

Improved Software Testing for Open Architecture

Valdis Berzins

Professor of Computer Science, Naval Postgraduate School

Agenda

Research Context

- U.S. Navy Open Architecture
- Problem Addressed & Proposed Solution

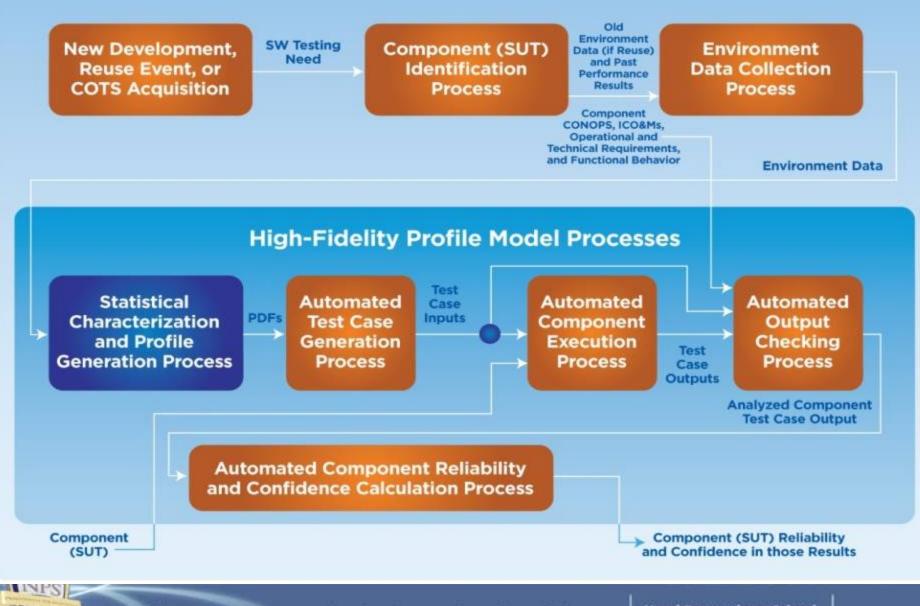
Profile-Based Automated Software Testing

- Automated Testing Process
- HFPM Functional Concept
- Acquisition Community HFPM Employment
- Deriving HFPs from Historical Data
- Validating HFPs
- Deriving Stress-Testing HFPs from Historical Models
- Conclusions

U.S. Navy Open Architecture

- A multi-faceted strategy for developing joint interoperable systems that adapt and exploit open system design principles and architectures
- OA Principles, processes, and best practices:
 - Provide more opportunities for completion and innovation
 - Rapidly field affordable, interoperable systems
 - Minimize total ownership cost
 - Maximize total system performance
 - Field systems that are easily developed and upgradable
 - Achieve component software reuse

Problem and Proposed Solution


- Traditional U.S. Navy Software T&E practices will limit many benefits of OA
 - It will be virtually impossible to field frequent and rapid configuration changes
- New Testing Technologies, Processes & Policies
 are Needed
 - Determine how to Safely Reduce Amount of Testing Required (Berzins, 2009)
 - Transition from Manual Testing to Profile-Based Automated Statistical Testing

HFPM-Based Automated Software Testing Process

- Software's requirements, CONOPS, architecture standards, and interfaces used to establish boundaries for component testing
- Component's external environment analyzed and characterized
- Environment statistical model (HFPM) used to automatically generate test cases, execute test cases and check component outputs

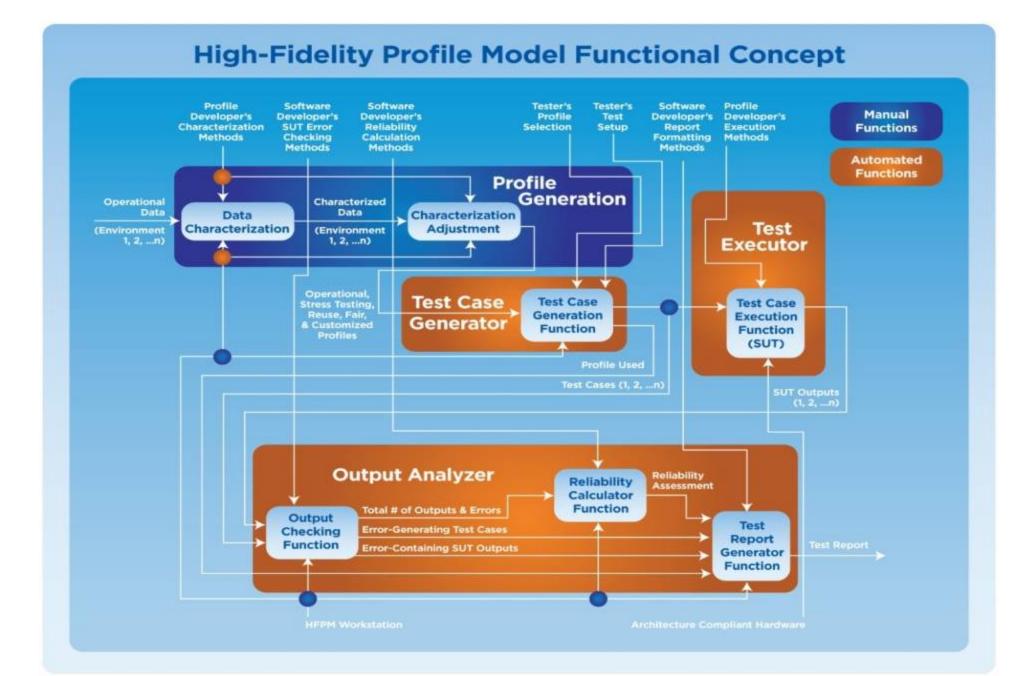
Effective for new development efforts, reuse, or COTS acquisition

HFPM-Based Automated Software Testing Process

Acquisition Research Program: Creating Synergy for Informed Change

Naval Postgraduate School Montercy, CA

High-Fidelity Profile Model (HFPM)


- HFPM utilizes statistical environment characterizations to automatically test software
 - Profile-Based => Optimized test case coverage
 - Automated => High #s of test cases => High confidence in results
 - Concept is <u>scalable</u> from component to system level

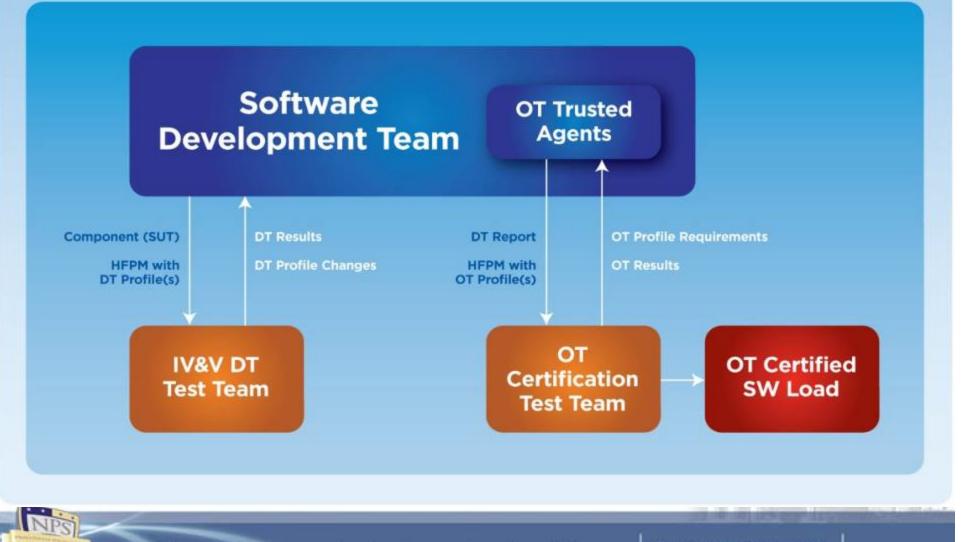
• Model is reusable, following component throughout life-cycle

- Profiles can be modified to check component behavior in multiple environments and at different stress-levels
- Model can be used to check multiple component configurations during iterative development
- Model architecture is reusable

• HFPM developed to accompany each component during testing

 Initial investment up front enables long-term benefits including reduction in testing time and more effective & efficient testing

Acquisition Research Program: Creating Synergy for Informed Change

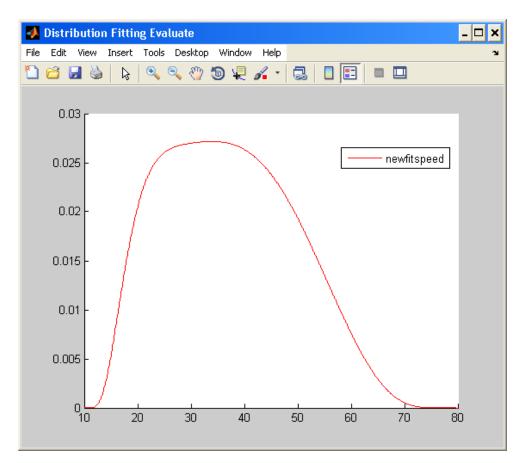

Naval Postgraduate School Monterey, CA

HFPM-Based Testing Employment for U.S. Navy Acquisition

- HFPM developed and used during new software development, COTS acquisition, or reuse event by R&D team
 - R&D DT profiles include stress-testing profiles
- Component, HFPM & profiles passed to IV&V for developmental testing (DT)
 - IV&V team can use R&D profiles or modify if desired
 - R&D / IV&V DT loop continues until software is mature
- Mature component, HFPM & DT report passed to certification team for operational testing (OT)
 - Certification team defines OT requirements
 - R&D OT trusted agents develop operational profiles
 - Cert team conducts/witnesses OT and certifies component or sends back for more development & DT

NPSL

HFPM-Based Automated Software Testing Process Employment Scheme


Acquisition Research Program: Creating Synergy for Informed Change

Naval Postgraduate School Monterey, CA

Deriving HFPs from Historical Data

- Collecting historical data
 - Lots of real data is best
 - Else can approximate using known constraints
- Characterizing historical data
 - Maximum Likelihood parameter estimation
 - Maximum A Posteriori probability estimation
 - Kernel density Estimation
 - Parzen Neural Network

Example: Maritime tracks

Notional Small Boat Maximum Velocity PDF (Knots) (Dailey, 2010)

Validating HFPs

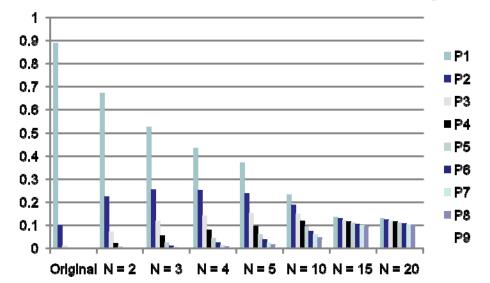
- Bayesian Information Criterion
 - Minimize (K In N 2 In L)
 - K: number of free parameters to be estimated
 - N: number of data points
 - L: maximum of the likelihood function for the estimated model
- Goodness of Fit Tests
 - Minimize sum of squared error
- Confidence calculation based on amount of historical data

Acquisition Research Program: Creating Synergy for Informed Change

13

Naval Postgraduate School

Monterey, CA


Deriving Stress-Testing HFPs from Historical Models

- Standard deviation-based methods
- Scale-expanding transformations
 - $P(x-m) \rightarrow P((x-m)/s), s \in \{10, 100, 1000, ...\}$
 - Work for numerical and vector types
- Probability scaling transformations
 - $P(x) \rightarrow P(x)^{1/n}, n \in \{2, 3, ..., 20\}$
 - Work for arbitrary data types
- Utilization of dominating test cases
- Defining coverage criteria

Naval Postgraduate School

Monterev, CA

Example: Probability Scaling Transformation

	Original	N = 2	N = 3	N = 4	N = 5	N = 10	N = 15	N = 20
P1	0.88888889	0.670925	0.526601	0.432891	0.369481	0.233181	0.134859	0.128692
P2	0.1	0.225035	0.254214	0.250707	0.238684	0.187417	0.128468	0.12409
P3	0.01	0.071162	0.117996	0.140983	0.150599	0.14887	0.12206	0.119418
P4	0.001	0.022504	0.054769	0.079281	0.095022	0.118252	0.115971	0.114922
P5	0.0001	0.007116	0.025421	0.044583	0.059955	0.093931	0.110186	0.110595
P6	0.00001	0.00225	0.0118	0.025071	0.037829	0.074612	0.10469	0.106432
P7	0.000001	0.000712	0.005477	0.014098	0.023868	0.059266	0.099468	0.102425
P8	0.0000001	0.000225	0.002542	0.007928	0.01506	0.047077	0.094506	0.098568
P9	0.0000001	7.12E-05	0.00118	0.004458	0.009502	0.037395	0.089792	0.094857

Acquisition Research Program: Creating Synergy for Informed Change

Naval Postgraduate School Montercy, CA

Dominating Cases for Stress Testing

Error Type	Heuristics for choosing	
	stress test cases	
Numeric Overflow	Largest and smallest	
	representable numbers	
Buffer Overflow	Very long input string	
Free Storage Overflow	Create many new objects	
Wrong Conditional Logic	Data values close to the both	
	sides of an interval boundary	11
Unprotected Pointers	Null pointer	11
Unprotected Division	Zero	11

Conclusions

- Effective and cost-efficient testing can be achieved by a mixture of automation methods
 - Determine which tests can be safely eliminated
 - Determine which test cases will most-likely expose errors
- This research defines a statistically-based automated testing process that can be executed using historical environment data
 - Reduces testing time while increasing coverage
 - Model-driven process is reusable, scalable
 - Process should enable benefits brought on by OA

Naval Postgraduate School

Monterev, CA