
1

Valdis Berzins
Professor – Department of Computer Science (NPS)

E-mail: berzins@nps.edu, Phone: 831-656-2610

Putting Teeth into Open Architectures:
Infrastructure for Reducing the Need for Retesting

2

Context
• The Navy is moving towards an Open Architecture (OA) paradigm

– Joint interoperable systems that adapt and are built using open interfaces,
open design principles, and open architectures

• FORCEnet – the Navy’s network centric concept of operations
– The viability, affordability and sustenance of FORCEnet necessitates an

architecture that is fully compliance with OA technology
– The development of OA within FORCEnet will result in a superior, adaptive,

“plug and fight” capability for the modern war-fighter
• Expected long term benefits from Navy OA

– Business benefits:
• Flexible acquisition strategies and contracts that enable the Navy to reuse

software, easily upgrade systems, and share data throughout the enterprise
– Technical benefits:

• Layered and modular open architectures that facilitate portability, maintainability,
interoperability, upgrade-ability and long-term supportability

3

Problem Statement
• Our preliminary investigations indicate that current methods for

achieving dependability in Open Architectures are insufficient
– Navy is currently able to deliver open architecture-based systems

• However, known methods for achieving dependability with OA are expensive and
not clearly understood

– According to Navy and other experience, traditional approaches to testing
are usually unsuitable in open environments

• They are too expensive, take too long and lack agility to react to changes during
acquisition

• Have to be repeated after every change
• Typical testing assumptions are not valid for Open Architectures

– Conventional methods for testing require that the environment of a typical
system is fixed and known in detail to the quality assurance team at test
and evaluation time

• Conventional testing is strongly context dependent
– The effectiveness of testing is very sensitive to the expected operating

environment, which is unknown for reusable subsystems
– The majority of failures in software systems are due to requirements and

specification errors, and commonly show up after a subsystem has been
moved to a different environment

4

Objectives
• Reduce testing cost

– Reduce the need for re-testing
– Eventually eliminate integration test after every reconfiguration

• Make testing more effective by augmenting it with other quality
assurance methods
– Develop conceptually new and different testing methods to achieve

dependability in Navy OA systems in presence of reuse,
reconfiguration, changes and unpredictable environments

• Enable Persistent Open Architectures
– The architecture should not have to change or be retested every

time the system configuration changes
– All architecture changes should be compatible extensions

• Avoid retesting previously existing parts

5

Challenges for DoD Testing Approaches
• Navy systems are subject to frequent changes

– E.g., Many Navy systems seek to provide migrating services and
reconfiguration of service oriented architectures (SOA)

– Architectural changes impact Key Performance Parameters (KPP),
availability and other system requirements

• Scenario-based testing is commonly used
– Dependent on a particular system configuration and environment
– Does not currently deal with system modularity
– When the system configuration or environment changes, the

designed test cases, scenarios and operational profiles also need
to be changed.

• A shift from scenario based testing to architecture based testing
is needed

6

Complexity of testing OA
• An architecture is related to a family of systems, while a design is

traditionally associated with a single instance of a system
• Assembly of plug compatible components leads to many system

configurations
– Slots in an open architecture can be filled by different subsystems

• The number of choices for each slot multiplied together lead to an
astronomical number of possible configurations for Navy systems

– Can include new components that did not exist when the
architecture was designed

Dependable
configurations

Tested
configurations

Known
configurations

Non-dependable &
unknown

Non-dependable &
untested

• Unbounded number of
configurations
– An unpredictable number of

new subsystems can be
created in the future

– It will be impossible to test all
configurations

– A majority of the configurations
will not be tested at all

7

Solution Approach
• Refine the open architecture concept to support system

development and testing with interchangeable software parts

• A Dependable Open Architecture should include:
– Not only components and connections but also constraints

expressing the most important dependability properties
– Links to requirements, capabilities and standards
– Variable parameters – KPP’s / features
– Components and connectors should be swappable within

compatibility groups defined by testable dependability properties

• Apply testing at the architectural level, not only at the system
implementation level

8

Solution Approach
• The proposed method is globally decomposed into four major

steps:

S1 S2

C1 C2

R

S12

S1

R

S2

S12

C1

C2

2 2

3

3

3

4

Requirements

Standard for Component 1

Standard for Component 2

Standard for connection between
components 1 and 2

Component 1

Component 2

1

1

1

2

3

4

Test Components vs. Standards

Verify Architecture vs.
Requirements & Standards
Ensure non-interference among
components

1 Formulate dependability contracts

5 Monitor environment assumptions

5

9

Solution Approach
• Step 1: Identification of dependability contracts

– System wide guarantees and assumptions
• Dependability properties that must hold in all configurations at the system level
• Primarily technical constraints rather than legal documents

– Intended to be checkable/testable via software, also at reconfiguration or runtime
• Improved methods for requirements determination, analysis, representation and

allocation might be required
– Component requirements

• Component-level dependability contracts for the subsystems and connectors of
the architecture

• Constraints apply to the architectural connection patterns and subsystem slots

• Step 2: Testing components vs. standards
– Test each subsystem and connector against its dependability contract
– Automated process to enable sufficient large sets of test cases for

statistically significant conclusions about desirable dependability levels
– Cost is proportional to the number of components, not number of

combinations
– Must be done once for each version of each atomic component
– Well-known methods and techniques available

C1

S1

1

10

Solution Approach
• Step 3: Verify architecture vs. requirements

and standards
– Check the system-wide dependability

properties in all possible configurations
vs. the structure of the architecture and
the dependability contracts for subsystems and connectors

– One-time process that uses symbolic analysis techniques

• Step 4: Ensure non-interference among components
– Check components for non-interference

• Ensure components working correctly in isolation will continue to do so
when they are connected

– Computer-aided process
– Some known methods and techniques

S1 S2

R

S12

2

2

2

C1 C2

3

11

Solution Approach
• Step 5: Monitor Environment Assumptions

– Formulate assumptions about the environment as constraints
attached to the architecture and components

– Check constraints after reconfiguration, e.g., resource limits,
schedulability, etc.

– Operating environment assumptions checked by runtime
monitoring, e.g., Built-In-Test(BIT) technology used in DoD systems

• E.g., Patriot Missile was not supposed to operate for more than 8 hours
continuously

C
5

12

Example: craft position control subsystem
• Architecture

– Two component slots
• Software driver for a position sensor (can be filled with a variety of sensors, such

as GPS, inertial, VOR/DME, etc.,)
• Control software module for an autopilot (can be filled with different control

algorithms)
– One connector

• Carries information
about the current
craft position

• Objective
– Keep the platform on

course
• Dependability contracts

– Tolerances for the
sensor accuracy and the
allowable time delay
for transmitting
the position

– To be fulfilled by any
acceptable subsystem
configuration

Subsystem dependability contract
position.error ≤ max.error,
position.delay ≤ max.delay,
…

own craft
position autopilot

Overall dependability contract

| actual.position – planned.position |
≤ navigation.tolerance

position

13

Acquisition Process Implications
• Requirements analysis needs to span the entire problem

domain and system life, not just individual versions of the
System of Systems
– Same architecture must support all future versions
– Planned control of variation via ranges for parameters/features

• Re-orient development processes toward Design-to-Tolerances
– Currently oriented towards Design-to-Fit, Test-to-Fit

• The architecture as a whole needs authority / priority
– Responsible organization
– Global system standards authority
– Manage accountability for subsystems
– Empower via change control, acceptance testing, budget control

14

Acquisition Process Implications
• Architecture development / QA needs substantial

time/resources/technology development
– Must be included in plan from the start
– More detailed/precise standards and analysis needed

• New QA technologies needed
– Some known in labs but not used currently
– Tailoring/improvement may be needed for practical use
– Some areas need new methods to reach long term goals
– Will need tech transfer and training

15

Conclusions
• New approach to quality assurance is better for achieving

Dependable Open Architecture
– Support rapid reconfiguration without compromising dependability

while remaining economically viable
– Applies to Test & Evaluation in Navy Open Architecture initiative

• Benefits of the proposed methodology:
– Reduction of testing and limited scope for retesting after changes
– Assurance of dependability

• Assurance that all possible configurations derived from the architecture
can satisfy the stated dependability requirements

• Enables agile dependable reconfiguration and on-the-fly “plug and fight”

• Overall, the proposed methodology will enable achieving
dependability in Navy OA systems in presence of reuse,
reconfiguration, changes and unpredictable environments

16

Backup Slides

17

Related Work
• As far as we know, there is no similar approach proposed in the

related literature
• Comparison with Navy’s testing approaches

– Guidelines for testing are scarce and generic, and mainly rely on
scenario-based approaches

– E.g., testing recommendations in OACE
• Functional and performance testing vs. specified system requirements

organized as test cases and scenarios
• Concept of “virtual homogeneity” to facilitate testing by identifying

compatibility groups of sub-systems performing similarly
(We define these via dependability constraints and slot standards)

• Concepts of “tree of subsystems” and “aggregations of components”
with no (considerable) interaction between choices of configurations for
applying test cases

• Schedulability analysis for ensuring that any configuration is
schedulable
(A kind of non-interference check)

18

Related Work
• Comparison with component based testing

– Can be used in our methodology for testing components vs.
standards

• Traditionally performed by a component’s developer before release to
assure quality (white-box testing approach)

• Also used by system integrators to check that a component works
correctly in a host system (black-box testing approach)

– Certification strategies based on component testing
• Combination of black-box testing, system-level fault injection and

defense protection through wrapping (Voas)
– Approaches to make component data visible for testing

• Components are usually acquired as black-boxes without access to
data necessary for (integration) testing

• Reflective techniques can help access the required data (Salles)
– Techniques based on formal methods

• Model checking and theorem proving are traditional formal techniques
used to test and verify components’ correctness vs. specifications

19

Related Work
• Comparison with runtime software reconfiguration

– Used in service-oriented architectures (SOA), air-traffic control
systems, telephone switching systems, high-availability public
information systems, etc.

– Variety of technology for Dynamic Software Architectures
• Reconfigurable ADLs (e.g., Dynamic Wright), programming languages

(e.g., Lisp, Smalltalk, Haskel), dynamic linking libraries, dynamic object
technology (e.g., CORBA), etc.

– Techniques for developing reconfigurable systems
• Graph transformation methods, hypergraphs, grammar oriented

programming (GOP), grammar oriented object design (GOOD), etc.
– Techniques for checking reconfigurable systems

• Usually applied to static configurations (model checking, conformance
testing, etc.)

• Runtime monitoring techniques also used
– Several steps of our approach can benefit from these techniques

• E.g.: derivation of dependability contracts for reconfiguration, topology
and connections; verification of the structure of the architecture,
identification of sources of interference, etc.

