

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã==
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

Approved for public release, distribution unlimited.

Prepared for: Naval Postgraduate School, Monterey, California 93943

NPS-FM-04-024

bñÅÉêéí=Ñêçã=íÜÉ==

mêçÅÉÉÇáåÖë=
çÑ=íÜÉ=

cáêëí=^ååì~ä=^Åèìáëáíáçå=

oÉëÉ~êÅÜ=póãéçëáìã=

THE IMPACT OF SOFTWARE SUPPORT ON SYSTEM TOTAL
OWNERSHIP COST

Published: 30 September 2004

by

Brad R. Naegle

2nd Annual Acquisition Research Symposium
of the Naval Postgraduate School:

Charting a Course for Change:
Acquisition Theory and Practice for a Transforming Defense

May 13, 2004

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã==
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

The research presented at the symposium was supported by the Acquisition Chair of
the Graduate School of Business & Public Policy at the Naval Postgraduate School.

To request Defense Acquisition Research or to become a research sponsor,
please contact:

NPS Acquisition Research Program
Attn: James B. Greene, RADM, USN, (Ret)
Acquisition Chair
Graduate School of Business and Public Policy
Naval Postgraduate School
555 Dyer Road, Room 332
Monterey, CA 93943-5103
Tel: (831) 656-2092
Fax: (831) 656-2253
E-mail: jbgreene@nps.edu

Copies of the Acquisition Sponsored Research Reports may be printed from our
website www.acquisitionresearch.org

Conference Website:
www.researchsymposium.org

=
=
==================`Ü~êíáåÖ=~=`çìêëÉ=Ñçê=`Ü~åÖÉW==
= ==========^Åèìáëáíáçå=qÜÉçêó=~åÇ=mê~ÅíáÅÉ=Ñçê=~=qê~åëÑçêãáåÖ=aÉÑÉåëÉ=======- i -
=

=

Proceedings of the Annual Acquisition Research Program

The following article is taken as an excerpt from the proceedings of the annual

Acquisition Research Program. This annual event showcases the research projects

funded through the Acquisition Research Program at the Graduate School of Business

and Public Policy at the Naval Postgraduate School. Featuring keynote speakers,

plenary panels, multiple panel sessions, a student research poster show and social

events, the Annual Acquisition Research Symposium offers a candid environment

where high-ranking Department of Defense (DoD) officials, industry officials,

accomplished faculty and military students are encouraged to collaborate on finding

applicable solutions to the challenges facing acquisition policies and processes within

the DoD today. By jointly and publicly questioning the norms of industry and academia,

the resulting research benefits from myriad perspectives and collaborations which can

identify better solutions and practices in acquisition, contract, financial, logistics and

program management.

For further information regarding the Acquisition Research Program, electronic

copies of additional research, or to learn more about becoming a sponsor, please visit

our program website at:

www.acquistionresearch.org

For further information on or to register for the next Acquisition Research

Symposium during the third week of May, please visit our conference website at:

www.researchsymposium.org

=
=
==================`Ü~êíáåÖ=~=`çìêëÉ=Ñçê=`Ü~åÖÉW==
= ==========^Åèìáëáíáçå=qÜÉçêó=~åÇ=mê~ÅíáÅÉ=Ñçê=~=qê~åëÑçêãáåÖ=aÉÑÉåëÉ=======- ii -
=

=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
==================`Ü~êíáåÖ=~=`çìêëÉ=Ñçê=`Ü~åÖÉW==
= ==========^Åèìáëáíáçå=qÜÉçêó=~åÇ=mê~ÅíáÅÉ=Ñçê=~=qê~åëÑçêãáåÖ=aÉÑÉåëÉ=======- 54 -
=

=

The Impact of Software Support on System Total Ownership
Cost

Presenter: Brad R. Naegle, Lecturer, Graduate School of Business & Public Policy, Naval
Postgraduate School

Abstract
As a spin-off of the Total Ownership Cost (TOC) research that Mike Boudreau and I

conducted, there was some interest in examining the TOC implications of software intensive
systems and what the software component is adding to the TOC burden. I thought it would be
interesting to get into this, it felt a lot like opening ‘Pandora’s Box.’

Introduction

The Growing Problem

We are obviously significantly dependent on these software systems. Virtually
everything we have is moving into a software intensive system. We’ve gone from the M-16 rifle
to our new objective individual combat weapon, which has lines and lines of software code. We
want to put these together in the system of systems that Dr. Gansler talked about in the keynote
presentation at the Symposium.

These systems of systems are going to be an important concept as we talk about TOC
and the software drivers linked into the difficult interfaces that are associated with making a

=
=
==================`Ü~êíáåÖ=~=`çìêëÉ=Ñçê=`Ü~åÖÉW==
= ==========^Åèìáëáíáçå=qÜÉçêó=~åÇ=mê~ÅíáÅÉ=Ñçê=~=qê~åëÑçêãáåÖ=aÉÑÉåëÉ=======- 55 -
=

=

system of systems work effectively. Software maintenance is becoming an ever-increasing part
of the TOC of our systems.

Magnitude of the Problem

How big is the problem? With the lack of databases that we discovered in the first
research effort, we do not have a really good accounting of how much money is being spent on
the software component of software intensive systems.

Some estimates indicate we spend about $30 Billion a year on embedded weapons
system software. This is not the management information systems piece; this is literally the
tactical systems portion. Of that, about $21.6 Billion is attributed to software maintenance and
it’s continuing to grow. Given what Dr. Gansler said, we spend about $80 Billion a year overall,
a quarter of it being software maintenance at this time and growing.

The cost data is hard to come by, with few data sources. I asked a number of program
managers what it costs to support software. They are less than forthcoming with numbers,
which might be attributed back to the program, as it is typically a large number.

One of the pathologies I encounter is that we don’t want to talk about the TOC of
systems. The rational is that decision makers, Congressmen and others who can kill a program,
are not seeing numbers presented in a way to illuminate TOC. No one wants to be the first to
say that an M-1 tank doesn’t cost $2 Million a copy; it actually costs $12 Million a copy if you
look at it from the TOC perspective. Someone unfamiliar with the concept of evaluation would
look at those numbers and eventually cancel the program.

I was able to locate information on the B1-B Bomber program; this is the old Reagan era
Bomber. I happened to work with the software maintenance manager of that system who said

=
=
==================`Ü~êíáåÖ=~=`çìêëÉ=Ñçê=`Ü~åÖÉW==
= ==========^Åèìáëáíáçå=qÜÉçêó=~åÇ=mê~ÅíáÅÉ=Ñçê=~=qê~åëÑçêãáåÖ=aÉÑÉåëÉ=======- 56 -
=

=

her budget was $980 million a year to support the software only on the B1-B Bomber. That
gives some perspective on the number of dollars being put into software maintainability.

Software Supportability’s Nature

What is software maintenance? We often talk about it as if it’s a supportability thing like
hardware maintenance. Software maintenance is really software reengineering. Those
responsible for software maintenance are software engineers or software professionals. To hire
that group of people, the cost is much higher than for a typical hardware maintainer.
Automatically, the cost-basis for hiring people to support our software are higher. It is also
important to note, software systems are changed at a much higher rate than hardware systems.

As a point of reference, software is actually deployed with the knowledge that there are
thousands of latent errors throughout and those errors will be identified in use. For example,
when Microsoft released Windows XP, the very day of the release, 2.8 GB of patches needed to
go on it. You have to expect the errors in these things. In fact, if Microsoft met their own goal
for errors per 1000 lines of code; XP would have 8 million errors. That’s what is expected in a
software build, due to the complexity of it. Software is a different animal than what we have
grown accustomed to in hardware deployment.

Interfaces between software systems and hardware within these systems of systems are
critical to make the systems of systems run efficiently. When one change is made to one
system within the system of systems, it requires interface changes to ripple across the rest of
the systems that are involved. Sometimes the interfaces are seamless and go well and no
interoperability problem occurs. More often than not, a single change in software function
requires changes throughout the system of systems. This is a driving factor that continues to
increase the maintainability rates for the software.

=
=
==================`Ü~êíáåÖ=~=`çìêëÉ=Ñçê=`Ü~åÖÉW==
= ==========^Åèìáëáíáçå=qÜÉçêó=~åÇ=mê~ÅíáÅÉ=Ñçê=~=qê~åëÑçêãáåÖ=aÉÑÉåëÉ=======- 57 -
=

=

Along the same line, software must be upgraded continuously to maintain required levels
of performance within the system. For example, the M-1 Abrams office tells me their goal is to
reduce software drops or additions to the system to twice a year. Hardware systems do not
change that frequently, it becomes much more difficult to maintain the integrity of our software
systems.

Contributing Factors

There are some contributing factors to how the software is physically architected which
have a huge impact on costs related to resolving issues, scalability, maintaining or other
required alterations. Among these are:

Software engineering. With over 50 years of history, Software Engineering is still
immature. We do not have a standardized language to build software. We still lack the skills and
the skill sets that are required to build upon a standard body of knowledge like more mature
engineering disciplines have overtime. Unfortunately, when a new software system is built
specifically for the DOD, it can rarely be reused. The system is built from scratch. It’s like
implementing and maintaining a new technology every time we build a new software system.

Software is significantly unbounded. Software doesn’t have the physical world as
a concern. It is literally the logic processes that are involved with the coders and the people
who are involved with the design of the software.

Engineering discipline is often linked to the frequency and impact of latent errors –
the importance will be made clear later in this presentation.

Requirements Creep has dramatic negative effect on software architecture. The
negative effect is more dramatic than it is in hardware due to the complexities and the

=
=
==================`Ü~êíáåÖ=~=`çìêëÉ=Ñçê=`Ü~åÖÉW==
= ==========^Åèìáëáíáçå=qÜÉçêó=~åÇ=mê~ÅíáÅÉ=Ñçê=~=qê~åëÑçêãáåÖ=aÉÑÉåëÉ=======- 58 -
=

=

interoperability pieces that go with the software. As we saw in John Dillard’s presentation, we
set up acquisition processes against the milestones. Those milestones are fixed in concrete
because of the funding system that goes along with them.

It is well documented that software development is an event-driven process. Trying to
put an event-driven process function within a milestone model creates significant issues,
especially when imposed milestones are driven by oversight rather than clear software
evaluation points. The first thing that typically happens is the engineering discipline is lost. The
focus becomes milestone driven, rather than quality, losing engineering discipline and the ability
to maintain the system.

The first casualty is documentation, which is critical for the supportability of the software.
Processes are shortened, then “undisciplined coding to get functionality and move on,”
becomes the continual loop.

RFP & Source Selection

How do we go about doing the request for proposal and the source selection on our
software intensive systems? The process is not significantly different than for hardware centric
systems. With recent reforms toward performance-based specification, a lot of detail is left out.
This is purposeful to garner innovation. Requirements analysis is weakened as the contractor is
required to make sense of open-ended requirements and maintain cohesion within the system
of systems.

Without clear requirement expectations, realistic estimates of time, effort, dollars and
delivery schedule are nearly impossible. It also becomes much more difficult to compare
contractors based on quantifiable selection factors like price and schedule. While the intent is
quality innovation at a good price, the results are foggy requirements with unrealistic
deliverables and schedule. Quality software innovation takes back seat to the selection process
where evaluation boards only have the RFP type data to evaluate the software development

=
=
==================`Ü~êíáåÖ=~=`çìêëÉ=Ñçê=`Ü~åÖÉW==
= ==========^Åèìáëáíáçå=qÜÉçêó=~åÇ=mê~ÅíáÅÉ=Ñçê=~=qê~åëÑçêãáåÖ=aÉÑÉåëÉ=======- 59 -
=

=

realism. The net effect; we still do not have an objective way of determining whether or not
what is proposed and ultimately awarded will actually be anywhere near the reality of
developing that software component of the system.

Pathologies

Here are some of the pathologies that go along with the software development piece.
First, requirements are not broken into the level of detail required. Currently in the RFP process,
level three is required of the work breakdown structure. This is one level below the major end
item in the software architecture. This is not enough detail for the contractor to build as they
would in a mature engineering environment such as with hardware.

Software requires a much more detailed approach to system requirements. If one leaves
software system architecture to the interpretation of the software developer without clear
requirements, poor design becomes standard. As noted previously, this introduces critical
functional errors to the software system of systems as new software is built with top-line
functionality only.

It is more costly to fix errors the later they are discovered in the software production
cycle. Strong requirements, refined over time, develop stronger processes. Requirements creep
is part of managing the software lifecycle; without a clear structure in place, late requirements
clarification/changes will severely impact the software architecture and lengthen the time and
costs associated with error corrections.

=
=
==================`Ü~êíáåÖ=~=`çìêëÉ=Ñçê=`Ü~åÖÉW==
= ==========^Åèìáëáíáçå=qÜÉçêó=~åÇ=mê~ÅíáÅÉ=Ñçê=~=qê~åëÑçêãáåÖ=aÉÑÉåëÉ=======- 60 -
=

=

Emerging Recommendations

Somehow, we have to get our hands around how the support costs of weapons systems
are contributing to TOC, especially the software component. It is important that we capture
where the money is being spent and attack issues as they relate to sustainability.

It is important that we improve the requirements analysis. Expecting to hand off a level-
three work breakdown structure to a software intensive system and hoping to get a quality
product is not realistic. At the very minimum, we need to tell contractors what is the current,
planned and projected capability upgrades. Even though software is ever changing, it is
important that we make a cut at requirements and upgrade expectations to enable contractors
to build efficiently in the front end and construct the software architecture for flexibility to
accommodate those changes and upgrades. This should also be applied for software interfaces.

=
=
==================`Ü~êíáåÖ=~=`çìêëÉ=Ñçê=`Ü~åÖÉW==
= ==========^Åèìáëáíáçå=qÜÉçêó=~åÇ=mê~ÅíáÅÉ=Ñçê=~=qê~åëÑçêãáåÖ=aÉÑÉåëÉ=======- 61 -
=

=

We require higher safety and security requirements on intensive software systems,
beyond what is readily available in most of the commercial markets.

Exception or fault handling: There are current software systems in the tactical world
that lock up when a fault occurs. In a combat situation, this is deadly. A system needs to have a
‘reject faults’ capability, to move on and continue to function.

Recovery technique: For example, I spoke to a Navy commander who was involved
with the STENNIS. A software glitch in the system caused the ship not to know where it was in
the world. They didn’t want to get too close to land masses or any other ships so they steamed
around for about six hours rebooting the software.

Reliability: Our requirements for reliability in our weapon systems are thousands of
times higher than what we expect from the software sitting on our desks and in our offices.

Redundant Capability: What do we need to make sure it does not go down under
any circumstances?

Conclusion
The software component of our increasingly high-technology weapons systems provides

the capabilities and lethality desired for our forces, but is potentially devastating to our ability to
cost-effectively maintain their advantages.

The complexity of individual software-intensive systems is significantly compounded
when they are combined in a “system of systems” architecture. The initial software architecture,
driven by how requirements are translated into performance specifications, is critical in
determining how much maintenance will be required and how much effort will be required in the
necessary maintenance actions.

=
=
==================`Ü~êíáåÖ=~=`çìêëÉ=Ñçê=`Ü~åÖÉW==
= ==========^Åèìáëáíáçå=qÜÉçêó=~åÇ=mê~ÅíáÅÉ=Ñçê=~=qê~åëÑçêãáåÖ=aÉÑÉåëÉ=======- 62 -
=

=

To gain more effective software design, significantly more effort is required in
requirements analyses. Performance specifications must be much more developed than is
typical in the current development model. Handing off performance specifications developed
through just three levels of the Work Breakdown Structure (WBS) for software intensive systems
is insufficient in a complex, system of systems environment dependent on seamless interfaces
in an ever-changing architecture.

Significant development, incorporating all critical performance features, interface
requirements, and known, planned and projected upgrades, changes and enhancements must
be effectively transmitted to the developer for consideration in the software design and
architecture.

Without these efforts, software supportability costs will continue to skyrocket as existing
software will require expensive and time consuming re-engineering to accommodate interface
and capability changes that were known or could have been derived from more thorough
requirements analyses.

=
=
==================`Ü~êíáåÖ=~=`çìêëÉ=Ñçê=`Ü~åÖÉW==
= ==========^Åèìáëáíáçå=qÜÉçêó=~åÇ=mê~ÅíáÅÉ=Ñçê=~=qê~åëÑçêãáåÖ=aÉÑÉåëÉ========
=

=

THIS PAGE INTENTIONALLY LEFT BLANK

=
==================`Ü~êíáåÖ=~=`çìêëÉ=Ñçê=`Ü~åÖÉW==
= ==========^Åèìáëáíáçå=qÜÉçêó=~åÇ=mê~ÅíáÅÉ=Ñçê=~=qê~åëÑçêãáåÖ=aÉÑÉåëÉ=

=

2003 - 2006 Sponsored Acquisition Research Topics

Acquisition Management
 Software Requirements for OA
 Managing Services Supply Chain
 Acquiring Combat Capability via Public-Private Partnerships (PPPs)
 Knowledge Value Added (KVA) + Real Options (RO) Applied to Shipyard

Planning Processes
 Portfolio Optimization via KVA + RO
 MOSA Contracting Implications
 Strategy for Defense Acquisition Research
 Spiral Development
 BCA: Contractor vs. Organic Growth

Contract Management
 USAF IT Commodity Council
 Contractors in 21st Century Combat Zone
 Joint Contingency Contracting
 Navy Contract Writing Guide
 Commodity Sourcing Strategies
 Past Performance in Source Selection
 USMC Contingency Contracting
 Transforming DoD Contract Closeout
 Model for Optimizing Contingency Contracting Planning and Execution

Financial Management
 PPPs and Government Financing
 Energy Saving Contracts/DoD Mobile Assets
 Capital Budgeting for DoD
 Financing DoD Budget via PPPs
 ROI of Information Warfare Systems
 Acquisitions via leasing: MPS case
 Special Termination Liability in MDAPs

Logistics Management
 R-TOC Aegis Microwave Power Tubes

=
==================`Ü~êíáåÖ=~=`çìêëÉ=Ñçê=`Ü~åÖÉW==
= ==========^Åèìáëáíáçå=qÜÉçêó=~åÇ=mê~ÅíáÅÉ=Ñçê=~=qê~åëÑçêãáåÖ=aÉÑÉåëÉ=

=

 Privatization-NOSL/NAWCI
 Army LOG MOD
 PBL (4)
 Contractors Supporting Military Operations
 RFID (4)
 Strategic Sourcing
 ASDS Product Support Analysis
 Analysis of LAV Depot Maintenance
 Diffusion/Variability on Vendor Performance Evaluation
 Optimizing CIWS Life Cycle Support (LCS)

Program Management
 Building Collaborative Capacity
 Knowledge, Responsibilities and Decision Rights in MDAPs
 KVA Applied to Aegis and SSDS
 Business Process Reengineering (BPR) for LCS Mission Module

Acquisition
 Terminating Your Own Program
 Collaborative IT Tools Leveraging Competence

A complete listing and electronic copies of published research within the Acquisition
Research Program are available on our website: www.acquisitionresearch.org

^Åèìáëáíáçå=êÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=ëÅÜççä=çÑ=ÄìëáåÉëë=C=éìÄäáÅ=éçäáÅó=
k~î~ä=éçëíÖê~Çì~íÉ=ëÅÜççä=
RRR=avbo=ol^aI=fkdboplii=e^ii=
jlkqbobvI=`^ifclokf^=VPVQP=

www.acquisitionresearch.org

