framework, Milestone B is the 
formal declaration of program initiation and product (versus 
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technology) development.12 But, given the hypothetical arrival of 
technology maturity at some given point in time, it can be argued that 
the delay of program initiation until “the technology is demonstrated in 
a relevant environment”13 can only come from more time spent in the 
preceding phases of Concept Refinement and Technology 
Development. Unless SDD (advanced development) is greatly 
shortened indeed, this could make less certain the potential of any real 
program cycle-time reduction, or worse—could increase the likelihood 
of obsolete product technology (or simply non-competitive state-of-the-
art technology) at Milestone C (start of initial production).14 (See Figure 
5.) 

 

 

 

 

 

 

                                            

12 DoD policy greatly reflects the influence of the GAO Reports recommending increased product 
knowledge prior to business commitment. See GAO. (2002). Best practices—Capturing design and 
manufacturing knowledge early improves acquisition outcomes. 02-701. and GAO. (1999, July). 
Better management of technology development can improve weapon system outcomes. NSIAD-99-
162. 
13 Which relates to Technology Readiness Level 6—Now in statute: amended in 2006, Title 10, 
United States Code Chapter 139 Sec. 2366a. Major defense acquisition programs: certification 
required before Milestone B or Key Decision Point B approval`(a) Certification—A major defense 
acquisition program may not receive Milestone B approval, or Key Decision Point B approval in the 
case of a space program, until the milestone decision authority certifies that—`(1) the technology in 
the program has been demonstrated in a relevant environment. 
14 Some seasoned program managers interviewed have seen technology languish in the laboratories, 
sometimes never transferring to system application—the fear being now that too much time will be 
spent in technology development with ineffectual efforts to “pull” from the technology base, versus 
driving or “pushing” the technology to maturity in the system-development phase. 
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Figure 5. Lengths of Development Phases Relative to Technology and 
Capability Arrival  

 

• The long held term, “full funding,” pertaining to the total cost associated 
with an authorized quantity of militarily usable end-items for 
procurement within the fiscal year, was recently given an added 
meaning. Current DoD policy requires full funding for programs at 
Milestone B. In this sense, full funding also means having an approved 
current (and projected) resource stream with which to execute the 
program; i.e., program funding is included both in the budget and in the 
out-years of the FYDP sufficient to cover the current and future efforts 
described in the acquisition strategy (DAU, 2001). Expansion of the 
term was to ensure that programs would be less likely to exceed 
program estimates if they were not initiated until all forecasted 
resources were in place (USD(AT&L), 2003b).15 However, evolutionary 
acquisition allows for one of two development processes to be 
implemented: (a) Incremental Development—in which end-state 
requirements are known, and will be met over time in several 
increments, and (b) Spiral Development—in which desired capability is 

                                            

15 DoDI 5000.2 states that: “Transition into SDD requires full funding (i.e., inclusion of the dollars and 
manpower needed for all current and future efforts to carry out the acquisition strategy in the budget 
and out-year program…).” 
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identified, but end-state requirements are not known at program 
initiation, and requirements for future increments are dependent upon 
technology maturation and user feedback from initial increments. A 
special challenge is presented for obtaining realistic full-funding 
estimates for programs with uncertain requirements and numbers of 
increments.  Unplanned work is inestimable. Likewise, timing the 
arrival of RDT&E or Production funding via the Planning, 
Programming, Budgeting and Execution (PPBE) process for 
unanticipated discoveries that might suddenly emerge is an additional 
challenge for this calendar-driven and lethargic decision-support 
system. Much depends here upon the relatively successive or 
concurrent phasing of the follow-on increments. Where increments are 
defined, other financial and political aspects may also come into play, 
such as maintaining the priority of funding for the successive 
increments. (Since all programs compete for funding within the DoD 
budgeting process, division of programs into discrete increments would 
seem to make decrementing easier, if not more likely.) 
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The Costs and Benefits of Variety 

Evolutionary acquisition methodologies, in addition to potentially adding more 

concurrency during development, increase variety in production. Variety can be both 

a liability and an asset. Much has already been written about the obvious logistical 

challenges and ownership costs that can arise from having multiple configurations of 

deployed hardware end-items (Apte, 2005, June 30). Use of standardized or 

common components requires fewer inventories and a resultant cost savings, 

depending upon the need for maintenance and spares support (Ravindran, Phillips, 

& Solberg, 1987, p. 329). RAND’s study of support considerations for the current 

mixed configuration fleet of Unmanned Aerial Vehicles (UAV) said, “Multiple aircraft 

configurations drive multiple spare component packages and, in the most extreme 

cases, may drive multiple pieces of test equipment, all significantly increasing long-

term support costs” (Shaver, Lynch, Amouzegar, & Snyder, 2005; emphasis added). 

And changing production configurations is not viewed as efficient—due to 

supportability issues (regarding spares and maintenance) with lot, model, and type 

diversity. Reliability issues can also emerge because of insufficient testing of the 

changes. Depending on the degree of change, system validation and qualification 

become a concern if changes are not under strict control. And there may be 

backward compatibility and interoperability issues as well. Another burden is the 

training impact of mixed capabilities within the force or even within the same owning 

and operating unit.  

In production—and for hardware in particular—a stable design is often the 

quest: to reduce unwanted variation and the potential for detrimental and unintended 

consequences. It is not that change or variety itself is deleterious, but we fear the 

penalties of unwanted change. Also, many project managers have long been taught 

to seek total requirements realization up front via rigorous IPPD and Systems 

Engineering Process (SEP) methodologies to avoid re-work, and because changing 
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the design of a product later in its life (at least in the sense of performance 

enhancement or correction of flaws) is costly and inefficient. See Figure 6. 
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Figure 6. A Concept of the Relative Cost of Design Changes over Time 

Still, design changes often seem to abound once a product is in production— 

where efficiencies can be discovered via learning-curve effects, and minor 

engineering changes can be applied for value. Continuous Production Verification 

Testing (PVT), and even Follow-on Operational Test and Evaluation (FOT&E), is 

conducted as deemed necessary to re-prove the system and allay the risks of 

unintended change propagation. Then may come the question of whether or not to 

retrofit previously manufactured items (to level the capabilities across the item 

population), and to what extent the items to be modified will become similar to the 

newer items produced. 

Aside from ownership, the risks and costs of variety also come into play at the 

manufacturer’s facility, with product-design changes cascading through 

manufacturing process design to manufacturing system consequences. Most 
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recently, it has come to light that Airbus’s 380 aircraft has been delayed for two 

years, costing perhaps $6 billion in profits, because of incompatibility between 

versions 4 and 5 of Dassault’s same Catia computer-aided design (CAD) software 

(Duvall & Bartholomew, 2007). Production variety generates such expenses as: the 

maintenance of configuration documentation, testing, risk analysis, spares inventory, 

supply chain, and tooling. The new Ford Motor Company Chief Executive Officer, 

Alan R. Mulally, dramatically cut costs at his former job as president and chief 

executive officer of Boeing Commercial Airplanes by reducing the number of aircraft 

models from fourteen to four, and now purportedly plans to reduce Ford’s eight 

brands as well (Langley, 2006, December).  Variety equates to complexity for 

management, and it comes with a cost (as well as potential benefits for customers).  

However, free markets appreciate variety in products and services. One MIT 

researcher asserts: 

Complexity is not an inherently bad property to us. Rather it is the coin of the 
realm in systems. You usually have to expend complexity dollars to achieve 
useful goals, such as increased functionality, efficiency or flexibility. (Moses, 
2000)  

Marketplace merchandisers provide variety for consumers who, on the whole, 

demand selection (points of product differentiation), and wish to benefit from the 

economic behaviors of competition. A mix of products is more likely to satisfy both 

mainstream and smaller niche needs. Most often, market needs and annual 

business cycles for revenue drive commercial decisions about time to product 

delivery—such as seen with the annual cycle of toys or automobiles. Commercial 

firms, then, are accustomed to making decisions about “doable scope” and are 

willing to defer offering product features that are less attainable (more risky) for the 

coming year’s introduction to the market. But competitive threats against a new 

commercial market product launch do not typically involve loss of life or even 

livelihood.  
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It is along this vein that we take issue with some examples used by the GAO 

to provide rationale for DoD employment of evolutionary acquisition. Over the last 

decade, they have used products such as Maytag washing machines, commercial 

automobiles (the Jaguar, Lincoln Navigator, and Plymouth Prowler), commercial 

aircraft (Boeing 737 and 777) and commercial shipping (Polar Tanker), etc., as 

exemplars to make the case for a array of practices that the DoD should employ—

such as design trades for reliability and reduced operating costs, use of mature 

technology, and evolutionary acquisition.16 For the most part, we regard these 

commercial products as relatively “low-tech” on a comparative scale of DoD system 

complexity and capability. But more importantly, the GAO ignores product variety 

from the vantage point of owner versus that of the producer.  The DoD is quite 

unique in that it almost entirely outsources capital projects for exclusively internal 

use. Companies such as Boeing and Jaguar and Maytag do the opposite—they 

conduct internal projects for external users. The concept is an important one, we 

feel, because of the implications of ownership—especially with regard to product 

variety. And if the extremes of combat environments are added for consideration and 

comparison of such products, it becomes clear that the risks of added complexity 

increase gravely. 

A more representative commercial archetype, if there really were one, would 

be a product such as those within the United Parcel Service’s truck fleet—a product 

created specifically for the internal use of UPS and to its unique specifications.17 With 

a fleet of now 80,000 diesel-powered vehicles, delivering some 13 million packages 

per day, UPS has continuously (since 1935) explored the potential of alternative 

fuels for reduction in pollutants and fuel economy. Its latest excursion was in 1996, 

to introduce a truck using Compressed Natural Gas (CNG) manufactured by 

                                            

16 see GAO Reports 99-162, 03-57, and 98-56. 
17 Indeed, the GAO did reference the FedEx truck fleet in one of the above reports with regard to 
design trades for reliability and lower ownership costs, but not for the introduction of product variety 
and system evolution. 
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Freightliner Custom Chassis and Cummins Engine Company. The vehicles were 

built in 1996 and tested from 1997 to 2001 with a limited deployment of 101 vehicles, 

and confined to a small geographical area—Hartford, CT. The CNG trucks had 75% 

lower emissions for carbon monoxide, 49% lower oxides of nitrogen, and 95% lower 

particulate matter than the diesel trucks of similar age. But the energy-equivalent 

fuel economy of the CNG trucks was 27% to 29% lower than that of the diesel 

trucks, and the maintenance costs were 29% higher. Citing larger infrastructural 

issues, the UPS CNG Report cited lack of publicly accessible CNG refueling stations 

as a nationwide issue that deters the further deployment of such vehicles, and 

suggested that more economic incentives (tax credits and exemptions, fuel 

discounts, etc.) were needed (Dept. of Energy, 2002, August). With only 1% of its 

truck fleet now using alternative fuels, UPS has no current plans to procure more 

CNG fleet vehicles, but continues to watch the development and economics of new 

alternative fuels technology. This short example only serves to point out that unique 

users of unique equipment have unique ownership and support requirements; and 

product variety is not without its consequences.  
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Do Product Attributes Affect Spiral Applicability 
and Outcomes? 

Spiral development as a universal, “one-size-fits all” strategy may not always 

be appropriate. In addition to strategic and tactical implications about spiral 

development that we have already mentioned, more operational questions have 

surfaced of late: such as, whether certain product characteristics might encourage or 

discourage the use of this development approach. As already described, spiral 

development was conceived for alleviation of software risk from ill-defined solutions 

and uncertain requirements. From the literature and cases we’ve examined, we offer 

other product attributes below for program managers’ careful consideration when 

planning product capability increments. 

Mutability 
We question whether products with different attributes (e.g., hardware vs. 

software, buildings vs. electronics) may lend themselves more or less to the use of a 

spiral development approach. Perhaps the foremost reservation is the 

appropriateness of the spiral development process for all project sizes and product 

commodities in toto, and the application of the spiral process to hardware products 

versus Boehm’s original and most relevant application of this development approach 

toward software.18 It would also seem appropriate that some regard be given to the 

second- and third-order effects of evolutionary acquisition, like: training, 

supportability, failure causality, mixed-unit capability, funding decrements, decision 

reviews, organizational impacts of concurrent development and production efforts, 

etc., before its general application. Our research was in part to ascertain some of the 

product/project parameters that make sense for spiral development. Boehm himself 

                                            

18 And the authors will be quick to acknowledge that software is indeed a huge and growing part of 
hardware systems large and small. Still, the spiral development framework in current literature applies 
overwhelmingly to the realm of software, not hardware. 
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warned of “hazardously distinct” spiral model imitations, and in his own words 

described his vision of the spiral process:   

The spiral development model is a risk-driven process model generator. It 
is used to guide multi-stakeholder concurrent engineering of software 
intensive systems. It has two main distinguishing features. One is a cyclic 
approach for incrementally growing a system's degree of definition and 
implementation while decreasing its degree of risk. The other is a set of 
anchor point milestones for ensuring stakeholder commitment to feasible 
and mutually satisfactory system solutions. (Boehm & Hansen, 2000, 
February 9. emphasis added) 

Clearly, the conceiver of this spiral notion was oriented upon amorphous 

requirements and continuous stakeholder inputs for the alleviation of project risk with 

a very mutable product (Reed, 2006, December 16). The nature of software being in 

the digital rather than physical realm, it is particularly conducive to rapid and 

successive revision and nearly costless production. And even Boehm encourages 

varying from the spiral model as needed and reverting to a sequential model if 

requirements are well established and the project less risky. 

Multiple product increments do not often appear in large, static, singular 

projects such as bridges, highways, office buildings, or in other project areas that 

have typically long lead times or product cycles, such as feature-length films, 

pharmaceuticals, etc. These are what we call nearly immutable products and are 

much different than smaller projects (like small application software development) 

with much shorter development periods. However, as with almost everything 

engineered that we can observe in the physical world, even these things can evolve 

and change with additions, spin-offs, sequels (and prequels), expansions, etc. 

Expansion of the long-standing San Francisco Bay Bridge and the now well-known 

Pentagon Renovation Program (enduring the attacks of September 11th, 2001) are 

examples (see Figure 7.)  
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Figure 7. CALTRANS San Francisco Bay Bridge Expansion Project 

Cycle-time and Phase Concurrency 
Akin to relatively mutable or immutable products, we have observed the successive 

product upgrades visible in long-running aircraft programs (See UH-60 Blackhawk 

and C-130 Hercules chronologies in Appendix A and B respectively) in which there 

are periods of production configuration stability, followed by improvement efforts, 

followed by another stable use period. Cycle-time for the development of each 

increment, and the relatively successive or concurrent phasing of the follow-on 

increments, will have a definite impact on program structure, budgeting, project 

complexity, and organizational issues, etc. For reasons that we will bring forth in our 

section on the computational modeling of spiral development, we have concerns 

about the conceptualization of spiral development programs with continuous and 

highly concurrent phasing of development increments, such as in the doctrinal 

Figure 8 below. 
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Figure 8. Example of Program Structure Showing Two Successive 
Development Increments (adapted from DAU, 2003, June) 

We suggest that, though concurrency is a necessary ingredient for efficient 

project management, it has also long been correlated with risk (due to 

interdependence of activities), and might vary significantly with the types of activities 

underway (See Figure 9)—the inference being that periods of stable production 

configuration between development increments reduce complexity in program 

structure and attendant risks. Similarly, shorter cycle-times have less opportunity for 

knock-on effects or secondary consequences.  

Particularly in matrix organization structures, as often the case with projects, 

there can be a tendency to staff multiple projects with a single specialist. The more 

projects a specialist supports, the less they are proportionately available to the 

projects due to “queuing inefficiencies.” Availability decreases because of the need 

for transition between projects (physical, mental, learning curve, etc.). The end result 

has sometimes been shown to be large delays in project completion (Smith & 

Reinhartsen, 1998).Similarly, Ibrahim (2005) has shown that discontinuous 
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enterprise membership is a contributing factor toward knowledge loss in 

organizations involved in large complex product development processes. Examining 

knowledge flows across product life cycles, members often are not engaged in all 

phases. Whether from rotation of duties or multi-tasking, a discontinuous member’s 

inaccurate knowledge could cause a functional error at the individual level, which is 

not obvious at the enterprise’s overall project level. Her findings support 

observations of knowledge loss continuing despite investments in information 

technology and knowledge management.  

 

Figure 9. Concurrency Relative to Types of Activity 

User Risk (Safety and Time Criticality) 

Time-critical or Enhanced Survivability Systems 
We have discussed above the area of technological risk and the DoD’s use of 

incremental or spiral approaches to resolve it (along with a compulsory policy for the 
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advanced development of only relatively mature technology). But DoD products 

have expanded risk considerations beyond Boehm’s models of commercial software. 

Extending the idea of project risk-as-a-driver down to the level of the end-user, it 

might seem logical to assume that time criticality of the need or mission, where risk 

of not achieving project success actually endangers customer lives, might be a 

significant factor in the appropriate application of the spiral process for reduced initial 

product cycle-time. Perhaps defensive systems are a good example. The immediate 

needs for a Rocket-Propelled Grenade (RPG) defeater or an Improvised Explosive 

Device (IED) neutralizer for currently deployed forces in Iraq and Afghanistan, for 

example, clearly dictate that lives will be lost if a near-term capability is not achieved. 

We also cite as an example the National Missile Defense (NMD) initiative, in which, 

in view of near-term threats, early deployment of even rudimentary capability has 

been deemed preferable to waiting for full capability. Such urgency likely precludes 

full and certain requirements specificity. 

Man-rated Systems 
In an almost opposite vein, non-man-rated systems, such as Unmanned 

Aerial Vehicles or cave-exploring robots—capabilities in which operator lives are not 

at risk if the product fails—may also lend themselves readily to rapid innovation and 

risk-less experimentation cycles.  

However, user hazard levels for man-rated systems may be a different 

matter. Configuration variety adds technical complexity with sometimes 

unpredictable interactions. In such projects as pharmaceuticals, aviation, vehicular 

transportation, etc., producers mitigate safety risks with thorough analyses, 

documentation reviews, testing and other control and verification processes.  By 

their very nature—with lethal hazards for the end-user, and typically lengthy 

approval requirements—these may not be good candidates for a spiral approach. 
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Production Quantity 
Aside from software-versus-hardware mutability, requirements uncertainty, 

and time/life criticality, we questioned whether production quantity is an attribute that 

might also help determine whether a spiral approach is best. There seems to be a 

view, in addition to some risk factors mentioned above, that these might be driving 

factors for NASA’s acquisition strategy determination. In June of 2006, the Center for 

Strategic and International Studies’ Human Space Exploration Initiative and Defense 

Industrial Initiatives Group hosted a conference on Spiral Development, Real 

Options, and Other Development Methodologies. Its purpose was to explore these 

topics in an open workshop forum to gain programmatic and financial perspectives 

and search for tools to mitigate space-related technology development problems. 

These authors attended and made presentations about their previous acquisition 

research.  

One panelist was Dr. Robie Samanta Roy, Assistant Director for Space 

Aeronautics from the President’s Office of Science and Technology Policy (Roy, 

2006, June), who formerly had worked with the Congressional Budget Office 

reviewing the Aldridge Commission (also known as The President’s Commission on 

Moon, Mars, and Beyond) on how to implement the human space exploration vision 

laid out by President George W. Bush in January 2004. In his statements at the 

conference, he described spiral development as a “go-as-you-can-pay strategy,” 

alluding to fiscal constraints and the incremental commitment of funds at decision 

points facilitated by the approach. However, for the development of the new Crew 

Exploration Vehicle (CEV), he suggested NASA was taking a different stance, 

perhaps because of no mass-production of such systems and the “front-loaded 

technology maturation” efforts peculiar to space systems acquisition. He stressed 

the need for clearly defined requirements for development of only a “handful” of 

space exploration vehicles and for primary focus to be upon an architecture.  

Another panelist, Mr. Chris Scolese, NASA’s Chief Engineer said regarding 

spiral development, “NASA’s business is a little bit different—We don’t build lots of 
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anything,” (implying that long production runs encourage the application of a spiral 

approach). Tacitly rejecting the spiral approach, he stressed the risk aspect of NASA 

missions in terms of project costs and human life (e.g., earth orbit versus deep 

space) and framed the use of real options as “trading risk, not ROI (return on 

investment), for value.” Agreeing with Robie Samanta Roy, he said that the spiral 

process “will still be there” as NASA systems are “software intensive.” But he also 

said, “No two identical spacecraft are the same,” which seemed to contradict his 

idea that like configurations are a necessity among small production lot sizes.  

Indeed, naval shipbuilders say the same thing about variation among 

individual ships, or within flights, of the same class. And even one-of-a-kind nearly 

immutable projects like skyscrapers and bridges can be later re-modeled and 

refitted, as we mentioned above.19 It may instead be that NASA feels itself within a 

financially constrained budget environment and with a limited time window to 

execute its exploration missions. And, along with man-rating requirements, NASA 

may wish to limit its product scope and variety for these very pragmatic reasons. 

That might also account for NASA’s viewpoints differing from the observations by 

RAND (below), which also highlighted the front-loaded technology maturation efforts 

and small procurement numbers of space programs as different from other DoD 

systems, but still applicable for evolutionary acquisition (Lorell, Lowell, & Younossi, 

2006). And in RAND’s context, the “space programs” were all satellites—none 

carrying human life as payload.  

Thus, there seems to be an at least perceived aversion to spiral development 

of (user) life-threatening products such as manned space vehicles (and perhaps 

pharmaceutical drugs, aircraft, etc.), systems in which long product cycles and much 

bureaucratic control are often observed as measures to control risk (Dillard, 2005). 

Aside from truly singular efforts, we have not yet found any universal evidence of the 

                                            

19 Feature-length movies can have sequels and pharmaceuticals can have spin-offs, but they are for 
the most part long product-cycle projects that result from a singular unified approach. 
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spiral approach being more or less applicable according to quantity of systems 

produced. 

Logistical Support during Service/Shelf Life 
Our observations warn that multiple configurations of hardware products do 

come at a cost for ownership. Veterans of new system deployments across the 

force/fleet, or throughout any large using organization, know the difficulties of rolling 

out a configuration change. Benefits of standardization have long been offered via 

production economies of scale, commonality of parts across platforms, and 

interoperability. If the ultimate goal is to have standardization across the DoD’s 

force, owning multiple configurations of a system (variety) equates to added 

complexity in training and supply support of the item. Neither can the logistical 

maintenance strategy be ignored: whether the end-item is maintenance-intensive 

(such as tactical vehicles) or maintenance-free—such as with many electronics 

items and munitions, and situations in which physical changes are completely 

transparent to the user. For multiple product configurations, the answer could have a 

huge effect on the total costs of ownership, as previously mentioned by RAND in 

regard to UAVs.  

Range of Requirement Attainment 
Most requirements are “continuous,” i.e., may be satisfied in varying amounts 

of attainment. Thus, ranges of their satisfaction can be flexibly specified, allowing for 

thresholds (minimum values of attainment) and objectives (optimal values of 

attainment). Examples are range, accuracy, weight, reliability, etc. However, we 

have found that some requirements, often critical ones, are more binary in nature 

than continuous. They have a much narrower range of attainment, such that they are 

almost pass/fail or go/no-go in their demonstration. Examples are soft launch, 

network security, physical fit, leak-proof, shock/vibration/drop proof, survivability, 

horizontal-to-vertical flight transition, etc. If one of these more binary-type 

requirements happens to be a key performance parameter, its attainment will be on 
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the project’s critical path and highly dependent upon technical maturity. As such, it 

may practically dictate the length of the entire advanced development effort and 

make division into capability increments less beneficial as a development strategy. 

Such was the case of Javelin’s “soft launch” requirement, described in the case 

below, where attainment was dependent upon precise timing of ignition and dual-

motor burn, facilitated by electronic fusing and solid rocket motor-propulsion 

technologies. Though strongly correlated with product reliability, these kinds of 

requirements demand a system that “either works or it doesn’t”—without flexibility. 

Amount of Change—and the Lure of Modularity 
These authors subscribe to the current theorists’ view that system complexity 

is comprised of numbers (of components), connections (interdependencies) and 

distinctions (variety). Distinction corresponds to variety, to heterogeneity, and to the 

fact that different parts of complex systems behave differently (Heylighen, 1997). 

Variety is a component of Nobel Prize winner Herbert Simon’s explanation of 

complexity—many different parts with many interactions. Simon argues, from his 

observation of complexity in things both natural and artificial, that complex systems 

evolve from simple systems. And they do so more rapidly when there are stable, 

intermediate forms or sub-systems (like modules or “units of action”) (Simon, 1981).  

Moreover, he argues the resulting evolution into the complex system will be 

hierarchical. In "The Architecture of Complexity," Simon proposed hierarchy as a 

universal principle of complex structures. He felt that complex problems could be 

solved more easily when decomposed into sub-problems (much as how we employ 

Work Breakdown Structures (WBS) via the Systems Engineering Process (SEP)).  

And sub-problem solutions could be combined into a solution to larger problems, etc. 

His famous “parable of the watchmakers” illustrated his hierarchical architecture 

principles and the benefits of employing modular subassemblies versus elementary 
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components (Simon, 1962).20 Commonly seen today are modular industrial products 

that are sometimes designed as complete architectures, with standardized interfaces 

that invite others to introduce complementary products for insertion (Agre, 2003). 

The Modular Open Systems Approach (MOSA) is a relatively new DoD initiative that 

encourages the use of widely supported commercial interface standards and 

disciplined interface controls to develop systems architectures using modular design 

concepts (DoD Open Systems Joint Task Force, 2003, August). But despite 

attempts over the last two decades to “architect” the command, control and 

computers (C3) domain with initiatives (such as compulsory use of Ada as a high-

order software language and imposition of a Joint Technical Architecture (JTA)) as 

ways of achieving interoperability, a plethora of incompatible “stovepipe” solutions 

nevertheless continue to proliferate in an almost chaotic evolution (Greene, 2007, 

March 1). This may be in large part because of the continuing realities of different 

services or communities with differing concepts of operations (CONOPS) driving 

different system requirements with different funding streams and different timelines. 

As in biological evolution, improved “fitness” with a system’s environment is 

what is sought in the adapting or evolving of systems. But others have noted that 

Simon’s metaphors for dynamic complex systems, useful as they are for 

understanding complexity, fall short of explaining their evolution. While the concept 

of modularity suggests approximately independent subsystems may be modified or 

adapted as such, it has been shown that, in the aggregate, there is yet quantifiable 

                                            

20 In his imaginary story, watchmakers named Hora and Tempus were highly skilled watch builders. 
But Hora prospered more than Tempus because of differences in their watch designs. While each 
maker’s design was comprised of 1000 elementary components, Tempus's watches weren’t 
hierarchical, and were assembled one part at a time. But Hora's watches were organized into 
hierarchical subassemblies of ten parts each. He could combine ten of these subassemblies into 
larger subassemblies, and then ten of these, until a complete watch was formed. The difference in the 
two watchmakers’ designs was evidenced when customers interrupted them throughout the day. 
When this occurred, they would put down their work and their uncompleted watches would fall apart. 
These interruptions didn’t disturb Hora, who lost at most ten units of work for whatever subassembly 
he was working on. Tempus, however, would typically lose much more, as he had to start all over 
with individual parts versus modules. Simon illustrated that that Hora could complete many more 
watches than Tempus over time, given the usual interruptions that both would likely experience. 
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modular interdependency that affects evolvability (Watson & Pollack, 2005). In other 

words, how changes in the state of one module affect the state of another is relative 

and measurable. Simon’s watchmaker parable illustrates that modularity is beneficial 

for production, but not necessarily for evolution. Examples of modular 

interdependency are plentiful. In the aircraft or automotive realm, an engine upgrade 

would seem intuitively to be a relatively independent subsystem change. But 

systems engineers know that changes propagate through hardware almost as much 

as software in the long run—just as the eventual rise in building temperature from 

the thermostat adjustment in one modular room.21 Adding increased armor protection 

(and weight) for deployed High Mobility Multi-purpose Wheeled Vehicles has 

resulted in increased wear-out of drive train and suspension components and 

impacts to vehicle range, mobility, mileage, etc.—so that “up armor” kits have 

become only a stopgap measure until totally re-designed systems can be produced. 

Similarly, the 2006 engine upgrade of the CH-47F helicopter is more of a total 

system refresh: “95 percent is a new airplane,” according to Boeing Defense 

Systems, despite exterior appearances.  

Thus, we suggest it is not only the focus upon structural modularity as such, 

and standard interfaces, that enable systems evolution. Rather, it is the relative 

interdependency of the modules. In short, PMs need to be mindful of the degree of 

change in subsequent increments/spirals. One subsystem is likely to affect another 

in the short- or long-run. And that can make product evolution problematic. As 

Norman Augustine once said, “No change is a small change”; independent 

subsystems, even redundant ones, aren’t always independent (Augustine, 1997, 

June). 

                                            

21 Systems theorists have long used the thermostatic example of a cybernetic system feedback loop. 
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The RAND Study of Evolutionary Acquisition in DoD 
Space Programs 

In our literature review for this research effort, the authors examined the 2006 

RAND Corporation report under its Project Air Force series entitled, Evolutionary 

Acquisition—Implementation Challenges for Defense Space Programs, by Mark A. 

Lorell, Julia F. Lowell and Obaid Younossi. Their research principally addressed 

DoD space programs and focused primarily on program costs and the cost-

estimating implications of evolutionary acquisition strategy.  Their methodology 

consisted of literature review, interviews and five case studies. The program cases 

were: 

 Space-based Space Surveillance (SBSS) System 

 Rapid Attack Identification, Detection, and Reporting System 
(RAIDRS) 

 Global Positioning Satellite (GPS) III 

 Space-Based Radar (SBR) 

 Kinetic Energy Interceptor (KEI) 

RAND cautioned that these programs were all in their very earliest stages and 

that lessons derived from them must be considered tentative. We noted earlier that 

these were all non-man-rated systems. 

In their research, RAND’s objectives were similar to ours: seeking to ascertain 

programmatic implications, lessons already learned in recent space programs, and 

methods to adopt for effective implementation of evolutionary acquisition. They were 

careful to distinguish DoD space programs as different from other acquisition 

programs in at least four important respects: 
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1. They are characterized by very small procurement numbers of end-
items (space vehicles)—typically 1 - 25 satellites (with 6 being 
average), compared to much larger procurement numbers for products 
such as tactical aircraft or smart munitions. 

2. Space vehicle component testing cannot be done in a true operational 
environment (space) because of the high cost of space launches and 
the limited number of operational space vehicles in any system. 

3. A larger percentage of total program expenditures take place in the 
early phases of a space acquisition program in contrast to other 
acquisition programs. 

4. Space program technology development extends longer into the 
procurement process than is typical for other types of programs and 
has been formalized in the National Security Space Acquisition Policy 
03-01 (NSSAP 03-01) regulations. (Lorell, Lowell, & Younossi, 2006) 

Their acquisition management findings were: 

1. “The new DoD guidance regarding evolutionary acquisition (DoD 
5000 series and NSSAP 03-01) permits great flexibility, but does not 
eliminate conceptual and definitional ambiguity. As a result, 
evolutionary acquisition programs vary considerably in their practical 
implementation approaches” (Lorell, Lowell, & Younossi, 2006). 
Program Managers that RAND interviewed perceived having more 
flexibility to tailor their program structure and technical approach. But 
confusion and inconsistency still persist among programs they 
observed (terminology, feedback loops, etc.).  Also, most programs 
are still focusing upon the initial project increment, and often there 
was pressure for end-state capabilities in the first spiral—causing 
programs to become more like single-steps-to-full-capability. 
However, to these authors it comes as no surprise that the 
advanced capability most needed is likely to depend on the offerings 
of the least mature technology or binary-type requirements. And we 
shall later illustrate with a case from our own experience. 

2. “All of the case studies point to the conclusion that the capabilities 
and requirements definition and management processes are major 
challenges in all EA programs. Appropriate structuring of 
evolutionary acquisition phases with operationally useful threshold 
requirements and mapping the path to overall objective capability 
are demanding tasks on most evolutionary acquisition programs” 
(Lorell, Lowell, & Younossi, 2006)  
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3. “The use of the officially preferred spiral development process for 
implementing evolutionary acquisition on major hardware acquisition 
programs greatly increases the level of program uncertainties, 
raising serious challenges for program managers in the current 
acquisition environment”  (Lorell, Lowell, & Younossi, 2006). The 
open-endedness and uncertainties of evolutionary acquisition that 
offer valuable flexibility are proving to be politically impractical, 
especially for large, high-visibility programs. Smaller programs get 
less scrutiny and could be more flexible, but even they have 
demands for definitive budgets—within an inflexible PPBE system 
that is incongruent with spiral policy tenets. The uncertainties of 
future requirements and technologies greatly challenge the validity 
of life-cycle costs (LCC) estimates, and with increasing up-front and 
on-going cost analyst community workload.  “Evolutionary costing” 
appears to be speculative and could give rise to allegations of less-
than-full disclosure. RAND also observed that, “There is no question 
that increased program complexity is an inherent attribute of the 
evolutionary acquisition approach. This is because evolutionary 
acquisition envisions multiple increments, all of which are treated in 
a management sense as quasi-separate programs, with their own 
milestone reviews, oversight documentation, and so forth. This 
complexity is increased by the tendency to move (program) content 
around from one increment to another”  (Lorell, Lowell, & Younossi, 
2006) 

The RAND authors pondered the applicability of evolutionary acquisition to 

“large-scale hardware” programs, saying the data and analysis is still incomplete on 

non-space Major Defense Acquisition Programs. They reiterated the differences 

between DoD space and non-space programs, but extended some of their findings 

to other programs in general. They summarized the views of non-space program 

office officials interviewed as: 

A cost-effective program requires stable requirements, system configuration, 
and quantities, and adequate funding. In their view, evolutionary acquisition 
and spiral development approaches promote constant flux in all these 
program attributes, leading inevitably to cost estimating difficulties and cost 
growth. The definition of program content in the Global Hawk (UAV) program, 
using spiral development and user feedback “created continuous change and 
uncertainty in all aspects of program management and cost analysis. 
According to the Global Hawk prime contractor, the program has experienced 
unprecedented levels of ‘requirements churn’ (Lorell, Lowell, & Younossi, 
2006).  ”The key lesson learned from Global Hawk, according to one official, 
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is that the only way to implement spiral development effectively was to 
provide unlimited funding to cover the unending changes” (Lorell, Lowell, & 
Younossi, 2006; emphasis added) 

Thus, RAND highlighted the evolutionary acquisition challenges of 

requirements and technology churn, spiral or increment definition and content, 

program complexity and concurrency, logistics planning and density, funding 

coordination for increments, the regulatory environment, and oversight requirements. 

These are challenges in any program, but RAND feels (and these authors agree) 

that evolutionary acquisition presents the opportunity for them to be even more 

formidable. The RAND study validated several of our previously published concerns 

about evolutionary acquisition and is predictive of others (i.e., funding challenges 

and uncertainty, organizational stress, excessive regulation and scrutiny). However, 

as with most aspects of program management, there are trade-offs to be made and 

balances that must be struck. 
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Anecdotal Clues for Coping with Variety and 
Complexity 

With chaotic and uncontrolled change, we envision the risks of unpredictable 

and disruptive interactions between agents and environments. But all change is not 

disruptive or negative. We might need only to look at our experience to realize some 

hints about beneficial variety and successful control of change. One of the most 

visible examples of product (and capability) variety of late has been in the small 

arms arena, where a plethora of individual weapon configurations are seen in the 

many photographs of troops deployed in Iraq and Afghanistan. Soldiers are able to 

individualize their weapons with infrared aiming devices, flashlights, forward pistol 

grips, telescopic and illuminated optical sights, etc. (See Figure 8.) 
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Figure 8. Variety of Individual Combat Weapon Configurations 

Such was not the case until the advent of war following the September 11th, 

2001, attacks in New York City and Washington DC. Prior to that, configurations of 

the M16A2 rifle were standardized among Army units, such that the benefits of an 

optional telescopic sight and mount were considered too burdensome for logistical 

and combat command and control at troop level. However, from dozens of informal 

interviews of returning officers, the collective explanation of how deployed units are 

able to manage variety in the field is via individual ownership and accountability: The 

troops are now issued a rifle in basic training that accompanies them throughout 

their entire combat tours. They are strictly accountable, more than at any time in the 
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recent past, for their own configuration and operator maintenance of their weapons. 

(see Figure 9.) 

 

 

 

 

 

 

 

 

 

Figure 9. American Soldiers are Accountable for their Individual Weapons 
upon Entry (Army Times, 2007, February 12) 

In the same way, much higher levels of risk from system complexity are 

generally believed to be mitigated by control measures, as within organizational 

contingency theory (i.e., centralization/decentralization, etc.).22 The American nuclear 

Navy was rooted in Captain Hyman G. Rickover’s visit to Oak Ridge National 

Laboratory in 1946 to investigate the feasibility of using nuclear power aboard 

submarines. During his long tenure as head of the nuclear program, he maintained 

fundamental principles about technical and organizational program structures, not 

                                            

22 The theory holds that organizational structures must change in response to contingencies of size, 
technology, and as external environments become more complex and dynamic.  See Woodward, J. 
(1958). Management and technology. London: HMSO. 
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the least of which was personal accountability. During his testimony before 

Congress about a nuclear accident at the Army’s Stationary Low-power Plant 

Number 1 in Idaho, which killed three technicians, he said: 

I have many people carrying out tasks in the program and I hold them 
accountable to me for those tasks. But if anything important goes wrong in my 
program, is there any doubt in your minds who is responsible? I will tell you 
right now, in case there is any uncertainty about it, I am responsible. 
(Rockwell, 1992) 

Those who have worked with acquisition of nuclear plant materials know well 

both the specifications and standards of quality unique to this commodity as well as 

Rickover’s tenets of responsibility and accountability that still exist today. It is largely 

believed to be one important aspect of how he successfully dealt with the 

complexities and uncertainties of a new application of technology.  

Another recent example of successful control of rapid change lies in the 

Acoustic Rapid Cots Insertion/Advanced Processing Build (A-RCI/PB). In this vital 

program for sustainment of submarine acoustic sensing superiority, a series of 

hardware and software upgrades were planned and executed in rapid succession. 

Each emerged with advancement in capability, keeping pace with technology and 

competitive threats, facilitated by rigorous control of interfaces, standards and 

protocols (Boudreau, 2006). 
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Observations and Realizations from Historical 
Cases 

History reveals that spiral development for large complex hardware systems 

can be a successful approach. One of these authors was fortunate to have helped 

lead the development effort on two fielded missile systems that are now combat-

proven and still in production: the Army Tactical Missile System (ATACMS) that 

premiered in the first Gulf War and the Javelin anti-tank missile now being used in 

Iraq and Afghanistan. Both were born out of DARPA initiatives and became major 

acquisition category (ACAT) 1D (OSD-level review) programs.  And both have 

experienced variety and change, but with very different acquisition strategies. 

 ATACMS—Incremental and Spiral Development 
 

 

 

 

 

 

Figure 10. The Army Tactical Missile System Components 
Launcher, Missile, and Missile Launch Pod Container 

The Army Tactical Missile System program successfully used evolutionary 

acquisition with both incremental and spiral approaches. In the 1980s, the Army 

sought to achieve an organic deep-strike (greater than 100km range) capability by 

expanding the use of its Multiple Launch Rocket System (MLRS) platform (about 
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ALTERNATIVE BLOCK II
WARHEADS CONTAIN

“SMART” ANTI-ARMOR
SUBMUNITIONS

40km range) with a semi-ballistic missile. (See Figure 10.)  An anti-

personnel/materiel missile would be developed with each one containing roughly 

1000 one-pound bomblets. The weapon would, in the next increment, be further 

enhanced by evolving to a warhead that could dispense “smart,” or guided, 

submunitions. This was viewed as a simply articulated, pre-planned product 

improvement (P3I) acquisition strategy that incrementally attained fully envisioned 

requirements, separated into blocks of capability. (See Figure 11.) 

 

 

 

 

 

 

 

 

Figure 11. Army TACMS Program Strategy Visual Depiction 

The program office commenced a 48-month advanced development effort in 

1986, skipping a technology development phase, and using a pair of Firm-Fixed 

Price (FFP) contracts: one for invention of the missile and one for its integration into 

the MLRS platform (with the same contractor—LTV Corporation—prime vendor of 

the platform). Critical technologies in the initial capability Block I (M39) were: solid 

rocket motor propulsion, fusing of bomblet dispense and detonation, missile and 

launcher navigation, software for missile guidance and launcher fire control.  All 

were assessed to be mature (although today’s Technology Readiness Level rubric 
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did not yet exist).  A Honeywell navigational laser ring gyroscope that was employed 

in Boeing 727 aircraft was used for the missile guidance set. M-74 bomblets and 

fuses from decommissioned LANCE conventional missiles were downloaded and 

used as government-furnished material (GFM) for the warhead. Mechanical safe-

arm fuses were dually used for warhead dispense and warhead severance 

packages (later evolving to electronic safe-arm fuses). Missile hardware component 

size and weight were only constrained by the limits of the MLRS platform’s 

architecture, and a requirement for handling and external appearance similarity with 

the shorter-ranged rockets it was replacing. Launcher modifications included 

additions and modifications to several line-replaceable unit (LRU) components—

again, most fitting easily and as relatively independent modular components within 

the platform architecture. They augmented electronic power and its distribution to 

the launcher system and improved launcher position determination. 

Mature Technology Shortens Product Cycle-time 
ATACMS entered low-rate initial production a full year prior to operational 

testing and evaluation, based upon accomplishments during development testing. 

The Block I program finished on budget and culminated in a highly successful 

operational test, still using development units as test articles, and extending only 

three months beyond the 48-month contract period.  Four months later, the full-rate 

production pricing options were preserved when ATACMS was approved for full-rate 

production by OSD-level review, only one week prior to their expiration. ATACMS 

entered the Persian Gulf War with its operational test unit firing about 32 production 

missiles in combat (Redstone Arsenal, 2007).  

Truly, this was a low-risk program that was structured commensurately.  One 

of its key lessons was that even though it was an entirely new product, the extensive 

use of mature technology eliminated at least one development phase, greatly 

shortening cycle-time to deployment and enabling the use of a contract type 
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normally reserved for the certainties of production. It was never envisioned to grow 

into an evolutionary family of many different missiles23 from planned and unplanned 

developmental increments (more than 450 of which have been fired during 

Operation Iraqi Freedom). There were other lessons to be learned from this program 

as well. In terms of ex poste facto “product discovery,” the Joint Force Air 

Component Commander for the Korean theater in 1995 surfaced an issue of service 

“ownership” of the recently deployed ATACMS capability. Despite its years in 

development (and with initial US Air Force participation in its requirements 

generation and program formulation), ATACMS’s ability to engage target sets that 

were previously only within range of USAF aircraft was not yet fully realized by all 

components. This led to a revisiting of service roles and missions within the theater. 

From a product-development perspective, an elegant and open architecture enabled 

a series of planned and unplanned system variants to emerge. 

Planned and Unplanned Variants 
A low-level, internal technology development program had been conducted by 

the same program office in parallel with the ATACMS development project. It used a 

subordinate product manager and matrix personnel from within the PMO and 

supporting R&D community. It was an real option to fulfill the vision of a Block II anti-

armor capability. However, what actually became the smart submunition for 

ATACMS, thirteen of them in each missile, was the Brilliant Antiarmor Submunition, 

or BAT. The ATACMS Block II (M39E3) BAT (originally for Brilliant Anti-Tank) smart 

submunition program was quite a different program and employed a different 

contractor (Northrop Grumman). After a lengthy technology development effort 

(1984-1991) under a separate program office, BAT entered advanced development 

as ATACMS went into full-rate production, and later merged with the ATACMS 

program office (in 1994). The BAT was to employ both acoustic and infrared (IR) 

                                            

23 There was, however, a vision of an MFOM (MLRS Family of Munitions)—both rockets and 
missiles—to be fired from the versatile carrier, but not so many variants of the one ATACMS missile. 
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guidance and, upon release from the ATACMS carrier, to glide aerodynamically and 

autonomously attack mobile armored targets (GAO, 1997, October). Among the 

critical technologies for its capability were acoustic sensor, infrared seeker, tandem 

shaped-charge warhead, and digital processing. It was to enter low-rate production 

in 1995 after 40 months of development effort. It finally did so in 1998 after 

significant cost and schedule overruns (GAO, 1999, July 30, p. 5). Highlighted in the 

GAO’s report on DoD’s pursuit of immature technologies during advanced 

development, these were cited as “main contributor(s) to the program’s 88-percent 

cost growth and 62-percent slip in schedule.” The BAT program, while an example of 

incremental pre-planned capability growth and parallel development, serves perhaps 

as a better example of over-ambitious scheduling and flawed cost estimation. 

Nevertheless, the capability of deep-attack anti-armor was eventually added to the 

Army’s portfolio of needed capabilities, and the submunition itself was also 

incrementally improved via P3I.24 

Spiral development came into play for the ATACMS with the proliferation of 

Global Positioning Satellite (GPS) technology, and when post-Persian Gulf War 

analysis revealed a need for an even longer-range strike capability. These 

feedbacks from the technological environment and user community drove an 

innovative development approach to attain a substantial extension in ATACMS 

range and with precision accuracy. GPS augmentation of the standard missile 

guidance set reduced circular error probable (increased accuracy), and allowed for a 

reduction in bomblet payload (by over 600 bomblets) such that the range could be 

extended to well over 250km. These “unplanned” system improvements took place 

while the Block I system was in full-rate production, and Block II was still under 

development. Block IA (M39A1) entered low-rate production in 1996 and 1997, with 

full-rate production in 1998. Though not touted as such until now, this initially 

                                            

24 A BAT P3I (M39E4) program, funded through 2002, provided a new sensor suite with millimeter 
wave and imaging infra-red to the basic BATs acoustic and infra-red sensors. It improved inclement-
weather capability and effectiveness against countermeasures, along with expansion of the 
submunition’s target set. 
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undefined and incremental change in system configuration and operational capability 

epitomizes the philosophy of hardware spiral development in acquisition. 

Again in December 2000, and as a result of Kosovo lessons learned by the 

Army in 1999, a Quick Reaction Program was initiated to rapidly attain another 

tactical capability—that of a large unitary munition. Designated the Army TACMS 

Block IA Unitary missile, a development contract was awarded to Lockheed Martin 

(formerly LTV until 1992) to employ another GFM munition—this time a proven 

unitary warhead from the Stand-off Land Attack Missile (HARPOON WAU-23/B)—to 

be integrated into the Army TACMS Block IA missile. The first missile was delivered 

within four months after contract award, with 41 more produced through the end of 

2001. Program supporters said the rapid achievement, "clearly demonstrate(d) the 

versatility and agility of the Army TACMS design” (Lockheed Martin, 2001, April 23). 

Changes in technology and user needs gave birth to yet another ATACMS 

variant in the 2001-2005 timeframe: the ATACMS-P, or Penetrator. This is a standoff 

ballistic missile, delivering an earth-penetrating warhead for use against fixed hard 

and deeply buried strategic and tactical targets (US Army RDT&E, 2004, February). 

This system is employed from both the M270A1 MLRS platform and the newer, 

wheeled vehicular High Mobility Artillery Rocket System (HIMARS). The ATACMS-P 

began as a Joint service Advanced Concept Technology Demonstration integrating 

the Army TACMS booster with a Navy Strategic Systems Program (SSP) re-entry 

vehicle built by Sandia National Laboratories. Funded under the BAT P3I RDT&E 

line, it was conceived for attacking high-value targets that were perceived threats to 

US and coalition forces in the post-9/11 campaigns. Successful test flights in March 

of 2004 and August of 2005 demonstrated test objectives of booster separation and 

ballistic flight path of the penetrator to its target. 
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An Architecture for Variety, and the Need for Control 
In all, these ATACMS program variants comprise a validated chronicle of 

operationalized evolutionary acquisition over more than two decades. While not 

applicable to all programs, perhaps because of each systems’ unique product 

attributes, these multiple product releases show at least the ability to respond to 

changing technology and user needs given time, funds, and a simple architecture 

that can accommodate change. Similarly, other large ground vehicles, naval vessels 

and airframes in particular, because perhaps of their larger frames, seem to 

accommodate modular upgrades easily. As alluded to earlier, some munitions also 

lend themselves somewhat to variety without some of the usual attendant support 

costs because of their “wooden” nature—a term used to describe maintenance-free 

end-items. “Deep Attack” modified MLRS launchers did indeed have relatively 

independent modules and open critical interfaces, for electrical power supplies, 

navigation, fire control subsystems, etc. For optimal emphasis and control, the 

vehicle integration effort was considered to be significant—thus, the separate 

contract for it. 

Interestingly, variety proved itself a menace to the ATACMS program after 

production was initiated. A change in the ATACMS Block I production design 

resulted in a rocket motor nozzle burn-through, discovered during production-

verification testing. Failure analysis concluded that a material specification was 

insufficient for the application, but wasn’t evidenced until a change of component 

suppliers. Moreover, the failure revealed both government and contractor had 

insufficient configuration control when uncertainty arose over which missiles had the 

deficient component. This small change—to save only $15.00 per missile—

necessitated a very expensive retrofit of dozens of missiles (Army TACMS Project 

Office, 1993, May 14) (Figure 12).   
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Figure 12.  ATACMS Nozzle Exit Cone Assembly Burn-through 

While the only officially recorded test failure from this cause was at the White 

Sands, New Mexico Missile Range, anecdotal evidence from a returned Persian Gulf 

War explosive ordnance disposal specialist indicated at least one of the munitions 

fired there experienced the same failure mode, and is thus believed to have been 

from the deficient lot (Matthews, 2006, December). 

 

 

 

 



 

=
=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = 59 
k^s^i=mlpqdo^ar^qb=p`elli=

The Javelin Project—Single Step to Full Capability 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. The Javelin Anti-tank Weapon System (Missile and Command 
Launch Unit) 

The Advanced Anti-Armor Weapon System—Medium (AAWS-M), later to 

become the Javelin, began in 1982 as the DARPA program “Tank Breaker” 

(stinet.dtic.mil) (See Figure 13.) This was a one-year technology demonstration to 

explore various missile guidance solutions for a medium range (i.e., 1-2000 meters), 

man-portable, anti-tank weapon. It was spawned as a result of deficiencies that were 

immediately apparent in the newly fielded DRAGON weapon system, which had 

replaced the M67 90mm recoilless rifle in the late 1970s. The DRAGON was a wire-
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guided line-of-sight missile that was developed in response to the 1960s appearance 

of the Soviet AT-3 SAGGER, a manpack missile carried in a fiberglass "suitcase." In 

1978, a Mission Need Statement highlighted deficiencies of the Dragon, such as its 

poor reliability, limited range/lethality, and the difficulty for gunners to aim and track 

targets. The envisioned replacement was to satisfy a substantial increase in 

requirements, namely: range, lethality, reduced weight, and the ability to launch from 

enclosures (such as buildings or field-fortified bunkers). Several years were spent 

finalizing these requirements until the joint Army and Marine Corps operational 

requirements document was formally approved in 1986-88. A competitive fly-off 

program, which would now be called the “Technology Development phase,” was 

conducted in 1987-1989 to select from three teams of contractors and critical 

technologies: a laser-beam rider led by Ford Aerospace, a fiber-optic guidance effort 

led by Hughes, and a forward-looking infra-red (FLIR) thermal imaging sensor effort 

from Texas Instruments and Martin-Marietta. Cost-plus-fixed-fee (CPFF) contracts 

were used with each of the three teams. All three teams were successful in flying 

missiles to their targets, but the only technology that enabled a true fire-and-forget 

capability (which was not a specified requirement) was the Forward-Looking Infra-

Red (FLIR) approach, enabled by a comparatively new technology: focal plane 

arrays (FPA). Though this approach was recognized to be the most technically 

immature and risky, the desire for fire-and-forget survivability resulted in the FLIR 

team being awarded a contract for a three-year advanced development phase.   

In June of 1989, a full-scale development (now called System Development 

and Demonstration) contract was awarded for the AAWS-M project. At the macro 

level, the office of the Secretary of Defense viewed the program as acceptable with 

regard to risk because of its 27-month technology development phase, use of real 

options for a technical solution, and subsequent 36-month plan for full-scale 

development. At the program office level, it was known to be one of high risk in 

several technical areas. 
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Immature Technology Lengthens Product Cycle-time 
Technology risks were adjudged to be in the following areas: focal plane array 

producibility (from the standpoint of specified temperature sensitivity), tandem 

warhead performance (pushing the physical limits of armor penetration versus 

package size), software tracker algorithm (to maintain a target lock with optical 

correlation of target characteristics supplied by the FLIR), two-stage rocket motor 

(which would enable “soft launch” from enclosures), electronic fusing (timing in 

micro-seconds for the dual warheads and dual motors) and system weight (also 

pushing the physical limits of cubic dimension) (Lyons, Long, & Chait, 2006, July). 

All of these technical risk areas would be considered as immature by today’s TRL 

standards (see Figure 14). 

During the technology development phase, all three contractor teams had 

scored over 62% hits with at least ten missile shots each in a variety of 

environments and operational settings. The full-scale development contract request 

for proposal was written for a cost-plus-incentive-fee type of contract, giving 

incentives for key performance parameters such as weight and warhead 

performance considered to be technically risky. The total value of the contract was 

$169.7 million, the amount bid by the winning team of Texas Instruments and Martin-

Marietta, who formed a Joint Venture. Meanwhile, the Government privately 

conducted its own should-cost estimate and budgeted $263 million for the thirty-six 

month long advanced development effort. In addition, the Government ran its own 

alternate warhead technology development program with Conventional Munitions 

Systems (CMS) acting as the contractor.  

The two-partner Joint Venture in full-scale development was also free to 

maximize competition at the subcontractor level. In their make-versus-buy decision, 

Texas Instruments elected to make the focal plane array for both of its uses in the 

command launch unit and in the missile. The company had made these devices for 

other programs, but not in these two distinct configurations. Focal plane array 

technology was still immature and would be gauged today at approximately 
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technology readiness level 5 (on a 1-9 scale) despite its successful technology-

development phase results. It was always recognized as technologically risky, so the 

Government funded its own night-vision laboratory to partially fund other companies 

that could produce these devices. In 1991, the only five known FPA makers in the 

world were: Rockwell International, Loral, Santa Barbara Research Corporation, 

Sofradir (a French firm), and Texas Instruments.  

As an additional gauge of technological maturity, a comparative baseline test 

was mandated at the second milestone upon the decision to launch the Javelin 

program into full-scale development. That test would pit the immature focal plane 

array technology against existing TOW and Dragon (legacy systems) night-viewing 

optics. Results of this test showed the Javelin's immature focal plane arrays to be 

substantially better in performance than the Dragon and almost as effective as the 

larger TOW anti-tank missile system.  

However, approximately eighteen months after the full-scale development-

phase contract award, the Javelin project manager forecasted a Nunn-McCurdy 

breach of cost and scheduling thresholds in this ACAT 1-D program, and called for a 

non-milestone Defense Acquisition Board review. Several reasons were cited; chief 

among them was that the focal plane array production yield was not as predicted, 

and all of the devices were below specification.  Weight was also a significant 

contributor (even after a Joint Requirements Oversight Council (JROC) approved 

requirement threshold change (from 45 to 49.5 pounds)), causing redesign of many 

components for reduction. 

Over the next year, the program sought a new baseline with many different 

revised program estimates—climbing from 36 months duration and $298 million in 

cost, to 48 months duration and $372 million in cost, and finally 54 months and $420 

million for the total cost and duration of this phase. Within that year, the program 

was restructured, given the new baseline, and finished largely within its new 

parameters. The additional eighteen months added to the 36-month phase helped 

resolve the uncertainties and complexities of system development without additional 
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schedule slippage. Later, production quantities were slashed in half as the Defense 

Department drew down its forces from 1991-2000, and the acquisition strategy to 

split apart the Joint Venture and compete them in production was not fulfilled. 

Benefits of a split production no longer able to be realized, the Joint Venture 

remained intact as the producing entity.  

Unplanned Variety and the Need for Control 
The GAO was harshly critical of the Army’s plan to enter a multi-year contract 

(seeking to stabilize contractor workload and achieve economies of scale). After 

several years of Low-rate Initial Production (1994-96), the GAO stated that, “The 

Army has not demonstrated that Javelin’s design is sufficiently stable for a multiyear 

contract” (GAO, 1996, September; emphasis added). But the Army proceeded to 

enter multi-year contracts in 1997 and 2000, despite at least 30% of all system 

components experiencing redesign during low-rate production.  

 Moving to performance specifications under the last acquisition reform era 

(1994-99), the program began to relinquish configuration control to the contractor 

and saw continuing redesigns for virtually all system-configuration items. Like the 

GAO, the program management office also sought design stability and had 

significant concerns over a continually changing production baseline. The program 

management office realized during this period that the Government must be 

accountable for prescribing the entire system's performance margins and remain 

vigilant to insure the contractor doesn't "trade off" hard-won design margins to lower 

unit costs (Knox, 1999, September).  This was found to be especially true in 

technical areas that can seriously impact operations and support cost/performance. 

Similarly, it is not always possible to realistically test the contractor’s compliance with 

performance requirements and whether the system is still operationally effective and 

suitable. Communication and trust, with verification, are necessary facets of the 

government-industry partnership (Zolin & Dillard, 2005, May). And some entity still 

must own, maintain, and be accountable for a technical data package for the entire 

system.  
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 Acquisition reforms were not intended to remove discipline, but to eliminate 

non-value added bureaucracy. As with the ATACMS rocket motor case failure, there 

must be strict configuration control. And as practitioners are expected to know, 

configuration management is not for the prevention of change, but rather for 

controlled, approved, and documented change.  Used appropriately, it provides a 

disciplined approach for managing change to a system’s design so that any change 

is analyzed—from a system and life-cycle perspective—for its potential impacts.  

The Javelin program had always planned to employ interim contractor 

logistics support enroute to some eventual level of organic system support 

(principally of its target acquisition device, not of the munition). Since the Javelin’s 

design was in such a state of flux, and an organic stockage of spares therefore 

impractical, the best approach may have been to purchase spares from a contractor-

generated representative spares list and allow for just-in-time delivery. Though the 

government in fact bought more support than needed, this idea is commensurate 

with the contractor’s control of the configuration and its susceptibility to change 

without government approval (or even knowledge).  Today, Javelin is viewed as 

being a totally successful weapon system despite its earlier programmatic 

shortcomings. It is being used in combat operations and has been through several 

full-rate production contract periods.  Over 1000 Javelin missiles have been fired in 

the Iraq War and Afghanistan since March of 2003, with close to 98% reliability. The 

system design has continued to be upgraded—not as blocks of capability—but with 

software, warhead and producibility enhancements; the design of the Javelin has 

become very “evolutionary” indeed—but not in the manner of evolutionary 

acquisition’s “planned increments of capability.”25 

                                            

25 Acknowledging however, production variants FGM-148A, B, and C; see DoD 4120.15-L, "Model 
Designation of Military Aerospace Vehicles," 05/12/2004. 
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Synthesis of the Cases 
Our concise cases here only demonstrate that leap-ahead capabilities can 

result from different acquisition approaches. But it would be difficult to assert that a 

spiral development approach could have been taken with Javelin that would have 

resulted in the same capability leaps, or even earlier delivery of some lesser 

capability, since many of Javelin’s key performance parameters depended upon 

immature technologies (or binary ones, such as soft-launch), and man-rating. The 

comparison below provides a summary of key program characteristics in the two 

munition programs (Figure 14). 

Figure 14. Comparison of Programs Using Different Development Approaches 
and Technology Readiness Levels 

Both programs achieved capability leaps and have performed splendidly in 

combat operations. Being only two cases, they cannot alone prove our assertions. 

But they do illustrate that two munition programs of the same acquisition category 

and timeframe, with very different technology readiness levels and project scope, 

had two very different project outcomes with regard to cost and schedule. Further, 
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as different as these programs were in product size and mission capability, they help 

to convey what program managers must realize about spiral development:  

a. That it is an approach primarily for reduction of product cycle-time;  

b. It is enabled by the advanced development of only mature 
technologies; 

c. That a system’s physical properties (mutability), along with other 
factors such as time criticality and user risk, binary vs. continuous 
requirements, required maintenance, and modular interdependence, 
etc., will influence spiral development applicability; 

d. That key capabilities may in fact depend upon the least mature 
technologies; 

e. That an “open,” or at least elegant, system architecture enables a 
basis for independent modular variety; 

f. And that thorough design specification and configuration-management 
accountability is essential for managing the complexity of multiple 
product releases. 

There are many other currently deployed systems that have undergone a long 

series of upgrades. At Appendix A and B respectively are thirty variants (spanning 

30 years) of the UH-60 Blackhawk helicopter and ten variants (spanning 50 years) of 

the C-130 Hercules aircraft programs, shown as a chronology of their product 

variation and key capabilities added.  Of course, these “spirals” have been realized 

as product upgrades, but they have indeed been the result of user feedback and 

mature technology insertion. It becomes apparent that all spirals will eventually 

become defined increments— “mini-programs.” They are often then popularly 

termed as “spirals,” despite their definition. But in years past, they have often been 

implemented as sequential, separate, and successive product upgrades (also as 

program examples are the CH-47 helicopter26 and B-52 bomber). But current policy 

                                            

26 Chinook helicopters have been product-improved as the CH-47F model.  Six were deployed last 
year with more powerful engines and avionics improvements. The airframe design is more than 20 
years old, and the new models have another 20 years of projected service life. 
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expresses spirals as more concurrent, frequent and continuous. And that may bring 

about some of the organizational risks we have already, and will further, discuss. 

Modeling Evolutionary Acquisition 

In this section, we present our work with the simulation of various project 

scenarios under evolutionary acquisition (incremental and spiral) and a single-step 

development approach. This modeling further tests the concepts described and 

discussed above and provides different insights into the impacts of spiral 

development on acquisition project performance.  

The Modeling Approach 
A computational experimentation approach to investigating acquisition 

projects is applied. This approach integrates theory and practice in a computational 

tool that allows controlled experimentation through simulation. The current work 

reflects project theory (e.g., the theory of constraints and work flows), product 

development theory (e.g., rework impacts and work dependencies), and 

management theory (e.g., resource allocation and information theory). Practice is 

reflected in the model through the use of case studies as described in the literature 

cited to build and validate the model structures and the calibration and testing using 

the acquisition projects described above. A computational experimentation approach 

provides many advantages over purely laboratory or field-based methods and 

benefits from several of the strengths of both laboratory and field research. Nissen 

and Buettner (2004) describe and discuss the computational experimentation 

approach, and Dillard and Nissen (2007) describe its application to investigating 

acquisition projects.  

The system dynamics methodology was applied for model development and 

use. System dynamics uses a computational experimentation approach to 

understanding and improving dynamically complex systems. The system dynamics 

perspective focuses on the roles of accumulations and flows, feedback, and 
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nonlinear relationships in managerial control. The methodology’s ability to model 

many diverse system components (e.g., work, people, money), processes (e.g., 

design, technology development, quality assurance), and managerial decision-

making and actions (e.g., forecasting, resource allocation) makes it useful for 

investigating acquisition projects. Forrester (1961) develops the methodology's 

philosophy and Sterman (2000) specifies the modeling process with examples and 

describes numerous applications. System dynamics has been applied to projects for 

several decades and has built a collection of validated development project 

structures (Lyneis & Ford, 2007). When applied to projects, system dynamics 

focuses on how performance evolves in response to interactions among 

development strategy (e.g., spiral development vs. traditional), managerial decision-

making (e.g., scope developed in specific blocks) and development processes (e.g., 

concurrence). System dynamics is considered appropriate for modeling acquisition 

projects because of its ability to explicitly model these and other critical aspects of 

development projects (Ford & Sterman, 1998; Cooper, 1993a;b;c; Cooper & Mullen, 

1993; Cooper, 1994). System dynamics has been successfully applied to a variety of 

project management issues, including failures in project fast-track implementation 

(Ford & Sterman, 2003b), poor schedule performance (Abdel-Hamid, 1988), and the 

impacts of changes (Rodrigues & Williams, 1997; Cooper, 1980) and concealing 

rework requirements (Ford & Sterman, 2003a) on project performance. See Lyneis 

and Ford (2007) for a review of the application of system dynamics to projects.  

The model is based on previously developed system dynamics models of 

product development in several industries and the military that have been developed 

and tested over several decades, as described and referenced below. Therefore, the 

model is founded on well-established and tested components. These previous 

models have developed structures for many components and aspects of acquisition. 

However, previous models have not been used to investigate acquisition 

approaches such as spiral or incremental development as used by the DoD. The 

current model uses previous model parts to build a project model that can reflect the 

important features and characteristics of different acquisition approaches. The model 
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is purposefully simple relative to actual practice to expose the relationships between 

acquisition approaches and acquisition project performance. For example, total 

resource quantities and productivities are assumed fixed. Simulated performances 

using different acquisition approaches are, therefore, considered relative and useful 

for gaining insight and developing acquisition strategies, but not sufficient for the 

management of specific acquisition programs or projects. This research approach 

allows the investigation to focus on how acquisition approaches impact project 

performance.  

A Conceptual Model of Incremental Development 
The model structure reflects the structure of acquisition projects. The 

conceptual (high-level) model structure will be described, followed by a more 

detailed description of how critical acquisition project features are modeled in the 

formal (computer-simulation) form of the model.  

In the model, four types of work flow through each block of an acquisition 

project: requirements, technologies, product component designs, and products. 

Within a development block, each type of work flows through a development phase 

that completes a critical aspect of the project: 1) develop requirements, 2) develop 

technologies, 3) design product components (advanced development), and 4) 

manufacture products. The exception is requirements, which also measures 

progress through the final phase, 5) user product testing. Development phases and 

information flows in a single block as depicted in the model are shown in Figure 15. 

Arrows between phases indicate primary information flows. The start of all phases 

except the development of requirements is constrained by the completion of 

previous (“upstream”) phases. The completion of some requirements allows the start 

of technology development, reflecting the concurrent nature of this portion of 

acquisition. Both requirements development and technology development must be 

completed for Advanced Development to begin. In turn, the completion of Advanced 

Development allows manufacturing to start. When some product has been 

manufactured, they are shipped to users for readiness (operational) testing. Figure 
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15 also identifies the five major reviews within a single acquisition block (A, B, 

Design Readiness Review, C, and Full Rate Production) at their approximate times 

during a project. As described previously, these reviews add work beyond that 

needed to complete the basic products of each phase (requirements, technologies, 

designs, products, and readiness for use confirmation).  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Develop Requirements

Develop Technologies

Advanced Development

Manufacturing

User Product Testing

Milestones A B DRR C FRP

Time Periods 

 

Figure 15. Information Flows in a Single-block Acquisition Project 

All development processes are constrained by the physical and information 

relationships among the activities and phases within a development block. These 

constraints include development activity durations and precedence relationships, 

information dependencies leading to iteration (Smith & Eppinger, 1997b), the 

availability of work (Ford & Sterman, 1998), coordination mechanisms (Hauptman & 

Hirji, 1996), the characteristics of information transferred among development 

phases (Krishnan, 1996), and the number, skill and experience of project staff 

(Abdel-Hamid, 1988). These processes and policies can interact to constrain 

progress. Even when resources are ample, progress can be constrained by the 

interdependencies among phases and work packages.  

As an example, a development activity that is significantly simpler than most 

acquisition projects will first be used to illustrate process constraints. Consider the 

erection of the structural steel skeleton for a single story of a ten-story building. Each 
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member (the columns, beams and bracing) must be installed, inspected, and 

corrected if the installation is found to be defective. These activities can only occur in 

a specific order: install, inspect, approve or discover a problem, rework, and re-

inspect. When no further problems are found the work is approved and released so 

other work dependent on that task can proceed (e.g., installation of floors, walls, 

etc.). In addition to the process constraint imposed by the sequence of activities, if 

an error is found, the affected supervisors and skilled trades must work together to 

communicate the problem and devise a plan to remedy it (coordination) before the 

error can be corrected (rework). Similar processes are used to develop products that 

are much more complex and unique. For example, the design of focal plane arrays 

for the Javelin project required an initial design of each component, the testing of the 

designs (perhaps by review by another designer), the approval of designs for 

release (e.g., to develop a prototype) or identification of a required change, and 

retesting. The basic development processes are similar in both the steel beam and 

focal plane examples. Important characteristics (described next and later) are used 

to describe important differences.    

Development activity durations also constrain progress. For any given 

technology, a certain minimum amount of time is required for each activity—even 

when resources are ample. These constraints are captured in the model with 

specific development activities and backlogs of work in individual phases of an 

acquisition block (more detail later).  

In addition, performing many types of development work depend on the 

development of other “upstream” work. This availability of work based on the 

completion of previous work is an important form of progress constraint. Critical path 

theory models these constraints with precedence relationships that constrain the 

beginning and end of activities. However, in practice, upstream development can 

constrain downstream activities throughout their overlapping time, not just in activity 

beginnings and endings. Returning to the steel erection example, the steel members 

for the upper floors cannot be installed until the beams and girders for lower floors 
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are in place because the lower floors must support those above. Slow development 

(installation) of lower floors will constrain the development of upper floors. In the 

Javelin project, the targeting component design was dependent on the development 

of focal plane array technology. This type of dependency is captured in our model by 

precedence or concurrence relationships.  

Precedence relationships can constrain progress within (internal) a single 

development phase or between (external) phases. The feedback structure for 

precedence relationships within a phase is shown in Figure 16 with a causal loop 

diagram. In causal loop diagrams, the variable at the tail end of a causal arrow 

influences the variable at the arrowhead end of the arrow. The polarity at the 

arrowhead indicates the direction of influence. Positive causal relationships cause 

the driven variable to move in the same direction as the change in the driving 

variable. For example, an increase in the Basework (or Initial Completion) rate 

increases the number of Tasks Completed (ceteris paribus, i.e., all other things held 

constant or equal), and a decrease in the Basework rate decreases the number of 

Tasks Completed compared to the number of Tasks Completed if the Basework had 

not decreased. In contrast, negative causal relationships cause the driven variable to 

move in the opposite direction as the change in the driving variable. For example, an 

increase in the Minimum Basework Duration (e.g., minimum time to design a 

component) would cause a decrease in the Basework rate and vice versa. See 

Sterman (2000) for more description and examples of causal loop diagramming for 

modeling causal systems driven by feedback. Causal loop diagrams also identify 

and label feedback loops. Reinforcing loops (labeled “R”) generate behavior that 

moves values farther and farther from their initial values in one direction faster and 

faster. In contrast, balancing loops (labeled “B”) generate goal-seeking behavior.  
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Figure 16.  Development Progress Constrained by an Internal (within a Phase) 
Precedence Relationship  

The feedback structure shown in the Figure 16 models the increase in the 

number of tasks which are available to the Basework activity due to the completion 

of work. In this loop, an increased Basework rate raises the number of Tasks 

Completed, which raises the total number of tasks which can be completed. The 

total number of tasks which can be completed includes both tasks which have been 

completed and tasks which are available and waiting to be completed. This quantity 

of tasks is also dependent on the nature of the development process as described 

by the process's Internal Precedence Relationship. Increasing the number of Tasks 

Completed & Waiting to be Completed raises the Tasks Available for Basework and, 

thereby, further raises the Basework rate. 

In addition, the Basework of most phases cannot be done without information, 

materials, and components provided by other upstream phases. For example, the 

development of technologies depends on requirements information. We capture 
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these constraints through concurrence relationships. Concurrence relationships 

answer the question, “How much work can we now complete given the work 

released by the phases upon which we depend?” Reconsider the erection of the 

steel skeleton of an office building as an example. Erection depends on the release 

of construction drawings by the design phase and the progress of foundation work 

(among others). They would be captured in the model by external (inter-phase) 

concurrence relationships: one describing how much of the steel can be erected 

based on the release of construction drawings and another describing how much 

steel erection can proceed based on the state of the foundations. Either of these 

relationships might constrain steel erection: steel for the ground floor cannot be 

placed until both the foundation is complete and construction drawings for the 

ground floor are released. Each external concurrence relationship describes the 

fraction of a phase’s total scope that can be completed based on the fraction of work 

released by a supplying phase. They are potentially nonlinear, allowing our model to 

capture changes in the degree of dependence among phases as a project evolves. 

For example, chip designers in an application-specific integrated circuit (ASIC) 

project may be able to develop certain standard elements of the design (memory 

registers, data bus) with early information about customer requirements, but may be 

unable to continue until full specifications for the required functionality are released. 

Figure 17 shows how these constraints on the work that is available for development 

from within a phase and from upstream phases can limit progress.  
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Figure 17.  Development Progress Constrained by an External (between phases) 

Precedence Relationship  
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Modeling Incremental Development with Multiple Development Blocks 
Figure 18 depicts an acquisition project with multiple increments or blocks. 

The first block is the same as Figure 15 above. Subsequent blocks have the same 

basic information flow, but can also be delayed by the completion of phases in 

previous blocks or constrained by the progress in their own blocks. Importantly, in 

addition to the flow of information downstream through phases (black arrows in 

Figure 18), multiple iteration acquisition also provides opportunities for information to 

flow upstream, such as from User Product Testing in an earlier iteration to Develop 

Requirements or Advanced Development in a subsequent iteration (red vertical 

arrows in Figure 18).  
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Figure 18. Information Flows in an Incremental Acquisition Project 

In the model, the structure of each block is the same, although parameter 

values are varied to reflect different acquisition projects and strategies. For example, 

all phases include start-up work that is not directly applied to generating 

development products (requirements, technologies, component designs, or 

products). Each phase also includes the requisite review work that also does not 

directly generate product. This is consistent with GAO recommendations to manage 

each development block like an individual project. One impact of this loading of each 

phase with start-up and review work that we suspect has only been recognized 

informally is a significant increase in the total amount of work required to provide a 

given set of requirements to warfighters when multiple development blocks are used. 
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As will be shown with the model, this work has a significant impact on project 

performance that may impact the types of projects in which spiral development can 

be effective.   

A Formal Model of Spiral Development 
The conceptual model described above was used to build a formal computer 

simulation model of an acquisition project that can reflect traditional and incremental 

or spiral development strategies. The simulation model is a system of nonlinear 

differential equations. Each phase is represented by a generic structure, which is 

parameterized to reflect a specific phase of development. The unit of measure for 

development work is the task or work package, an atomic piece of work. Examples 

include writing a line of code or installing a steel beam. When work packages within 

a phase are heterogeneous, the unit of work can be defined as the average amount 

an experienced person can accomplish in a given interval. In the model, a work 

package is estimated to be the amount of work a developer can accomplish in a year 

(e.g., a person-year of work).  

Modeling the Flows of Acquisition Work 
The model represents workflows through a project phase as a value chain of 

alternating backlogs and development activities with two rework cycles (Figure 19). 

The value chain is described with the boxes and pipes with valves along the bottom 

of Figure 19. The value chain passes from the Initial Completion Backlog through the 

Initial Completion Rate into the Quality Assurance Backlog, through the Approval 

Rate into the stock of Work Approved, and through the Release Rate to the 

accumulation of Work Finished and Released. The rework cycle is inherent in 

development projects and has been modeled and used extensively to explain and 

improve project management (Lyneis, Cooper & Els, 2001; Ford & Sterman, 1998; 

Cooper & Mullen, 1993; Cooper, 1980; 1993a;b;c; 1994).  
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Figure 19.  Work Backlogs and Flows through a Development Phase 

The model used here describes the flows of work through a project in which 

all work starts in the backlog27 of work needing to be initially completed (“Initial 

Completion Backlog,” box at bottom of Figure 19). As work is first completed, it 

enters the stock of work needing quality assurance (QA). Quality assurance could 

take many forms, including reviews of designs by senior engineers, prototype 

building and testing, and the inspection of work. Work needing quality assurance 

accumulates in a Quality Assurance Backlog (box in middle of Figure 19).  If work 

passes QA (either because it is correct or the need for changes is not detected), it is 

approved and adds to the stock of Work Approved. When sufficient work has been 

approved, a package is released, adding to the stock of Work Finished and 

Released to other phases or users. The release package size is a management 

decision, often based on the characteristics of the phase. For example, in 

semiconductor development, the vast majority of the design code must be 

completed prior to release for a prototype build since almost all the code is needed 

to design the masks. In other development settings, managers have broad discretion 

in setting release package sizes.  

                                            

27 Because the flows of development activities reflect the completion of the activity, the backlogs, as 
used here, include work in progress as well as work on which development has not yet been started.  
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Work found to require changes moves into a stock of tasks requiring changes 

that must be resolved through coordination with the phase responsible for the 

problem (“Coordination Backlog”). Classic examples include designers working with 

users to refine ambiguous or infeasible requirements or manufacturing engineers 

meeting with product designers to explain why parts can’t be built as specified in the 

drawings. After coordination resolves disputed issues, these tasks move to the stock 

of work known to need rework (“Known Rework Backlog”) and are subsequently 

reworked, then returned to quality assurance for re-inspection, testing, etc.  

Quality assurance is imperfect, so some tasks requiring rework can be 

missed and are erroneously approved and released. These rework requirements 

may be discovered later by another work phase. In industry, if they are not 

discovered they remain embedded in the product after it is released, to be 

discovered by the customer. In our model of acquisition, we assume that all defects 

are discovered in final product testing by users. When the phase that discovers the 

problem reports it, the generating phase is notified, and the affected tasks are 

moved from the stock of work considered finished to the coordination backlog, then 

eventually reworked. For example, a test phase may discover a short circuit across 

two layers in a prototype chip. If the error is traced to the design, test engineers must 

notify the designers and work with them to specify the location and characteristics of 

the short circuit. The designers then must rework, re-check and re-release the 

design, followed by changes in layout, tape-out, masking, and prototype fabrication.  

Given the arrangement of development activities in a phase described above, 

progress is constrained by the rate at which work packages move through the flows 

that connect the stocks. Four development activities and several development 

features control rates. The initial completion, quality assurance, coordination, and 

rework rates are each the lesser of the rate allowed by the availability of work or the 

resources applied (described later). The rates allowed if the development process 

has infinite resources (i.e., uncapacitated conditions) are described with an average 

processing time assuming all labor, equipment, knowledge and understanding are 
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available. Project progress depends largely on how much work gets trapped in the 

rework cycle versus how much "leaks out" of the rework cycle through approval. The 

fraction of work discovered to require rework is used to model project complexity. 

More complex projects are assumed to require more iteration for completion. 

Modeling Concurrence 
As described, concurrence often constrains the rates and development 

progress. Internal precedence constraints are modeled with a (potentially nonlinear) 

function that relates the fraction of a phase’s work that has been released to the 

fraction of the phase’s work that is available for initial completion. For example, an 

internal precedence relationship in which 100% of the work was available regardless 

of the fraction released would reflect a development phase in which all of the work 

can be developed simultaneously. In contrast, an internal precedence relationship 

that starts at 20% of the work being available and rises steadily at a rate of 1 work 

package becoming available for each released until 100% of the work is available 

when 80% has been released would prevent more work from being initially 

completed if 30% of the work had been initially completed but lots of rework 

prevented more than 10% from being released. As examples, three internal 

precedence relationships from a semiconductor development project are shown in 

Figure 20. 
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Figure 20. Modeling Concurrence—An Example of Three Internal Precedence 

Relationships 

Like a development phase's Internal Precedence Relationship, an External 

Precedence Relationship between two development phases can act as a bottleneck 

in the availability of work. The Critical Path and PERT methods model static inter-

phase dependencies in development projects and product development research 

(e.g., Rosenthal, 1992; Clark & Fujimoto, 1991; Eppinger, Whitney, Smith & Gebala, 

1990) by specifying the temporal relationship between start and end-times of 

activities. The purpose of External Precedence Relationships is the same as the 

precedence relationships used in the Critical Path and PERT methods: to describe 

the dependencies of development phases on each other for the initial completion of 

work. However, there are several important differences between External 

Precedence Relationships and precedences used in the Critical Path and PERT 

methods.  

• External Precedence Relationships describe the dependency 
between two phases along the entire duration of the phases, 
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instead of only at the start and finish of the phases, as in the 
Critical Path and PERT methods.  

• External Precedence Relationships can be nonlinear. 

• External Precedence Relationships describe a dynamic 
relationship between development phases by allowing the 
output (Percent Tasks Available for Initial Completion) to 
fluctuate over the life of the project depending on the current 
conditions of the project, as described by the External 
Precedence Relationship's input (Percent Upstream Tasks 
Released).  

External Precedence Relationships can be used to describe rich inter-phase 

relationships which cannot be described with Critical Path and PERT precedences. 

For example, a downstream phase which is constrained by the release of upstream 

tasks throughout its duration (not only at the beginning or end of the phase) in a 

linear relationship can be described with a "lockstep" External Precedence 

Relationship. Such a relationship could be one that does not make any work 

available until some work has started and increases the amount available steadily at 

2% of the work available per percent released until all of the work is available when 

50% of the upstream work has been released. External Precedence Relationships 

are often nonlinear, as demonstrated by the descriptions of the relationship between 

the product definition and design phases of a semiconductor chip project in Figure 

21. 
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Figure 21.  Modeling Concurrence—An Example of Four External Precedence 

Relationships 

Modeling Resources 
The model simulates two types of development resources. Either resource 

type can constrain progress by limiting the development rate. Direct resources are 

the people and associated equipment required to perform the development work, 

i.e., to develop requirements, develop technology, design products, manufacture 

products, and test requirement satisfaction for use. Indirect resources perform 

project management and associated work that support and facilitate development. 

Total direct resources are assumed fixed and allocated based on the backlogs of 

work available to be developed (the stocks represented as boxes in Figure 19). In 

contrast, indirect resources (also assumed fixed) serve the performance of activities 

(the development rates, the pipes with valves in Figure 19) and are distributed 

proportionately based on the size of those development activities. As will be shown, 

the model indicates that, when there are many development activities occurring 

simultaneously (e.g., in spiral development), project management (indirect) 

resources can constrain progress.  
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Resource allocation for direct and indirect resources is based on allocation 

fractions. Target fractions are the proportion of total indicated demand for resources 

generated by each activity. See Joglekar and Ford (2005) for a detailed description. 

The applications of allocation fraction targets are delayed to reflect the many 

physical and informational processes that are required. Research supports the 

important role of delays in controlling dynamic systems such as acquisition projects. 

For example, structural control system researchers have studied how delays 

between signals from sensors and actuators impact structural system behavior and 

found that purposeful time delays can improve structural behavior over eliminating 

time delays (Mahmoud & Al-Muthairi, 1994; Udwadia, Bremen, Kumar, & Hosseini, 

2003). Allocation delays are modeled with first-order exponential adjustments that 

move applied allocation fractions toward targets a fixed portion of the difference 

between the applied and target fractions each time period (see Lee, Ford, and 

Joglekar, 2007 for more). The speed of adjustment is defined by this resource 

adjustment delay, with large delays generating slower adjustments and vice versa.  

Modeling Project Performance 
Project performance is measured in three dimensions: schedule, cost, and 

performance risk. Schedule performance is measured in the time required to have a 

given number or fraction of requirements tested and approved by users. Cost is 

measured in dollars based on the size of direct and indirect work forces and the 

duration of phases and blocks. Performance risk is measured with the average 

percent of the requirements provided (approved by users) at any given time. This 

average reflects the combination of multiple requirements. Some of the requirements 

may have binary performance, i.e., they work or they don’t work. Other requirements 

may have discrete steps or continuous performance relative to requirements, such 

as weight or unit manufacturing cost. All the requirements can be considered met 

completely when the average percent of the requirements provided is 100% for a 

development block.  
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Model Calibration and Testing 
The formal model was calibrated to the Javelin project described above. Data 

was collected from a project manager on the project (the first author) concerning the 

scope and work effort of each development phase, start-up and review-work 

requirements, and durations of development phases. For example, the Javelin 

project representatively had 30 requirements, 8 technologies to develop, about 200 

components to design, and 3500 units to manufacture. User Product Testing 

validated the 30 requirements. These were modeled as performance units. Work 

packages, representing a fixed amount of effort, flow through the model. The 

number of work packages required to develop each performance unit was estimated 

using project manager estimates of the total work required in each phase.28 Behavior 

data on the Javelin project was also collected. The Javelin project utilized a single 

development block. Developing Requirements and Developing Technologies were 

each estimated to take about 2 years, and Advanced Development was estimated to 

have taken 4.5 years. Total costs were estimated to be approximately $700million.  

Model Testing 
As discussed above, the model was developed as a tool to investigate the 

impacts of acquisition strategies, not to predict specific project performance. 

Therefore, consistent with the system dynamics approach, the behavior modes 

(shapes of behaviors over time) and how behavior modes differ with acquisition 

strategies is important, not exactly when changes or maximum or minimum values 

occur or their sizes. Therefore, the model’s ability to reflect behavior should be 

based on its ability to show behavior modes, such as increases and decreases when 

they should occur and at increasing or decreasing rates of change.  

System dynamics models should be exposed to a variety of tests to improve 

their reflection of the target system and to develop confidence in the model’s 

                                            

28  See Ford and Sterman (1998) for a discussion of the use of work packages (development tasks) 
as units and their reflection of work effort.  
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usefulness for its intended purpose. Forrester and Senge (1980) suggest three types 

of tests of system dynamics models: structural similarity to the actual system, 

reasonable behavior over a wide range of input values, and behavior similarity to 

actual systems. Using several tests described by Sterman (2000), the model was 

tested for the structure’s similarity to system structure, consistency, reasonableness 

of behavior, and similarity of model behavior to system behavior.  

Basing the model on previously validated models, the literature and data 

collected about acquisition projects improves the model’s structural similarity to 

actual acquisition projects as practiced. Model behavior was tested with extreme 

input values—such as no discovery of errors and very large resource quantities and 

productivities—as well as more typical conditions. Model behavior remained 

reasonable across wide ranges of input values, including extreme values. For 

example, discovering no errors reduces durations but also decreases quality. These 

tests increase confidence that the model generates realistic project behavior 

patterns due to the same causal relations found in the type of projects investigated 

(i.e., generates “the right behavior for the right reasons”). 

The model also reproduces the known system behavior. Figure 22 shows the 

simulated the work in each phase that has been initially completed until the phase 

has released all work. The vertical axis of Figure 22 and subsequent graphs labeled 

“Work being Developed (work packages)” can also be interpreted as the amount of 

work effort currently being used since work packages are proxy for work being 

performed.  
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Figure 22. Test of Model Ability to Simulate Development Phases and 
Overlapping—Active Phases in Javelin Project 

The simulated behavior of the Javelin project is consistent with the phase 

durations provided by the project manager, supporting the ability of the model to 

reflect the dynamics of the Javelin project. The simulated cost of the Javelin project 

($722million) is also consistent with the data provided by the project manager, 

supporting the ability of the model to reflect the Javelin project cost performance.  

Figure 23 shows the simulated performance risk for the Javelin project, the 

fraction of requirements satisfied by specific durations that can reflect deadlines. The 

model behavior is similar to the Javelin project, with a single testing phase of all 

requirements by users (one step) and the provision of all requirements (100% 

average percent of requirements provided).  
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Figure 23. Simulated Satisfaction of Javelin Requirements 

The model was also tested for its ability to simulate known and expected 

impacts of applying spiral or incremental development. If a model accurately reflects 

the impacts of incremental development, it should simulate that the same project 

with multiple development blocks provides some (but not all) requirements to users 

earlier, provides requirements in steps at the ends of development blocks, and 

probably provides all requirements later than the project if done in a single block. To 

test the model’s ability to reflect incremental development, the model as calibrated to 

the actual Javelin project was changed to reflect development in three blocks. The 

primary management decision required to implement this change is how many of the 

30 total requirements and other work to develop in each of the three blocks. For this 

test, it was assumed that the requirements were distributed evenly across the blocks 

(10 requirements per block). The scope of the other phases (e.g., new technologies, 
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design components, and units to manufacture) were also distributed approximately 

evenly across development blocks.29  

Figure 24 shows the simulated performance risk of the Javelin project as 

calibrated and the Javelin project as simulated in three development blocks.  
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Figure 24. Test of Model Ability to Simulate Single-block and Incremental 
Development—Javelin Project in One (Line 1) and Three Even (Line 2) 

Development Blocks 

The model reflects the impacts of incremental development described. When 

compared to a traditional approach (line 1), the incremental approach (line 2) 

provides some requirements earlier, satisfies requirements in steps, and satisfies all 

                                            

29 An even distribution of scope across development blocks for all phases was chosen for clarity and 
consistency. In actual projects, the distributions would be determined by the needs of individual 
blocks (e.g., which requirements need which technologies) and by the design of the project by project 
management.  
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requirements later. The simulation also supports an expected increase in cost from 

$722m for traditional to $1531m for spiral. The timing and sizes of the steps vary 

with the allocation of requirements and other work to blocks, resources and other 

model calibrations; but the changes in behavior mode support the model’s ability to 

reflect differences in acquisition strategy.  

As an additional test of the model, the size of the development staff was 

doubled for the Javelin calibration project. If the model reflects actual projects, this 

change should speed up development but increase costs.  
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Figure 25. Test of Model Ability to Simulate Impacts of Resources on 
Progress—Javelin Project in One Block (Line 1) and with more developers 

(Line 2) 

More resources generate products faster but at much higher cost. Doubling 

the number of developers saves 30 weeks (100% of requirements satisfied in week 

491 instead of week 521) but increases costs dramatically from $722m without the 

larger development staff to $1,327m (an 83% increase).  
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Based on these and additional tests, the model is considered useful for the 

investigation of the impacts of acquisition strategies on project performance.  
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Model Use 

Two focusing questions which address the issues revealed by the literature 

and case study portions of this report were used to guide model use:  

Q1: What are the impacts of a spiral/incremental development approach 
compared to a traditional single-block development strategy? 

Q2: How might successful spiral/incremental development project 
performance differ from the successful management of single-block 
development projects?  

The Impacts of Incremental Development on Acquisition 
Project Performance 

The first question is addressed by simulating the same project using a 

traditional single-block development strategy and an incremental development 

strategy and comparing the behavior of the two projects. As described above, the 

model structure includes the fundamental features that distinguish incremental 

development from traditional development (e.g., multiple development blocks, 

concurrent development blocks, additional start-up, reviews, contracting, etc.) and, 

therefore, can simulate behavioral and performance differences.  

The calibration project case (Javelin) fully satisfied all its requirements. 

However, not satisfying, or partially satisfying requirements reflects the project risk 

and is, therefore, an important performance measure. Therefore, to facilitate the 

comparison of project performance using different strategies, a Base Case project 

was created that does not fully satisfy all requirements based on the Javelin 

calibration project. Figure 26 shows the Performance Risk Profile of three project 

simulations: 1) the calibration project (Javelin), 2) the Base Case project (Javelin 

without 100% satisfaction) using a single-block strategy, and 3) the Base Case 

project using an incremental development strategy with the requirements and work 

distributed evenly across three development blocks.       
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Figure 26. Performance Risk Profile of a Calibration, Base Case, and 
Incremental/Spiral Project 

Table 1 compares the performance of these three simulated projects. The first 

two performance measures reflect schedule performance with the project duration 

required to satisfy the first requirement and the project duration required to satisfy all 

the requirements that the project will satisfy. The third performance measure reflects 

cost performance with the estimated development cost. The last two performance 

measures reflect project risk with the percent of the total project requirements 

satisfied by a specific deadline. For Table 1, the deadline was chosen to be the time 

when the Base Case project using the traditional strategy satisfied all the 

requirements the project would satisfy.  
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Units of 
Measure Javelin

Base Case - 
traditional

Base Case - 
spiral

Duration to first 
requirement satisfied weeks 471 470 397

Duration to max. 
requirements satisfied weeks 520 518 762

Total development cost $1,000,000 722 719 1,555

Requirements satisfied 
by deadline % 100 91 18

Final requirements 
satisfied % 100 91 91Pe
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Table 1. Performance Comparison of Three Simulated Acquisition 
Projects 

Although simulated values are relative and not predictions, the results in 

Table 1 identify important impacts of incremental/spiral development on acquisition 

project performance when compared to a traditional single-block strategy. 

Underlined bold values in Table 1 indicate the best performance among the three 

projects for each performance measure. Values in bold italics indicate the worst 

performance among the three projects for each performance measure. Notice that 

compared with the Base Case—traditional project, the Base Case—spiral project is 

best in only one performance measurement (Duration to first requirement satisfied) 

but is worst in three other performance measurements (Duration to max. 

requirements satisfied, Total development cost, and Risk—requirements satisfied by 

deadline). This demonstrates the ubiquitous tradeoffs in performance that different 

strategies present. If all performance measures were valued equally, spiral 

development would appear to be a poor choice as an acquisition strategy. However, 

not all performance measures are of equal value in all acquisition projects. 

Consistent with the case studies and analysis above, these model results 

identify the one performance measure that must be most important for a spiral 
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development strategy to improve total project performance—Duration to first 

requirement satisfied.  

Causal Analysis and Explanations of Model Behavior 
Analyses of the structure of the model provide a means of explaining the 

results shown in Figure 26 and Table 1, i.e., why spiral development changes project 

performance the way it does. Here also lies an important definitional distinction: we 

use the term spirals and increments here somewhat interchangeably, since all 

spirals eventually become defined. But in precise terms, our model results here refer 

specifically to the effects of deliberate deferral of work to successive increments, 

versus the unplanned, inestimable and open-ended nature of true spiral 

development. To identify the causes of specific behaviors, the behavior of specific 

model variables is traced through the causal pathways in the model from a 

performance variable “backwards” up the causal pathway to reveal the drivers of, 

and constraints on, performance. For example, schedule performance is constrained 

by the progress rates of different blocks and phases, which can be constrained by 

either the availability of work or progress rates allowed by resources (the model 

structure analysis identifies which constrains progress). The availability of work can 

be constrained by the completion of upstream work or the amount of work remaining 

to be developed (again, model structure analysis reveals which controls). Resource 

rates can be constrained by either the quantity and productivity of developers or the 

quantity and productivity of project managers. Following the driving or constraining 

causal pathway through the model for the behavior of a specific performance 

variable for a specific simulation can reveal the locations of bottlenecks. The results 

of model structure analysis for each performance measure in Table 1 will be 

described in turn.  

Model structure analysis reveals that the “Duration to the first requirement 

satisfied” values are constrained by the time required to get the requirements and 

other development products in the first block through the development phases and 

tested by users. This is constrained by the time taken in each phase before the 
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development products are released to downstream phases. These phase durations 

are driven primarily by the progress rate, which is effected by the quantity and 

productivity of developers and the amount of work in each phase. Therefore, when 

the number of requirements and, therefore, work is reduced in the first development 

block of a spiral strategy, the block can be completed faster—satisfying the 

requirements in that block earlier.30 This explains why the Base Case: spiral project 

performs best in this performance measure. A shorthand description of this causal 

path from this performance variable through the project structure is: Duration to first 

requirement—end block 1—block 1 phase durations—block 1 work required—scope 

of block 1. A reasonable question that model structure analysis (and more 

simulations) can address is, “How much faster can spiral development satisfy 

requirements?” Further reductions in the number of requirements in the first block 

reduce the duration to the first requirement satisfied, but not proportionate to the 

reduction of requirements and only to a minimum duration. This is because 

developer progress rates are not the only project feature that constrains progress, 

i.e., are not the only potential bottleneck. In this case, concurrent development also 

increases project management needs, and project management resources begin to 

constrain progress at some point. In addition, available work constraints (i.e., 

development processes) have minimum durations and prevent the very early 

satisfaction of requirements. This illustrates the important role of multiple and 

dynamic progress bottlenecks.  

Model structure analysis reveals that the “Duration to maximum requirements 

satisfied” values are controlled by when the last requirement is satisfied, which is at 

the end of block 1 in the Base Case: traditional project and the end of block 3 of the 

Base Case: spiral project. In the Base Case: traditional project, this is controlled by 

the progress and concurrence of the phases. The progress is sometimes 

                                            

30 Note that if the reduction in the number of requirements in the first block was not accompanied by a 
reduction in the scope of the other phases in the first block, as suggested in the previous footnote, 
that the bottleneck in the first phase might not be addressed, and the improved performance might 
not materialize.  
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constrained at some times by resources and at other times by processes. For 

example, the early portion of the requirements phase does not progress faster 

because of the number or productivity of developers, but later in the same phase the 

existing developers run out of work due to the process constraints of waiting for 

rework to be completed and errors to be discovered. The shifting of progress 

constraints illustrates the importance of understanding progress bottlenecks to 

successfully managing acquisition project dynamics. Considering the spiral project, 

process constraints such as the sequential development of requirements in separate 

blocks prevents the beginning of the requirements phase in the last block of the 

incremental/spiral development project until the requirements phases in the first two 

blocks are completed. This forces the final block to start relatively late (over three 

years into the project). This late start forces the third block to compete for project 

management and support resources with the first two blocks, which are in progress. 

Direct resources (developers) constrain the progress of the phases in block 3 and 

process constraints such as the sequential nature of the phases set a minimum 

duration for Block 3.31  A shorthand description of this causal path from this 

performance variable through the project structure is: Duration to maximum 

requirements—end last block—start of last requirements phase and [last block 

duration]—end of preceding requirements phase and [last block concurrence and 

direct resources]. The square brackets indicate a split in the causal pathway; i.e., 

that two paths constrain the end of the last block.  

Model structure analysis reveals that the “Total development cost” values are 

driven by the duration that the two types of resources, the development workforce 

and the project management workforce, are charged to the project (labor rates are 

assumed to include other expenses). These workforces are fully allocated to 

development or project management as long as they are needed (i.e., there are 

                                            

31 The impact of the sequential phases illustrates the benefits of concurrent development. See Ford 
and Sterman (2003a; 2003b) for studies of the side effects of concurrent development that can limit or 
decay progress. 
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backlogs of work for the development workforce and development activities for the 

project management workforce). Therefore, costs are directly related to the duration 

of blocks and the project. Longer projects cost more. However, the driver of this total 

duration is the total amount of work to be completed. This consists of two types of 

work: work required to develop products (requirements, technologies, designs, 

products, test results), and indirect work to fulfill review, contracting, start-up, and 

other functions that are related to development phases. The more phases a project 

has, the more indirect work it must complete. Therefore, more development blocks 

increase indirect work, thereby increasing the project duration and costs. This 

explains why the Base Case: spiral project, which has more development blocks and 

phases than the other projects, has the largest cost.  A shorthand description of this 

causal path from this performance variable through the project structure is: Total 

cost—2 workforces—backlogs and activities—work required—start-up, reviews, etc. 

work—number of phases—number of blocks. 

Model structure analysis reveals that the “Requirements satisfied by deadline” 

values are driven by the satisfaction of requirements and the deadline chosen. For a 

given deadline, this performance measure depends on the progress of development 

blocks (described above) and, in the spiral development case, the number of 

requirements in each block (a project-planning decision). The dependence on the 

sizes of the blocks is particular to the spiral project because the structure of spiral 

development generates significant times of no increases in requirements satisfied. If 

one of these plateaus in final performance occurs at the deadline, the spiral project 

remains at a relatively low performance level. This is illustrated in Figure 26. This 

explains why the Base Case: spiral project has such a poor performance for this 

metric (Table 1). A shorthand description of this causal path from this performance 

variable through the project structure is: Requirements satisfied by deadline—

progress of blocks and [sizes of blocks]—backlogs and activities—work required—

start-up, reviews, etc., work—number of phases—number of blocks. 
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Model structure analysis reveals that the “Final requirements satisfied” values 

are driven by the total fraction of the requirements that pass testing by users. The 

model assumes that the users find all failures of the product to fully satisfy the 

requirements. Therefore, the defects found by users that limit the final requirements 

satisfied are those inherited by the user-testing phase from upstream phases. Three 

features determine the number of defects passed on to downstream phases and 

eventually to user testing: 1) the number of defects generated within a phase (e.g., a 

technology that cannot satisfy a requirement even if developed optimally), 2) the 

fraction of those defects not discovered and passed on to downstream phases 

(accidentally or purposeful32), and 3) the sensitivity of downstream phases to 

inherited upstream errors.33 More errors generated and passed on and more 

sensitivity to those errors degrades performance in this dimension. Because 

inherited errors generate more errors in the downstream phases, the effects are 

multiplicative and grow with delays in error discovery and correction. These features 

are often driven by the technological relations among requirements, technologies, 

and design components. However, they also can be influenced by managerial 

actions such as quality assurance policies and developer morale. The model 

assumes (for simplicity) that changing to a spiral approach does not change these 

factors. This explains why the Base Case: spiral project and Base Case: traditional 

project have the same performance. If the spiral project were to cause changes in 

these three features (e.g., an increase in errors generated due to more process 

complexity caused by concurrence), the performance would change. A shorthand 

description of this causal path from this performance variable through the project 

structure is: Final requirements satisfied—two workforces—backlogs and activities—

work required—start-up, reviews, etc., work—number of phases—number of blocks. 

                                            

32 See Ford and Sterman (2003a) for descriptions and analysis of the rational and purposeful hiding of 
known defects by qualified, well-intentioned project managers.  
33 See Krishnan and Eppinger (1995) for a model of inter-phase sensitivity to changes in designs.  
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Investigating Incremental/Spiral Development Management  
The second research question focuses on the management of incremental or 

spiral development (terms used interchangeably here) projects: How can spiral 

development project performance be improved? A first step in improving the 

management of spiral development is to understand the managerial implications of 

spiral development. The graphics in Figure 27 show the active development phases 

of the Base Case project using a single development block (top) and spiral 

development (bottom).  

 

 

 

Figure 27. Active Development Phases using Single-block and Spiral 
Development—the Base Case Project 

Phases must be coordinated with external stakeholders and other 

development phases. Each pair of concurrent phases creates a potential interface 

that requires coordination. Figure 28 shows an estimate of the phase interfaces that 

must be managed based on the number of active phases shown in the previous 

figure.  
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Figure 28. Performance Risk Profile of a Calibration, Base Case, and 
Spiral Project 

Although the number of interfaces with external stakeholders and between 

development phases is project-specific, the impact of spiral development on project 

management requirements is clear. Spiral development requires significantly more 

coordination than single-block development.  

The Critical Role of Progress Bottlenecks  
Bottlenecks that constrain development progress can be caused by several 

different parts of a development project and located in many places. Understanding 

and managing them effectively is critical to successful spiral development project 

success. This can be illustrated by simulating projects using spiral development with 

different amounts of resources—a common project-management tool. The Javelin 

Project was simulated assuming four conditions:  

1. a single-block approach (blue, Line 1 in Figure BBBB),  

2. with a spiral approach (red, Line 2, in Figure BBBB),  
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3. with spiral and additional developers (green, Line 3 in Figure BBBB),  

4. with spiral with additional developers and additional project 
management (grey, Line 4 in Figure BBBB).  
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Figure 29. Different Impacts of Adding Resources on Performance—

Javelin Project with More Developers and Project Management 

Adding developers reduces the duration of block 2 (second and third steps 

are earlier), but not does not significantly change the first increment. This is because 

the first increment is constrained by process with significantly fewer developers than 

the second development block. This illustrates the importance of identifying and 

understanding the progress bottleneck. In this case, adding developers does not 

significantly reduce the first development block and would not be a very effective 

policy (or use of resources) if a project manager was attempting to speed up the 

time to First Unit Equipped with the requirements in the first block. Adding 

resources where they do not relax a progress constraint does not improve 

performance (an old lesson). Knowing where what project features constrain 

progress is particularly difficult in incremental/spiral development because of 

the increased project dynamics (a new lesson). In contrast, adding developers 
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improves performance if the management objective was to speed the time to the 

First Unit Equipped with requirements from the second block. Again, knowing where 

what project features constrain progress is critical for improving spiral development 

performance.  

The addition of project management in addition to developers (line 4 in Figure 

29) also illustrates the challenges and importance of identifying and understanding 

progress bottlenecks in spiral development. This only impacts the third development 

block. This is because, in the model as calibrated, the first two development blocks 

have adequate project management; therefore, adding more project management 

does not improve performance. In contrast, the third development block is (at least 

partially) constrained by project-management resources, and benefits from adding 

more project management. In this case, the location of the bottleneck shifts from 

developers to project managers and is different in different development blocks. The 

fundamental lesson from the model is the same: Understanding the location of 

progress bottlenecks is particularly difficult but vital for successful spiral 

development management.   

Of additional interest, the estimated costs of the four simulated Javelin 

projects shown in Figure 29 are:  

1. Single block: $704million 

2. Spiral: $939million 

3. Spiral with additional developers: $1,761million 

4. Spiral with additional developers and project management: 
$1,753million  

The first increase in cost from a single-block development ($704m) to a spiral 

development ($939m) is expected and has been discussed above. The second 

increase in cost from spiral development ($939m) to spiral development with more 

developers ($1,761m) is also expected and is due to the larger workforce. However, 

the decrease from spiral with more developers ($1,761m) to spiral with more 
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developers and more project management ($1,753m) is counterintuitive. How can 

adding more resources (project management) decrease project costs? A causal 

path analysis of the model structure reveals that when project management 

resources constrain progress, adding those resources can reduce project duration, 

allowing an earlier release of the (expensive) developers from the project. Without 

the additional project management, some developers are unable to be fully utilized 

due to project management issues that are not being addressed. The additional 

project management relaxed that progress bottleneck, thereby allowing improved 

use of developers, faster completion of the project, and reduced costs. The counter-

intuitive cost behavior of these simulated projects illustrates the challenges 

and importance of identifying and understanding progress bottlenecks in 

spiral development projects.    

Simulation Modeling Results Summary 
The simulation model was used to investigate the impacts of spiral 

development on acquisition projects and the management of spiral development 

from a causal-path perspective. Spiral development was found to have several 

important impacts on acquisition projects when compared to a traditional single-

block development approach. Ceteris paribus (all other things held constant or 

equal), the model found, or supported other findings of, the following impacts:  

• Incremental/Spiral development can provide the First Unit Equipped 
with some (but not all) requirements satisfied faster than single-block 
development 

• Incremental/Spiral development provides satisfied requirements to 
users in multiple steps or increments, whereas single-block 
development satisfies all requirements in a single step 

• Incremental/Spiral development takes more time to satisfy all 
requirements than single-block development   

• Incremental/Spiral development costs more than single-block 
development to satisfy the same requirements  
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• Incremental/Spiral development has a high risk of not satisfying all 
requirements by the time single-block development can satisfy all 
requirements  

• The causal paths that drive and constrain project performance in 
incremental/spiral development pass through multiple types of 
resources, development processes, and move across both 
development phases and development blocks. The causal paths vary 
widely for different performance measures. This makes the drivers of 
and constraints on spiral acquisition project performance more difficult 
to identify than those influencing single-block development projects 

These results indicate that incremental/spiral development is a significantly 

different approach to acquisition than single-block development; therefore, it requires 

different planning, resourcing, and management.  

The model was also used to investigate the management of spiral 

development when compared to traditional development. Spiral development was 

found to have several significant impacts on acquisition project management. 

Investigations with the model found that (ceteris paribus):  

• The concurrent use of multiple development blocks in spiral 
development significantly increases the number of development 
phases and activities that must be managed and coordinated at any 
given time compared to single-block development. This increases the 
project management needs for successful acquisition in spiral 
development projects when compared to single-block projects.  

• Like in single-block development, progress in spiral development 
requires the identification and understanding of progress bottlenecks. 
However, the concurrence and resulting complexity of development in 
spiral projects causes the types and locations of bottlenecks to vary 
widely and be more difficult to identify and address than those in 
single-block development.  

• Causal paths of the drivers and constraints on project performance and 
progress bottlenecks move from one feature of a project to another as 
projects evolve. The increased dynamics of development in spiral 
development projects when compared to single-block development 
make identifying and addressing causal paths and progress 
bottlenecks more difficult.  
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• Progress bottlenecks can cause counterintuitive behavior, such as 
reductions in project cost by adding resources at a bottleneck. 
Understanding and exploiting the opportunities provided by these 
behaviors requires a deep understanding of the project structures and 
dynamic interactions that drive and constrain progress.  

These results indicate that incremental/spiral development requires more, 

different, and more difficult project management than single-block development that 

focuses on the identification and management of causal paths and progress 

bottlenecks based on the structure of the development project.  
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Balancing Risks with Development Approaches 

In 2004, Barry Boehm, creator of the spiral development model, released a 

book about software development entitled, Balancing Agility and Discipline. In this 

pragmatic book, he says that two opposing and conflicting methodologies have 

emerged in the software domain—that of traditional, plan-driven, processed-based 

(disciplined) and that of rapid change and adaptability (agile). Proponents of each of 

these software development approaches have their line of reasoning.  The 

traditionalists value consistency of processes, exemplified within the Software-

Capability Maturity Model (SW-CMM), and emphasize proper documentation to 

provide history and a knowledge base of experience. The agilists value rapid 

response to change versus following plans and functional software over 

comprehensive documentation.  Disciplined methods are systematic and 

predictable, but can become bureaucratic as quality-oriented and risk averse. Agile 

methods are dexterous, but can become ad hoc and chaotic.  Both value quality, but 

from differing viewpoints. Where the SW-CMM defines quality as specification and 

process compliance, agile methods view it as customer satisfaction. He asserts that 

the perplexing dilemma for project managers is the need for both coping with change 

and retaining control—since both approaches have their advantages and 

drawbacks.   

The two approaches have evolved over the past three decades and are still 

changing:  

Disciplined methods The plan-driven, disciplined approach emerged from 
systems engineering and quality disciplines because of 
the growing complexity of large aerospace programs. 
Software, as an essential but physically unconstrained 
component, grew to need “disciplining” via standards and 
structured techniques within a requirements/design/build 
paradigm. This gave rise to standards and repeatable 
processes, emphasis upon defined system architecture, 
verification and validation, and an analytical approach to 
identify and manage potential risks.  
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Agile methods The agile approach grew out of demands for faster 
product cycle-time, rapid prototyping experiences, and a 
philosophy favoring human interaction and flexibility 
versus mechanistic methods. Agile concepts are 
embracing informality, change, simplicity, many and 
frequent product releases, and “bare sufficiency” 
(addressing only high-priority functions). 

While Boehm describes evolutionary and incremental processes being used 

in both approaches, the DoD’s spiral development approach seems most analogous 

to Boehm’s agile methods. And Boehm states his own, “skepticism that pure agile 

methods can be used effectively with large, complex, or safety-critical software 

systems” (Boehm & Turner, 2004). He also attributes “over-responding to change” 

as causal “for the $3 billion overrun of the Federal Aviation Administration’s 

Advanced Automation System for national air traffic control” (2004). He conveys that 

agile methods are more risky, stating, “the necessity of discipline to ground 

adaptability is as necessary as it has ever been, especially as system software size 

and complexity grow” (2004).  

But also clear are the benefits of each of Boehm’s competing approaches. 

Discipline is needed as a control mechanism to avoid risk, but agility is needed to 

respond quickly to customer needs. He warns against the misuse and universal 

application of either, saying, “One size fits all is a myth” (Boehm & Turner, 2004) 

And he advocates a balanced approach between use of both methods—based upon 

cost, schedule and technical performance risk. In addition to organizational culture 

and developer personnel qualifications, he actually advocates the more disciplined, 

risk-averse approaches for projects that are mission/safety critical, larger in size, and 

have more stable requirements. 

We believe Boehm’s constructs about agile and disciplined software 

development methods correlate well with other, non-software product development 

strategies—especially with their regard to product characteristics and risk. Hardware 

is not as malleable as software, and also (unlike software) can be quite costly in 

production. 
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While Boehm suggests balancing agile and disciplined software development 

methods, we suggest there is also a need for balance within DoD’s evolutionary 

acquisition methodologies: the balancing of project-control measures oriented 

against risks.  Since both controls and risks have associated costs, the balance has 

long been conceptualized as in Figure 30 below (Wysocki, 2003). 

 

Figure 30. Perceived Relationships Among Project Cost, Control and Risk 
(adapted from Wysocki, 2003) 

Typical project goals are stability, discipline, simplicity and equilibrium. 

Program managers want these aspects with regard to program requirements, 

funding, design, and production configuration. But stakeholders often want flexibility, 

agility, adaptability and variety, and these bring about opposing tensions from 

change, complexity and risk. 
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Conclusions 

It can be summarized that spiral development was at its inception, and is at 

its extension by the DoD, all about risk. Paradoxically, it is an agile method 

envisioned to reduce risk, but which potentially can add its own. On the one hand, a 

spiral or incremental approach allays risk by reducing scope to render only the 

highest priority capabilities with the exclusive use of mature technology, and obtains 

early and continuous feedback from the environment for follow-on developments. On 

the other hand, it introduces concurrency during advanced development and adds 

variety in production, with all their attendant management challenges.  

Although today’s policy of evolutionary acquisition is prescribed as a 

development methodology, it is actually focused more upon what—not how—we 

develop. As such, it is about doable scope, reducing risk via exclusive use of mature 

technology.  The Cost As an Independent Variable and other requirement-limiting 

initiatives were earlier attempts to accomplish this by encouraging product-

performance trades to keep cost estimates fixed. As with CAIV, this likely means 

trading performance requirements for earliest deploying increments. 

Spiral development also seeks to spread out the technical risk over more 

development and process time via incrementing. We have shown with simulation 

that this can potentially improve risk-management performance initially, but with 

higher overall costs and longer subsequent development durations, if deliberately 

deferring known, estimable work.  As such, our computational modeling indicates 

that incremental development costs more and requires more time to provide the 

same requirements than single-step development. With regard to project risk, the 

increased complexity in a project using an incremental or spiral approach makes the 

isolation and effective management of progress bottlenecks more difficult than in 

single-step development. 
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The policy change is that spiral development now includes undefinitized 

increments and prescribes incremental development instead of single-step 

development. All amorphous spirals will eventually become defined increments— 

mini-programs. In years past, they have often been implemented as sequential, 

separate, and successive product upgrades (such as the CH-47, UH-60, C-130, B-

52 program examples). But current policy expresses these as more concurrent, 

frequent and continuous. Such concurrency adds complexity to development 

models, with attendant risks of over allocation of work, noise, error, duplicity, and 

other inefficiencies from work deferral and divided effort in project-management 

organizations. Additional oversight, reviews, contracting, testing, etc., will also likely 

affect transaction costs. If all requirements are known and an incremental approach 

is used, then there is a deliberate deferral of work to later increments, and there will 

be a resultant increase in total development costs and durations for these same 

reasons. 

We’ve suggested that a one-size-fits-all methodology for DoD system 

development may not be appropriate and have offered for consideration several 

product attributes that might help determine the efficacy of the spiral approach. We 

further suggest that spiral development may serve better than single-step 

development for initial capability when products are mutable, time critical, non-

maintenance intensive, and have continuous (vs. binary) or uncertain requirements, 

short cycle-times (less knock-on effects), sequentially phased development, and 

modular independence. In contrast, spiral development may not be appropriate 

when there are safety or man-rating concerns and have attributes opposite to those 

above.  In particular, PMs should understand the nature of their product 

requirements with regard to their range of attainment and relative to key parameters 

of capability, and vis-à-vis the readiness level of their enabling technologies. Some 

key features may indeed be binary, and others may have significant ramifications of 

partial attainment—such as propagated change across the entire product 

componentry (as in weight reduction) versus a more independent modular 

modification. 
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Open design standards will not always be incorporable, and product variety 

will emerge, with and without backward compatibility, interoperability, etc. Variety is 

both an asset (for end-users) and a liability (for manufacturers, owners and 

supporters). As such, to compensate for product variety, “acquirers” must “own” the 

design and emphasize configuration management, keeping or assigning 

responsibility for that function and maintaining accountability for it. 

Our title, “From Amorphous to Defined,” alludes to both product specification 

as well as risk realization in spiral development. Spiral development has inherent 

challenges, both strategic and tactical, of which PMs must be aware. We’ve 

highlighted and illustrated them here, as well as have shown that spiral development 

can indeed work—especially for technically mature and mutable products with open 

or elegant architecture. 

Program Managers must be aware of these inherent risks and take necessary 

precautions to balance them with increased use of tools, such as technology 

readiness levels, configuration management, technical performance measurement, 

contract incentives, options and phasing, organizational design, etc.  

Stability is the quest in all things programmatic—for funding, requirements, 

design, production configuration, etc. But in an unstable world, and with the future 

being necessarily uncertain, the tension between control and change is probably 

unending. PMs do have some tools for coping, and being forewarned is being 

forearmed. PMs are used to concurrency and change, as they are largely what make 

project management what it is: a balancing act. Mechanisms for control of risk 

include project management tools such as configuration management, technical 

performance measurement, earned-value management, risk management, real 

options, etc. Organizational and cultural factors such as leadership, trust and 

accountability play a significant role as well (Zolin & Dillard, 2005, May). Successful 

use of these tools to balance control and risk in projects with a high rate of change 

and concurrency is an area for our further study.  
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Recommendations for Practice: 
1. Project managers need to be aware of the inherent risks of spiral 

development and take necessary precautions to balance those risks. 
Many tools and control measures are currently developed and 
available to assist project managers in balancing the risks of spiral 
development, such as technology readiness levels, configuration 
management, technology performance management, real options, 
project phasing, risk management, earned value management and 
organizational design.  

2. Incremental and spiral development projects provide additional 
opportunities for managing development risks that are inherent in the 
project design. These include project planning decisions about the 
number and concurrency of development blocks, and the requirements 
and associated technologies and design components to be included in 
specific blocks. This planning provides opportunities to anticipate 
where critical progress bottlenecks may occur and design how to best 
monitor and respond to them.  

3. Product attributes may help determine the suitability of spiral 
development. PMs should consider such characteristics as: mutability, 
time criticality, man-rating, modular interdependency, key parameters 
of capability versus range of requirement attainment (i.e. binary vs. 
continuous), and the relative amount of concurrency among 
increments.  

4. Progress bottlenecks in incremental and spiral development often 
oscillate between process constraints (e.g. availability of work due to 
upstream progress) and resource constraints (e.g. developer or project 
management quantities or productivities). Successfully addressing a 
constraining progress bottleneck often shifts the progress constraint to 
a different location in the project. Therefore, a structured and 
interdisciplinary practice of identifying and addressing bottlenecks can 
improve performance.  

5. Configuration management accountability must be assigned and kept 
to maintain supportability, failure mode identification and causality and 
prevent the variety generated by evolutionary acquisition from reducing 
total product performance. 
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Appendix 1. UH-60 Series Helicopter Variants 
Introduced Between 1979-2007 

• UH-60A Black Hawk - Original U.S. Army version deployed in 1979, carrying 
a crew of four and up to 11 passengers. Equipped with T-700-GE-700 
engines.  

• UH-60A RASCAL - NASA-modified version for the Rotorcraft-Aircrew 
Systems Concepts Airborne Laboratory.  

• EH-60A Black Hawk - Modified electrical system and stations for two 
electronic systems mission operators. 

• MH-60A Black Hawk - Modified with additional avionics, precision navigation 
system, FLIR and air-to-air refueling capability. Equipped with T-700-GE-701 
engines. 

• YEH-60B Black Hawk - UH-60A modified for special radar and avionics 
installations, prototype for stand-off target acquisition system. 

• SH-60B Seahawk - The United States Navy's sea-going version. Based on 
UH-60A but with Mark III avionics. Equipped with T-700-GE-401 engines. 

• UH-60C Black Hawk - Modified version for C2 missions.  
• EH-60C Black Hawk - UH-60A modified with special electronics equipment 

and external antenna. 
• VH-60D Nighthawk - VIP-configured HH-60D, used for Presidential transport. 

T-700-GE-401 engines. 
• SH-60F Seahawk - Navy upgrade version, received in 1988, equipped with 

dipping sonar. 
• NSH-60F Seahawk - Modified SH-60F to support the VH-60N Cockpit 

Upgrade Program. 
• HH-60G Pave Hawk - Modified UH-60A primarily designed for combat search 

and rescue. It is equipped with a rescue hoist with a 200 ft (60.96 m) cable 
that has a 600 lb (270 kg) lift capability, and a retractable in-flight refueling 
probe. 

• MH-60G Pave Hawk - Special Operations version, equipped with long-range 
fuel tanks, air-to-air refueling capability, FLIR, improved radar. T-700-GE-
700/701 engines. 

• HH-60H Sea Hawk - Modified SH-60F with both offensive and defensive 
weaponry. T-700-GE-401 engines. 
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• HH-60J Jayhawk - The United States Coast Guard version, equipped with a 
rescue hoist with a 200 ft (60.96 m) cable that has a 600 lb (270 kg) lift 
capability.  

• MH-60K Blackhawk - Special operations modification,  
• UH-60L Black Hawk - UH-60A with upgraded T-700-GE-701C engines, 

improved durability gearbox, and additional vibration absorbers. 
• EUH-60L - Modified with additional mission electronic equipment for Army 

Airborne C2. 
• EH-60L Black Hawk - EH-60A with major mission equipment upgrade. 
• HH-60L - UH-60L extensively modified in 1989 with medical mission 

equipment. Components include an external rescue hoist, integrated patient 
configuration system, and aircrew positions relocated to the back of the cabin.  

• MH-60L Direct Action Penetrator (DAP) - Special operations modification, 
operated by the 160th Special Operations Aviation Regiment. It is capable of 
being armed with 30mm chain gun and 2.75" rockets, as well as M134D 
gatling guns operated as door guns or fixed forward.  

• UH-60M Black Hawk - UH-60L upgraded with improved design "wide chord" 
rotor system, T-700-GE-701D Engines, improved durability gearbox, 
integrated Vehicle Management Systems (IVHMS) computer, and modern 
"Glass Cockpit" flight instrument suite. Planned to replace all UH-60A and L 
aircraft with the U.S. Army. 

• HH-60M - UH-60A with medical mission equipment. 
• VH-60N Nighthawk - Modified HH-60D used for Presidential transport. 
• UH-60Q Black Hawk - UH-60A modified for medical evacuation. 
• YMH-60R Sea Hawk - Prototype for MH-60R. T-700-GE-701C engines. 
• MH-60R Sea Hawk - Modified SH-60B for multiple mission use. T-700-GE-

401 engines. 
• SH-60R Sea Hawk - Modified SH-60B with improved radar and sonar 

systems. 
• NSH-60R Sea Hawk - U.S. Navy special testing version. T-700-GE-701C 

engines. 
• CH-60S Sea Hawk - Upgrade of UH-60L and SH-60R for cargo transport. 
• MH-60S - Navy medical evacuation and ship replenishment mission 

equipped. T-700-GE-401 engines. 
(DoD, 2004, May 12; Wikipedia, 2007) 
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Appendix 2. C-130 Hercules Aircraft Variants 
Introduced Between 1956-2007 

• The C-130A entered initial production with four Allison T56-A-11 or -9 
turboprops engines. A total of 219 were ordered and deliveries began in 
December 1956.  

• The C-130B introduced Allison T56-A-7 turboprops and the first of 134 
entered Air Force service in May 1959. 

• The C-130E was introduced in August of 1962 with a production run of 389, 
using the same Allison T56-A-7 engine, but adding two 1,290 gallon external 
fuel tanks and an increased maximum takeoff weight capability.  
o Speed: 345 mph at 20,000 feet  
o Ceiling: 19,000 feet with 42,000 pounds payload  
o Maximum Allowable Payload: 42,000 pounds  
o Range at Maximum Normal Payload: 1,150 miles  

• The C-130H was introduced in June 1974 as the first of 308 with the more 
powerful Allison T56-A-15 turboprop engine delivering 4,591prop shaft 
horsepower. Nearly identical to the C-130E externally, the new engine 
brought major performance improvements to the aircraft.  
o Speed: 366 mph at 20,000 feet 
o Ceiling: 23,000 feet with 42,000 pounds payload.  
o Maximum Allowable Payload: 42,000 pounds 
o Range at Maximum Normal Payload: 1,208 miles 

• The C-130J entered the inventory in February 1999. With a six-bladed 
composite propeller coupled to a 4,700 horsepower Rolls-Royce AE2100D3 
turboprop engine, the C-130J brings substantial performance improvements 
over all previous models.  
o Speed: 417 mph at 22,000 feet  
o Ceiling: 28,000 with 42,000 pounds payload  
o Maximum Allowable Payload: 42,000 pounds   
o Range at Maximum Normal Payload: 2,071 miles 

• The C-130J-30, a stretch version with a 15-foot fuselage extension.  To date, 
the Air Force has taken delivery of 37 C-130J aircraft from Lockheed Martin 
Aeronautics Company.  
o Speed: 410 mph at 22,000 feet  
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o Ceiling: 26,000 feet with 44,000 pounds payload.  
o Maximum Allowable Payload: 44,000 pounds  
o Range at Maximum Normal Payload: 1,956 miles 

• The AC-130H/U Gunship is a heavily armed, incorporating side-firing 
cannons integrated with sophisticated sensor, navigation and fire control 
systems to provide surgical firepower or area saturation during extended loiter 
periods, at night and in adverse weather. The AC-130U (deployed 1995) 
employs synthetic apertures strike radar for long-range target detection and 
identification. The navigational devices include the inertial navigation systems 
and global positioning system. The AC-130U employs the latest technologies 
and can attack two targets simultaneously. It also has twice the munitions 
capacity of the AC-130H (deployed 1972). 

• The MC-130E Combat Talon I and MC-130H Combat Talon II provide 
infiltration, exfiltration and resupply of special operations forces and 
equipment in hostile or denied territory. 

• The MC-130P Combat Shadow features improved navigation, 
communications, threat detection and countermeasures systems. The 
Combat Shadow fleet has a fully integrated inertial navigation and global 
positioning system, and night vision goggle compatible interior and exterior 
lighting. 

• The MC-130W (deployed 2006) is a highly modified C-130H featuring 
improved navigation, threat detection and countermeasures, and 
communication suites, with air refuel capability for special operations 
helicopters. 

• The WC-130H Hercules is configured with computerized weather 
instrumentation for penetration of severe storms to obtain data on storm 
movements, dimensions and intensity. The WC-130B became operational in 
1959, the E model in 1962, followed by the H model in 1964. Only the H 
model is currently in operation. The WC-130J, currently in testing, is 
scheduled to replace the WC-130H.  

(US Air Force, 2007, February 25)  

Not an inclusive list; the authors have found a total of 24 Hercules C-130 variants 

across the US Air Force and Navy (DoD, 2004, May 12). 
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2003 - 2006 Sponsored Acquisition Research 
Topics 

Acquisition Management 

 Software Requirements for OA 
 Managing Services Supply Chain 
 Acquiring Combat Capability via Public-Private Partnerships (PPPs) 
 Knowledge Value Added (KVA) + Real Options (RO) Applied to 

Shipyard Planning Processes  
 Portfolio Optimization via KVA + RO 
 MOSA Contracting Implications 
 Strategy for Defense Acquisition Research 
 Spiral Development 
 BCA: Contractor vs. Organic Growth 

Contract Management 

 USAF IT Commodity Council 
 Contractors in 21st Century Combat Zone 
 Joint Contingency Contracting 
 Navy Contract Writing Guide 
 Commodity Sourcing Strategies 
 Past Performance in Source Selection 
 USMC Contingency Contracting 
 Transforming DoD Contract Closeout 
 Model for Optimizing Contingency Contracting Planning and Execution 

Financial Management 

 PPPs and Government Financing 
 Energy Saving Contracts/DoD Mobile Assets 
 Capital Budgeting for DoD 
 Financing DoD Budget via PPPs 
 ROI of Information Warfare Systems 
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 Acquisitions via leasing: MPS case 
 Special Termination Liability in MDAPs 

Logistics Management 

 R-TOC Aegis Microwave Power Tubes 
 Privatization-NOSL/NAWCI 
 Army LOG MOD 
 PBL (4) 
 Contractors Supporting Military Operations 
 RFID (4) 
 Strategic Sourcing 
 ASDS Product Support Analysis 
 Analysis of LAV Depot Maintenance 
 Diffusion/Variability on Vendor Performance Evaluation 
 Optimizing CIWS Lifecycle Support (LCS) 

Program Management 

 Building Collaborative Capacity 
 Knowledge, Responsibilities and Decision Rights in MDAPs 
 KVA Applied to Aegis and SSDS 
 Business Process Reengineering (BPR) for LCS Mission Module 

Acquisition 
 Terminating Your Own Program 
 Collaborative IT Tools Leveraging Competence 
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