

Optimal Inventory Policy for Two-echelon Remanufacturing

Prof. Geraldo Ferrer

Graduate School of Business and Public Policy

Introduction

- OBJECTIVE: Identify the inventory policies that will fit a remanufacturing environment:
- sequential disassembly and selection processes
- random yield in each process
- known demand
- ASSUMPTION: There is no shortage of used goods to feed the process:
- plentiful stock of used goods
- uncertainty is generated by the wear state

Some related literature

	Single Process		Multi Process	
	Constant Process Yield	Random Process Yield	Constant Process Yield	Random Process Yield
Constant Demand	$\begin{gathered} \text { Harris } \\ 1913 \end{gathered}$	various	Clark, Scarf 1960	
Random Demand	various	various	DeBodt and Graves 1985	

Used tires flow in the retreading process

Value adding processes

Electric Components

Material flow of complex equipment refurbishing process

Multi-Echelon Inventory Process

Financial and Physical Stock

Financial and Physical Holding Cost

Financial and Physical Setup Cost

Optimal Inventory Policy

Considering: $\left\{\begin{array}{c}n=\sqrt{\frac{E\left[p_{d}\right]\left(h_{f, r}-h_{p h, d}+h_{p h, r} E\left[p_{r}\right]\right)}{h_{f, d}+h_{p h, d} E\left[p_{d}\right]}} \frac{k_{d}}{k_{r}} \\ H(n)=h_{f, d}+\frac{E\left[p_{d}\right]}{n}\left(h_{p h, d}(n-1)+h_{f, r}+h_{p h, r} E\left[p_{r}\right]\right) \\ K(n)=\left(k_{d}+n k_{r}\right) E\left[1 / p_{d}\right] E\left[1 / p_{r}\right]\end{array}\right.$

$$
\text { Optimal Inventory Policy } \quad Q^{*}(n)=\sqrt{\frac{2 D K(n)}{H(n)}}
$$

Example

Disassembly Process:
$\mathrm{k}_{\mathrm{d}}=\$ 30 /$ process
$\mathrm{h}_{\mathrm{f}, \mathrm{d}}=\$ 0.5 /$ unit-yr
$h_{\mathrm{ph}, \mathrm{d}}=\$ 2 /$ unit-yr
$\mathrm{p}_{\mathrm{d}}=\mathrm{U}[0.5,0.95]$
Repair Process:
$\mathrm{k}_{\mathrm{r}}=\$ 6 /$ process
$\mathrm{h}_{\mathrm{f}, \mathrm{r}}=\$ 4 / \mathrm{unit}-\mathrm{yr}$
$\mathrm{h}_{\mathrm{ph}, \mathrm{r}}=\$ 2 /$ unit-yr
$\mathrm{p}_{\mathrm{r}}=\mathrm{U}[0.75,0.95]$
D $=600$ units/yr

Example

Disassembly Process:
$\mathrm{k}_{\mathrm{d}}=\$ 30 /$ process
$\mathrm{h}_{\mathrm{f}, \mathrm{d}}=\$ 0.5 /$ unit-yr
$h_{\mathrm{ph}, \mathrm{d}}=\$ 2 / \mathrm{unit}-\mathrm{yr}$
$\mathrm{p}_{\mathrm{d}}=\mathrm{U}[0.5,0.95]$
Repair Process:
$\mathrm{k}_{\mathrm{r}}=\$ 6 /$ process
$\mathrm{h}_{\mathrm{f}, \mathrm{r}}=$ \$4/unit-yr
$\mathrm{h}_{\mathrm{ph}, \mathrm{r}}=\$ 2 / \mathrm{unit}-\mathrm{yr}$
$\mathrm{p}_{\mathrm{r}}=\mathrm{U}[0.75,0.95]$
D $=600$ units/yr

$$
\begin{aligned}
& \mathrm{Q}^{*}=185 \text { units } \\
& \mathrm{n}^{*}=3
\end{aligned}
$$

