

System Development and Risk Propagation in Systems-of-Systems

School of Aeronautics and Astronautics

Muharrem Mane

Email: mane@purdue.edu

Daniel DeLaurentis

Email: ddelaure@purdue.edu

Sponsor: NPS Acquisition Research Program

PURDUE NIVERSITY

Research Questions

- How do system-specific characteristics impact the successful development of systems of systems for capability-based acquisition?
- How do system interdependencies impact the development process?
 - How do <u>disruptions propagate</u> in complex networks of interdependent systems?
 - How can we quantify the <u>cascading effects</u> of development risk?
- <u>Objective</u>: Answers to these questions can increase the probability of success in systems of systems development

Methods of Approach

- Simulation Approach
 - Developing Computational Exploratory Model (CEM)
 - Discrete-event, stochastic simulation based on steps in DoD SoS SE Guide
- Analytical Approach
 - Based on probability and network theory
 - Analysis of expected delay propagation for arbitrary SoS network configurations

CEM Development via NPS Acquisition Research Program Grants ('08-present)

School of Aeronautics and Astronautics

PURDUE

Current Research Efforts

- System risk (*R*_{sys}) as a function of system readiness-level (*m*)
 - Similar to TRL metric and SRL metric proposed by Sauser et al.
- SoS risk a function of system risk and topology and strength of system interdependencies
 - Disruptions propagate to dependent systems
 - Cascading effects of disruptions captured

System Risk and Interdependencies

 Candidate families of systems can have different combinations of systemrisk and interdependency strengths

School of Aeronautics and Astronautics

These characteristics have different impact on development success

PURDUE

Comparison of Alternatives

- What effect does the number of systems and interdependencies have on development time?
 - If candidate systems can provide same capability-level, which one should be favored?

Observations

- Five-system SoS has largest completion time (regardless of dependency strength)
 - Different dependency strengths can still lead to faster development
- Number of systems and systemrisk alone insufficient to describe the risk profile of a SoS
 - Strength of interdependencies is important network characteristic

PURDUE

Reflections on CEM

- Exploratory model helps identify markers of failure and success
- Understand the system dynamics so that a motivator for PMs is identified
- Understand cascading effects of risk and requirement changes

Balancing Capability Potential and Risk Among Alternatives

- Added rudimentary capability estimation to the CEM
- Enable tradeoff studies between capability and development time
- Examines a Pareto frontier for alternate configurations of an Airborne Laser Platform used in missile defense applications

Analytical Approach

- Based on network and probability theory
- Capture and quantify the cascading effect of risk
 - Delay propagation as a metric for comparing the performance of SoS networks
- Enable the design of networks that reduce (minimize) impact of risk

PURDUE

Ongoing/Future Work

- Analytical model for delay propagation
- Capability-module
- Tradeoff between development time and capability
- Dynamic time-scales
- Ongoing data search to test the CEM

School of Aeronautics and Astronautics

In contractory

Discussion

School of Aeronautics and Astronautics

Back-Up Slides

In the second second

System Risk and Interdependencies

- Candidate families of systems can have different combinations of system-risk and interdependency strengths
 - These characteristics have different impact on development success

