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Abstract 

In August 2006, Program Executive Officer of Integrated Warfare Systems 

(PEO-IWS), established the Software Hardware Asset Reuse Enterprise (SHARE) 

repository to enable the reuse of combat system software and related assets.  In 

July 2007, the Naval Postgraduate School (NPS) was tasked to develop a 

component specification and ontology for the SHARE repository.  A description of 

SHARE and the requirements for a component specification and ontology supporting 

this repository are available in Johnson (2007).  A vision of the component 

specification and ontology for the repository framework, a brief survey of initiatives 

and technologies relevant to desired repository capabilities, a development 

approach, and initial design are described in Johnson & Blais (2008). The current 

report provides the initial component specification and ontology for the repository 

framework, as well as initial information models supporting future implementation of 

stronger semantic representations of assets and artifacts in the repository. The 

document provides recommendations for improvements to descriptions of 

information stored in the repository to enable more effective search, discovery, and 

use of information. The initial component specification and ontology will help meet 

near-term repository objectives and will set the foundation for achieving long-term 

resource discovery objectives in the Global Information Grid context. 

Keywords: Software Reuse, Software repository, Component Specification, 

Ontology, Extensible Markup Language, XML
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I. Introduction 

A. Background 
In August 2006, the Program Executive Officer of Integrated Warfare Systems 

(PEO IWS) established the Software Hardware Asset Reuse Enterprise (SHARE) 

repository: a library of combat system software and related assets for use by eligible 

contractors (both prime contractors and subcontractors) for developing or suggesting 

improvements to Navy Surface Warfare Systems. The SHARE repository is 

presently being populated.  PEO-IWS encourages all current Navy contractors and 

potential Navy contractors to register for access to the SHARE library to discover the 

assets it presently contains, as well as to contribute assets that may be useful to the 

Navy and its contracting community in the future.1  An unclassified site provides a 

mechanism to discover available library materials within SHARE, as those materials 

are populated. The site also hosts the license agreement and Non-Disclosure 

Agreement (NDA) required for obtaining library materials. Library materials are 

provided either online through access to the appropriate portion of the SHARE web 

site (classified or unclassified) or via delivery of physical media. The registration 

process for the classified portion of the site over SIPRNET2 is the same as the 

unclassified portion above, except no digital certificate is required. The most recent 

SHARE repository update (Version 1.3) incorporates several new enhancements: 

updated metadata and an improved asset submission process.  A more complete 

description of SHARE and the requirements for a semantic framework consisting of 

a component (repository asset) specification and ontology that will support this 

repository are available in Johnson (2007). 

                                            

1 Organizations interested in registering for access to the library should visit and complete an online 
registration form at https://viewnet.nswc.navy.mil 
2 https://viewnet.nswcdd.navy.smil.mil  
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B. Scope 
The Naval Postgraduate School (NPS) is tasked to develop an initial 

component specification and ontology for the SHARE software3 repository.  The 

component specification will describe the artifacts contained in the repository in 

sufficient detail to aid a repository user in determining if the artifact is worth 

retrieving.  The ontology will provide contextual semantics describing relationships 

among items in the repository to aid in associating artifacts with users’ needs.  The 

component specification and ontology will comprise a rich structural and semantic 

framework for SHARE that will enable multiple kinds of search and discovery 

techniques.  The goal is to enable the development of different tools to improve the 

usefulness of SHARE. 

C. Purpose 
The purpose of this report is to extend the description of the intended 

repository framework outlined in Johnson & Blais (2008) by providing updated 

specification of the repository framework component specification and ontology. 

Here, we provide initial information models supporting future implementation of 

stronger semantic representations of assets and artifacts in the repository. The 

document provides recommendations for improvements to descriptions of assets 

and artifacts stored in the repository to enable more effective search, discovery, and 

use to meet near-term objectives and to set the foundation for achieving long-term 

objectives for resource discovery in the future Global Information Grid. 

                                            

3 While the SHARE repository is intended for information on both hardware and software assets, this 
initial tasking is limited to a software (code and documentation) asset scope. The goal of the 
research, however, is for technical approaches that are developed for software to be readily 
adaptable to descriptions of hardware assets in the repository. 
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II. Conceptual Vision for the Software Repository 
Framework 

A. Introduction 
This section summarizes the rationale and vision for the SHARE repository 

framework and describes the major components that are specified in this report for 

implementation.  

B. Rationale for an Enriched Semantic Framework 
Current software repositories tend to be organized to support keyword 

searches over broad categories of software types.  As an example, the popular 

online repository SourceForge enables essentially two search types.  First, users 

can browse the repository by clicking through categorizations of different types of 

software and can then refine the search by filtering for different program aspects, 

such as specific programming language or operating system.  Second, users can 

perform a keyword search over the metadata within a particular category.   

In addition to these typical types of searches, we envision a graphical user 

interface that enables navigation of repository assets depending on users’ interests.  

This requires an interface that allows users to project their context onto the search 

mechanisms.  In other words, the users bring particular information needs and goals 

based on the problem they are trying to solve.  For example, users may seek 

particular functionality best obtained through a functional organization of the 

information in the repository; they may seek particular artifacts best obtained through 

a document resource organization of the information; or, they may seek information 

on certain testing methodologies that have been applied so that a work activity 

organization of the information would best apply. The challenge in designing the 

framework for the software repository is devising initial sets of taxonomic 

descriptions of the assets while creating flexibility for future introduction of additional 
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and diverse organizational views (e.g., profiles or templates) of the information as 

users’ needs and repository utility grow. 

There are many types of searches that could be implemented based on the 

proposed repository framework.  One type of search that we envision is a “point and 

click” graphical navigation of repository artifacts that allows users to navigate to and 

select artifacts based on various relationships to an item of interest.  As discussed in 

the previous reports, various navigation and visualization techniques are possible if 

relationships among assets and artifacts are recorded.  A second type of search that 

could be implemented is a semantic-matching, document-based search.  A related 

ongoing NPS research project titled ReSEARCH is investigating methods for 

improving consistent semantic interpretation of requirements documents to improve 

searches based on text.  Formalized semantic descriptions in the SHARE 

component specification and ontology will further enhance ReSEARCH capabilities 

to produce highly relevant search findings for users of the SHARE repository.  A 

third type of search of interest is based on a user-constructed model of the problem 

the user is trying to solve.  The user interface for the repository can assist users in 

building the model of a desired system architecture using a standardized 

representation scheme. The search can then return possible existing solutions for 

portions of the system and can identify likely gaps. These concepts are described in 

more detail in Johnson & Blais (2008). 

C. User Goals 
The potential goals that users may have when coming to the SHARE 

repository are based on the lifecycle phase or activity the users are performing at the 

time of search.  We call these “goals” since they do not have the detail normally 

associated with viable (testable) use cases but could become the basis for creation 

of such use cases.  These goals were used to guide our development of the 

repository framework and include:  
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 Concept development  

o Users seek to investigate current systems’ capabilities and 
compare them to new desired capabilities.   

o Users seek to develop an operational model of a system (a 
model with “holes”) and manipulate the model with tools to 
stimulate creativity towards new types of solutions to operational 
problems. 

 Requirements 

o Users seek to reuse existing requirements, where the proposed 
system meets existing capabilities. 

o Users seek to generate a draft requirements specification from 
existing repository contents. 

 Design 

o Users seek to search for existing components that may satisfy 
portions of the requirements. 

o Users seek to retrieve design patterns for common problems.  

o Users seek to reason about a system’s architecture including 
the ability to compare and evaluate possible solution 
compositions, investigate an architecture’s ability to satisfy 
quality attributes or non-functional requirements (e.g., 
interoperability, safety, performance, etc.), and investigate an 
architecture’s ability to satisfy functional requirements.   

 Implementation 

o Users seek to use existing repository artifacts to help refine a 
system model towards implementation.   

o Users seek to auto-generate a system based on a desired 
architecture.   The infrastructure provided by this specification 
and supporting tools will be geared to support composition even 
if it cannot be fully automated at this time.  More likely, a sort of 
cookbook or wizard to facilitate integration through an interface 
for assisting humans in making decisions during the 
composition process will be enabled.   At a minimum, the 
component specification will include useful information for 
manually constructing the composite system from components.   

 Test 

o Users seek to auto-generate testing requirements based on 
existing repository test information. 
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o Users seek to develop test cases and scenarios based on 
operational models constructed in the concept development 
phase. 

o Users seek to reuse pre-existing testing requirements based on 
systems satisfying portions of the operational model or system 
design. 

o Users seek to reuse tools, environment models, and 
methodologies for testing. 

o Users seek to investigate the testing pedigree for items in the 
repository that are candidates for reuse.  

 Maintenance 

o Users seek to reuse maintenance plans, implementation of 
software product line principles for system evolution, and 
software reuse in reengineering efforts.  These goals are 
outside the scope of this research but are recommended for 
future research.   

In section VI we will investigate two possible user search scenarios based on 

different lifecycle phases and their goals.  The scenarios will be used to demonstrate 

the utility of each piece of the recommended repository framework.  

D. SHARE Repository Framework 
To enable the types of tools we envision, we must create a richer semantic 

framework for the repository.  Johnson & Blais (2008) proposed two major aspects 

for this framework: a component specification and ontology. The component 

specification is a description or model of the items in the repository and consists of 

two parts: metadata and software behavior representation. The ontology describes 

concepts and relationships to create various perspectives or contexts for examining 

the contents of the repository. These aspects of the framework are discussed further 

below. 

1. Component Specification: Metadata 

The metadata for each artifact should incorporate all necessary data for 

discovery and implementation.  The metadata will aid repository users in determining 
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if the item is suited for their use and will provide information about how to use the 

asset when it is retrieved.  We refer to this as “standard” or “typical” metadata since 

there are many existing examples of metadata we can use to develop the metadata 

for SHARE.  The current and recommended SHARE metadata sets are described in 

Section III. 

2. Component Specification: Software Behavior 

The metadata for many current repositories, such as those described earlier, 

fail to capture a searchable representation of the behavior of the items outside 

general categories of functionality (e.g., Archiving Compression Conversion, Control 

Flow Utilities, Graphics, Security) and text-based search of code descriptions.  

Unlike current practice, the SHARE component specification will consist of both 

typical metadata and a behavioral model of the component.  Since this piece of the 

component specification is not commonly incorporated into repositories in a 

standardized manner, we feel it is a specific focus area to identify the appropriate 

representation mechanisms for software behavior in the repository context.  Our 

recommended approach to incorporating software behavior into the SHARE 

metadata is presented in Section IV.  

3. Ontology of Framework Relationships 

The framework ontology presented in section V includes descriptions of the 

relationships of the components to form a contextual model of the repository items.4   

These relationships may include the component’s use/role in existing systems, its 

mapping to reference or domain architectures, and its utility in various software 

development lifecycle phases.  Contextual information about the artifact can be 

                                            

4 Throughout the document, we will use ontology as a general term for describing concepts and 
relationships among concepts, with taxonomy as a special case in which the classes in the ontology 
are related by a single property, such as “is-a” or “has-a.”  
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exploited to enable sophisticated search and discovery methods that more closely 

match recommended retrieval items to a user’s problem context.  

E. Summary 
In developing this framework for the SHARE repository that will enable richer 

search capabilities to support the achievement of individual repository user goals, 

we focus on three areas: 

1. “Typical” metadata for artifacts 

2. A suitable representation of software behavior 

3. Framework relationships (ontology) 

The following three sections describe the approach we used to address each 

of these areas and their resulting products.  We will also use two use cases 

reflecting user activities in the requirements and design phases of a project as a 

demonstration of how the information provided by each product will enable the 

accomplishment of various user goals. 
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III. SHARE Metadata 

A. Introduction 
An initial list of required asset information has been developed by the SHARE 

Program Office at Naval Surface Warfare Center, Dahlgren, VA.  We began our 

metadata development effort by creating an Extensible Markup Language (XML) 

Schema for this metadata set and then enhanced the schema based on a more 

current “wizard” that leads a user through the SHARE asset information entry 

process.  This “as-is” metadata set is provided as Appendix A and described in 

Section B below.   

After careful analysis of this initial schema, as well as known metadata 

examples found in existing software repositories, we began to modify the schema by 

both reorganizing the data and complementing the fields with information we believe 

should be included.  We also incorporated the necessary information to place each 

artifact in the appropriate context based on the ontology development.  Finally, we 

evaluated the schema against the minimum requirements of the DoD Discovery 

Metadata Specification (Deputy Assistant Secretary of Defense 2007) to promote 

future exposure of SHARE contents across the DoD Enterprise.  The resulting 

recommended schema is provided as Appendix B and described in section C below.   

B. Current Content Description 
At the time of this writing, the authors were not aware of any metadata 

description of SHARE assets and artifacts using the Extensible Markup Language 

(XML) Schema language.5 As a starting point for creating structured descriptions of 

the SHARE data, we designed an XML Schema following the organization and 

                                            

5 Refer to http://www.w3.org/XML/Schema for full description and specification of the XML Schema 
language. 
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content of the SHARE Asset Information Form and the user-entry wizard used to 

collect information about an asset being submitted. The top-level structure of the 

XML representation of SHARE Asset Information is shown in Figure 16  The root 

element of the XML structure is called SHAREAssetInformation. There is a one-to-

one correspondence between major elements in the XML structure (child elements 

of the root element) with the major steps in the user entry wizard:  

 Source Identification (wizard step 27) 

 Program Information (wizard step 3) 

 Asset Description (wizard step 4) 

 Asset Scope (wizard step 5) 

 Related Assets  (wizard step 6) 

 Development Status (wizard step 7) 

 Context Information (wizard step 8) 

 Artifacts Contained in the Asset (wizard step 9) 

 Architecture Domain (wizard step 10) 

 Data Format (wizard step 11) 

 Rights and Restrictions (wizard step 12) 

                                            

6 Diagrams of the XML structures have been generated by Altova XML-Spy. The product is available 
at http://www.altova.com/products/xmlspy/xml_editor.html. Altova offers a free 30-day license for trial 
use of the product.  The Altova presentation of elements incorporates a plus (+) symbol on the right 
edge of a box to indicate that the element contains subelements.  This may be useful for the reader to 
follow the figures presented in this report since in most cases, the expansion of an element with the 
plus (+) symbol will be shown in a later figure.   
7 Note: Step 1 of the SHARE Asset Information Form wizard is a basic start-up step with no 
associated data entry. 
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Figure 1.   Top-Level Structure of an XML Representation of SHARE Asset 
Information 
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In the following subsections, we provide a brief description of the structure 

and content of each of these elements. The intent is neither to provide a user’s guide 

to the data entry wizard nor to present a complete description of the full depth of the 

XML schema; rather, it is the intent to provide an overview of the structure. The full 

schema is provided in Appendix A for further reference. 

1. Source Identification 

The SourceIdentification element contains information about the person and 

organization submitting the asset. The structure of the SourceIdentification element 

is shown in Figure 2.  The Contributor element contains name and contact 

information on the person entering the asset information (Figure 3).8  The 

Organization element provides the name of the organization submitting the asset 

and additional information, depending on whether it is a governmental or contractor 

organization (Figure 4 and Figure 5). 

 

Figure 2.   SourceIdentification Element 

For governmental organizations, the wizard prompts the user to identify any 

applicable government patents that apply to the asset being submitted (Figure 6). 

                                            

8 In the figure, boxes in solid lines represent child elements that are required entries; dashed lines 
indicate optional entries. The Address and Notification child elements have subordinate structure, 
indicated by the “+” sign on the right side edge of the boxes. 
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Child element ApplicableGovernmentPatents is a container holding one or more 

Patent elements as needed.  

 

Figure 3.   Contributor Element 

 

 

Figure 4.   Organization Element 
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Figure 5.   Selection of Government or Contractor Type of Organization 

 

Figure 6.   Entry of Applicable Patent Information for a Government Organization 

For a contractor organization, the wizard prompts the user to enter a contract 

number (which the asset was developed under), how the asset was delivered to the 

government, and name and contact information (organization and address) on a 

cognizant Contracting Officer (Figure 7). 

 

Figure 7.   ContractorOrganization Element 

2. Program Information 

The ProgramInformation element (Figure 8) identifies the program that 

developed the asset. The user can select from a list of previously identified 

programs or can enter a new program name, in which case the user is prompted by 

the wizard to enter program manager name and contact information for the identified 

program. 
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Figure 8.   ProgramInformation Element 

3. Asset Description 

The AssetDescription element (Figure 9) contains information about the asset 

being submitted to the repository, including its name, type (code or documentation), 

description, version, date (optional), classification information, and rationale. 

Classification information (Figure 10) includes the classification level (e.g., C, S), 

export control statement, distribution statement (e.g., distribution statement A), and, 

for classified assets, the Security Classification Guide ID number.  

It is important to note that the Security Classification Guide ID number is 

optional in the XML structure but is actually required if a classified asset is entered 

into the system. The entry wizard can easily enforce this “business rule”; it is more 

difficult to express the combination in the XML schema, although a number of 

approaches are possible. Other schema languages, such as Schematron, or 

ontologies, such as the constructs described later in this document, can be used to 

convey such conditions more effectively than the XML Schema language alone. 

Further work in this area can be done following programmatic decisions about use of 

metadata in the SHARE repository. 
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Figure 9.   AssetDescription Element 

 

Figure 10.   ClassificationInformation  Element 

4. Asset Scope 

The AssetScope element (Figure 11) contains information specifying whether 

the asset was developed for a tactical application, whether it is used in the 
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development support environment, or whether it supports reuse in some other way. 

For each of these selections, the wizard provides a list of asset categories. The XML 

structure uses the element tag (TacticalApplication, DevelopmentSupport, 

OtherScope, UnknownScope) to indicate the first level of categorization and the 

value of that element to identify the second level of categorization (e.g., possible 

values of the TacticalApplication element include “System,” “Application Program,” 

“Package,” “System Service,” “Component,” “Library,” and “Module/Code 

Fragment”). 

 

Figure 11.   AssetScope Element 

5. Related Assets 

The RelatedAssets element is a container holding one or more RelatedAsset 

elements. This structure identifies other assets in SHARE that are related to the 

asset being submitted. For an individual RelatedAsset element (Figure 12), the XML 

schema design approach is similar to that described above for the AssetScope 

element; after identifying the related asset by name (the name or a reference to the 

selected asset would be stored in the XML file conforming to this schema), the user 
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selects a type of relationship, identified here as CreationRelationship (Newer 

Version, Variant Of, Extracted From, or Derived From), WorkingRelationship 

(Dependent Upon, Needed By, or Interfaces With), GenerationRelationship (Older 

Version, Extraction Source, or Derivation Source), or OtherRelationship (Similar To, 

Contained Within, or Contains). The content of each of the child elements identifies 

the type of relationship (one section of the related values is shown above). 

 

Figure 12.   RelatedAsset Element 

6. Development Status 

The DevelopmentStatus structure (Figure 13) identifies the development 

status (In Development or Development Completed) and describes any planned 

updates and the maturity of the asset.   
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Figure 13.   DevelopmentStatus Element 

7. Context Information 

The ContextInformation element (Figure 14) provides information about the 

operational context needed for the asset, including dependencies on Commercial 

Off-the-Shelf Software (COTS) or Government Off-the-Shelf Software (GOTS), 

target operating system(s), programming language(s), and runtime environment(s). 

Each child element of ContextInformation is a container for holding one or more 

individual items of the identified category. 

 

Figure 14.   ContextInformation Element 
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8. Artifacts Contained in the Asset 

Assets contain artifacts. Two types of artifacts are currently in SHARE: 

document artifacts and code artifacts. This partition corresponds to the Asset Type 

information entered earlier in the process. The ArtifactsContained element (Figure 

15) provides the top-level selection of one of these categories. 

 

Figure 15.   ArtifactsContained Element 

For a document artifact, the DocumentArtifact structure (Figure 16) allows 

entry of artifacts falling into one or more of the six sub-categories: Requirements, 

Design/Architecture Documentation, Test Procedures, User Documentation, Training 

Documentation, or Test Records. These types are identified in the ArtifactType 

element of each DocumentTypeArtifacts element (Figure 17). The Artifacts element 

is a container for one or more individual Artifact elements identifying the artifact of 

the identified type contained in the asset being submitted. 

 

Figure 16.   DocumentArtifact Element 
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Figure 17.   DocumentTypeArtifacts Element 

For a code artifact, the CodeArtifact structure (Figure 18) allows entry of 

artifacts falling into one or more of the six sub-categories: Source Code, Compiled 

Libraries, Executable Programs, Data/Support Files, Build Scripts/Instructions, or 

Tools. These types are identified in the ArtifactType element of each 

CodeTypeArtifacts element (Figure 19). Again, the Artifacts element is a container 

for one or more individual Artifact elements identifying the artifact of the identified 

type contained in the asset being submitted. 

 

Figure 18.   CodeArtifactType Element 

 

Figure 19.   CodeTypeArtifacts Element 

9. Architecture Domain 

The Architecture Domain entry in the SHARE asset information form wizard 

allows the user to identify one or more domains of the Surface Navy Combat 

Systems Objective Architecture that apply to the asset being submitted. In the XML 
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structure, the CombatSystemsObjectiveArchitecture (Figure 20) allows identification 

of one to 12 ArchitectureDomain elements, each having a value selected from the 

following: Computing Equipment, Infrastructure, Display, Sensor Management, 

Track Management, Command and Control (C2), Weapon Management, Vehicle 

Control, External Communications (EXCOMM), Common Support, Ship Control, and 

Other. 

 

Figure 20.   CombatSystemsObjectiveArchitecture Element 

10. Data Format 

The DataFormat element (Figure 21) describes the physical media format, 

number of files, archive formats, total data size, the number of source lines of code 

(in thousands), and the total lines of comments provided in the asset. Note that all 

this information is optional in the structure. 

 

Figure 21.   DataFormat Element 
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11. Rights and Restrictions 

The RightsAndRestrictions element (Figure 22) identifies any data rights 

marking contained with the asset being submitted and lists any other licenses that 

may be needed to use the asset. Each of the child elements (DataRightsMarkings, 

CommercialSoftware, SpecialLicenses, OpenSourceSoftwareLicenses, and 

DataRightsAssertions) are structured as choices between “yes” and “no” selections 

(YesSelection and NoSelection child elements) where the “yes” selection can 

contain a description of the pertinent information (as the value of the YesSelection 

element).  NoSelection elements are empty.  

 

Figure 22.   RightsAndRestrictions Element 

C. Proposed Content Description: Separation of Assets and 
Artifacts 

The most significant recommended change to the current SHARE approach 

to handling metadata is the level of application.  It is our assertion that to enable the 

satisfaction of repository user needs, metadata must be applied at the artifact level 

rather than at the asset level, which is the current methodology for SHARE.   

To be clear, we must provide our definition of these two concepts.  The Navy 

Open Architecture (OA) program has adopted similar definitions for asset and 
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artifact as those used in the Object Management Group (OMG) Reusable Asset 

Specification (RAS).  In the RAS, artifacts are defined as “any work products from 

the software development lifecycle,” and assets are a grouping of artifacts that 

“provide a solution to a problem for a given context” (Object Management Group, 

2005, p. 7).  Accordingly, the RAS describes an approach for packaging artifacts into 

an asset.   

This is consistent with the current SHARE approach and remains consistent 

in the proposed metadata schema.  However, the current SHARE approach is to 

package artifacts into assets at the convenience of the submitter and to enable the 

current retrieval process.  We believe it is more useful to enable packaging of 

artifacts into assets based on users’ needs.  This means that the grouping of 

artifacts into an asset should have the capability of being user-defined.  In order to 

enable this approach, the users must be able to discover the artifacts that are 

potentially of value to their particular context to solve a particular problem and then 

package those artifacts into an asset for retrieval.     

Therefore, the proposed metadata schema includes separate definitions of 

structures for artifacts and assets.  This does not preclude the pre-packaging of 

artifacts into assets for submission to the repository or for extraction to solve 

common problems.  We envision the capability for users to discover a problem 

solution by either locating a prepackaged (reusable) asset or by building an asset 

from artifacts they believe will help solve their particular problem. 

Splitting the metadata into two schemas, one for assets and another for 

artifacts, also enables a clearer distinction about the data that needs to be collected 

for each.  For example, the current SHARE metadata collects data on the types of 

artifacts included in the asset, such as whether they are documents or code.  Then, 

it separately asks for thousands of lines of code (KSLOC) for the asset.  This would 

more likely be tied to particular artifacts that are of the type “code” in the asset.  By 

separating the asset and artifact schemas, we can better distinguish the data that is 
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necessary for an asset from the data that is necessary for an artifact, and we will be 

able to manipulate the data more appropriately with tools that implement the search.   

Collecting metadata information for each artifact may seem like a daunting 

task when compared to the current method.  However, it is highly likely that a good 

portion of the metadata that applies to one artifact also applies to the remaining 

artifacts in a group of artifacts being submitted.  The submission tool could be 

constructed in such a way to minimize duplicative entries of data by prompting users 

to verify that the information being entered applies to all of the artifacts in a group.  

This would minimize the individual entries required in the submission and metadata 

collection process. It is also possible to create tools that automate much of the 

metadata collection from the artifacts themselves. Other organizations are  

conducting research and development to auto-generate metadata from the source 

products. This is a critical capability in making legacy content available for search 

and discovery. Adoption of structured metadata makes autogeneration feasible, 

although certainly nontrivial. This is a recommended area for future research and 

development in the SHARE program. 

1. Artifacts Schema 

The artifacts schema is provided in Appendix B.  The following sections 

describe the schema design and details.     

Schema overview 

The artifacts schema is designed to be flexible in its implementation.  All the 

elements, types and attributes in the schema are defined globally so they can be 

reused in other schemas that developers may create for working with artifact 

information. The root element, Artifacts, is simply a container for any number of 

artifacts contained in a single instance of the schema, as shown in Figure 23.  

Repository managers and tool designers can decide if they wish to keep a separate 

XML file describing each artifact or if they prefer to group multiple artifact 

descriptions into a single XML file.  
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Figure 23.   Artifacts Element 

The individual descriptions of each of the artifacts are also designed to be 

flexible.  A specific artifact can be incorporated into the file in one of three ways.  

The first is by providing the full artifact description.  This full description represents 

the heart of the metadata development effort and should be considered the preferred 

method for representing an artifact.  However, if the full description is not available, 

or if the information required is provided in some other location, the schema allows 

the inclusion of the artifact representation by reference, either to a physical location 

or by URL.  This is shown in Figure 24.   

 

Figure 24.   Artifact Element 
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Artifact Full Description 

The full description of each artifact, contained in the element 

ArtifactFullDescription, is composed of eight subelements as depicted in Figure 25.  

Each of these subelements is discussed in detail in the following sections. 

 

Figure 25.   ArtifactFullDescription Element 
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ControlNumber 

The ControlNumber element contains a unique identifier for the artifact.  

Currently, this number is a 32-digit hexadecimal number automatically generated by 

the SHARE Domino Database.  It is worth noting that if the artifacts are meant to be 

shared as part of an enterprise repository design, the origin of this number may need 

to be reconsidered in order to avoid any chance of duplication.   

SubmissionInformation 

The SubmissionInformation element contains information about the date, time 

and source of the artifact as shown in Figure 26.   

For the source, information is collected for both the individual submitting the 

artifact as well as the organization responsible for its creation as shown in Figure 27.  

In the current SHARE submission process, the point of contact information about the 

individual submitting an asset is pulled automatically from the database for the 

person who is logged into the repository during the submission.  Point of contact 

information is used in several locations throughout the schema.  While the individual 

elements that make up this global element are depicted here, they will be assumed 

for all elements with Type: POCInfo in later diagrams and not shown in the 

decomposed state for brevity. 

 

Figure 26.   SubmissionInformation Element 
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Figure 27.   Source Element 

The SourceOrganization can either be a government or contractor agency.  

Different metadata is required in each case.  For a government organization, the 

information required is the organization name and a list of any relevant patents for 

the artifact.  This is shown in Figure 28.   
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Figure 28.   GovernmentOrganization Element 

The ContractorOrganization element is shown in Figure 29.  As in the 

GovernmentOrganization, required elements include the organization name and 

type.  However, the contract number, delivery vehicle, and Contracting Officers 

Representative (COR) applicable to the artifact are additional required elements.  

The value options for the delivery vehicle include DD250, CDRL or Don’t Know, as is 

indicated in the current SHARE submission process. 
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Figure 29.   ContractorOrganization Element 

Program 

The Program element in the ArtifactFullType structure captures the name and 

manager of the major Program of Record (POR) responsible for the creation of the 

artifact and is shown in Figure 30.  The artifact may be a product of one of the 

programs already contained in SHARE, or the program may be new to SHARE.  For 

this reason, we have incorporated a choice between the two types of names.  If the 

name is an ExistingProgramName, its value is limited to the existing list of programs 

in SHARE.  Currently, this list includes AEGIS, DDG 1000, SSDS, LCS, NSWCDD 

HSI, SIAP, SQQ-89, TSTS, ASW, CEP WASP, GeDear, and BFTT.  If the program 

does not already belong to the enumeration list, the new name is entered as a 
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NewProgramName.  This distinction is necessary to allow the submission tool to 

handle the two names differently.  If the name belongs to the existing list, the 

program manager POC information can be automatically pulled from the database.  

Otherwise, the tool will need to prompt users to input the information. 9   

 

Figure 30.   Program Element 

ArtifactDescription 

The ArtifactDescription element is the heart of the FullArtifactDescription.  

The information that will influence the decision of whether to retrieve an item is most 

likely to be found in this element since the artifacts themselves are described 

therein.  The first level of decomposition of the ArtifactDescription is provided in 

Figure 31.   

                                            

9 Software can then modify this governing schema to add the new program name to the list of 
previously identified programs for validating subsequent XML descriptions of artifacts. 
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Figure 31.   ArtifactDescription Element 

The information necessary to describe the artifacts differs depending on 

whether the artifact is software code or some other type.  Therefore, the schema 

allows a choice between the two types of artifact descriptions.  The 

NonCodeDescription element applies to any artifact not considered software code.  

The group of elements contained therein is also required for artifacts that fall under 

the CodeDescription element category, but additional elements are required for code 

artifacts.  To facilitate the use of elements in both cases, we built a group of 

elements called ItemDescriptionGroup as shown in Figure 32.  Each of the elements 

contained in the ItemDescriptionGroup, and therefore as part of the 

NonCodeDescription element, is described in further detail below.   
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Figure 32.   NonCodeDescription Element 
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The first three elements in the group—ArtifactName, Version, and 

DateofCreation—are relatively straightforward.  The artifact name is assigned by the 

artifact submitter usually according to the naming convention followed by the POR 

responsible for its creation.  The version assignment should follow the configuration 

management process of the POR.  The date of creation may be approximated if the 

actual date is not known. 

The Description and ContributionRationale elements are subjective.  The 

artifact submitter will supply a free text entry for each element, with the contribution 

rationale only as an optional entry.   

The ArtifactType element refers to the classification of artifact type according 

to the artifact taxonomy incorporated into the artifacts-lifecycle ontology described in 

section V.B.  The assignment of a type and subtype attribute identifies the artifact’s 

place in the ontology as shown in Figure 33.   

 

Figure 33.   ArtifactType Element 

A detailed description of the ontology and its intended use are provided in 

section V.  However, the taxonomy for artifact Types and SubTypes is shown in 

Table 1.  The repository tool should verify the values that are assigned for the Type 
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and SubType attributes of the ArtifactType element against this taxonomy, which is 

included in the artifact-lifecycle ontology.  

Table 1. Artifact Type Taxonomy 

Type SubType 
Requirements Database Requirements 

Artifacts Requirements Specification 
Algorithm 
Data Model 
Design Document 
Design Model 

Design Artifacts 

Pattern 
Architecture Document 

Architecture Artifacts 
Architecture Model 
Compiled Library 
Executable Program Code Artifacts 

Source Code 
Simulation Model 

Simulation Artifacts 
Simulator 
Application Programming Interface 
Interface Design Document 
Interface Design Specification Interface Artifacts 

Interface Requirements 
Specification 
Test Plan 
Test Procedure 
Test Result 
Test Script 
Test Source Data File 
Test Tool 

Test Artifacts 

Test Truth Data 
Build Instruction 
Build Script 
Training Documentation 

User Artifacts 

User Documentation 
Other Artifacts White Paper 

 

The ApplicableSystems element is a list of the major systems and their 

subsystems for which the artifact has previously been used and is shown in Figure 

34.  As we will discuss in the ontology discussion, the ideal repository framework will 

incorporate system-subsystem ontologies for each system contained in the 
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repository against which the ApplicableSystems sub-elements can be verified.  This 

will allow further use of this field in defining context for the artifacts.  Until that level 

of detail is implemented, knowledge of the applicable System and Subsystem pairs 

is still valuable.  Ideally, the subsystem identified should reflect the lowest level of 

granularity covered by the artifact.  Since an artifact may be relevant to an entire 

system or systems, the Subsystem element is captured as an optional element in 

the schema. 

 

Figure 34.   ApplicableSystems Element 

The ObjectiveArchitectureTags element is displayed in Figure 35.  This 

element is similar to the ArtifactType element in that the allowable values for the 

subelements, DomainTags and SubDomainTags, should be verified against a 

separate ontology.  This ontology is based on the Surface Combat System Top 

Level Objective Architecture built under the Navy OA program.  The DomainTags 

and SubDomainTags correspond to the two levels of decomposition represented by 

the Objective Architecture, thus identifying the relationship of the artifact to the 

architecture.  Since each artifact may apply to multiple domains or sub-domains, the 

elements are constructed as containers capable of one to many individual entries.  

The objective architecture ontology and its utility are discussed further in section 

V.C.    
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Figure 35.   ObjectiveArchitectureTags Element 

The SoftwareBehaviorDescription element captures behavioral information 

about the artifact as shown in Figure 36.  This behavior is ideally captured in two 

ways.  First, the functionality of the software related to the artifact is identified by a 

list of functions selected from the Common System Function List.  We have 

converted the Navy’s Common Systems Function List (CSFL) into an ontology 

expressed in the Web Ontology Language (OWL).  Acceptable entries for the 

CommonSystemFunction element should be validated against this ontology.  

Second, the interface information is captured as a Web Service Description 

Language (WSDL) document.  The CSFL ontology and the WSDL descriptions of 

the artifacts are discussed in more detail in section IV.   
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Figure 36.   SoftwareBehaviorDescription Element 

The History element captures information about the status and background of 

the artifact and is depicted in Figure 37.  The DevelopmentStatus indicates whether 

an artifact is complete, with restricted allowable values of InDevelopment or 

DevelopmentComplete.  PlannedUpdates and MaturityDescription are free text 

notes that can be added by the artifact submitter. 

 

Figure 37.   History Element 
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The Pedigree subelement of History is provided in Figure 38.  In the current 

SHARE repository, asset submitters are asked to relate the asset being submitted to 

existing items in the repository according to one or more of the relationships listed as 

subelements in the History element.  The current SHARE definitions of these 

relationships are captured in Table 2.   

With the incorporation of the ontologies into the repository framework, we 

believe that many of these relationships could be derived automatically.  For 

example, an artifact of the same name, type, system/subsystem mapping, and a 

later version number could be assumed to be a newer version of an existing artifact.  

Similar logic could be applied to derive several of the other relationships captured 

here.  Rule-dependent, automatic derivation of these relationships is highly desirable 

since manual assignment is likely to be sporadic and inconsistent.   

Further work is required to flesh out the intended specific meanings of several 

relationships as currently defined and to determine the appropriate rules that would 

enable automatic relationship assignment.  Until this work is completed, we decided 

to include the relationships in their current form but to apply them at the more 

meaningful artifact level.  Additionally, we moved the Dependent Upon, Needed By, 

and Interfaces With relationships under the Interdependencies element discussed in 

the following paragraph. 
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Figure 38.   Pedigree Element 
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Table 2. SHARE Asset Relationships (current) 

Relationship Description 
Was this asset created from other assets in SHARE? 
Newer Version This indicates that the current asset is an earlier version of the related 

asset.  It is intended to upgrade or replace the related asset, not be a 
variant of it. 

Variant Of This indicates that the current asset is a variant of the related asset to 
be used in a different target environment or situation. 

Extracted From This indicates that the current asset was extracted from another asset 
and was possibly repackaged to be more reusable.  The extracted 
asset will not be merged back into the asset it was extracted from. 

Derived From This indicates that the current asset was originally based on the related 
asset but is sufficiently different to consider it a different asset and not a 
version or variant. 

Does this asset work in conjunction with other assets in SHARE? 
Dependent Upon This indicates that the current asset references or relies on the services 

or artifacts of the related asset to provide the desired/required 
capability. 

Needed By This indicates that the current asset is referenced or used by the 
related asset to provide the desired/required capability. 

Interfaces With This indicates that the current asset communicates with the related 
assets.  The related assets may be needed for operation but they are 
not needed to complete the requirements. 

Were other assets in SHARE created from this asset? 
Older Version This indicates that the current asset is updated or replaced by the 

related asset. 
Extraction Source This indicates that the current asset was used to extract the related 

asset.  The extracted asset will not be merged back into the asset it 
was extracted from. 

Derivation Source This indicates that the related asset was originally based on the current 
asset but is sufficiently different to consider it a different asset and not a 
version or variant. 

Is this asset related in other ways to other assets in SHARE? 
Similar To This indicates that the other asset has characteristics similar to the 

current asset. 
Contained Within This indicates that the current asset is part of a larger asset that is also 

stored in SHARE.  This containment may be physical or by reference. 
Contains This indicates that the current asset contains the related asset.  This 

containment may be physical or by reference. 
 

The Interdependencies element of the NonCodeDescription structure is 

shown in Figure 39.  The first two subelements, DependentUpon and NeededBy, are 

carried over from the SHARE asset relationships described in Table 2.  We consider 

these items to be somewhat vague and recommend that further work be done to 

refine the intended meaning of the relationships.  If the criteria for classification in 
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one of these two categories are better defined, the ontologies may provide the 

necessary links to automatically assign these relationships between artifacts.  The 

COTS_GOTSDependencies element captures any dependencies the artifact may 

have on items that may be outside configuration control of the asset submitter.  

Finally, the InterfacesWith element indicates any artifacts with which the artifact 

communicates.  If the repository framework is eventually populated with ontologies 

that represent each system’s architecture as described above, this item may be 

automatically populated as well. 

 

Figure 39.   Interdependencies Element 

All the elements described above as part of the ItemDescriptionGroup are 

included in the CodeDescription element as well as the NonCodeDescription, as 

shown in Figure 40.  However, there are additional fields required for code items.  

They include information about the target operating system, programming languages 
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used, the intended runtime environment and size information, such as KSLOC 

(thousands of source lines of code) and total lines of comments. 

 

Figure 40.   CodeDescription Element 

SecurityInformation 

The next element included in the full artifact description is 

SecurityInformation.  Different information is required for classified artifacts than 

unclassified, so the element is divided into two choices, as shown in Figure 41.   
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Figure 41.   SecurityInformation Element 

The group of elements that is required for both classified and unclassified 

artifacts includes the classification code (U, C, or S), the export control determination 

(either Yes or No), and the distribution statement (with possible values of A, B, C, D, 

E, F, or X).  These elements are shown for the Unclassified element in Figure 42.   

 

Figure 42.   Unclassified Element 

The Classified element includes each marking in addition to the classification 

guide ID, which cites the applicable DoD Classification Guide for the artifact.  This is 

shown in Figure 43.   
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Figure 43.   Classified Element 

DataFormat 

The DataFormat element refers to information about the format of the artifact 

and is depicted in Figure 44.  Information is stored here about the type of physical 

media, which at this time may be CD or DVD.  File names (one or many) for the 

artifact are provided here as well.  This is the only mandatory entry in the 

DataFormat element.  Archive formats and total data size are also included in the 

DataFormat element. 
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Figure 44.   DataFormat Element 

RightsRestrictions 

The RightsRestrictions element contains information about possible 

limitations on the use of the artifact, as shown in Figure 45.  For each subelement, 

the metadata contains a Yes or No indication of whether the restriction applies and 

then allows for a free text description of the restriction.  The potential restrictions 

included are data rights markings, commercial software, special licenses, open 

source software licenses, and data rights assertions. 
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Figure 45.   RightsRestrictions Element 

AdditionalInformation 

The final element in the full artifact description is an optional free text field, 

AdditionalInformation, in which an artifact submitter may enter any other relevant 

information about the artifact.   

2. Assets Schema 

In the preceding description of Artifacts, we see that much of the detail 

about a submission has been moved to the Artifact level. The information needed 
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to describe an Asset is thus simplified to be primarily an identification of the 

Artifacts contained in the Asset. The root element of the Assets XML structure is 

a container for one or more Asset records, as shown in Figure 46.  The proposed 

top-level XML structure for an Asset is shown in Figure 47.   

 

Figure 46.   Assets Root Element 

The Asset element provides the asset name, purpose, description of initial 

uses, history of uses (PreviousUses), scope (Tactical Application, Development 

Support, Other, or Unknown), category, list of contained artifacts (ArtifactsIncluded), 

and retrieval information. Of these, only PreviousUses and ArtifactsIncluded have 

subordinate structure (i.e., child elements). These structures are shown in Figure 38 

and Figure 49, respectively. PreviousUses simply contains one or more PreviousUse 

elements, which contain a text description of the usage of the asset being submitted. 

ArtifactsIncluded is a type of ArtifactsType, a structure containing a list of one or 

more Artifact elements. This type, and the rest of the structure of an Artifact, was 

described previously in Section III.C.1. 
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Figure 47.   Asset Element 

 

Figure 48.   PreviousUses Element 
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Figure 49.   ArtifactsIncluded Element 

D. Comparison of Current and Proposed Metadata 
The proposed separation of Assets and Artifacts into their own XML schemas, 

including definition of global complex and simple types in the schemas, is intended 

to provide flexibility in using the schemas. Users can begin to describe individual 

artifacts prior to gathering collections of artifact descriptions to package into one or 

more assets that can be stored in the SHARE repository. Descriptive elements from 

the XML schemas (and therefore from the declared SHARE namespace) can be 

used in the construction of other XML schemas and XML documents, permitting 

common naming and data structures across applications.  

Whether taking an asset-centric view or an artifact-centric view, greater 

automation is possible by having XML schemas available that show what information 

is needed to describe the resources.  Submitter-side tools can extract needed 

information from project files to generate XML files containing resource descriptions 

and can submit those to the SHARE repository for processing and storage.  

In accessing information from the SHARE repository, the artifact-centric 

perspective enables users to be more precise in their searches and to obtain more 

precise responses. Previously, access at the asset level meant a request could 

include unneeded or unwanted portions of an asset, where only certain selected 

artifacts within the asset were of interest. At the artifact level, responses to user 

requests can be tailored more specifically to users’ needs. On the one hand, if 
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releasability authorization is at the artifact level, there is stronger control over the 

release of a component, but multiple release authorities may create more difficulty in 

obtaining the components needed. We think erring on the side of stronger control 

and precision is worth the trade-off with the potential of a more difficult access to the 

actual product. Much of this difficulty may be overcome, in time, through various 

access control methods that permit greater automation in the release authorization 

process.  

In addition to this fundamental difference between the existing and proposed 

metadata sets, there were several changes to the structure and details included in 

the metadata.  Additional changes could be desirable based on an evaluation of the 

usefulness of some of the existing metadata fields.   

E. Metadata Comparison with Existing Repositories 
To verify completeness of the metadata, we conducted a brief analysis in 

which we compared the proposed metadata to the information captured in two 

known software repositories, SourceForge (2007) and CPAN (2007).   Although 

these repositories have key differences from SHARE in content, purpose, and 

structure, they serve as examples of working software repositories and are used 

here as a “sanity check” for the completion of the metadata. 

SourceForge provides both an open source software repository and a project 

management tool.  The repository contains downloadable software from the projects 

stored at the site.  SourceForge enables essentially two different ways to search.  

First, users can browse the repository by clicking through categorizations of different 

types of software and then they can refine the search by filtering for different 

program aspects, such as specific program language or operating system.  Second, 

a keyword search over the metadata within a particular category is possible.  

Compared to other online repositories, the metadata in SourceForge is quite 
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exhaustive.  This is due, in part, to the convenience of drawing the metadata from 

the project information at the same location. 

In general, the proposed SHARE metadata is similar to the information posted 

about SourceForge artifacts.  The most significant differences reflect the different 

uses of the repositories.  Since SourceForge is also intended to be an interactive 

developer environment rather than just a repository of complete artifacts, there are 

different fields introduced to capture some of the information to help the developers.  

For example, SourceForge allows the developer to establish forums for users to 

submit feature requests, support requests, and to ask for help when using the 

software.  In SHARE, it may be desirable for users to blog or to have other 

capabilities attached to the artifacts or assets, but it is unlikely that the same level of 

attention will be paid to user requests since the requirements for the software and 

any upgrades are generated through the DoD acquisition process.   

CPAN also contains similar information about its artifacts to that found in the 

SHARE repository.  CPAN seems to be focused at a much lower level of granularity, 

however.  For example, when describing software behavior, CPAN lists the methods 

included in the software package and describes each of them.  This can be thought 

of as a more detailed version of the proposed CSFL descriptions of the software 

behavior or similar to the WSDL descriptions discussed in the next section.  Both are 

capturing software functionality, but the CSFL descriptions are held at a higher level 

of abstraction than the individual methods described in CPAN. 

CPAN and SourceForge both contain a metadata structure for known errors 

of a system.  We considered adding this field to the SHARE metadata, but it is likely 

that a collection of known faults of secret systems is sensitive information.  This 

could easily be added at a later time if deemed desirable; however, change 

management is probably best handled by the individual programs following their 

established processes and procedures.  
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F. DDMS Element Mapping 
In the US Department of Defense, the guiding document for information 

sharing is the Net-Centric Data Sharing Strategy (DoD Chief Information Officer, 

2003).  Under this strategy, the DoD Discovery Metadata Specification (DDMS) 

(Deputy Assistant Secretary of Defense, 2007) provides a standard set of metadata 

for discovering distributed resources across the DoD Enterprise.   

To address this directive, we performed an analysis to ensure that sufficient 

metadata are provided in the descriptions of assets and artifacts to allow generation 

of at least the minimum required set of metadata specified in the DDMS.  The 

mapping of DDMS elements to SHARE metadata elements is presented in Table 3.  

The DDMS elements are listed on the left and the corresponding SHARE elements 

on the right.  
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Table 3. DDMS to SHARE Element Mapping 

DDMS Primary Category Sets SHARE Schema Mapping (1) 

Core Layer 
Category Set 

Primary 
Category 

Obligation Current SHARE Metadata Elements 
(“as-is” schema) 

Proposed SHARE 
Metadata Elements 
(Artifact level) 

The Security 
elements 
enable the 
description of 
security 
classification 
and related 
fields 

Security Mandatory 
 
AssetDescription/ClassificationInforrmation 

ArtifactFullDescription / 
SecurityInformation 

Title Mandatory 
AssetDescription/AssetName 
 
AssetDescription/Version 

ArtifactFullDescription/ 
ArtifactDescription/ 
(NonCodeDescription or 
CodeDescription)/ 
ArtifactName 
 
ArtifactFullDescription/ 
ArtifactDescription/ 
(NonCodeDescription or 
CodeDescription)/Version 

Identifier Mandatory ProgramInformation/Program 
ArtifactFullDescription/ 
ControlNumber 

Creator Mandatory SourceIdentification/Contributor 
ArtifactFullDescription/ 
SubmissionInformation/ 
Source/ArtifactSource 

Publisher Optional N/A (Publisher is SHARE Program Office) 
N/A (Publisher is SHARE 
Program Office) 

Contributor Optional SourceIdentification/Organization 

ArtifactFullDescription/  
SubmissionInformation/ 
Source/ 
SourceOrganization 

Date Optional AssetDescription/Date 

ArtifactFullDescription/  
SubmissionInformation/ 
SubmitDate 
 
ArtifactFullDescription/  
SubmissionInformation/ 
SubmitTime 
 
ArtifactFullDescription/ 
ArtifactDescription/ 
(NonCodeDescription or 
CodeDescription)/ 
DateOfCreation 

Rights Optional RightsAndRestrictions 
ArtifactFullDescription/ 
RightsRestrictions 

Language Optional N/A (English Assumed) N/A (English Assumed) 

Resource 
elements 
enable the 
description of 
maintenance 
and 
administrative 
information 

Type Optional AssetDescription/TypeAsset 

ArtifactFullDescription/ 
ArtifactDescription/ 
(NonCodeDescription or 
CodeDescription)/ 
ArtifactType 
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DDMS Primary Category Sets SHARE Schema Mapping (1) 

Core Layer 
Category Set 

Primary 
Category 

Obligation Current SHARE Metadata Elements 
(“as-is” schema) 

Proposed SHARE 
Metadata Elements 
(Artifact level) 

Source Optional N/A (Covered by Creator and Contributor) 
N/A (Covered by Creator 
and Contributor) 

Subject Mandatory 

AssetScope/ 
(TacticalApplication or 
DevelopmentSupport or 
OtherScope or 
UnknownScope) 

ArtifactFullDescription/ 
ArtifactDescription / 
(NonCodeDescription or 
CodeDescription)/ 
ObjectiveArchitectureTags 

Geospatial 
Coverage 

Mandatory 
unless not 
Applicable 

N/A N/A 

Temporal 
Coverage 

Mandatory 
unless not 
Applicable 

N/A N/A 

Virtual 
Coverage 

Optional N/A N/A 

The 
Summary 
Content 
elements 
enable the 
description of 
concepts and 
topics 

Description Optional AssetDescription/Description 

ArtifactFullDescription/ 
ArtifactDescription/ 
(NonCodeDescription or 
CodeDescription)/ 
Description 

The Format 
elements 
enable the 
description of 
physical 
attributes of 
the asset 

Format Optional DataFormat 
ArtifactFullDescription/  
DataFormat 

NOTES: 
(1) Mapping to the schema structure shows the element hierarchy down to the element of interest. 

For brevity, the “Current SHARE Metadata Elements” column leaves out the root  
SHAREAssetInformation element in the hierarchy and the “Proposed SHARE Metadata Elements” 
column leaves out the upper two elements Artifacts/Artifact of the hierarchy. 

G. Summary 
The ability to provide metadata describing SHARE resources (assets and 

artifacts) in XML documents conforming to XML schemas is the first step toward 

achieving the vision of the SHARE repository framework. The XML structures create 

new opportunities for advanced automation in the specification and discovery of 

resources to meet users’ needs. The structured metadata facilitates data extraction 

to support discovery of SHARE resources in the broader DoD context through 

emerging net-centric data sharing technologies.  
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IV. SHARE Software Behavior Representation 

A. Introduction 
One of the loftier goals of a software repository is to support automatic 

composition of systems from reusable components.  This is a difficult problem, which 

many have tried to solve.10  It is especially difficult if the components were not 

originally designed for reuse.  As a necessary first step towards more sophisticated 

uses of a repository, behavioral descriptions must be machine-readable in order to 

support automated search and discovery.  Furthermore, the behavior descriptions 

must be formalized and consistently applied to each item in the repository if the 

intent is to automatically compose them into a larger functioning system. 

In this section, we describe initial work toward standardized specification of 

software behavior for the SHARE repository. Each type of presented representation 

offers advantages for certain purposes. However, it is recognized that the array of 

contributors to SHARE requires caution in dictating standards that will impact the 

development processes of the asset developers.  We have sought a balance 

between method robustness and ease of implementation for this phase of the effort. 

The formalized description of software behavior provides two vital pieces of 

information: (1) inputs and outputs (interfaces) of the components; and (2) 

functionality provided by the component.   

B. Interface Descriptions 
Interface descriptions focus on the inputs and outputs of a component and not 

the inner workings of that component.  Interfaces are represented using various 

                                            

10 The proceedings from the International Symposium on Software Composition, an annual event, 
provide examples of research into the breadth of research topics currently being pursued in the area 
of software composition.  The web site for the 2008 conference is located at 
http://www.2008.software-composition.org/   
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methods, which vary from concentration on the connect points between two pieces 

of software and the types of information passed between them to representations of 

the services that a component provides. 

Navy systems are evolving toward the Service-Oriented Architecture (SOA) of 

the GIG. SOA has been described as “an ideal vision of a world in which resources 

are cleanly partitioned and consistently represented” (Erl, 2005, p. 3) and 

“automation logic is decomposed into smaller distinct units of logic … known as 

services” (pp. 23-33). Elements of a service architecture are similar to SHARE 

concerns—the architecture typically includes a registry of services containing 

descriptions of those services and information on how to access them. Mechanisms 

are provided for service discovery and for passing sufficient information about the 

service back to the caller so that the service can be invoked. Advanced concepts 

include service orchestration for composing higher order services from component 

services. The focus, of course, is service reuse, which will potentially reduce 

development and maintenance while improving software reliability and evolution 

agility. These concepts clearly align with objectives of the SHARE repository in 

which components (although not limited to software) are also made available for 

reuse.   

SOA realization employs a variety of standards, including Web Services 

standards such as: Universal Description, Discovery, and Integration (UDDI)11 for 

creating service registries; Web Services Description Language (WSDL)12 for 

identifying operations offered by services and describing input/output interfaces for 

those operations; the Simple Object Access Protocol (SOAP)13 for accessing 

services and passing data to/from the services; Web Services Business Process 

                                            

11 For UDDI information, see: http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm  
12 For WSDL information, see: http://www.w3.org/2002/ws/desc/  
13 For SOAP information, see: http://www.w3.org/TR/soap/  
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Execution Language (WS-BPEL)14 for describing workflow logic for orchestration of 

services; OWL for Services (OWL-S),15 an ontology of services supporting service 

advertisement and discovery, description of service operation, and service 

interoperation; Web Services Interoperability (WS-I) profiles16 describing collections 

of Web services specifications at specific version levels; and others.  Again, it is 

interesting to note that the problem of describing Web services in sufficient semantic 

detail to enable automatic composition of services is similar to the problem of 

describing software components in SHARE for reuse.  

In this research, we explored characterization of software interfaces based on 

current and emerging Web Services (e.g., WSDL) and Semantic Web Services (e.g., 

WS-BPEL, OWL-S) approaches. However, the work is preliminary, since the current 

approach to describing code artifacts making up an asset is extremely limited, as we 

saw in the previous chapter. It will be necessary to adopt a more precise description 

of code artifacts to introduce these techniques. As a start, we included the option of 

inserting a WSDL description of software services in the 

SoftwareBehaviorDescription element described in section III.C.1 (see also Figure 

36).  

A WSDL document is an XML file that describes information needed to invoke 

a Web service. This information includes: (1) abstract data types (specified by XML 

Schema language or references to XML schemas) used in interactions with 

operations offered by the service; (2) messages that define data structures (using 

the abstract data types above) for interactions with operations offered by the service; 

(3) operations identifying the specific actions the service will perform and the input 

and output messages associated with the operations; (4) port types that group a 

number of operations for binding to specific protocols (e.g., SOAP, HTTP); (5) 

                                            

14 For WS-BPEL information see: http://www.ibm.com/developerworks/library/specification/ws-bpel/  
15 For OWL-S information, see: http://www.w3.org/Submission/OWL-S/  
16 For WS-I information, see: http://www.ws-i.org/  
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bindings associating port types to protocols; (6) ports specifying the address of a 

binding; and (7) the service definition combining the ports defined above (Arora & 

Kishore, 2002). Excerpts of a WSDL document illustrating these parts of the service 

specification are shown in Figure 50.   
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Figure 50.   Excerpts from a Sample WSDL Document Showing Principal 
Components of the Service Specification (example from Altova XML-Spy) 

As the DoD moves toward SOA, services may become a more frequent part 

of the SHARE repository. In that case, the WSDL describing those services (often 
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automatically generated by the software development or execution environment of 

modern software systems) can be directly utilized in the repository to provide a 

detailed view of the service interfaces and operations. For software that is not 

developed and deployed as services, it is still feasible for public methods within the 

software to be parsed automatically to create WSDL-like descriptions. These would 

likely be incomplete descriptions with respect to full compliance to WSDL structures, 

but could still provide a well-defined way to describe the software for search and 

discovery. However, the question remains, “What level of decomposition of software 

components, with associated description, is appropriate for the SHARE repository?” 

More research is needed in this area to address this and other questions for 

practical application in SHARE.  

Moreover, WSDL alone is not sufficient to enable automated discovery and 

composition of services, let alone more general software components. Semantic 

Web Services is a research area attempting to address this issue, but much remains 

to be accomplished. While WSDL identifies operations within a service and provides 

sufficient information for invoking the operations, it does not describe the 

functionality offered in and performed by those operations. This, too, is a major area 

of research. In the next section, we describe an initial approach using a well-

established taxonomy of functionality relevant to the Navy combat system 

architecture. 

C. Describing Functionality  
In addition to understanding the interfaces for a component, a repository user 

is interested in the functionality of the software components.  We propose a near-

term solution that uses domain information to standardize descriptions of software 

functionality; namely, the well-established CSFL.17  We developed a taxonomy based 

                                            

17 DoD Warfighter Service Components in the DoD Enterprise Architecture Service Component 
Reference Model are derived from the DoN CSFL. 
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on the CSFL and incorporated fields into the metadata (XML schema) that will 

assign functions to repository items.  If we require asset submitters to state the 

functionality of the components in these terms, we can then build the tools to guide 

users in selecting desired behavior in the same terms. 

The CSFL was captured in an OWL structure to use as an initial 

characterization of software behavior.  The process by which the taxonomy was 

generated is a good example of methods for creating a practical set of structured 

data from initial raw formats. The taxonomy was constructed from a Microsoft Excel 

spreadsheet listing the domains and functions within each domain (CSFL version 

3.0). The spreadsheet provided definitions of the domains and functions, identified 

what the domain or function is derived from and identified sources of the definitions. 

Microsoft Excel provides the capability to export the content of the spreadsheet to 

XML format. A simple Extensible Stylesheet Language for Transformations (XSLT) 

was written to transform the source XML format (spreadsheet data) to a target XML 

format (OWL). The transformation created a simple class/subclass hierarchy 

expressed in OWL. A portion of the resulting OWL structure is shown in the Protégé 

ontology editing tool in Figure 51.   
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Figure 51.   Portion of the CSFL Taxonomy Displayed in Protégé under the 
Jambalaya Graphics Tab 

Other similar lists have been developed for operational activities (i.e., the 

Common Operational Activities List [COAL]) and for information elements (Common 

Information Element List [CIEL]). It may be valuable to also capture these in OWL 

classes and then to create interrelationships across the classes (e.g., what 

information elements are generally employed in performing certain system functions 

and what information elements are generally produced by performing certain system 

functions, etc.).  Further exploration with subject matter experts is needed to 

determine potential benefit from such approaches.  

D. Summary  
Although we cannot solve the software composition problem in the near term, 

initial descriptions of software behavior through identification of functionality and 

specification of interfaces are necessary steps toward that capability. These 
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intermediate steps towards formalized behavior descriptions will prove useful in the 

near term and helpful in advancing towards far-term goals.  As shown in section III, 

the WSDL descriptions and functionality identification can be integrated into XML 

descriptions of the artifacts as standardized behavioral descriptions for each artifact 

entered into the repository. Future work should address ongoing advances in service 

composition in SOAs for application to the framework and automated generation of 

such information from the artifact. 
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V. SHARE Relationships Framework (Ontology) 

A. Introduction 
Assets and artifacts in the SHARE repository can be examined from a 

number of different perspectives, reflecting a variety of associations. We chose to 

create initial classification schemes that can provide benefit in the near term. The 

resulting taxonomies and ontologies are meant to be illustrative not exhaustive. The 

taxonomies/ontologies we developed for SHARE are based on several types of 

relationships between the items in the repository, as well as with relevant domain 

architectural descriptions and other information.  They capture an artifact’s place in 

the software engineering lifecycle, its architectural fit in its original system, its 

architectural fit in any system in which it was subsequently used, identification of the 

component’s fit in the Surface Navy Objective Architecture, and the semantic 

relationships of various documents in the repository (based on the ReSEARCH 

work).  Each of these ontologies is discussed in further detail in the following 

sections.  

We used Stanford’s Protégé-OWL (Stanford, 2008) tool to develop the 

taxonomies/ontologies.  This is an open source, free ontology editor, available 

online18.  Users will be the repository software designers and the software agents 

built to query the repository for information.  Maintenance of the ontologies will likely 

be the responsibility of the SHARE PM and staff. 

B. Relating Artifacts to Lifecycle Phases 
This ontology covers the domain of software artifacts and their relations to the 

software engineering lifecycle.  The use of the ontology will enable the software 

repository to correlate artifacts that have similar relationships to suggest them as 

                                            

18 http://protege.stanford.edu/  
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possible items for retrieval.  The types of questions for which the information in the 

ontology should provide answers include: 

 If I am interested in a certain set of artifacts, I may also be interested in 
artifacts that are similar.  So, if I am looking at an artifact of a certain 
type, what other artifacts are documents of the same type? 

 I may also be interested in a particular set of artifacts depending on the 
lifecycle phase I am in when I come to the repository.  What types of 
artifacts are commonly needed or useful when I am in a certain phase 
of the lifecycle? 

A few notes about the conventions we used in the creation of the ontology 

follow: 

 Class names at the node level are singular.  This is somewhat arbitrary 
and only stipulated for consistency, but it enables the decision-maker 
to easily ask the question, “Is this artifact a(n) class name?” to help 
determine which class an item should belong to.    

 To avoid confusion, items in the first layer of subclasses under the 
software artifacts class are assigned the suffix “Artifacts,” and those in 
the first layer of subclasses under the lifecycle phases are assigned 
the suffix “Activity.”   

 Each word of a class name is capitalized with no delimiter or space 
between words (UpperCamelCase).  The first word only of a property 
is lower case with no delimiter or space between words 
(lowerCamelCase).   

1. Classes and Class Hierarchy 

There are two main classes in the ontology—software artifacts and lifecycle 

activities.  Each class is defined by a taxonomy of subclasses.  These classes and 

the correlations of various relationships between the taxonomies form the ontology.  

The software artifact taxonomy is shown in Figure 52.  While depicted as a 

diagram here, it is also represented in table form in Table 1.   
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Figure 52.   Software Artifact Taxonomy 

The software artifact taxonomy is based on the artifact types provided in 

SHARE Asset Contribution spreadsheet (v6) developed by the SHARE program 

office at Dahlgren.  However, changes to the original taxonomy include: 

1. Distinguished between “grouped” items—for example, the original list 
had “Test Tools/Scripts” as one item, and we broke them out into two.  
We did the same for “IRSs/IDDs” and “Build Scripts/Instructions.”   

2. Renamed “Supporting Artifacts” to “User Artifacts” since the former 
name seemed vague and each of the subclasses in the class are really 
user aids.   

3. Made “Other” a separate subclass under Software Artifacts rather than 
a subclass of Supporting Artifacts.  Either all subclasses should 
contain an Other category, or there should be one Other category for 
the entire class.  We felt that there should be one location for any 
situation where the existing subclasses do not apply.  Over time, items 
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in the Other category can be grouped into subclasses and the ontology 
modified as appropriate.   

4. Moved white papers into the Other class.  White papers could really be 
documentation of any decisions made about the system at any point in 
the lifecycle. 

5. Created a new artifact type called SimulationArtifact.  Previously, a 
simulation model was classified as a design artifact and a simulator as 
a test artifact.  Depending on the intended use of the model or 
simulation, these categorizations are probably too restrictive. 

 
The lifecycle phases taxonomy is presented in Figure 53.  Since lifecycle 

phases and their assumed order are somewhat dependent on the development 

model in use (i.e., waterfall, spiral, incremental, etc.), we use “activities” to reflect the 

most generic possible classifications of the phases. 

 

Figure 53.   Lifecycle Phases Taxonomy 

It is worth noting that the two top-level classes (Software Artifacts and 

Lifecycle Phases) contain similarly named subclasses at the first level.  This is 
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evidence that the artifacts produced during software development are often 

associated with the phase of their development—a relationship that this ontology 

aims to capture.   

2. Class Properties 

Properties are relationships that link items in and across classes.  The 

properties in the artifact-lifecycle ontology connect artifact types to lifecycle activities 

through various relationships.  An example of a property is the “has subclass” 

relationship between members of a taxonomy.  This property captures the 

hierarchical relationships between classes and subclasses.  Aside from the “has 

subclass” relationship that exists in the software artifacts and lifecycle activities 

taxonomies, there are four additional properties that link these class structures, 

including: 

 mayProduceArtifact—For each lifecycle activity, identifies which 
artifacts are most commonly produced as a result of that activity.  The 
inverse property is oftenDevelopedDuring.  The property maps items in 
the LifecyclePhases class (domain of the property) to the 
SoftwareArtifact class (range of the property).   

 oftenDevelopedDuring—For each artifact, identifies the activity or 
activities that most commonly produce it.  The inverse property is 
mayProduceArtifact.  The property maps items in the SoftwareArtifact 
class (domain) to the LifecyclePhases class (range). 

 mayRequireUseOf—For each lifecycle activity, identifies the most 
commonly needed artifacts.  The inverse property is oftenUsedDuring.  
The property maps items in the LifecyclePhases class (domain) to the 
SoftwareArtifact class (range). 

 oftenUsedDuring—For each artifact, identifies the activity or activities 
in which it is most commonly needed.  The inverse property is 
mayRequireUseOf.  The property maps items in the SoftwareArtifact 
class (domain) to the LifecyclePhases class (range). 

The assignment of the properties to the classes is somewhat subjective.  

Here we summarize the approach for assignment of each property type: 
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 mayProduceArtifact—For each lifecycle activity, the typical resulting 
artifacts are identified by this relationship.   

 oftenDevelopedDuring—For each type of artifact, this relation assigns 
the lifecycle activities that are most likely to result in the artifact type.  
In some cases, it is straightforward, such as requirements 
specifications most likely being developed during the requirements 
activities.  In other cases, there are multiple possibilities.  For example, 
test plans could be developed at any point once the requirements are 
developed.  In fact, many approaches to software engineering 
encourage the early development of test cases.  Note that these first 
two relationships are most useful to find similar artifacts (of like or 
unlike systems) to those that you would need to develop during each 
phase of development. 

 mayRequireUseOf—For each lifecycle activity that a developer might 
be executing, this property identifies the artifacts that may be useful to 
him/her.   

 oftenUsedDuring—For each artifact type, this relation is assigned to 
relate the artifact to the lifecycle phases is it most commonly used in.  
Note that these last two relationships are useful if you are looking for 
particular items (of the same or a similar system) to those you are 
currently working on that would be useful during a development 
activity. 

The complete ontology is provided in project deliverable materials. A few 

examples are provided here to give a sense for structure of the ontology.  For 

example, the assignment of properties (relationships) for the RequirementsActivity 

class in the lifecycle phases taxonomy is presented in Figure 54.   
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Figure 54.   Properties Assigned to RequirementsActivity Class 

Classes and their relationships can also be presented as a diagram, as 

shown for the RequirementsSpecification and RequirementsDatabase classes of the 

software artifact taxonomy in Figure 55.  This diagram was generated by Jambalaya 

(CHISEL, 2008), an open source plug-in for Protégé. 
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Figure 55.   Properties Assigned to RequirementsSpecification and 
RequirementsDatabase Classes 

Each class in the two taxonomies represented in the ontology is assigned 

properties based on the previously indicated assignment logic.  The exception is the 

Maintenance activity.  Since the Maintenance activity could conceivably include all 

the other lifecycle activities, properties were not assigned to this class individually.  If 

a person is working in the maintenance phase, they are likely doing a smaller 

version of one of the other activities and the search should then be based on that 

specific activity.  The alternative would be to assign a relation to Maintenance every 

time a relationship with a lifecycle activity is made.  This would not add anything to 

the ontology and was therefore left out.   

C. Objective Architecture Taxonomy 
This taxonomy represents the decomposition of the common architecture for 

Navy combat systems.  The use of the taxonomy will be to enable the software 

repository to correlate artifacts that have similar relationships based on commonality 



 

=
 

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - 75 - 
k^s^i=mlpqdo^ar^qb=p`elli=

=

within the architecture to suggest them as possible items for retrieval.  The types of 

questions for which the information in the taxonomy should provide answers include: 

 If I am looking at an artifact related to a particular architectural 
component, what other artifacts are also related to the same 
component? 

1. Classes and class hierarchy 

The Surface Combat System Top-Level Objective Architecture is shown in 

Figure 56.  We constructed a taxonomy from this view of the architecture by 

declaring each component to be a class and identifying the class hierarchy from the 

containment indicated in the diagram. Components in the center block of the 

diagram are part of particular domains (e.g., Display Domain) and also part of the 

Combat Management Software. This is represented in the taxonomy by assigning 

two parent classes to a component. For example, the Common GUIs component is a 

subclass of the Display Domain class and a subclass of the Combat Management 

Software class.  A view of the resulting taxonomy is shown in Figure 57.   
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Figure 56.   Surface Combat System Top Level Objective Architecture 
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Figure 57.   Surface Combat System Top Level Objective Architecture Described as 
a Taxonomy in OWL (Jambalaya Graphic Tab in Protégé) 

In some cases, an entire subclass is contained within a parent class. This is 

true of the Track Management Domain, Command and Control Domain, and 

Infrastructure Domain; i.e., every subclass (component) of each of these domains is 

also a subclass of the Combat Management Software class. In these cases, the 

“leaf” node subclasses (the components at the bottom of the taxonomy tree, such as 

Infrastructure Resource Management and Precision Nav/Time from the 

Infrastructure Domain), are declared in the taxonomy as subclasses of the parent 

domain, which is declared as a subclass of the overall Platform Adaptation class. 

Cases in which a domain is not fully contained by the Combat Management 

Software class, the class membership is declared individually for each component. 

For example, in the External Communications Domain, the TDL Interface Controller 

is declared as a subclass of External Communications Domain, while its sibling 
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Comms Domain Manager component is declared as a subclass of both the External 

Communications Domain and the Combat Management Software class.  

When the asserted Objective Architecture taxonomy is processed through a 

reasoner (to check for consistency or “classify the taxonomy”), the Track 

Management Domain, Command and Control Domain, and Infrastructure Domain 

subclasses are properly moved into the Combat Management Software class. This 

is correct containment, even though it obscures the original notion that these 

subclasses can be thought of as “peer” or “sibling” classes to the other domains 

(e.g., External Communications Domain, Sensor Mangement Domain, Display 

Domain, etc.). Such issues can be much more subtle in more complex taxonomies 

and ontologies, illustrating the value in being able to specify precise definitions of 

concepts and relationships that software can interpret and reason over. 

The taxonomy expresses the Common Hardware portion of the objective 

architecture as a peer class to the Platform Adaptation class. It is envisioned that an 

individual product (perhaps a hardware configuration item in a specific installation) 

would be categorized as a Console, Display, Cabinet, Processor, Storage, or 

Network and described as an individual (a member of the identified subclass) in the 

knowledge base structured from the taxonomy. 

2. Class Properties 

Missing from this characterization of the Surface Combat System Objective 

Architecture is specification of characteristics (properties) of the various subclasses 

making up the architecture. That is, which characteristics of a component/artifact 

enable it to be classified (categorized) as a Track Server or, more generally, as a 

component in the Combat Management Software. What distinguishes a subclass of 

the Command and Control Domain from a subclass in, for example, the Display 

Domain? One distinguishing aspect may be obtained through association of 

functions from the CSFL with subclasses in the Objective Architecture taxonomy. 

Development of such associations and subclass characterizations is beyond the 
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scope of this effort. However, pursuit of these classification schemes in follow-on 

work will create greater opportunities for automated reasoning to help identify 

artifacts within the architecture that can help meet users’ needs. 

D.  System/Subsystem Ontologies   
Our recommendation is that ontologies be developed to capture systems, 

subsystems, and interfaces for each program contained in SHARE.  As mentioned in 

section III.C.1, the system/subsystem taxonomies would be used to verify the entries 

for the System and Subsystem elements in the metadata in order to assign artifacts 

to classes and subclasses (as individuals) within the ontology.  Once these are 

assigned, the repository application could derive interface and other relationships 

from the ontology.   

Concerns about classification issues and our inability to acquire detailed 

system information limited the depth of this portion of the ontology development 

effort for the present.  Here we provide one example of how systems/subsystems 

and their interfaces can be captured as an ontology to complement the repository 

framework. 

1. System Ontology Example - Aegis 

This ontology will cover the domain of the Aegis combat system baseline and 

its interfaces.  The types of questions for which the information in the ontology 

should provide answers include: 

 What are the system/subsystem relationships for the Aegis baseline? 

 What are the interfaces for Aegis, both within the combat system as 
well as externally? 

2. Classes and class hierarchy 

This ontology was built based on a portion of a DoD Architecture Framework 

(DoDAF) system view (SV-1) retrieved from the RDA CHENG Naval Architecture 
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Repository System (NARS) and shown in Figure 58.  The classes in the ontology are 

the systems/subsystems of the Aegis baseline as well as the systems/subsystems 

with which they interact within a platform.  The current taxonomy provided is at a 

very high level, and should eventually be complemented with lower levels of 

granularity to achieve maximum utility. 

3. Class Properties 

Aside from the “has subclass” relationship that exists between systems and 

subsystems, there are two properties identified for this ontology.   

1. sendsTo—For each system/subsystem, identifies which 
systems/subsystems to which the information or messages are sent.  
This is the inverse property of receivesFrom.   

2. receivesFrom—For each system/subsystem, identifies which 
systems/subsystems from which information or messages are 
received.  This is the inverse property of sendsTo.   

It may desirable at some point to create subclasses of these properties to 

specify the information being sent.  For example, the sendsTo property could have 

the sub-property sendsTo_TrackData so that more specific types of interfaces can 

be queried. 

The ontology is depicted in Figure 59.  It is actually very similar to the SV-1 

depiction, but now exists as an OWL ontology that can be easily referenced in the 

SHARE metadata and by software; it will interoperate with the other types of 

ontologies built into the repository framework. 
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Figure 58.   Aegis Combat System SV-1 
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Figure 59.   System Ontology Example (Aegis) 

It should be noted that the arrows here do not carry the same meaning as 

those in the SV-1 diagram.  The arrows indicate the direction of the property or 

relationship, not the flow of information.  If the AegisBaseline7_1 sendsTo 

AWS_FCS, as indicated by the orange arrow, then AWS_FCS also receivesFrom 

AegisBaseline7_1, as indicated by the purple arrow—since these are inverse 

properties.  However, this does not necessarily mean that AWS_FCS also sendsTo 

AegisBaseline7_1.  Bi-directional information flow from the SV-1 is depicted by two 
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sets of bidirectional arrows in the ontology (e.g., between AegisBaseline7_1 and 

SEWIP).   

A great deal more can be done with system ontologies.  This example is 

provided to stimulate thought about what should be included in the system 

representations and how they can be used within the repository framework.   

E. Artifacts as Individuals in the Knowledge Base 
The SHARE Relationships Framework described in this section provides a 

number of conceptual and organizational views that can be used to characterize 

SHARE assets and artifacts. Another perspective is to consider the 

taxonomies/ontologies as portions of specifications describing the resources in the 

SHARE knowledge base.  Assets and artifacts would become individuals within that 

knowledge base characterized by the taxonomy/ontology specifications. That is, an 

artifact can be identified as a member of a particular class in the framework by virtue 

of its characteristic properties. The taxonomies/ontologies would then provide 

associations and relationships between that artifact and others in the knowledge 

base. Much more detail would need to be added to the currently defined structures, 

but the foundation is established. This is a potentially important area for future work. 

F. Summary 
Enriched semantic specification of the assets in the SHARE repository will 

enable users to more readily find resources that meet their need in their context. 

Extensive work in the Web community is providing tools and techniques that can be 

applied to the SHARE framework. We have created an initial semantic foundation on 

which enhanced capabilities can be implemented. 
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VI. Satisfying User Goals 

A. Introduction 
In this section we investigate two possible scenarios of repository use in order 

to show how the recommended repository framework will support satisfaction of user 

goals at the time of search.  Two lifecycle phases will be considered for this 

demonstration—requirements and design.   

B. Requirements Phase Scenario 
In section II.C, we described potential repository user goals by lifecycle 

activity.  The goals listed for the requirements phase include: 

 Users seek to reuse existing requirements, where the proposed 
system meets existing capabilities.  

 Users seek to generate a draft requirements specification from existing 
repository contents. 

In this scenario, imagine that users need to build a replacement for a 

particular subsystem of Aegis.  They consult the SHARE repository to find artifacts 

that will help in the development of the requirements for the new subsystem.  

Potentially, there are requirements for an existing system that can be reused.  There 

may also be additional artifacts to be discovered that may be helpful in the 

requirements development process.   

The logical place to begin is by conducting a search for the requirements 

specifications of the subsystem being replaced.  Since our metadata includes a 

classification of the system/subsystem that each artifact is tied to, a quick sort would 

reveal applicable artifacts.  Narrowing the search to requirements-related artifacts is 

simple as well, since the metadata also characterizes artifact by type.   
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For this first step in the search and discovery process, a similar approach 

could be taken based on the current metadata schema.  However, there are two 

potential improvements.  First, since we are able to perform discovery at the artifact 

level, we eliminate the potential retrieval of unnecessary items.  We are also able to 

view metadata information at a more detailed level, which should help in our 

evaluation of whether a potentially useful artifact should be retrieved.  The second 

potential improvement provided by the proposed metadata is the approach to the 

assignment of subsystems, which should be at the lowest level of granularity 

covered by an artifact.  In the current schema, artifacts are grouped into very large 

subsystems as assets, in many cases making it impossible for the user to determine 

which available artifacts are specific to the subsystem of interest before retrieving 

the asset.  By assigning the subsystems at lower levels of granularity (and using a 

system ontology to standardize this taxonomy), users can isolate the search more 

effectively. 

Based on this initial search process, assume that users have identified the 

available requirements documents for the subsystem to be replaced.  The user 

interface to the repository could provide a bin in which useful identified artifacts can 

be stored while users continue the search.  With these safely set aside, what other 

artifacts may be helpful?   

Since we included a representation of the software behavior tied to artifacts in 

our metadata, users could potentially identify useful artifacts for subsystems with 

similar functionality to that of the subsystem being replaced.  Imagine an interface 

that allows users to choose items from the CSFL and then search for items in the 

repository that also address the same or a similar list of functionality.  The returned 

items could then be further narrowed to artifact types (requirements artifacts in this 

case) and the detailed metadata consulted if there is a question about whether a 

returned artifact is going to be useful.  In our scenario, users might find the 

requirements specification for the SSDS subsystem that addresses similar 
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functionality to the one being developed.  This item can also be flagged and placed 

in our bin of items to be retrieved. 

In addition to these artifacts discovered through the use of the metadata and 

software behavior descriptions, potentially, there are helpful additional artifacts that 

users may not initially consider.  The ontologies of the repository framework are key 

to discovering these artifacts.  For example, in the requirements phase, the ontology 

points to simulation artifacts and white papers as potentially useful types of artifacts.  

In our scenario, imagine that users are able to navigate through a visual depiction of 

the ontology to these related items and find a white paper about the subsystem 

being replaced.  Further consultation of the metadata reveals that the paper contains 

background and explanations regarding decisions made during the requirements 

analysis.  This item is then flagged and added to the bin of items to be retrieved. 

The remaining ontologies could be utilized in a similar manner.  The objective 

architecture ontology could be used to identify Aegis or other systems’ artifacts tied 

to the same or closely related subdomains as identified in the objective architecture, 

and the systems ontology would reveal subsystems that interface with the one being 

replaced.  Artifacts for these subsystems may be needed in order to ensure that the 

requirements cover the appropriate interoperability issues.  For our scenario, users 

identify interface specifications for related Aegis subsystems that should be 

consulted and adds them to the retrieval bin.  

Once the list of desired artifacts is complete, users can then characterize the 

package as an asset.  The repository tool can walk users through the development 

of any necessary asset metadata for inclusion in the repository for future users.  It 

can also develop the necessary retrieval process and provide the information to 

users.  For the new metadata schema, this process may be tailored somewhat since 

multiple PM signatures may be required.   
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C. Design Phase Scenario 
The potential repository user goals we considered for the design phase of the 

lifecycle identified in section II.C include: 

 Users seek to search for existing components that may satisfy portions 
of the requirements. 

 Users seek to retrieve design patterns for common problems. 

 Users seek to reason about a system’s architecture including the ability 
to compare and evaluate possible solution compositions, investigate 
an architecture’s ability to satisfy quality attributes or non-functional 
requirements (interoperability, safety, performance, etc), and 
investigate an architecture’s ability to satisfy functional requirements. 

For this scenario, imagine users have set requirements for a subsystem to be 

built. Users seek artifacts that will aid in the design process.    

In this scenario, an appropriate place to start may be to identify the artifacts in 

the repository related to subsystems with similar functionality to the system being 

built.  To do this, users select from the CSFL listings functionality that relates to the 

functional requirements specificied for the new system.  Artifacts that have been 

related to similar CSFL groupings are identified by the repository tool.   

These artifacts can then be filtered by various characteristics to focus on 

desired items for retrieval.  Artifacts not related to the design phase may be 

eliminated.  Metadata is examined to evaluate if potential items are of interest, 

desirable, and so on.  The result is a group of artifacts that users wish to retrieve, 

along with the required retrieval information.   

While utilizing the same underlying framework, this example demonstrates 

that the search process may be different depending on user goals.  In the first 

scenario, users quickly determine an individual item of interest and expand the list of 

retrieved items using the linkages provided by the ontologies.  In this scenario, users 
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quickly identify a group of potential items of interest and then use the framework to 

focus on the desired items. 

This scenario also illustrates the premise for the search engine being created 

as part of the ReSEARCH project.  In the future it may be possible to input existing 

requirements documents into the ReSEARCH engine and automatically derive 

artifacts of interest.  The ReSEARCH engine will likely utilize data from the 

repository framework, and the framework will benefit from a front end data entry and 

extraction tool.  Further work to integrate these two efforts will likely be required 

when both groups have concluded their research. 

D. Summary  
Each piece of the repository framework enhances the search capabilities in 

different ways.  The basic metadata in the XML schemas provide search criteria for 

finding components of interest in the repository as well as specific information about 

the artifacts to determine if they are appropriate for retrieval. OWL taxonomies and 

ontologies enable identification of functionality and associated resources that may 

be beneficial to users. In short: 

 The metadata is evaluated to enable retrieval decisions. 

 The software behavior representations enable searches based on 
functionality. 

 The ontologies point the user to helpful artifacts that they may not have 
initially considered. 
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VII. Recommendations and Future Work 

A. Introduction 
The clear next step in development of the SHARE repository framework is 

deciding on a strategy to incorporate the products and approaches from the present 

work into the techniques and practices of the SHARE repository. While the current 

work provides a starting point, further work will be necessary to implement the 

framework and develop a tool suite that will enable the described search capabilities.  

In the SHARE implementation, additional repository features can be added, such as 

an Amazon-like “similar results” feature that points people with similar problems to 

the retrieval of the same files and other similar recommendations found in Johnson 

(2008).  Several other recommendations for enriching the semantics of SHARE 

contents are discussed in the following subsections. 

B. SHARE Metadata 
The XML schemas developed in this task provide starting points for creating 

more structured descriptions of SHARE resources. The schemas need to be 

evaluated for integration into the SHARE software suite. The 

SHAREAssetInformation schema provides the lowest level of entry into describing 

the assets in XML since it closely matches the current wizard-directed user entry 

flow. Even with this approach, the schema and entry process can be evaluated to 

determine if greater precision and regularity can be enabled through stronger 

restrictions in data values (e.g., phone, date formats and content). Content can be 

specified and enforced through the XML schema, ultimately simplifying software 

logic for parsing and data processing.  

A major decision will be needed regarding the architectural change from an 

asset-centric perspective on the data entry to an artifact-centric perspective using 

the SHAREAssets and SHAREArtifacts schemas. In the long run, we believe entry 
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and control of information at this level will provide great benefits, but recognize that it 

would require significant change to the current approach. It may be possible to 

devise approaches for incremental improvement in this area to reduce impact on 

ongoing repository use. 

The report described some conditions that are difficult to specify in the XML 

Schema language, such as certain business or usage rules (e.g., given a certain 

entry, other entries follow).  It will be valuable to investigate other schema languages 

(e.g., Schematron) or formal expressions (e.g., ontologies or rule sets) that can help 

address such conditions.  

A significant challenge will be generation of XML metadata from existing 

SHARE resources and helping users describe future submissions to the repository. 

Current research into automatic generation of metadata from content libraries should 

be explored for potential application to the SHARE context.  

C. SHARE Software Behavior Representation 
Providing a practical software behavior representation remains a challenging 

area for continued exploration. The current work provides an identification of 

principal functionality of an artifact through the CSFL and possible description of 

operations and input/output messages from a service perspective using WSDL. The 

work is admittedly preliminary. If the transition is made to more detailed specification 

of artifacts making up an asset, then more detailed specification of software behavior 

needs to be investigated. Research into related areas of Semantic Web Services, 

Business Process Execution Language, and others continues to hold promise for 

this aspect of the SHARE repository framework. 

In addition to the CSFL, similar lists have been developed for operational 

activities (COAL) and for information elements (CIEL). It would be interesting to 

express these taxonomies in OWL, as was done with CSFL, and then to create 

interrelationships across the classes, for example, to determine what information 
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elements are generally employed in performing certain system functions, or what 

information elements are generally produced by performing certain system functions.  

Further exploration with subject matter experts (SMEs) is needed to determine 

potential benefit from such approaches.  

As discussed in the report, determining the appropriate level of decomposition 

of software components, with associated descriptions, needs additional study. Use 

cases vetted through the SHARE designers and user community will help resolve 

this issue. Finally, in the long term, further work will also be required if the intent is to 

eventually enable automated composition of a system based on reusable 

components.  As discussed previously, a starting point to accomplishing this goal 

may be to standardize a formal behavior representation of the repository contents. 

D. SHARE Relationship Framework (Ontology) 
The SHARE information entry process requires manual idenfication of 

relationships across assets (and potentially, artifacts). As the metadata structures 

become employed and as development practices improve to provide greater 

description of development artifacts, it will become more practical to derive 

relationships across the resources in the repository and resources being added to 

the repository. Such techniques will become increasingly important and efficient as 

the repository semantics evolve. We recommend continued work to explore and 

evaluate approaches for automating assignment and derivation of relationships 

across assets and artifacts in the repository.   

As with any knowledge representation approach, proposed representations 

(i.e., taxonomies, ontologies, rules, logic) need to be vetted by SMEs prior to 

implementation. As mentioned above, establishment of an appropriate set of use 

cases will assist in this process.  The vetting process will result in refined 

representations.  Additional required ontologies will likely be identified as well, such 

as the appropriate system ontologies, as discussed in section V.   
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As discussed in the report, the characterization of the Surface Combat 

System Objective Architecture is missing a specification of characteristics 

(properties) of the various subclasses making up the architecture. That is, the 

characteristics of a component/artifact that enable it to be classified (categorized) as 

a Track Server or, more generally, as a component in the Combat Management 

Software. Development of such associations and subclass characterizations will 

create greater opportunities for automated reasoning to help identify artifacts within 

the architecture that can help meet users’ needs. Further work is also needed across 

the taxonomies and ontologies to determine what will constitute individuals in the 

knowledge base (i.e., the totality of class structures and individual members of the 

classes). It will be valuable to consider an Asset or an Artifact as an individual in the 

knowledge base, whereby associations and relations can be automatically derived 

by software reasoners. It is not clear, however, how the characterizations would be 

defined. More detail needs to be added to the currently defined structures, but the 

foundation is established for future enhancement. 

 E. Related Work 
Products from the current work need to be integrated with the NPS 

ReSEARCH project. The SHARE repository framework taxonomies and ontologies 

provide vocabulary and context specific to SHARE repository products that are 

expected to improve efficiency and accuracy in searching for contextually-relevant 

information.   
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VIII. Summary 

This research effort described a component specification and ontology for a  

SHARE repository framework.  The following products were developed from this 

work (delivered on CD to the program office): 

 XML Schema aligned with data entry wizard 
(SHAREAssetInformation.xsd) 

 XML Schemas for Assets and Artifacts with ontology references 
(SHAREAssets.xsd and SHAREArtifacts.xsd, respectively) 

 XSLT for transforming CSFL data (XML exported from Microsoft Excel 
spreadsheet) to OWL (CSFLspreadsheetToOWL.xslt) 

 CSFL taxonomy in OWL and Protégé project file, generated by the 
XSLT above (CSFL.owl and CSFL.pprj) 

 Surface Combat System Objective Architecture taxonomy in OWL and 
Protégé project file 

 Lifecycle-Artifacts ontology in OWL (Artifacts.owl and Artifacts.pprj) 

 Aegis ontology in OWL and Protégé project file (Aegis.owl and 
Aegis.pprj) 

 Final Report describing schemas, ontologies, user goals (scenarios), 
and description of the techniques to meet user goals 

A key next step is development of a strategy for beginning to incorporate 

these products and approaches into the techniques and practices of the SHARE 

repository. 
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Appendix A. XML Schema for Current SHARE Asset 
Information 

The following XML schema describes information corresponding to the major 

asset information entry steps guided by the SHARE data entry wizard. The 

information in this schema is discussed in section III.B of this report. 

<?xml version="1.0" encoding="UTF-8"?> 
<!-- edited with XMLSpy v2008 rel. 2 sp1 (http://www.altova.com) by Curtis Blais (Naval Postgraduate 
School) --> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 
xmlns="http://www.navy.mil/OpenArchitecture/SHARE" 
targetNamespace="http://www.navy.mil/OpenArchitecture/SHARE" elementFormDefault="qualified" 
attributeFormDefault="unqualified"> 
 <xs:element name="SHAREAssetInformation"> 
  <xs:annotation> 
   <xs:documentation>This XML Schema describes information entered into the 
Software Hardware Asset Reuse Enterprise (SHARE) Asset Information Form.</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="SourceIdentification" 
type="SourceIdentificationType"> 
     <xs:annotation> 
      <xs:documentation>Identify the source of the 
asset.</xs:documentation> 
     </xs:annotation> 
    </xs:element> 
    <xs:element name="ProgramInformation" 
type="ProgramInformationType"> 
     <xs:annotation> 
      <xs:documentation>Identify the program that funded the 
development of this asset and that will be responsible for approving release of this asset.</xs:documentation> 
     </xs:annotation> 
    </xs:element> 
    <xs:element name="AssetDescription" type="AssetDescriptionType"> 
     <xs:annotation> 
      <xs:documentation>Descriptive information about the 
asset, including its type, classification, and rationale for submitting the asset.</xs:documentation> 
     </xs:annotation> 
    </xs:element> 
    <xs:element name="AssetScope" type="AssetScopeType"> 
     <xs:annotation> 
      <xs:documentation>Information about where and how the 
asset may be reused. Asset Scope specifies whether the asset was developed for a tactical application, whether it 
is used in the development support environment, or whether it supports reuse in some other way. For a selected 
scope, identify the Asset Category to help describe how the asset is intended to be reused. Is it a complete 



 

=
 

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - 100 - 
k^s^i=mlpqdo^ar^qb=p`elli=

=

system or application that can be used as is? Is it a component or library that will be integrated into another 
application?</xs:documentation> 
     </xs:annotation> 
    </xs:element> 
    <xs:element name="RelatedAssets" type="RelatedAssetsType"> 
     <xs:annotation> 
      <xs:documentation>Identifies other assets in SHARE that 
are related to the asset being submitted. This is important if the asset being submitted i a newer version of an 
existing asset. If other assets were used to develop it, or if other assets are required to make it work. 
</xs:documentation> 
     </xs:annotation> 
    </xs:element> 
    <xs:element name="DevelopmentStatus" type="DevelopmentStatusType"> 
     <xs:annotation> 
      <xs:documentation>Collects information about the 
development status (still in development, development complete, planned updates, asset 
maturity).</xs:documentation> 
     </xs:annotation> 
    </xs:element> 
    <xs:element name="ContextInformation" type="ContextInformationType"> 
     <xs:annotation> 
      <xs:documentation>Collects context information about 
the asset (if there are any commercial off the shelf or government off the shelf products required to use the 
asset, target operating system(s), programming language(s), and runtime environment(s).</xs:documentation> 
     </xs:annotation> 
    </xs:element> 
    <xs:element name="ArtifactsContained" type="ArtifactsContainedType"> 
     <xs:annotation> 
      <xs:documentation>Collects information about the 
content of the asset. Artifacts are the individual files that will be submitted for the asset.</xs:documentation> 
     </xs:annotation> 
    </xs:element> 
    <xs:element name="CombatSystemsObjectiveArchitecture" 
type="CombatSystemsObjectiveArchitectureType"> 
     <xs:annotation> 
      <xs:documentation>Identify where the asset fits into the 
Surface Navy Combat Systems Objective Architecture.</xs:documentation> 
     </xs:annotation> 
    </xs:element> 
    <xs:element name="DataFormat" type="DataFormatType"> 
     <xs:annotation> 
      <xs:documentation>Provide format and size information 
about the physical media and files that will be submitted for the asset. This information is used in the metrics 
reported for SHARE and also by the SHARE team to plan for evaluating and uploading the new 
asset.</xs:documentation> 
     </xs:annotation> 
    </xs:element> 
    <xs:element name="RightsAndRestrictions" 
type="RightsAndRestrictionsType"> 
     <xs:annotation> 
      <xs:documentation>List any data rights marking 
contained within the asset and list any other licenses that must be obtained to use the asset.</xs:documentation> 
     </xs:annotation> 
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    </xs:element> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <!--++++++++++++++++++++++++--> 
 <!-- Complex Types (alphabetical) --> 
 <!--++++++++++++++++++++++++--> 
 <xs:complexType name="AddressType"> 
  <xs:annotation> 
   <xs:documentation>Mailing (postal) address.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="StreetAddress" type="StreetAddressType"/> 
   <xs:element name="MailingAddress2" type="xs:string" minOccurs="0"/> 
   <xs:element name="City" type="CityType"/> 
   <xs:element name="State" type="StateType"/> 
   <xs:element name="Zip" type="ZipType"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="ArtifactsContainedType"> 
  <xs:annotation> 
   <xs:documentation>Type of artifact included in the asset. Then for each artifact type 
selected, briefly describe what artifacts are included and their formats.</xs:documentation> 
  </xs:annotation> 
  <xs:choice> 
   <xs:element name="DocumentArtifact" type="DocumentArtifactType"/> 
   <xs:element name="CodeArtifactType" type="CodeArtifactType"/> 
  </xs:choice> 
 </xs:complexType> 
 <xs:complexType name="ArtifactsType"> 
  <xs:annotation> 
   <xs:documentation>List of artifacts contained in an asset.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="Artifact" type="ArtifactType" maxOccurs="unbounded"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="AssetDescriptionType"> 
  <xs:annotation> 
   <xs:documentation>Description of an asset (name, type, description, version, date, 
classification, and rationale).</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="AssetName" type="AssetNameType"/> 
   <xs:element name="TypeAsset" type="TypeAssetType"/> 
   <xs:element name="Description" type="DescriptionType"/> 
   <xs:element name="Version" type="VersionType"> 
    <xs:annotation> 
     <xs:documentation>Version or revision identifier for the 
asset.</xs:documentation> 
    </xs:annotation> 
   </xs:element> 
   <xs:element name="Date" type="DateType" minOccurs="0"> 
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    <xs:annotation> 
     <xs:documentation>Date indicating the age of the asset, such as 
the release date or build date.</xs:documentation> 
    </xs:annotation> 
   </xs:element> 
   <xs:element name="ClassificationInformation" 
type="ClassificationInformationType"> 
    <xs:annotation> 
     <xs:documentation>Indicates the highest level of classification for 
any information in the asset, whether there are export controls on any part of the asset and the distribution 
statement.</xs:documentation> 
    </xs:annotation> 
   </xs:element> 
   <xs:element name="Rationale" type="RationaleType"> 
    <xs:annotation> 
     <xs:documentation>Describe why the asset is being 
submitted.</xs:documentation> 
    </xs:annotation> 
   </xs:element> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="AssetScopeType"> 
  <xs:annotation> 
   <xs:documentation>Identification of the scope of the asset (tactical application, 
development support, other, or unknown).</xs:documentation> 
  </xs:annotation> 
  <xs:choice> 
   <xs:element name="TacticalApplication" 
type="TacticalApplicationCategoryType"/> 
   <xs:element name="DevelopmentSupport" 
type="DevelopmentSupportCategoryType"/> 
   <xs:element name="OtherScope" type="OtherScopeCategoryType"/> 
   <xs:element name="UnknownScope"/> 
  </xs:choice> 
 </xs:complexType> 
 <xs:complexType name="ClassificationInformationType"> 
  <xs:annotation> 
   <xs:documentation>Classification data (classification, export control statement, 
distribution statement, and security classification guide).</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="Classification" type="ClassificationType"/> 
   <xs:element name="ExportControlStatement" 
type="ExportControlStatementType"/> 
   <xs:element name="DistributionStatement" type="DistributionStatementType"/> 
   <xs:element name="SecurityClassificationGuideID" 
type="SecurityClassificationGuideIDType" minOccurs="0"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="CodeArtifactType"> 
  <xs:annotation> 
   <xs:documentation>Types of artifacts included in the asset. For each artifact type, 
briefly describe what artifacts are included and their formats.</xs:documentation> 
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  </xs:annotation> 
  <xs:choice maxOccurs="6"> 
   <xs:element name="CodeTypeArtifacts" type="CodeTypeArtifactsType"/> 
  </xs:choice> 
 </xs:complexType> 
 <xs:complexType name="CodeTypeArtifactsType"> 
  <xs:annotation> 
   <xs:documentation>Description of artifacts that are categorized as code 
artifacts.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="ArtifactType" type="CodeTypeArtifactType"/> 
   <xs:element name="Artifacts" type="ArtifactsType"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="CombatSystemsObjectiveArchitectureType"> 
  <xs:annotation> 
   <xs:documentation>Identifies one or more domains of the Surface Navy Combat 
Systems Objective Architecture that apply to the asset being submitted.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="ArchitectureDomain" type="ArchitectureDomainType" 
maxOccurs="12"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="ContractingOfficerType"> 
  <xs:annotation> 
   <xs:documentation>Contracting officer contact information.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="Name" type="NameType"/> 
   <xs:element name="Organization" type="OrganizationNameType"/> 
   <xs:element name="Address" type="xs:string"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="ContractorOrganizationType"> 
  <xs:annotation> 
   <xs:documentation>Identification of the contractor organizatoin (contract number, 
delivery, and contracting officer).</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="ContractNumber" type="ContractNumberType"/> 
   <xs:element name="Delivery" type="DeliveryType"/> 
   <xs:element name="ContractingOfficer" type="ContractingOfficerType"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="ContextInformationType"> 
  <xs:annotation> 
   <xs:documentation>Description of the development and operational context of the 
asset (COTS or GOTS dependencies, target operating systems, programming languages, and runtime 
environments).</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
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   <xs:element name="COTSorGOTSDependencies" 
type="COTSorGOTSDependenciesType" minOccurs="0"/> 
   <xs:element name="TargetOperatingSystems" 
type="TargetOperatingSystemsType"/> 
   <xs:element name="ProgrammingLanguages" 
type="ProgrammingLanguagesType"/> 
   <xs:element name="RuntimeEnvironments" type="RuntimeEnvironmentsType"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="COTSorGOTSDependenciesType"> 
  <xs:annotation> 
   <xs:documentation>List of dependencies on COTS or GOTS 
products.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="COTSorGOTSDependency" 
type="COTSorGOTSDependencyType" maxOccurs="unbounded"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="DataFormatType"> 
  <xs:annotation> 
   <xs:documentation>Format and size information about the asset being 
submitted.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="PhysicalMediaFormat" type="PhysicalMediaFormatType" 
minOccurs="0"/> 
   <xs:element name="NumberOfFiles" type="xs:nonNegativeInteger" 
minOccurs="0"/> 
   <xs:element name="ArchiveFormats" type="ArchiveFormatsType" 
minOccurs="0"/> 
   <xs:element name="TotalDataSize" type="xs:nonNegativeInteger" 
minOccurs="0"/> 
   <xs:element name="KSLOCs" type="xs:nonNegativeInteger" minOccurs="0"/> 
   <xs:element name="TotalLinesOfComments" type="xs:nonNegativeInteger" 
minOccurs="0"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="DevelopmentStatusType"> 
  <xs:annotation> 
   <xs:documentation>Description of the status of the asset (planned updates, and asset 
maturity).</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="Status" type="AssetDevelopmentStatusType"/> 
   <xs:element name="PlannedUpdates" type="PlannedUpdatesType" minOccurs="0"> 
    <xs:annotation> 
     <xs:documentation>Describe any planned updates to the 
asset.</xs:documentation> 
    </xs:annotation> 
   </xs:element> 
   <xs:element name="AssetMaturity" type="AssetMaturityType" minOccurs="0"> 
    <xs:annotation> 
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     <xs:documentation>Describe the maturity of the asset: completed? 
deployed? included in a system?</xs:documentation> 
    </xs:annotation> 
   </xs:element> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="DocumentArtifactType"> 
  <xs:annotation> 
   <xs:documentation>Types of artifacts included in the asset. For each artifact type, 
briefly describe what artifacts are included and their formats.</xs:documentation> 
  </xs:annotation> 
  <xs:choice maxOccurs="6"> 
   <xs:element name="DocumentTypeArtifacts" 
type="DocumentTypeArtifactsType"/> 
  </xs:choice> 
 </xs:complexType> 
 <xs:complexType name="DocumentTypeArtifactsType"> 
  <xs:annotation> 
   <xs:documentation>Description of artifacts that are categorized as document 
artifacts.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="ArtifactType" type="DocumentTypeArtifactType"/> 
   <xs:element name="Artifacts" type="ArtifactsType"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="GovernmentOrganizationType"> 
  <xs:annotation> 
   <xs:documentation>Identification of patents associated with the government 
organization submitting the asset.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="ApplicableGovernmentPatents"> 
    <xs:complexType> 
     <xs:sequence> 
      <xs:element name="Patent" type="PatentType" 
minOccurs="0" maxOccurs="unbounded"/> 
     </xs:sequence> 
    </xs:complexType> 
   </xs:element> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="MemberProfileType"> 
  <xs:annotation> 
   <xs:documentation>Contact information on the SHARE member submitting the 
asset.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="Name" type="NameType"/> 
   <xs:element name="Organization" type="OrganizationNameType"/> 
   <xs:element name="Address" type="AddressType"/> 
   <xs:element name="Phone" type="PhoneType"/> 
   <xs:element name="Email" type="EmailType"/> 
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   <xs:element name="Fax" type="PhoneType" minOccurs="0"/> 
   <xs:element name="CellPhone" type="PhoneType" minOccurs="0"/> 
   <xs:element name="PagerNumber" type="PhoneType" minOccurs="0"/> 
   <xs:element name="Notification" type="NotificationType" minOccurs="0"/> 
   <xs:element name="ExpirationDates" type="xs:string" minOccurs="0"/> 
   <xs:element name="Groups" type="xs:string" minOccurs="0"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="NotificationType"> 
  <xs:annotation> 
   <xs:documentation>Identify what to notify the member of (baseline design review or 
SCRIBE).</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="BaselineDesignReview" type="xs:boolean"/> 
   <xs:element name="SCRIBE" type="xs:boolean"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="OrganizationType"> 
  <xs:annotation> 
   <xs:documentation>Name and type of organization submitting the 
asset.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="OrganizationSubmittingAsset" 
type="OrganizationNameType"/> 
   <xs:element name="TypeOrganization" type="TypeOrganizationType"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="ProgramInformationType"> 
  <xs:annotation> 
   <xs:documentation>Program name, type, and manager associated with the asset 
being submitted.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="Program" type="ProgramType"/> 
   <xs:element name="ProgramName" type="ProgramNameType" minOccurs="0"/> 
   <xs:element name="ProgramManager" type="ProgramManagerType" 
minOccurs="0"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="ProgramManagerType"> 
  <xs:annotation> 
   <xs:documentation>Contact information for the program manager who will need to 
approve the release of the asset to SHARE and approve Terms of Use Agreements with other organizations who 
want to use the asset.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="Name" type="NameType"/> 
   <xs:element name="Organization" type="OrganizationNameType"/> 
   <xs:element name="Address" type="AddressType"/> 
   <xs:element name="Phone" type="PhoneType"/> 
   <xs:element name="Email" type="EmailType"/> 
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  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="ProgrammingLanguagesType"> 
  <xs:annotation> 
   <xs:documentation>List of programming languages relevant to the asset being 
submitted.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="ProgrammingLanguage" type="ProgrammingLanguageType" 
maxOccurs="unbounded"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="RelatedAssetType"> 
  <xs:annotation> 
   <xs:documentation>Identification of an asset and its relationship to the asset being 
submitted.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="Asset" type="AssetNameType"/> 
   <xs:choice> 
    <xs:element name="CreationRelationship" 
type="CreationRelationshipType"> 
     <xs:annotation> 
      <xs:documentation>Indicates if the asset was created 
from other assets in SHARE.</xs:documentation> 
     </xs:annotation> 
    </xs:element> 
    <xs:element name="WorkingRelationship" 
type="WorkingRelationshipType"> 
     <xs:annotation> 
      <xs:documentation>This indicates if the asset works in 
conjunction with other assets in SHARE.</xs:documentation> 
     </xs:annotation> 
    </xs:element> 
    <xs:element name="GenerationRelationship" 
type="GenerationRelationshipType"> 
     <xs:annotation> 
      <xs:documentation>This indicates if other assets in 
SHARE were created from this asset.</xs:documentation> 
     </xs:annotation> 
    </xs:element> 
    <xs:element name="OtherRelationship" type="OtherRelationshipType"> 
     <xs:annotation> 
      <xs:documentation>This indicates if the asset is related in 
other ways with other assets in SHARE.</xs:documentation> 
     </xs:annotation> 
    </xs:element> 
   </xs:choice> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="RelatedAssetsType"> 
  <xs:annotation> 
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   <xs:documentation>List of assets related to asset being 
submitted.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="RelatedAsset" type="RelatedAssetType" minOccurs="0" 
maxOccurs="unbounded"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="RightsAndRestrictionsIndicatorType"> 
  <xs:annotation> 
   <xs:documentation>Indicates presence ("yes" selection) or absence ("no" selection) 
of various rights and restrictions associated with the asset being submitted (data rights markings, commercial 
software, special licenses, open source software licenses, data rights assertions, and additional 
information).</xs:documentation> 
  </xs:annotation> 
  <xs:choice> 
   <xs:element name="YesSelection" type="YesSelectionType"/> 
   <xs:element name="NoSelection"> 
    <xs:annotation> 
     <xs:documentation>Element is declared as empty (has no 
content).</xs:documentation> 
    </xs:annotation> 
    <xs:complexType/> 
   </xs:element> 
  </xs:choice> 
 </xs:complexType> 
 <xs:complexType name="RightsAndRestrictionsType"> 
  <xs:annotation> 
   <xs:documentation>Identification of rights and restrictions associated with the asset 
being submitted (data rights markings, commercial software, special licenses, open source software licenses, 
data rights assertions, and additional information).</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="DataRightsMarkings" 
type="RightsAndRestrictionsIndicatorType"/> 
   <xs:element name="CommercialSoftware" 
type="RightsAndRestrictionsIndicatorType"/> 
   <xs:element name="SpecialLicenses" type="RightsAndRestrictionsIndicatorType"/> 
   <xs:element name="OpenSourceSoftwareLicenses" 
type="RightsAndRestrictionsIndicatorType"/> 
   <xs:element name="DataRightsAssertions" 
type="RightsAndRestrictionsIndicatorType"/> 
   <xs:element name="AdditionalInformation" minOccurs="0"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="RuntimeEnvironmentsType"> 
  <xs:annotation> 
   <xs:documentation>List of runtime environments associated with the asset being 
submitted.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="RuntimeEnvironment" type="RuntimeEnvironmentType" 
maxOccurs="unbounded"/> 
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  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="SourceIdentificationType"> 
  <xs:annotation> 
   <xs:documentation>Identification of the source (contributor or organization) of the 
information about the asset being submitted.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="Contributor" type="MemberProfileType"> 
    <xs:annotation> 
     <xs:documentation>Information about the person and organization 
submitting the asset.</xs:documentation> 
    </xs:annotation> 
   </xs:element> 
   <xs:element name="Organization" type="OrganizationType"> 
    <xs:annotation> 
     <xs:documentation>Identify the organization submitting the 
asset.</xs:documentation> 
    </xs:annotation> 
   </xs:element> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="TargetOperatingSystemsType"> 
  <xs:annotation> 
   <xs:documentation>List of target operating systems associated with the asset being 
submitted.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="TargetOperatingSystem" type="TargetOperatingSystemType" 
maxOccurs="unbounded"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="TypeOrganizationType"> 
  <xs:annotation> 
   <xs:documentation>Type of organization (government or contractor). 
</xs:documentation> 
  </xs:annotation> 
  <xs:choice> 
   <xs:element name="GovernmentOrganization" 
type="GovernmentOrganizationType"/> 
   <xs:element name="ContractorOrganization" type="ContractorOrganizationType"/> 
  </xs:choice> 
 </xs:complexType> 
 <!--++++++++++++++++++++++--> 
 <!-- Simple Types (alphabetical) --> 
 <!--++++++++++++++++++++++--> 
 <xs:simpleType name="ArchitectureDomainType"> 
  <xs:annotation> 
   <xs:documentation>Possible values for the architecture domain of the asset (where 
the asset fits into the Surface Navy Combat Systems Objective Architecture) - Computing Equipment, 
Infrastructure, Display, Sensor Management, Track Management, Command and Control (C2), Weapon 
Management, Vehicle Control, External Communication (EXCOMM), Common Support, Ship Control, or 
Other</xs:documentation> 
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  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="Computing Equipment"> 
    <xs:annotation> 
     <xs:documentation>Provides common computer processors, 
displays, storage devices, and networking hardware and enclosures, fielded as the combat system computing 
environment.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="Infrastructure"> 
    <xs:annotation> 
     <xs:documentation>Provides computing and network services 
such as applicatoin state and mode control, messaging, data recording.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="Display"> 
    <xs:annotation> 
     <xs:documentation>Provides the framework for the generation of 
graphical user interfaces as well as common operator displays. Includes services for "signing on" to consoles 
and application access management.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="Sensor Management"> 
    <xs:annotation> 
     <xs:documentation>Provides sensor detection, tracking and 
support capability.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="Track Management"> 
    <xs:annotation> 
     <xs:documentation>Integrates sensor data from local ship sensor 
resources and remote sensors and networks to develop common tactical and operational 
pictures.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="Command and Control (C2)"> 
    <xs:annotation> 
     <xs:documentation>Provides support for battle management and 
tactical decision making.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="Weapon Management"> 
    <xs:annotation> 
     <xs:documentation>Provides combat system weapon engagement 
capabilities.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="Vehicle Control"> 
    <xs:annotation> 
     <xs:documentation>Provides capabilities to ensure safety and asset 
management for offboard entities controlled by own ship operators.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
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   <xs:enumeration value="External Communications (EXCOMM)"> 
    <xs:annotation> 
     <xs:documentation>Provides access to shipboard communications 
terminals such as JTIDS, Joint Tactical Terminal (JTT), and IMMARSAT to access SIPRNET, NIPRNET and 
other tactical data networks.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="Common Support"> 
    <xs:annotation> 
     <xs:documentation>Provides combat system support services such 
as training applications and interface simulation.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="Ship Control"> 
    <xs:annotation> 
     <xs:documentation><![CDATA[Provides services for ship damage 
control, propulsion control, and monitoring/management of ship hull, mechanical, and electrical 
(HM&E).]]></xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="Other"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="ArchiveFormatsType"> 
  <xs:annotation> 
   <xs:documentation>Identification of the format(s) of the archived asset content. 
Type: string</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:minLength value="1"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="ArtifactType"> 
  <xs:annotation> 
   <xs:documentation>Describes an artifact included in an asset and its format. Type: 
string</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:minLength value="1"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="AssetNameType"> 
  <xs:annotation> 
   <xs:documentation>Name of the asset being submitted. Type: 
string</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:minLength value="1"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="AssetDevelopmentStatusType"> 
  <xs:annotation> 
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   <xs:documentation>Possible values for the development status of the asset being 
submitted - In Development or Development Completed</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="In Development"/> 
   <xs:enumeration value="Development Completed"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="AssetMaturityType"> 
  <xs:annotation> 
   <xs:documentation>Maturity of the asset being submitted. Type: 
string</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:minLength value="1"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="CityType"> 
  <xs:annotation> 
   <xs:documentation>City. Type: string</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:minLength value="1"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="ClassificationType"> 
  <xs:annotation> 
   <xs:documentation>Possible values for classification of the asset being submitted - 
U, C, or S</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="U"/> 
   <xs:enumeration value="C"/> 
   <xs:enumeration value="S"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="CodeTypeArtifactType"> 
  <xs:annotation> 
   <xs:documentation>Possible values for a code type artifact - Source Code, Compiled 
Libraries, Executable Programs, Data/Support Files, Build Scripts/Instructions, or Tools</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="Source Code"/> 
   <xs:enumeration value="Compiled Libraries"/> 
   <xs:enumeration value="Executable Programs"/> 
   <xs:enumeration value="Data/Support Files"/> 
   <xs:enumeration value="Build Scripts/Instructions"/> 
   <xs:enumeration value="Tools"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="COTSorGOTSDependencyType"> 
  <xs:annotation> 
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   <xs:documentation>Description of the dependency on COTS or GOTS. Type: 
string</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:minLength value="1"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="ContractNumberType"> 
  <xs:annotation> 
   <xs:documentation>Contract number. Type: string</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:minLength value="1"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="CreationRelationshipType"> 
  <xs:annotation> 
   <xs:documentation>Possible values for describing the creation relationship between 
the asset being submitted and other assets - Newer Version, Variant Of, Extracted From, or Derived 
From</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="Newer Version"> 
    <xs:annotation> 
     <xs:documentation>This indicates that the current asset is an 
earlier version of the related asset. It is intended to upgrade or replace the related asset, not be a variant of 
it.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="Variant Of"> 
    <xs:annotation> 
     <xs:documentation>This indicates that the current asset is a variant 
of the related asset to be used in a different target envirnoment or situation.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="Extracted From"> 
    <xs:annotation> 
     <xs:documentation>This indicates that the current asset was 
extracted from another asset and was possibly repackages to be more reusable. The extracted asset will not be 
merged back into the asset it was extracted from.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="Derived From"> 
    <xs:annotation> 
     <xs:documentation>This indicates that the current asset was 
originally based on the related asset but is sufficiently different to consider it a different asset and not a version 
or variant.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="DateType"> 
  <xs:annotation> 
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   <xs:documentation>Date of submission of the asset. Type: 
string</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:minLength value="1"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="DeliveryType"> 
  <xs:annotation> 
   <xs:documentation>Possible values for the type of delivery for an asset - DD250, 
CDRL, or Don't Know</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="DD250"/> 
   <xs:enumeration value="CDRL"/> 
   <xs:enumeration value="Don't Know"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="DescriptionType"> 
  <xs:annotation> 
   <xs:documentation>Description of the asset being submitted. Type: 
string</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:minLength value="1"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="DevelopmentSupportCategoryType"> 
  <xs:annotation> 
   <xs:documentation>The possible values for identifying the asset category in the 
Development Support asset scope - Database/Data Files, Framework, Tools/Utilities, or Test 
Tools/Environments </xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="Database/Data Files"> 
    <xs:annotation> 
     <xs:documentation>Database or data files that are not 
accompanied by the functional code that uses the data.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="Framework"> 
    <xs:annotation> 
     <xs:documentation>A reusable design for a software system (or 
subsystem) expressed as a set of abstract classes and the way their instances collaborate for a specific type of 
software. A framework may include support programs, code libraries, a scripting language, or other software to 
help develop and glue together the different components of a software project. (Wikipedia)</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="Tools/Utilities"> 
    <xs:annotation> 
     <xs:documentation>Code or application that is intended primarily 
to support development activities rather than to be incorporated into tactical programs.</xs:documentation> 
    </xs:annotation> 



 

=
 

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - 115 - 
k^s^i=mlpqdo^ar^qb=p`elli=

=

   </xs:enumeration> 
   <xs:enumeration value="Test Tools/Environments"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="DistributionStatementType"> 
  <xs:annotation> 
   <xs:documentation>The possible values for the distribution statement applicable to 
the artifact - A, B, C, D, E, F, or X</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="A"> 
    <xs:annotation> 
     <xs:documentation>Approved for public release; distribution is 
unlimited.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="B"> 
    <xs:annotation> 
     <xs:documentation>Distribution authorized to U.S. Government 
Agencies only (fill in reason) (date of determination). Other requests for this document shall be referred to 
(insert controlling DoD office).</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="C"> 
    <xs:annotation> 
     <xs:documentation>Distribution authorized to U.S. Government 
Agencies and their contractors (fill in reason) (date of determination). Other requests for this document shall be 
referred to (insert controlling DoD office).</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="D"> 
    <xs:annotation> 
     <xs:documentation>Distribution authorized to the Department of 
Defense and U.S. DoD contractors only (fill in reason) (date of determination). Other requests shall be referred 
to (insert controlling DoD office).</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="E"> 
    <xs:annotation> 
     <xs:documentation>Distribution authorized to DoD Components 
only (fill in reason) (date of determination). Other requests for this document shall be referred to (insert 
controlling DoD office).</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="F"> 
    <xs:annotation> 
     <xs:documentation>Further distribution only as directed by (insert 
controlling DoD office) (date of determination) or higher DoD authority.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="X"> 
    <xs:annotation> 
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     <xs:documentation>Distribution authorized to U.S. Government 
Agencies and private individuals or enterprises eligible to obtain export-controlled technical data in accordance 
with reference (c) (date of determination). Controlling DoD office is (insert).</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="DocumentTypeArtifactType"> 
  <xs:annotation> 
   <xs:documentation>The possible values for the type of artifact in a Document type 
asset - Requirements, Design/Architecture Documentation, Test Procedures, User Documentation, Training 
Documentation, or Test Records</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="Requirements"/> 
   <xs:enumeration value="Design/Architecture Documentation"/> 
   <xs:enumeration value="Test Procedures"/> 
   <xs:enumeration value="User Documentation"/> 
   <xs:enumeration value="Training Documentation"/> 
   <xs:enumeration value="Test Records"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="EmailType"> 
  <xs:annotation> 
   <xs:documentation>Email address. Type: string</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:pattern value="([A-Z]|[a-z]|[0-9])+@([A-Z]|[a-z]|[0-9])+\.([A-Z]|[a-z]|[0-
9]){3}"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="ExportControlStatementType"> 
  <xs:annotation> 
   <xs:documentation>The possible values for the Export Control Statement on the 
asset being submitted - Yes or No</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="Yes"/> 
   <xs:enumeration value="No"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="GenerationRelationshipType"> 
  <xs:annotation> 
   <xs:documentation>Possible values for describing the generation relationship 
between the asset being submitted and other assets - Older Version, Extraction Source, or Derivation 
Source</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="Older Version"> 
    <xs:annotation> 
     <xs:documentation>This indicates that the current asset is updated 
or replaced by the related asset.</xs:documentation> 
    </xs:annotation> 
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   </xs:enumeration> 
   <xs:enumeration value="Extraction Source"> 
    <xs:annotation> 
     <xs:documentation>This indicates that the current asset was used 
to extract the related asset. The extracted asset will not be merged back into the aset it was extracted 
from.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="Derivation Source"> 
    <xs:annotation> 
     <xs:documentation>This indicates that the related asset was 
originally based on the current asset but is sufficiently different to consider it a different asset and not a version 
or variant.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="NameType"> 
  <xs:annotation> 
   <xs:documentation>Person name. Type: string</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:minLength value="1"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="OrganizationNameType"> 
  <xs:annotation> 
   <xs:documentation>Name of an organization. Type: string</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:minLength value="1"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="OtherRelationshipType"> 
  <xs:annotation> 
   <xs:documentation>Possible values for describing other relationships between the 
asset being submitted and other assets - Similar To, Contained Within, or Contains</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="Similar To"> 
    <xs:annotation> 
     <xs:documentation>This indicates that the other asset has 
characteristics that are similar to the current asset.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="Contained Within"> 
    <xs:annotation> 
     <xs:documentation>This indicates that the current asset is part of a 
larger asset that is also stored in SHARE. This containment may be physical or by 
reference.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="Contains"> 
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    <xs:annotation> 
     <xs:documentation>This indicates that the current asset contains 
the related asset. This containment may be physical or by reference.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="OtherScopeCategoryType"> 
  <xs:annotation> 
   <xs:documentation>The possible values for identifying the asset category in the 
Other asset scope - Enterprise Framework, Data Architecture, or Pattern/Design/Algorithm</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="Enterprise Framework"> 
    <xs:annotation> 
     <xs:documentation>Description of a current and/or future structure 
and behavior for an organization's processes, information systems, peronnel and organizational sub-units so that 
they align with the organization's core goals and strategic direction.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="Data Architecture"> 
    <xs:annotation> 
     <xs:documentation>Development and execution of architectures, 
policies, practices and procedures that properly manage the full data lifecycle needs of an 
enterprise.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="Pattern/Design/Algorithm"> 
    <xs:annotation> 
     <xs:documentation>Design guidance that captures information that 
may be generally applicable but that is not provided in the context of a specific system.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="PatentType"> 
  <xs:annotation> 
   <xs:documentation>Identification of government patent(s) that apply to the asset 
being submitted. Type: string</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:minLength value="1"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="PhoneType"> 
  <xs:annotation> 
   <xs:documentation>String pattern for a telephone number. Type: 
string</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:pattern value="d{3}(\.|-)d{3}(\.|-)d{4}"/> 
  </xs:restriction> 
 </xs:simpleType> 
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 <xs:simpleType name="PhysicalMediaFormatType"> 
  <xs:annotation> 
   <xs:documentation>The possible values for identifying the physical media format 
for the artifact being provided - CD, DVD</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="CD"/> 
   <xs:enumeration value="DVD"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="PlannedUpdatesType"> 
  <xs:annotation> 
   <xs:documentation>Description of any planned updates that are currently known. 
Type: string</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:minLength value="1"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="ProgrammingLanguageType"> 
  <xs:annotation> 
   <xs:documentation>Identification of a programming language applicable to the asset 
being submitted. Type: string</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:minLength value="1"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="ProgramNameType"> 
  <xs:annotation> 
   <xs:documentation>The name of the program (when not previously entered) 
applicable to the asset being submitted. Type: string</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:minLength value="1"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="ProgramType"> 
  <xs:annotation> 
   <xs:documentation>The possible values for identification of a (previously entered) 
program applicable to the asset being submitted - AEGIS, DDG 1000, SSDS, LCS, NSWCDD HSI, SIAP, 
SQQ-89, TSTS, ASW, CEP WASP, GeDear, BFTT, Other</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="AEGIS"/> 
   <xs:enumeration value="DDG 1000"/> 
   <xs:enumeration value="SSDS"/> 
   <xs:enumeration value="LCS"/> 
   <xs:enumeration value="NSWCDD HSI"/> 
   <xs:enumeration value="SIAP"/> 
   <xs:enumeration value="SQQ-89"/> 
   <xs:enumeration value="TSTS"/> 
   <xs:enumeration value="ASW"/> 
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   <xs:enumeration value="CEP WASP"/> 
   <xs:enumeration value="GeDear"/> 
   <xs:enumeration value="BFTT"/> 
   <xs:enumeration value="Other"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="RationaleType"> 
  <xs:annotation> 
   <xs:documentation>Description of the rationale for submitting the asset. Type: 
string</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:minLength value="1"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="RuntimeEnvironmentType"> 
  <xs:annotation> 
   <xs:documentation>Identification of a runtime environment applicable to the asset 
being submitted. Type: string</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:minLength value="1"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="SecurityClassificationGuideIDType"> 
  <xs:annotation> 
   <xs:documentation>Identification of the Security Classification Guide ID# for a 
classified asset. Type: string</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:minLength value="1"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="StateType"> 
  <xs:annotation> 
   <xs:documentation>The possible values for the US state in an address - AL, AK, 
AZ, AR, CA, CO, CT, DE, DC, FL, GA, HI, ID, IL, IN, IA, KS, KY, LA, ME, MD, MA, MI, MN, MS, MO, 
MT, NE, NV, NH, NJ, NM, NY, NC, ND, OH, OK, OR, PA, RI, SC, SD, TN, TX, UT, VT, VA, WA, WV, WI, 
or WY</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:pattern 
value="AL|AK|AZ|AR|CA|CO|CT|DE|DC|FL|GA|HI|ID|IL|IN|IA|KS|KY|LA|ME|MD|MA|MI|MN|MS|MO|MT|
NE|NV|NH|NJ|NM|NY|NC|ND|OH|OK|OR|PA|RI|SC|SD|TN|TX|UT|VT|VA|WA|WV|WI|WY"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="StreetAddressType"> 
  <xs:annotation> 
   <xs:documentation>Street address. Type: string</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:minLength value="1"/> 
  </xs:restriction> 
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 </xs:simpleType> 
 <xs:simpleType name="TacticalApplicationCategoryType"> 
  <xs:annotation> 
   <xs:documentation>The possible values for identifying the asset category in the 
Tactical Application asset scope - System, Application Program, Package, System Service, Component, 
Library, or Module/Code Fragment</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="System"> 
    <xs:annotation> 
     <xs:documentation>Collection of applicatoins and data that work 
together to support a mission.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="Application Program"> 
    <xs:annotation> 
     <xs:documentation>Complete computer program or applet that 
will execute in the target environment without being incorporated into a larger program.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="Package"> 
    <xs:annotation> 
     <xs:documentation>A collection of related components of system 
services.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="System Service"> 
    <xs:annotation> 
     <xs:documentation>A system element element offering a 
predefined service and able to communicate with other components via a well defined protocol. Services are 
loosely coupled to the application and may be distributed.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="Component"> 
    <xs:annotation> 
     <xs:documentation>A nontrivial, nearly independent, and 
replaceable part of a system that fulfills a clear function in the context of a well defined architecture. A 
component conforms to and provides the physical realizatoin of a set of interfaces. (The Rational Unified 
Process Made Easy)</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="Library"> 
    <xs:annotation> 
     <xs:documentation>Any collection of pieces of computer 
programs that may be used to build other computer programs that do not meet the above 
criteria.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="Module/Code Fragment"> 
    <xs:annotation> 
     <xs:documentation>Any piece of a computer program that may be 
used to build other computer programs that do not meet the above criteria.</xs:documentation> 
    </xs:annotation> 
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   </xs:enumeration> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="TargetOperatingSystemType"> 
  <xs:annotation> 
   <xs:documentation>Identification of a target operating system applicable to the asset 
being submitted. Type: string</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:minLength value="1"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="TypeAssetType"> 
  <xs:annotation> 
   <xs:documentation>The possible values for identifying the type of asset being 
submitted - Documentation or Code</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="Documentation"/> 
   <xs:enumeration value="Code"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="VersionType"> 
  <xs:annotation> 
   <xs:documentation>Version or revision identifier for the asset.</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:minLength value="1"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="WorkingRelationshipType"> 
  <xs:annotation> 
   <xs:documentation>Possible values for describing the working relationship between 
the asset being submitted and other assets - Dependent Upon, Needed By, Interfaces With</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="Dependent Upon"> 
    <xs:annotation> 
     <xs:documentation>This indicates that the current asset references 
or relies on the services or artifacts of the related asset to provide the desired/required 
capability.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="Needed By"> 
    <xs:annotation> 
     <xs:documentation>This indicates that the current asset is 
referenced or used by the related asset to provide the desired/required capability.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
   <xs:enumeration value="Interfaces With"> 
    <xs:annotation> 
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     <xs:documentation>This indicates that the current asset 
communicates with the related assets. The related assets may be needed for operation but that are not needed to 
complete the requirements.</xs:documentation> 
    </xs:annotation> 
   </xs:enumeration> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="YesSelectionType"> 
  <xs:annotation> 
   <xs:documentation>Enter explanation for the affirmative entry.</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:minLength value="1"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="ZipType"> 
  <xs:annotation> 
   <xs:documentation>String pattern for a 5 or 9 digit zip code. Type: 
string</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:pattern value="d{5}(-d{4})?"/> 
  </xs:restriction> 
 </xs:simpleType> 

</xs:schema> 
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Appendix B. XML Schema for Proposed SHARE 
Asset Information 

This appendix provides two XML schema files, one describing top-level 

information about Assets (section B.1) and one describing Artifacts (section B.2). 

The content of these schemas is described in section III.C in the body of this 

document.  

B.1 XML Schema for Describing SHARE Assets 
<?xml version="1.0" encoding="UTF-8"?> 
<!-- edited with XMLSpy v2008 (http://www.altova.com) by Curtis Blais and Jean Johnson (Naval 
Postgraduate School) --> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 
xmlns="http://www.navy.mil/OpenArchitecture/SHARE" 
targetNamespace="http://www.navy.mil/OpenArchitecture/SHARE" elementFormDefault="qualified" 
attributeFormDefault="unqualified"> 
 <!-- Include the XML schema describing SHARE Artifacts --> 
 <xs:include schemaLocation="SHAREArtifacts.xsd"/> 
 <!-- Define the Assets root element --> 
 <xs:element name="Assets" type="AssetsType"> 
  <xs:annotation> 
   <xs:documentation>Root element for XML document containing one or more 
SHARE Asset records. </xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="AssetsType"> 
  <xs:annotation> 
   <xs:documentation>Complex type defining the data structure for the Assets 
element.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element ref="Asset" maxOccurs="unbounded"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:element name="Asset" type="AssetType"> 
  <xs:annotation> 
   <xs:documentation>Recommended packaging of artifacts into assets.  Assets are 
defined as a grouping of artifacts which provide a solution to a problem for a given context.  Assets can be 
either user defined based on search results or packages that are considered common solutions to common 
problems.  This differs significantly from the concept of an asset as currently contained in the SHARE 
Repository. </xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="AssetType"> 
  <xs:annotation> 
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   <xs:documentation>Complex type defining the data structure for the Asset 
element.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element ref="AssetName"/> 
   <xs:element ref="Purpose"/> 
   <xs:element ref="InitialUse"/> 
   <xs:element ref="PreviousUses"/> 
   <xs:element ref="AssetScope"/> 
   <xs:element ref="AssetCategory"/> 
   <xs:element ref="ArtifactsIncluded"/> 
   <xs:element ref="RetrievalInformation"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:element name="AssetName" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Name or identifier of an Asset.</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="Purpose" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Purpose for the Asset (what the asset does or is used 
for).</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="InitialUse" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Initial use of the Asset.</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="PreviousUses" type="PreviousUsesType"> 
  <xs:annotation> 
   <xs:documentation>List of previous uses of the Asset.</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="PreviousUse" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Description of a previous use of the Asset.</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="PreviousUsesType"> 
  <xs:annotation> 
   <xs:documentation>Complex type defining the data structure for the PreviousUse 
element.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element ref="PreviousUse" maxOccurs="unbounded"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:element name="AssetScope" type="AssetScopeType"> 
  <xs:annotation> 
   <xs:documentation>Description of the functional scope of the 
Asset.</xs:documentation> 
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  </xs:annotation> 
 </xs:element> 
 <xs:element name="AssetCategory" type="AssetCategoryType"> 
  <xs:annotation> 
   <xs:documentation>Identification of the category of the Asset.</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:simpleType name="AssetScopeType"> 
  <xs:annotation> 
   <xs:documentation>Simple type defining the set of enumerated values for 
AssetScope.</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="Tactical Application"/> 
   <xs:enumeration value="Development Support"/> 
   <xs:enumeration value="Other"/> 
   <xs:enumeration value="Unknown"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="AssetCategoryType"> 
  <xs:annotation> 
   <xs:documentation>Simple type defining the set of enumerated values for 
AssetCategory.</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="System"/> 
   <xs:enumeration value="ApplicationProgram"/> 
   <xs:enumeration value="Package"/> 
   <xs:enumeration value="System Service"/> 
   <xs:enumeration value="Component(s)"/> 
   <xs:enumeration value="Library"/> 
   <xs:enumeration value="Module/Code Fragment"/> 
   <xs:enumeration value="Database/Data Files"/> 
   <xs:enumeration value="Framework"/> 
   <xs:enumeration value="Tools/Utilities"/> 
   <xs:enumeration value="Test Tools/Environments"/> 
   <xs:enumeration value="Enterprise Framework"/> 
   <xs:enumeration value="Data Architecture"/> 
   <xs:enumeration value="Pattern/Design/Algorithm"/> 
   <xs:enumeration value="Standard/Interface/API"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:element name="ArtifactsIncluded" type="ArtifactsType"> 
  <xs:annotation> 
   <xs:documentation>List of Artifacts included in the Asset.</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="RetrievalInformation"> 
  <xs:annotation> 
   <xs:documentation>Information on how to retrieve the Asset 
content.</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
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</xs:schema> 

B.2 XML Schema for Describing SHARE Artifacts 
<?xml version="1.0" encoding="UTF-8"?> 
<!-- edited with XMLSpy v2008 sp1 (http://www.altova.com) by Jean Johnson (Naval Postgraduate School) --> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 
xmlns="http://www.navy.mil/OpenArchitecture/SHARE" 
targetNamespace="http://www.navy.mil/OpenArchitecture/SHARE" elementFormDefault="qualified" 
attributeFormDefault="unqualified"> 
 <xs:element name="Artifacts" type="ArtifactsType"> 
  <xs:annotation> 
   <xs:documentation>Artifacts is the root element of the schema - a container for 
individual artifacts.  Type: ArtifactsType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="ArtifactsType"> 
  <xs:annotation> 
   <xs:documentation>Contains a list of artifacts.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element ref="Artifact" maxOccurs="unbounded"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:element name="Artifact" type="ArtifactType"> 
  <xs:annotation> 
   <xs:documentation>Individual artifacts.  Can either be a full description, or a 
reference by physical location or URL.  Type: ArtifactType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="ArtifactType"> 
  <xs:annotation> 
   <xs:documentation>Defines the three possible types of artifact descriptions (full 
description, physical reference, or URL reference)</xs:documentation> 
  </xs:annotation> 
  <xs:choice> 
   <xs:element ref="ArtifactFullDescription"/> 
   <xs:element ref="ArtifactPhysicalReference"/> 
   <xs:element ref="ArtifactURLReference"/> 
  </xs:choice> 
 </xs:complexType> 
 <xs:element name="ArtifactFullDescription" type="ArtifactFullType"> 
  <xs:annotation> 
   <xs:documentation>The recommended full description of an artifact.  Type: 
ArtifactFullType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="ArtifactPhysicalReference" type="ArtifactPhysicalReferenceType"> 
  <xs:annotation> 
   <xs:documentation>A physical reference to an artifact.  
Type:ArtifactPhysicalReferenceType</xs:documentation> 
  </xs:annotation> 
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 </xs:element> 
 <xs:element name="ArtifactURLReference" type="URLType"> 
  <xs:annotation> 
   <xs:documentation>A URL reference to an artifact.  Type: 
ArtifactURLReferenceType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="ArtifactFullType"> 
  <xs:annotation> 
   <xs:documentation>Defines the elements of a full artifact 
description.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element ref="ControlNumber"/> 
   <xs:element ref="SubmissionInformation"/> 
   <xs:element ref="Program"/> 
   <xs:element ref="ArtifactDescription"/> 
   <xs:element ref="SecurityInformation"/> 
   <xs:element ref="DataFormat"/> 
   <xs:element ref="RightsRestrictions"/> 
   <xs:element ref="AdditionalInformation" minOccurs="0"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:simpleType name="ArtifactPhysicalReferenceType"> 
  <xs:annotation> 
   <xs:documentation> Type: string</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"/> 
 </xs:simpleType> 
 <xs:simpleType name="URLType"> 
  <xs:annotation> 
   <xs:documentation> Type: string</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"/> 
 </xs:simpleType> 
 <xs:element name="ControlNumber" type="ControlNumberType"> 
  <xs:annotation> 
   <xs:documentation>Unique identifacation number for the artifact.  Currently created 
for Assets by the SHARE Domino database.  Type: ControlNumberType </xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:simpleType name="ControlNumberType"> 
  <xs:annotation> 
   <xs:documentation>Type: 32 character string of hexadecimal 
digits</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:pattern value="[0-9A-F]{32}"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:element name="SubmissionInformation" type="SubmissionInformationType"> 
  <xs:annotation> 
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   <xs:documentation>Artifact submission date, time and source information.  Type: 
SubmissionInformationType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="SubmissionInformationType"> 
  <xs:annotation> 
   <xs:documentation>Defines the elements of the submission 
information.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element ref="SubmitDate"/> 
   <xs:element ref="SubmitTime"/> 
   <xs:element ref="Source"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:element name="SubmitDate" type="xs:date"> 
  <xs:annotation> 
   <xs:documentation>Date of submission.  Type: xs:date</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="SubmitTime" type="xs:time"> 
  <xs:annotation> 
   <xs:documentation>Time of submission:  Type: xs:time</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="Source" type="SourceType"> 
  <xs:annotation> 
   <xs:documentation>Identifies the person and organization responsible for submitting 
the artifact.  Type: SourceType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="SourceType"> 
  <xs:annotation> 
   <xs:documentation>Defines the elements of source 
information.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element ref="ArtifactSource"/> 
   <xs:element ref="SourceOrganization"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:element name="ArtifactSource" type="POCInfo"> 
  <xs:annotation> 
   <xs:documentation>The individual responsible for submitting the artifact.  
Currently, this information is drawn automatically for the person logged into SHARE conducting the 
submission.  Type: POCInfo</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="SourceOrganization" type="SourceOrganizationType"> 
  <xs:annotation> 
   <xs:documentation>The organization submitting the artifact.  Type: 
SourceOrganizationType </xs:documentation> 
  </xs:annotation> 
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 </xs:element> 
 <xs:complexType name="SourceOrganizationType"> 
  <xs:annotation> 
   <xs:documentation>Defines the elements of information required for the source 
organization. The specific information required is dependent on whether or not the organization is a government 
or contractor organization.</xs:documentation> 
  </xs:annotation> 
  <xs:choice> 
   <xs:element ref="GovernmentOrganization"/> 
   <xs:element ref="ContractorOrganization"/> 
  </xs:choice> 
 </xs:complexType> 
 <xs:element name="GovernmentOrganization" type="GovernmentOrganizationType"> 
  <xs:annotation> 
   <xs:documentation>Identifies a government organization responsible for the 
submission.  Type: GovernmentOrganizationType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="GovernmentOrganizationType"> 
  <xs:annotation> 
   <xs:documentation>Defines the elements of information required for a government 
organization.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element ref="OrganizationName"/> 
   <xs:element ref="Patents"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:element name="ContractorOrganization" type="ContractorOrganizationType"> 
  <xs:annotation> 
   <xs:documentation>Identifies a contractor organization resposible for the 
submission.  Type: ContractorOrganizationType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="ContractorOrganizationType"> 
  <xs:annotation> 
   <xs:documentation>Defines the elements of information required for a contractor 
organization.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element ref="OrganizationName"/> 
   <xs:element ref="ContractNumber"/> 
   <xs:element ref="DeliveryVehicle"/> 
   <xs:element ref="ContractingOfficer"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:element name="OrganizationName" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Name of the source organization.  Required for both government 
and contractor source organizations.  Type: xs:string</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="Patents" type="PatentsType"> 
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  <xs:annotation> 
   <xs:documentation>A list of relevant patents held by the organization.  Applicable 
only to Government source organizations.  Type: PatentsType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="PatentsType"> 
  <xs:annotation> 
   <xs:documentation>Defines the container for the relevant 
patents.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="Patent" minOccurs="0" maxOccurs="unbounded"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:element name="Patent" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Individual patent entries.  Type: xs:stirng</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="ContractNumber" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Contract number the artifact was developed under.  Applicable 
only to Contractor source organizations.  Type: xs:string</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="DeliveryVehicle" type="DeliveryVehicleValues"> 
  <xs:annotation> 
   <xs:documentation>The vehicle of delivery for the artifact.  Applicable only to 
Contractor source organizations.  Possible values are DD250, CDRL or Don't Know.  Type: 
DeliveryVehicleValues</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:simpleType name="DeliveryVehicleValues"> 
  <xs:annotation> 
   <xs:documentation>Type: xs:string with possible values of DD250, CDRL, or Don't 
Know. </xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="DD250"/> 
   <xs:enumeration value="CDRL"/> 
   <xs:enumeration value="Don't Know"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:element name="ContractingOfficer" type="POCInfo"> 
  <xs:annotation> 
   <xs:documentation>POC Information for the contracting officer on the contract.  
Applicable only to Contractor source organizations.  Type: POCInfo</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="Program" type="ProgramType"> 
  <xs:annotation> 
   <xs:documentation>Name and manager information for the major program 
responsible for development of the artifact.  Type: ProgramType</xs:documentation> 
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  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="ProgramType"> 
  <xs:annotation> 
   <xs:documentation>Defines the elements of information required for the 
program.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element ref="ProgramName"/> 
   <xs:element ref="ProgramManager"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:element name="ProgramName" type="ProgramNameType"> 
  <xs:annotation> 
   <xs:documentation>Name of program.  Can either be the name of a program existing 
in SHARE, or one to be added.  Type: ProgramNameType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="ProgramNameType"> 
  <xs:annotation> 
   <xs:documentation>Defines two types of program names, existing or 
new.</xs:documentation> 
  </xs:annotation> 
  <xs:choice> 
   <xs:element ref="ExistingProgramName"/> 
   <xs:element ref="NewProgramName"/> 
  </xs:choice> 
 </xs:complexType> 
 <xs:element name="ExistingProgramName" type="ProgramNameValues"> 
  <xs:annotation> 
   <xs:documentation>Existing program names as enumerated by a list.  Type: 
ProgramNameValues</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:simpleType name="ProgramNameValues"> 
  <xs:annotation> 
   <xs:documentation>Type: xs:string, with an enumberated list of possible values for 
ExistingProgramName.</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="AEGIS"/> 
   <xs:enumeration value="DDG 1000"/> 
   <xs:enumeration value="SSDS"/> 
   <xs:enumeration value="LCS"/> 
   <xs:enumeration value="NSWCDD HSI"/> 
   <xs:enumeration value="SIAP"/> 
   <xs:enumeration value="SQQ-89"/> 
   <xs:enumeration value="TSTS"/> 
   <xs:enumeration value="ASW"/> 
   <xs:enumeration value="CEP WASP"/> 
   <xs:enumeration value="GeDear"/> 
   <xs:enumeration value="BFTT"/> 
  </xs:restriction> 
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 </xs:simpleType> 
 <xs:element name="NewProgramName" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Name of program when it is not already included in existing 
SHARE programs.  Type: xs:string</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="ProgramManager" type="POCInfo"> 
  <xs:annotation> 
   <xs:documentation>POC information for the program manager.  When the program 
already exists in SHARE, this information is automatically drawn from the database.  Otherwise, a submitting 
user is prompted to enter the information.  Type: POCInfo</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="ArtifactDescription" type="ArtifactDescriptionType"> 
  <xs:annotation> 
   <xs:documentation>The portion of the full artifact description that focuses on the 
artifact itself.  Type: ArtifactDescriptionType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="ArtifactDescriptionType"> 
  <xs:annotation> 
   <xs:documentation>Defines the two types of artifact descriptions: NonCode and 
Code.</xs:documentation> 
  </xs:annotation> 
  <xs:choice> 
   <xs:element ref="NonCodeDescription"/> 
   <xs:element ref="CodeDescription"/> 
  </xs:choice> 
 </xs:complexType> 
 <xs:element name="NonCodeDescription" type="NonCodeDescriptionType"> 
  <xs:annotation> 
   <xs:documentation>The information required for any type of artifact other than 
code.  Type: NonCodeDescriptionType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="NonCodeDescriptionType"> 
  <xs:annotation> 
   <xs:documentation>Defines the information required for non-code artfacts. Consists 
of a group of elements defined by the ItemDescriptionGroup.</xs:documentation> 
  </xs:annotation> 
  <xs:group ref="ItemDescriptionGroup"/> 
 </xs:complexType> 
 <xs:group name="ItemDescriptionGroup"> 
  <xs:annotation> 
   <xs:documentation>Defines a group of elements that describe both code and non-
code artifacts.  </xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element ref="ArtifactName"/> 
   <xs:element ref="Version"/> 
   <xs:element ref="DateOfCreation"/> 
   <xs:element ref="Description"/> 
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   <xs:element ref="ContributionRationale" minOccurs="0"/> 
   <xs:element ref="ArtifactType"/> 
   <xs:element ref="ApplicableSystems"/> 
   <xs:element ref="ObjectiveArchitectureTags"/> 
   <xs:element ref="SoftwareBehaviorDescription"/> 
   <xs:element ref="History"/> 
   <xs:element ref="Interdependencies"/> 
  </xs:sequence> 
 </xs:group> 
 <xs:element name="ArtifactName" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Artifact name. Type: xs:string</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="Version" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Artifact version.  Type: xs:string</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="DateOfCreation" type="xs:date"> 
  <xs:annotation> 
   <xs:documentation>Date of artifact creation (may be approximated).  Type: 
xs:date</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="Description" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>A brief description of the artifact provided by the submitter.  
Type: xs:sring</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="ContributionRationale" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>The submitter's rationale for submitting the artifact.  Type: 
xs:string</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="ArtifactType" type="ArtifactTypeValues"> 
  <xs:annotation> 
   <xs:documentation>Artifact type and subtypes are identified as attributes of this 
element.  Type: ArtifactTypeValues</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="ArtifactTypeValues"> 
  <xs:annotation> 
   <xs:appinfo source="artifacts.owl"> 
    The allowable values for Type and SubType should be validated against the 
SoftwareArtifacts classes and their subclasses (respectively) from the artifact-lifecycle ontology developed for 
this project. 
   </xs:appinfo> 
   <xs:documentation>The possible values for artifact type.  These should be validated 
against the artifact-lifecycle ontology developed for this project found in separate document 
"artifacts.owl"</xs:documentation> 
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  </xs:annotation> 
  <xs:attribute ref="Type"/> 
  <xs:attribute ref="SubType"/> 
 </xs:complexType> 
 <xs:attribute name="Type" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Corresponds to the subclasses of the SoftwareArtifacts class in 
the artifacts-lifecycle ontology.</xs:documentation> 
  </xs:annotation> 
 </xs:attribute> 
 <xs:attribute name="SubType" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Corresponds to the second level of subclasses under the 
SoftwareArtifacts class in the artifacts-lifecycle ontology.</xs:documentation> 
  </xs:annotation> 
 </xs:attribute> 
 <xs:element name="ApplicableSystems" type="ApplicableSystemsType"> 
  <xs:annotation> 
   <xs:documentation>The systems in which the artirfact is currently used.  Type: 
ApplicableSystemsType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="ApplicableSystemsType"> 
  <xs:annotation> 
   <xs:documentation>A list of systems/subsystems in which the artifact is used.  
Ideally, these system/subsystem groupings could be validated against ontologies that are based on the system 
diagrams for systems represented in SHARE.  These diagrams were not available for ontology development for 
this version of the repository framework.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence maxOccurs="unbounded"> 
   <xs:element ref="System"/> 
   <xs:element ref="Subsystem" minOccurs="0"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:element name="System" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>The major system in which the artifact is used.  Type: 
xs:string</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="Subsystem" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>The smallest subsystem in which the artifact is used.  This is an 
optional field since an artifact may apply to a complete system. Type: xs:string</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="ObjectiveArchitectureTags" type="ObjectiveArchitectureTagsType"> 
  <xs:annotation> 
   <xs:documentation>The portion of the Navy's objective architecture to which the 
artifact applies.  Type: ObjectiveArchitectureTagsType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="ObjectiveArchitectureTagsType"> 
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  <xs:annotation> 
   <xs:documentation>A list of the domain/subdomain elements of the objective 
architecture to which the artifact applies.  These should be validated against the ontology built for this project 
based on the Surface Combat System Objective Architecture developed for the Naval Open Architecture 
project.  This ontology is found in separate document 
"SurfaceWarfareSystemObjectiveArchitectureTagsType.owl".</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:annotation> 
    <xs:appinfo source="SurfaceWarfareSystemObjectiveArchitecture.owl"> 
     The allowable values for DomainTags and SubsystemTags should 
be validated against the PlatformAdaptation subclasses (domains) and their subclasses from the ontology 
created for this project from the Surface Combat System Objective Architecture developed for the Naval Open 
Architecture project. 
    </xs:appinfo> 
   </xs:annotation> 
   <xs:element ref="DomainTags"/> 
   <xs:element ref="SubDomainTags"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:element name="DomainTags" type="DomainTagsType"> 
  <xs:annotation> 
   <xs:documentation>The domain elements in the objective architecture to which the 
artifact applies.  Should be verified against the subclasses of the PlatformAdaptation class in the objective 
architecture ontology.  Type: DomainTagsType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="DomainTagsType"> 
  <xs:annotation> 
   <xs:documentation>A list of domain elements relevant for the 
artifact.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element ref="DomainTag" maxOccurs="unbounded"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:element name="DomainTag" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Individual domain elements.  Type: 
xs:string</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="SubDomainTags" type="SubDomainTagsType"> 
  <xs:annotation> 
   <xs:documentation>The subdomain elements in the objective architecture to which 
the artifact applies.  Should be verified against the second level subclasses of the PlatformAdaptation class in 
the PlatformAdaptation class of the objective architecture ontology.  Type: 
SubDomainTagsType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="SubDomainTagsType"> 
  <xs:annotation> 
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   <xs:documentation>A list of subdomain elements relevant for the 
artifact.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element ref="SubDomainTag" maxOccurs="unbounded"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:element name="SubDomainTag" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Individual subdomain elements.  Type: 
xs:string</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="SoftwareBehaviorDescription" type="SoftwareBehaviorDescriptionType"> 
  <xs:annotation> 
   <xs:documentation>A description of the behavior of the software found in or related 
to the artifact.  Type: SoftwareBehaviorDescriptionType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="SoftwareBehaviorDescriptionType"> 
  <xs:annotation> 
   <xs:documentation>Defines the two possible parts of the software behavior 
description, the CSFL items and the WSDL description.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element ref="CommonSystemFunctionList"/> 
   <xs:element ref="WebServicesDescription" minOccurs="0"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:element name="CommonSystemFunctionList" type="CSFLType"> 
  <xs:annotation> 
   <xs:documentation>Functions that are addressed by the artifact, validated against the 
ontology built for this project based on the Navy's CSFL found in separate document, 
"CommonSystemFunctionList.owl". Type: CSFLType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="CSFLType"> 
  <xs:annotation> 
   <xs:documentation>A list of functions that are addressed by the 
artifact.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:annotation> 
    <!--Placeholder for now until CSFL ontology is complete --> 
    <xs:appinfo source="CommonSystemFunctionList.owl"> 
     The allowable values for each Common System Function should 
be validated against the CSFL ontology created for this project. 
    </xs:appinfo> 
   </xs:annotation> 
   <xs:element ref="CommonSystemFunction" minOccurs="0" 
maxOccurs="unbounded"/> 
  </xs:sequence> 
 </xs:complexType> 
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 <xs:element name="CommonSystemFunction" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Individual functions.  Currently expressed as an optional item 
until the information can be input for all artifacts in SHARE.  Type: xs:string</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="WebServicesDescription" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>The Web Services Description Language (WSDL) description 
of the software found in or related to the artifact.  Currently a placeholder until better defined  Type: 
xs:string</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="History" type="HistoryType"> 
  <xs:annotation> 
   <xs:documentation>The history/pedigree of the artifact.  Type: 
HistoryType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="HistoryType"> 
  <xs:annotation> 
   <xs:documentation>Defines the elements that make up the history of 
artifact.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element ref="DevelopmentStatus"/> 
   <xs:element ref="PlannedUpdates" minOccurs="0"/> 
   <xs:element ref="MaturityDescription" minOccurs="0"/> 
   <xs:element ref="Pedigree"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:element name="DevelopmentStatus" type="DevelopmentStatusValues"> 
  <xs:annotation> 
   <xs:documentation>Indication of whether the artifact is in development or complete.  
Type: DevelopmentStatusValues</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:simpleType name="DevelopmentStatusValues"> 
  <xs:annotation> 
   <xs:documentation>The possible values for development status - InDevelopment or 
DevelopmentComplete.</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="InDevelopment"/> 
   <xs:enumeration value="DevelopmentComplete"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:element name="PlannedUpdates" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Indication of any known planned updates for the artifact.  Type: 
xs:string</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
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 <xs:element name="MaturityDescription" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>A submitter-defined description of the maturity of the artifact.  
Type: xs:string</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="Pedigree" type="PedigreeType"> 
  <xs:annotation> 
   <xs:documentation>Part of an artifact's history, the pedigree shows how artifacts 
may have evolved from each other and how they may be dependent on each other.  </xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="NewerVersionOf" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Lists any artifacts for which the current artifact is a newer 
version.  Current artifact is intended to upgrade or replace these listed artifacts.</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="VariantOf" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Lists any artifacts for which the current artifact is a variant to be 
used in a different target environment or situation.</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="ExtractedFrom" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Lists any artifacts that the current artifact was extracted from 
and possibly packaged to be more reusable.  </xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="DerivedFrom" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>LIsts any artifacts from which the current artifact was derived. 
</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="OlderVersion" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Lists any artifacts that are updates or replacements for the 
current artifact.</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="ExtractionSource" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Lists any artifacts for which the current artifact was used to 
extract the related artifact.</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="DerivationSource" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Lists any artifacts for which the current artifact was used to 
derive the related artifact.</xs:documentation> 
  </xs:annotation> 



 

=
 

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v  - 141 - 
k^s^i=mlpqdo^ar^qb=p`elli=

=

 </xs:element> 
 <xs:element name="SimilarTo" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Lists any artifacts with similar characteristics to the current 
artifact.</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="ContainedWithin" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Lists any artifacts that contain the current artifact physically or 
by reference.</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="Contains" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Lists any artifacts that the current artifact contains physically or 
by reference.</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="PedigreeType"> 
  <xs:annotation> 
   <xs:documentation>Defines the elements contained in an artifact's 
pedigree.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element ref="NewerVersionOf" minOccurs="0" maxOccurs="unbounded"/> 
   <xs:element ref="VariantOf" minOccurs="0" maxOccurs="unbounded"/> 
   <xs:element ref="ExtractedFrom" minOccurs="0" maxOccurs="unbounded"/> 
   <xs:element ref="DerivedFrom" minOccurs="0" maxOccurs="unbounded"/> 
   <xs:element ref="OlderVersion" minOccurs="0" maxOccurs="unbounded"/> 
   <xs:element ref="ExtractionSource" minOccurs="0" maxOccurs="unbounded"/> 
   <xs:element ref="DerivationSource" minOccurs="0" maxOccurs="unbounded"/> 
   <xs:element ref="SimilarTo" minOccurs="0" maxOccurs="unbounded"/> 
   <xs:element ref="ContainedWithin" minOccurs="0" maxOccurs="unbounded"/> 
   <xs:element ref="Contains" minOccurs="0" maxOccurs="unbounded"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:element name="Interdependencies" type="InterdependenciesType"> 
  <xs:annotation> 
   <xs:documentation>Defines possible interdependencies of 
artifacts.</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="InterdependenciesType"> 
  <xs:annotation> 
   <xs:documentation>Defines the elements contained in the artifact's 
interdependencies.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element ref="DependentUpon" minOccurs="0" maxOccurs="unbounded"/> 
   <xs:element ref="NeededBy" minOccurs="0" maxOccurs="unbounded"/> 
   <xs:element ref="COTS_GOTSDependencies" minOccurs="0" 
maxOccurs="unbounded"/> 
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   <xs:element ref="InterfacesWith" minOccurs="0" maxOccurs="unbounded"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:element name="DependentUpon" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Lists artifacts that the current arftifact relies on to provide the 
desired/required capability.</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="NeededBy" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Lists artifacts that rely on the current artifact to provide 
desired/required capability.</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="COTS_GOTSDependencies" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Lists any COTS_GOTS dependencies of the current 
artifact.</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="InterfacesWith" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Lists artifacts with which the current artifact 
communicates.</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="CodeDescription" type="CodeDescriptionType"> 
  <xs:annotation> 
   <xs:documentation>The information required for code artifacts.  Type: 
CodeDescriptionType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="CodeDescriptionType"> 
  <xs:annotation> 
   <xs:documentation>Defines the information required for code artifacts.  Includes the 
ItemDescriptionGroup elements defined for non-code artifacts plus several additional elements.  
</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:group ref="ItemDescriptionGroup"/> 
   <xs:element ref="TargetOS"/> 
   <xs:element ref="ProgrammingLanguages"/> 
   <xs:element ref="RuntimeEnvironments"/> 
   <xs:element ref="KSLOC"/> 
   <xs:element ref="TotalLinesOfComment"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:element name="TargetOS" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Target Operating System for the artifact  Type: 
xs:string</xs:documentation> 
  </xs:annotation> 
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 </xs:element> 
 <xs:element name="ProgrammingLanguages" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Programming Languages used for the artifact.  Type: 
xs:string</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="RuntimeEnvironments" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Runtime environments intended for the artifact.  Type: 
xs:string</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="KSLOC" type="xs:positiveInteger"> 
  <xs:annotation> 
   <xs:documentation>Thousand source lines of code (KSLOC) in the artifact.  Type: 
xs:positiveInteger</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="TotalLinesOfComment" type="xs:positiveInteger"> 
  <xs:annotation> 
   <xs:documentation>Total lines of comment in the artifact.  Type: 
xs:positiveInteger</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="SecurityInformation" type="SecurityInformationType"> 
  <xs:annotation> 
   <xs:documentation>The classification information required for the artifact.  Type: 
SecurityInformationType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="SecurityInformationType"> 
  <xs:annotation> 
   <xs:documentation>Defines the elements included in the security information of the 
artifact.</xs:documentation> 
  </xs:annotation> 
  <xs:choice> 
   <xs:element ref="Unclassified"/> 
   <xs:element ref="Classified"/> 
  </xs:choice> 
 </xs:complexType> 
 <xs:element name="Unclassified" type="UnclassifiedInformationType"> 
  <xs:annotation> 
   <xs:documentation>The information required for unclassified artifacts.  Type: 
UnclassifiedInformationType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="UnclassifiedInformationType"> 
  <xs:annotation> 
   <xs:documentation>Defines the information required for unclassified artifacts.  
Includes the elements in the ClassificationInformationGroup</xs:documentation> 
  </xs:annotation> 
  <xs:group ref="ClassificationInformationGroup"/> 
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 </xs:complexType> 
 <xs:group name="ClassificationInformationGroup"> 
  <xs:annotation> 
   <xs:documentation>The group of classsification elements required for artirfacts of 
all security levels.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element ref="Classification"/> 
   <xs:element ref="ExportControl"/> 
   <xs:element ref="DistributionStatement"/> 
  </xs:sequence> 
 </xs:group> 
 <xs:element name="Classified" type="ClassifiedInformationType"> 
  <xs:annotation> 
   <xs:documentation>The information required for classified artifacts.  Type: 
ClassifiedInformationType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="ClassifiedInformationType"> 
  <xs:annotation> 
   <xs:documentation>Defines the information required for classified artifacts.  
Includes the elements in the ClassificationInformationGroup plus the Classification Guide 
ID.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:group ref="ClassificationInformationGroup"/> 
   <xs:element ref="ClassificationGuideID"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:element name="Classification" type="ClassificationValues"> 
  <xs:annotation> 
   <xs:documentation>The classification of the artifact.  Type: 
ClassificationValues</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:simpleType name="ClassificationValues"> 
  <xs:annotation> 
   <xs:documentation>The possible values for the classification of the artifact - U, C, 
or S</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="U"/> 
   <xs:enumeration value="C"/> 
   <xs:enumeration value="S"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:element name="ExportControl" type="YesNo"> 
  <xs:annotation> 
   <xs:documentation>Indication of whether or not the artifact is subject to export 
control.  Type: YesNo</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="DistributionStatement" type="DistributionStatementValues"> 
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  <xs:annotation> 
   <xs:documentation>The distribution statement applicable for the artifact.  Type: 
DistributionStatementValues</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:simpleType name="DistributionStatementValues"> 
  <xs:annotation> 
   <xs:documentation>The possible values for the distribution statement applicable to 
the artifact - A, B, C, D, E, F, or X</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="A"/> 
   <xs:enumeration value="B"/> 
   <xs:enumeration value="C"/> 
   <xs:enumeration value="D"/> 
   <xs:enumeration value="E"/> 
   <xs:enumeration value="F"/> 
   <xs:enumeration value="X"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:element name="ClassificationGuideID" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>The applicable Security Classification Guide for the artifact.  
Applicable only to classified artifacts.  Type: xs:string</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="DataFormat" type="DataFormatType"> 
  <xs:annotation> 
   <xs:documentation>The information related to the artifact's format.  Type: 
DataFormatType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="DataFormatType"> 
  <xs:annotation> 
   <xs:documentation>Defines the elements required related to the artifact's 
format.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element ref="PhysicalMediaFormat" minOccurs="0"/> 
   <xs:element ref="FileNames"/> 
   <xs:element ref="ArchiveFormats" minOccurs="0"/> 
   <xs:element ref="TotalDataSize" minOccurs="0"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:element name="PhysicalMediaFormat" type="PhysicalMediaFormatValues"> 
  <xs:annotation> 
   <xs:documentation>The physical media of the format (optional).  Type: 
PhysicalMediaFormatValues</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:simpleType name="PhysicalMediaFormatValues"> 
  <xs:annotation> 
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   <xs:documentation>The possible values for the media format - CD or 
DVD</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="CD"/> 
   <xs:enumeration value="DVD"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:element name="FileNames" type="FileNamesType"> 
  <xs:annotation> 
   <xs:documentation>The names of the files included in the artifact.  Type 
FIleNamesType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="FileNamesType"> 
  <xs:annotation> 
   <xs:documentation>A list of the names of the files included in the 
artifact.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element ref="FileName" maxOccurs="unbounded"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:element name="FileName" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Individual file names.  Type: xs:string</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="ArchiveFormats" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Archive formats (optional).  Type: 
xs:string</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="TotalDataSize" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Total size of the artifact files (optional).  Type: 
xs:string</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="RightsRestrictions" type="RightsRestrictionsType"> 
  <xs:annotation> 
   <xs:documentation>The information related to any rights restrictions on the artifact.  
Type: RightsRestrictionsType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="RightsRestrictionsType"> 
  <xs:annotation> 
   <xs:documentation>The elements considered under rights restrictions for the artifact.  
</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element ref="DataRightsMarkings"/> 
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   <xs:element ref="CommercialSoftware"/> 
   <xs:element ref="SpecialLicenses"/> 
   <xs:element ref="OpenSourceSoftwareLicenses"/> 
   <xs:element ref="DataRightsAssertions"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:element name="DataRightsMarkings" type="IncludedType"> 
  <xs:annotation> 
   <xs:documentation>Data rights markings on the artifact.  Includes a YesNo 
"Included" attribute as well as free text describing the markings.  Type: IncludedType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="CommercialSoftware" type="IncludedType"> 
  <xs:annotation> 
   <xs:documentation>Commercial software used in the artifact.  Includes a YesNo 
"Included" attribute as well as free text describing the commercial software.  Type: 
IncludedType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="SpecialLicenses" type="IncludedType"> 
  <xs:annotation> 
   <xs:documentation>Special licenses placed on the artifact.  Includes a YesNo 
"Included" attribute as well as free text describing the licenses.  Type: IncludedType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="OpenSourceSoftwareLicenses" type="IncludedType"> 
  <xs:annotation> 
   <xs:documentation>Open source software licenses placed on the artifact.  Includes a 
YesNo "Included" attribute as well as free text describing the licenses.  Type: 
IncludedType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:element name="DataRightsAssertions" type="IncludedType"> 
  <xs:annotation> 
   <xs:documentation>Data rights assertions on the artifact.  Includes a YesNo 
"Included" attribute as well as free text describing the assertions.  Type: IncludedType</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="IncludedType"> 
  <xs:annotation> 
   <xs:documentation>Type allowing a yes/no indication for inclusion as well as free 
text explanation.</xs:documentation> 
  </xs:annotation> 
  <xs:simpleContent> 
   <xs:extension base="xs:string"> 
    <xs:attribute ref="Included"/> 
   </xs:extension> 
  </xs:simpleContent> 
 </xs:complexType> 
 <xs:attribute name="Included" type="YesNo"> 
  <xs:annotation> 
   <xs:documentation>Attribute indicating whether or not the restriction is applicable 
for the artifact.  Type:  YesNo</xs:documentation> 
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  </xs:annotation> 
 </xs:attribute> 
 <xs:element name="AdditionalInformation" type="xs:string"> 
  <xs:annotation> 
   <xs:documentation>Text allowance for any additional information about the artifact 
deemed important. Type: xs:string</xs:documentation> 
  </xs:annotation> 
 </xs:element> 
 <xs:complexType name="POCInfo"> 
  <xs:annotation> 
   <xs:documentation>Required information for points of contact.</xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="Name" type="xs:string"/> 
   <xs:element name="Organization" type="xs:string"/> 
   <xs:element name="MailingAddress" type="AddressType"/> 
   <xs:element name="Phone" type="PhoneNumber"/> 
   <xs:element name="Email" type="EmailAddress"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:simpleType name="PhoneNumber"> 
  <xs:annotation> 
   <xs:documentation>Phone number</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:pattern value="d{3} d{3}-d{4} x?(d{4})?"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="EmailAddress"> 
  <xs:annotation> 
   <xs:documentation>Email address</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:pattern value=".+@.+"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:complexType name="AddressType"> 
  <xs:annotation> 
   <xs:documentation>Address </xs:documentation> 
  </xs:annotation> 
  <xs:sequence> 
   <xs:element name="AddressLine1" type="xs:string"/> 
   <xs:element name="AddressLine2" minOccurs="0"/> 
   <xs:element name="City" type="xs:string"/> 
   <xs:element name="State" type="xs:string"/> 
   <xs:element name="Zip" type="ZipCode"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:simpleType name="ZipCode"> 
  <xs:annotation> 
   <xs:documentation>Zip Code</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
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   <xs:pattern value="d{5}-?(d{4})?"/> 
  </xs:restriction> 
 </xs:simpleType> 
 <xs:simpleType name="YesNo"> 
  <xs:annotation> 
   <xs:documentation>Possible values for YesNo elements type.</xs:documentation> 
  </xs:annotation> 
  <xs:restriction base="xs:string"> 
   <xs:enumeration value="Yes"/> 
   <xs:enumeration value="No"/> 
  </xs:restriction> 
 </xs:simpleType> 

</xs:schema> 
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